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Abstract

In general, imitation is imprecisely used to address different levels of social learning from
high level knowledge transfer to low level regeneration of motor commands. However,
true imitation is based on abstraction and conceptualization. This paper presents a con-
ceptual approach for imitation learning using feedback cues and interactive training to
abstract spatio-temporal demonstrations based on their perceptual and functional char-
acteristics. Abstraction, concept acquisition, and self-organization of proto-symbols are
performed through an incremental and gradual learning algorithm. In this algorithm, Hid-
den Markov Models (HMMs) are used to abstract perceptually similar demonstrations.
However, abstract (relational) concepts emerge as a collection of HMMs irregularly scat-
tered in the perceptual space. Performance of the proposed algorithm is evaluated in a
human-robot interaction task of imitating signs produced by hand movements. Exper-
imental results show efficiency of our model for concept extraction, symbol emergence,
motion pattern recognition, and regeneration.

Keywords: Imitation, Concept Learning, Incremental Learning, Hidden Markov Model.

1. Introduction

Imitation is one of the main methods of social learning. There are also other types of
social learning which are somehow similar to imitation like mimicking or sampling, but
according to Arbib (2002); Breazeal and Scassellati (2002); Inamura et al. (2004), imitation
is discriminated from others by abstraction, conceptualization and symbolization. In fact,
perfect imitation is accompanied by comprehension and generalization which are attained
by abstraction. Hence, skills can be represented in a generalized symbolic level which is
desired for high level cognitive tasks (Billard et al., 2008). In addition, abstraction helps for
efficient memory management, handling the huge real world search spaces (Inamura et al.,
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2004), and quick knowledge transfer from an agent to another agent or from a situation to
another situation (Kadone and Nakamura, 2006a).

In robotics, imitation is a powerful paradigm (in time or energy) to teach complicated
tasks to complex robots like humanoids. In addition, imitation provides a natural and
implicit mechanism for training a robot which is a key point in human-robot interaction
(HRI). Recently, symbolization and conceptualization has drawn attention in robot learning
by imitation (Inamura et al., 2004; Kadone and Nakamura, 2006a; Samejima et al., 2006;
Kadone and Nakamura, 2006b; Takano and Nakamura, 2006; Krichmar and Edelman, 2002;
Mobahi et al., 2007). However, the majority of previous works are dedicated to form
concepts based on similarity in perceptual characteristics, and there is not enough work to
find abstract concepts which share functional properties. We think that although perceptual
categorization is necessary to abstract demonstrations in imitation, however, there exist
skills or knowledge which cannot be transferred merely from perceptual information, like
internal intents of the teacher or functional meaning (or effect) of the actions.

In this work, we propose an incremental and gradual learning algorithm for concept ac-
quisition, generalization, recognition and regeneration of spatio-temporal demonstrations.
This is an interactive algorithm in which the agent receives reinforcement signal from the
teacher. So, it can form concepts based on functional characteristics of demonstrated behav-
iors. Perceptual abstraction of demonstrations is fulfilled stochastically by Hidden Markov
Models (HMMs). However, an abstract (relational) concept is obtained as a collection of
HMMs which might represent different perceptual features. Generated HMMs are stored
in two different memories, long-term memory (LTM) and Working memory (WM), based
on their contents. In the proposed algorithm, the concepts and proto-symbols emerge au-
tomatically without explicit human intervention. Also, the algorithm is invariant to the
order of incoming demonstrations and acquires the concepts in parallel. Finally, the whole
model can make an interface between skill representation in symbolic level and trajectory
level which is a significant challenge of integrating discrete symbolic AI planning research
and continuous control of robotic systems (Geib et al., 2006). The last note is that the cog-
nitive terms (e.g., LTM and WM) used throughout this paper are based on our previously
proposed bio-inspired model for conceptual imitation (Mobahi et al., 2007). However, as
the biological counterparts are not presented here, we do not make any claims about the
work as a cognitive model.

This paper is organized as follows. Section 2 discusses related works on imitation and
abstraction. In section 3, some basics and theories about concepts are reviewed. In addi-
tion, conceptual imitation is elaborated, and an approach is introduced to teach a concept
oriented agent. Section 4 describes the proposed algorithm for learning and recall phases.
In section 5, an experimental scenario is introduced to evaluate performance of the model.
Also, results of the experiments, including abstraction, recognition, and generation of con-
cepts are presented in this section. Finally, conclusions are drawn in section 6.

2. Related Works

In the recent years many researchers have addressed the problem of imitation and abstrac-
tion. Samejima et al. (2006) proposed an imitation learning model with symbolization of
motion patterns. The imitation process was accomplished through a motion recognition and
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control approach using some controller and predictor modules. However, in the proposed
model, abstraction was based on perceptual similarity, and also the sequence of symbols
was given to the agent by communication.

Kadone and Nakamura (2006a,b) introduced an incremental algorithm to learn human
motion primitives. Their model was able to automatically segment, abstract, memorize, and
recognize demonstrated motions, using associative neural networks. However, like previous
works, the obtained symbols were categorized based on perceptual information.

HMMs have been extensively used for development of imitation models in the last decade
(Inamura et al., 2004; Takano and Nakamura, 2006; Kulic et al., 2008; Billard et al., 2006;
Calinon and Billard, 2004; Calinon et al., 2005; Lee et al., 2008). In fact, HMMs have shown
the ability for abstraction, generalization, recognition and generation of spatio-temporal
signals. They can deal simultaneously with the statistical variations in the dynamics and
the statistical variations in the observations. Consequently, HMMs can provide a unified
mathematical model for learning from imitation. In the previous research on imitation
learning based on HMM, some issues have been proposed and solved gradually. In the early
works, demonstrated motions of different behaviors were grouped manually (or clustered
offline) and next trained with distinct HMMs in an offline manner. So, the number of HMMs
which represented different behaviors was also determined a priori. In addition, the models
lacked a mechanism for motion generation through HMMs. However, in the advanced
works, algorithms were proposed for incremental and autonomous acquisition and learning
of human motions from continuous demonstrations (Kulic et al., 2008, 2007). Furthermore,
several methods introduced to generate smooth motions from HMMs (Inamura et al., 2004;
Kulic et al., 2008; Billard et al., 2006; Calinon and Billard, 2004; Calinon et al., 2005).
For example, Kulic et al. (2008) developed an algorithm for incremental and autonomous
learning, symbolization, recognition, clustering and hierarchical organization of whole body
motion patterns, using Factorial HMMs. They also provide an algorithm for greedy motion
generation. However, in all previous works, abstraction and symbolization are based on
similarity in perceptual space, and the proposed approaches cannot tackle with abstract
(relational) concepts.

The closest work to ours is proposed by Mobahi et al. (2007, 2005) who introduced a bio-
inspired model to acquire abstract relational concