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Abstract

The automatic generation of captions from medical images can provide for an efficient way
to annotate histopathology images with natural language descriptions. Such large-scale an-
notation of medical images may help facilitate image retrieval tasks and standardize clinical
ontologies. In this work, we focus on developing and methodically evaluating a new cap-
tion generation framework for histopathology whole-slide images. We introduce PathCap, a
deep learning multi-scale framework, to predict captions from histopathology images using
multi-scale views of whole-slide images. We demonstrate that our framework outperforms
a standard baseline caption model on a diverse set of human tissues and provides inter-
pretable contextual cues for understanding predicted captions. Finally, we draw attention
to a novel dataset of histopathology images with captions from the Genotype-Tissue Expres-
sion (GTEx) project, providing a valuable dataset for the machine learning and healthcare
community to benchmark future caption prediction and interpretation methods.

1. Introduction

In the last century, advances in clinical pathology, such as biospecimen fixation, staining,
and digital microscopy, have enabled the routine digitization of histopathology slides Bera
et al. (2019). Histopathological images contain rich clinical diagnostic information. For ex-
ample in colonic biopsies, there is architectural information, including crypt abnormalities,
and distribution of inflammatory cells, providing insight to disease processes. Anatomic
pathologists have developed their own specialized language and lexicon to communicate
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these descriptive findings. Automatically describing the content of an image is a grand
challenge in machine learning, requiring integration of computer vision and natural lan-
guage processing disciplines. Accurate machine learning methods for generating and visu-
alizing captions from histopathology images have several important potential applications,
including (1) supporting pathologists by providing caption prompts and visual cues to help
facilitate clinical review, and (2) enabling image retrieval tasks, for example, on archival
histopathology slide images missing specific labels or descriptions.

The characterization of fine-grained features that distinguish various morphological
and pathological classifications are primarily obtained through expert visual assessment
of histopathology images, often requiring experts to spend a significant number of years
training and refining their visual skills Brugnara et al. (1994). At the same time, new ma-
chine learning techniques for automatically generating natural language descriptions from
histopathology images have received limited attention, nor have publicly available bench-
mark datasets been established for histopathology caption prediction tasks. In this work,
we have sought to methodically evaluate if it is possible to generate short, clinically rel-
evant descriptions (captions) from H&E histopathology whole-slide images automatically
and propose a benchmark dataset for the machine learning community (Figure 1).

Deep neural networks can learn fine-grained features directly from raw images in a super-
vised machine learning setting and have already achieved great success in several complex
tasks involving histopathology images, including tissue classification Bejnordi et al. (2017),
disease outcome prediction Mobadersany et al. (2018), and prediction of genetic alterations
Coudray et al. (2018). However, standard machine learning techniques for caption prediction
present two non-trivial obstacles: First, histopathology images are often composed of more
than 1 billion pixels (gigapixel), which limits most off-the-shelf deep neural networks models
due to memory limitations. The rescaling of high-resolution images to overcome memory
limitations can result in loss of contextual and spatial information, impeding the genera-
tion of relevant descriptions from whole-slide histopathology images. Second, methods for
evaluating and visually interpreting predicted captions are needed to facilitate wide-spread
clinical adoption. Thus, the combined task of predicting and then interpreting caption gen-
eration in the context of gigapixel sized images is a technically challenging problem that is
largely unique to the healthcare domain.

We introduce a new multi-scale view framework called PathCap that initially clusters
high-resolution tiles from histopathology whole-slide images, and then combines a single low-
resolution thumbnail view of the whole-slide image with tiles randomly sampled from high-
resolution clusters. Our experiments show that PathCap can effectively access and integrate
information from both high-resolution and low-resolution views. We tested our framework
on data from the Genotype-Tissue Expression (GTEx) project Consortium et al. (2017),
and evaluated our predictions with a pathologist to uncover limitations and opportunities
in caption prediction from histopathology images.

Generalizable Insights about Machine Learning in the Context of Healthcare

In this work, we developed a novel model that integrates multiple resolution views of gi-
gapixel histopathology images in order to generate short, clinically relevant natural language
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Figure 1: Example slide and caption from GTEx sample GTEX-131XE-0826: 6 pieces; 4
pieces have full thickness elements with well preserved mucosa; 2 have no mucosa
(in this section).

descriptions. We also present a method to produce visually interpretable predictions. Thus,
the primary contribution of this study is three fold:

1. We develop a simple framework for harnessing different resolution views of histopathol-
ogy images for various machine learning tasks, such as caption generation.

2. We demonstrate how tile-level clustering can be harnessed for interpreting predicted
captions and obtaining visual cues.

3. We apply our model to a novel dataset from GTEx for caption prediction which
contains > 9000 histopathology images and captions from diverse tissues and propose
it as a benchmarking dataset for the machine learning and healthcare community.

Our code for this project is publicly available.!

2. Related Work
2.1. Image Captioning Models

Early image caption generation focused on detection Kulkarni et al. (2013) followed by
template filling. Since the rise of deep learning, most caption generation models have
adopted the encoder-and-decoder paradigm Vinyals et al. (2014a), Vinyals et al. (2014b),
and Xu et al. (2015). These methods typically use non-medical images, such as real world

1. https://github.com/zhangrenyuuchicago/PathCap
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scenes found in ImageNet Russakovsky et al. (2015). Typically, the encoder is a CNN
that extracts features from input images, and the decoder uses an LSTM Hochreiter and
Schmidhuber (1997) to generate words step by step. Notably, Xu et al. (2015) incorporated
the attention mechanism into the encoder-and-decoder paradigm by feeding an attention
weighted combination of features (instead of a CNN extracted single feature) to the LSTM.
This approach turned out to be very effective in terms of performance and now defines
the standard baseline caption model. However, the visualization and interpretation of the
attention weight on the input images can be very ambiguous and non-specific. Subsequent
work in the field has focused on further exploiting attention, for example, You et al. (2016)
plugged the attention weighted features over semantic concepts into hidden states of LSTM
and words generation layers, and Liu et al. (2016) proposed to use instance segmentation
to improve the correctness of attention.

More closely related to medical imaging, Zhang et al. (2017) aimed at generating semi-
structured pathology descriptions. In order to gain effective gradient flow for training, they
utilized a predefined subset of descriptions extracted from the reports. They demonstrated
slightly better performance in their experiments compared to a standard baseline caption
model. Jing et al. (2017) also adopted a encoder-and-decoder paradigm for X-ray images
and developed a hierarchical LSTM model to specifically overcome the challenges of long
paragraphs in clinical reports.

Collectively, these methods all require non-trivial changes to adopt to histopathology
images due to the lack of instance segmentation information in routine imaging data and
robust clinical pathology instance detectors. Furthermore, these methods require rescaling
whole-slide images for implementation, causing loss of high-resolution information about
the sample tissue and morphology and thus, limiting their ability to utilize full resolution
data for generating salient captions.

2.2. Metric Learning

A key step in PathCap involves clustering semantically similar high-resolution tiles from
histopathology whole-slide images. In order to cluster tiles within a whole-slide image, we
sought to learn embeddings for arbitrary image tiles such that similar tiles have similar
embeddings. To accomplish this we used metric learning, which aims to produce a feature
space F with a certain metric structure, where similarity can be captured by some distance
function, typically the Euclidean distance Ho et al. (2019). In the context of deep learn-
ing, classic metric learning uses no additional layers. Several variants have been proposed
Movshovitz-Attias et al. (2017), Sohn (2016), Hadsell et al. (2006), and Chopra et al. (2005);
among which triplet loss Schroff et al. (2015), Wang et al. (2014), Bell and Bala (2015),
and Weinberger and Saul (2009) is the most popular. In practice, triplets make the training
difficult by increasing the sample number cubically. Many methods have sought to acceler-
ate the training Wang et al. (2014), Bell and Bala (2015), Schroff et al. (2015), and Song
et al. (2015). In this paper, we follow a simple sampling strategy and objective function
(Section 3.2). Qualitative evaluation shows that triplet loss produces embeddings that are
consistent with semantic components of tissues inside histopathology images (Figure 2).
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Figure 2: Example tiles used for triplet loss. (a) is the anchor tile showing colonic mucosa,
(b) shows predominantly colonic mucosa, and (c) shows mostly smooth muscle
(from muscularis propria). (b) and (c) correspond to positive and negative sam-
ples respectively for triplet loss.

3. Methods

3.1. Overview

The tissue regions within H&E whole-slide images {s f‘il are tiled into non-overlapping
sections (1000x1000px) {t; é\]:zl. Here M is the number of whole-slide images in the dataset.
The N* is the number of tiles that contain tissues and are extracted from slide s*. The tissue
region is deduced by selecting tiles with an average grayscale pixel value in the range [0.2,
0.7]. An autoencoder is trained on tissue containing tiles {t; ;V:l 1 using both reconstruction
loss and triplet loss. We cluster the tiles {t;};vzll extracted from each slide s’ based on
the embeddings {e§~ ;V:ll learned from the autoencoder. For simplicity, we focus our study
on k-means, but other clustering approaches can be used as well. K-means takes a set
of vectors as input, in our case the embedding produced by an autoencoder, and clusters
{e; ;\,:11 into K distinct groups {C?}X | based on a Euclidean distance. Thus, if we fix
the cluster number K as 5, the tiles from tissue regions in each histopathology image are
clustered into 5 groups.

Next, a rescaled thumbnail b and tiles {¢ }X | sampled from each cluster {Ci}£ | of a
slide s’ are fed into our caption generation model (PathCap) during training and testing.
If the cluster number is set to K = 5, five tiles, 1 from each cluster, are sampled randomly.
The thumbnail b is used to initialize the LSTM, and tiles {¢i}X | are fed to the LSTM
step by step. Our attention module is based on the sampled tiles. To enable visualization
of the attention across the whole slide image, we can show the attention weights over all
tiles {t!}X | from a given cluster {C}}X . We used PyTorch to implement our model
Vinodababu (2019).

3.2. Metric Learning with Triplet Loss

An autoencoder is trained on all tissue containing tiles {t;} extracted from all slides {s'}},
in the dataset. An autoencoder is an unsupervised method that generates a small com-
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Figure 3: Example clustering visualization. Box color of each tile represents the cluster
membership (K = 5). The tile cluster colors demonstrate that tiles in a cluster
are semantically coherent across and within pieces.

pressed feature representation or embedding for each input sample. These features can
capture the variance of the whole dataset while exhibiting a small amount of reconstruction
loss. The large amount of tiles extracted from gigapixel histopathology slides make it com-
putationally expensive to process all the tiles from a slide within one single pass. Instead,
we randomly sample a limited number of tiles for each slide.

To learn a more robust embedding, in addition to the reconstruction loss, we use triplet
loss. Specifically, during the training of the autoencoder, the data loader returns a set of
triplet (t;, };, t}) tiles from each slide s°. t;- is the anchor tile. t}; is a positive example of t;
Here we define positive examples as an adjacent tile. t; is a negative example of ¢ which
means ¢! is not adjacent to t§ (Figure 2). The loss is as follows:

L(t},t};,tf) =pu- max(d(eé-,efc) — d(eé, el) +m,0) + d(t;-, D(ez))

E is encoder and D is decoder. e§~ = E(t;) d(-,-) represents the distance. m is the margin
and p is the factor for triplet loss. We use mean squared deviation as the distance.

We train the autoencoder with the Adam method Kingma and Ba (2014). The autoen-
coder is trained for 4 epochs. After the training of the autoencoder is finished, we use the
autoencoder to obtain representations for all the tiles. For each slide, we perform k-means
clustering for all the tiles in the slide (Figure 3).

3.3. Neural Network Architecture

Low-resolution thumbnail images are used to initialize the LSTM Hochreiter and Schmidhu-
ber (1997). An attention mechanism on tiles is adopted for each step of generating captions,
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Figure 4: Overall architecture of PathCap. One ResNet-18 is used to extract visual features

from the thumbnail of a histopathology image, and pass it to the LSTM. The other
ResNet-18 extracts features from randomly sampled tiles from different clusters

of the histopathology image, and passes them to the attention module and LSTM
step by step.

following the approach from Ilse et al. (2018). Overall, PathCap contains three modules
(Figure 4): the thumbnail encoder, tiles encoder, and decoder.

For the thumbnail encoder part, the standard ResNet-18 He et al. (2015) extracts the

feature vector from a given input image thumbnail b’. The feature vector is linearly trans-
formed and then used to initialize LSTM.

The tile encoder contains another ResNet-18 to extract representations from tiles {t};}szl.
Let H' = {hi}X | be a bag of K representations of K tiles from different clusters {C?}K
of a slide s'. The attention-weighted representation z! at step ¢ for a slide s* is

K
2t = g ok hy,
k=1

where:
exp(w! tanh(V [hg, m!])
Zle exp(wT tanh(V[hg, m])

m? is the hidden state of LSTM at step ¢, and w and V are parameters of two linear layers.
[-,-] is the concatenation operation.

of =

For the decoder part of PathCap, source and target texts are predefined. For example, if
the image description is “2 pieces, 15% vessel stroma, rep delineated”, the source sequence
is a list containing [‘<start>’, ‘2, ‘pieces’, ¢,, ¢ 15%’, ‘vessel’, ‘stroma’, ‘rep’, ‘delineated’]
and the target sequence is a list containing [‘2’, ‘pieces’, ¢, ¢ 15%’, ‘vessel’, ‘stroma’, ‘rep’,
‘delineated’; ‘<end>’]. Using these source and target sequences and the feature vector, the
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Figure 5: Example tile clustering (K =5) with triplet loss. (a) is the original slide. (b)
and (c) show the tile clustering after we train the autoencoder with and without
triplet loss respectively. Colors of the boxes show the cluster membership.

LSTM decoder is trained as a language model conditioned on the image feature vector.
Notably, we can use the attention mechanism to extract features from sampled tiles and
visualize the weights when generating each word of a caption for histology images.

3.4. Data Augmentation and Hyperparameter Settings

Each training slide contained between 10 to 1000 tiles (median 372). During the autoencoder
and PathCap training we applied several data augmentations strategies similar to Liu et al.
(2017) to improve model robustness. First, we randomly applied left-right and top-down
flips. Second, we perturbed color: brightness with a maximum delta of 64/255, saturation
with a maximum delta of 0.25, hue with a maximum delta of 0.04, and contrast with a
maximum delta of 0.75. The Adam optimizer Kingma and Ba (2014) and validation data
was used for parameter learning. Both the ResNet-18 for thumbnails and tiles were fine-
tuned with learning rate = le-4. The decoder’s learning rate was 4e-4. We decay learning
rate with factor 0.8 if there is no improvement for 8 consecutive epochs, and terminate
training if there is no improvement for 20 consecutive epochs.

4. Cohort

We downloaded all clinical slides from the Genotype-Tissue Expression (GTEx) portal.?
The GTEx project aims to provide the scientific community a common resource with which
to study human gene expression and regulation and its relationship to genetic variation.
Notably, the GTEx Portal also provides open access to histopathology imaging data of
donor tissue and histopathology notes describing the tissue sample quality (Figure 1).

2. http://gtexportal.org/home/histologyPage
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After selecting slides with captions and removing slides with sparse tissue content, we
curated 9727 slide-caption pairs spanning 41 different tissue types. These pairs were ran-
domly split into 7795 training, 948 validation, and 984 sized testing sets.

For the imaging data, we did not use any preprocessing methods on the whole-slide
images. All histopathology slide images were subjected to digital tissue segmentation and
segmented regions were clipped into non-overlapping 1000x1000px sized sections at 20x
magnification. We removed tiles with intensity greater than 0.70 or less than 0.2 to remove
the background. For the caption data, all the captions were converted to lowercase. Tokens
with less than 5 frequency were removed from the captions, resulting in 971 tokens that
cover 95.06% word occurrences in the dataset.

5. Results on Real Data

5.1. Results on Caption Generation

We first compared PathCap to a baseline model, which only takes low-resolution thumb-
nails as input and uses the Xu et al. (2015) approach (Table 1). For each step generating
words, the model follows an attention mechanism and gives a weight for the spatial features
extracted from thumbnails by ResNet-18 He et al. (2015). We used the Microsoft COCO
Chen et al. (2015) tool to quantitatively compare the performance of models with different
inputs. Here we used beam size = 1 and metrics including BLEU (columns labeled B-1,
B-2, B-3, and B-4) Papineni et al. (2002), Meteor Denkowski and Lavie (2014), Rouge-L
Lin (2004) and CIDEr Vedantam et al. (2014). We also examined a version of PathCap that
only used tiles and without access to a thumbnail view, and found that using tiles alone
performed slightly better than the baseline model. Taken together, PathCap, which com-
bines information from high-resolution tile and low-resolution thumbnail views performed
the best. All the metrics of PathCap are averaged over 20 rounds of testing.

Table 1: Performance on test set

Method B-1 B-2 B-3 B-4 METEOR ROUGE.L CIDEr
Baseline | 0.3822  0.2833 0.1996  0.1377 0.1958 0.4282 0.8936
PathCap | 0.4046 0.2986 0.2114 0.1455 0.2059 0.4290 0.9038
Tiles-only | 0.3944 0.2905 0.2040 0.1383 0.2032 0.4312 0.9003

5.2. Results on Metric Learning

In order to demonstrate the superiority of triplet loss on tile embeddings, we trained two
autoencoders. One autoencoder was trained only with reconstruction (mean squared error,
MSE) loss. The other autoencoder was trained with reconstruction loss and triplet loss.
The encoder part of the autoencoder was composed of two convolutional layers and two
maxpooling layers. The output of the encoder (embedding) is of length 460. The decoder
part contained three convolutional layers. The p was set to 0.1, and the margin 0.001. We
trained two separate PathCap models with the clusters using the representations from each
of the two different autoencoders.
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We observed that the two different autoencoders produced qualitatively different tile
clusterings (Figure 5). Next, we used the Microsoft COCO Chen et al. (2015) tool again to
quantitatively compare the performance of models with different metrics, including BLEU
Papineni et al. (2002), Meteor Denkowski and Lavie (2014), Rouge-L Lin (2004) and CIDEr
Vedantam et al. (2014). Table 2 shows the performance of our models when we used different
metric learning methods for clustering. As above, B-1, B-2, etc. refers to the BLEU
score. Overall, we demonstrate both a qualitative improvement in tile-level clustering, and
quantitative improvement in caption generation using metric learning.

Table 2: Influence of triplet loss

Loss B-1 B-2 B-3 B-4 METEOR ROUGE.L CIDEr
MSE only | 0.3944 0.2878 0.2011  0.1381 0.2005 0.4219 0.8703
MSE &

triplet | 0.4046 0.2986 0.2114 0.1455 0.2059 0.4290 0.9038

5.3. Results on Clustering

In order to explore the influence of cluster number K, we trained models with K from 2
to 5. An autoencoder was trained with reconstruction loss and triplet loss to generate em-
beddings for tiles extracted from each slide. After training the autoencoders, we generated
representations for all tiles and performed k-means clustering using K from 2 to 5. In order
to generate confidence intervals, we repeated this process 20 rounds.

For each PathCap trained model for each K, we evaluated our prediction on the testing
dataset over 20 rounds. The average metrics over 20 rounds are reported in Table 3. The
corresponding 95% confidence interval (CI) for each metric when cluster number = 3 are
B-1 [0.3981,0.4111], B-2 [0.2938,0.3035], B-3 [0.2067,0.2162], B-4 [0.1406,0.1504], METEOR
[0.2018,0.2100], ROUGE_L [0.4232,0.4348] and CIDEr [0.8598,0.9478]. Overall, our analysis
suggests that PathCap is robust to cluster size changes, and demonstrates stable metrics
across K from 2 to 5.

Table 3: Performance of PathCap with different cluster number (K)

K = B-1 B-2 B-3 B-4 METEOR ROUGE.L CIDEr
2 0.3797 0.2814 0.1976  0.1334 0.1973 0.4249 0.8627
3 0.4046 0.2986 0.2114 0.1455 0.2059 0.4290 0.9038
4 0.3887  0.2863 0.2003  0.1355 0.1990 0.4280 0.8989
) 0.3885  0.2909 0.2084  0.1447 0.2015 0.4367 0.9621

5.4. Results on Visualization

PathCap has the advantage of visualizing the caption prediction based on the attention
weight given to tiles from a cluster. As reference, visualization using the standard baseline
model Xu et al. (2015) is depicted in Figure 6. The visualization and interpretation of the
attention weight on the whole-slide images can be very ambiguous and non-specific.

10
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Figure 6: Example of visualizing caption tokens with a standard baseline model Xu et al.
(2015). (a) and (c) are the input thumbnails to the model. (b) and (d) show the
attention weights when the model generates the “myometrium” and “muscularis”
tokens respectively. White/bright indicates more attention weight, black/dark
indicates less attention weight.

In contrast, with PathCap, an attention mechanism over tile features is deployed for our
models. These tiles are sampled from different clusters. The clustering of tiles based on the
embeddings learned using triplet loss underlies the potential of better separating the whole
slides by small tiles. After the model is trained, weights on different clusters can be shown
on the whole slide in the test dataset when the model predicts each word. We observe the
model attends at word-level to both the inner parts of the tissue or texture and also the
boundaries, depending on the caption context. Examples are shown in the Table 4.

Expert evaluation of the examples demonstrate broadly coherent and interpretable re-
sults. In the liver example, the predicted caption and visualization is appropriate for
macrovesicular steatosis. Next, for the Esophagus example, the use of the phrase “good
specimens” in the prediction is highly subjective and likely an atypical way to annotate
specimens. However, the detection of muscularis propria provides improved context rela-
tive to the reference caption. For the skin example, the prediction of “5% dermal fat” is
appropriate, however the tile clusters visualized for the “fat” token are instead squamous
epithelium. Finally, for the colon example, the predicted caption and visualization is correct
that the full thickness section contains about 1 mm thickness of colon, but it is mostly an
irrelevant measure. Notably, the caption neglected to capture autolytic properties from the
autopsy material.

6. Discussion

In this work, we present and examine the complex task of generating short, clinically relevant
captions from gigapixel whole-slide histopathology images. We show that clustering tiles
based on the embeddings learned using triplet loss allows for coherent segmentation of

11
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Table 4: Visualization of the PathCap method on four test slides from four different tissues.
The last column shows some examples of attention weights when the model gen-
erates the corresponding tokens. White/bright indicates more attention weight,

black/dark indicates less attention weight.

Slide PathCap Prediction Reference Example
2 pieces , diffuse | 2 pieces ; includes por-
Liver?® macrovesicular steato- | tion of capsule ( target
a. GTEx sample ID: | SIS involves 70 % of | is 1 em below capsule | “macrovesicular”
13FLV-0326 parenchyma ) , mild steatosis , pas-
sive congestion , focal
portal chronic inflam-
mation
6 pieces , up to| 6 pieces ; well
<unk> ; all muscu- | trimmed

Esophagus®

b. GTEx sample ID:

13FTW-1926

laris , good specimens

£77
s/

6 pieces ; well | 6 pieces ; <unk> epi-
Sk' . trimmed ; 5 % | dermis ( <unk> ) ,
mn dermal fat solar elastosis ; well

¢. GTEx sample ID:

13NYS-0126

trimmed , 10 % der-
mal fat

S P

Colon?

d. GTEx sample ID:

1303P-2326

6 pieces , mucosa up
to 1lmm , <unk> %
thickness

6 pieces ; mucosa au-
tolyzed ;
preserved

muscularis

“mucosa”

12
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whole-slide images and results in improved visualization of attention. Thus, our specific
technical contribution of clustering tiles within histopathlogy images in order to facilitate
downstream tasks, such as caption generation and interpretation, suggests a promising
strategy for other machine learning tasks in digital pathology. Finally, we demonstrate
the relative effectiveness of PathCap compared to a standard baseline caption prediction
approach, and propose the GTEx dataset as a novel benchmark for future caption prediction
and interpretation methods.

Limitations We note some important limitations in our work. First, while PathCap
achieves better performance over the standard baseline caption prediction method, there
is significant room for improvement. Our results confirm that caption generation from
histopathology images is a unique and technically challenging problem. Future work in
caption prediction could benefit from considering this specific problem setting. Second, we
trained and tested our model only on the GTEx data. Due to limitations in publicly available
paired caption and histology images, we were unable to evaluate domain adaptation or
consider other imaging datasets. Future work should consider evaluating PathCap generated
captions on additional datasets as they become available. Third, our captions are short
descriptions relating to specimen quality from GTEx (e.g., sample composition). We did not
test our model on text from large reports or clinical notes. We hypothesize that integration
of a hierarchical LSTM model, such as one proposed by Jing et al. (2017), may be useful
for these scenarios.

13
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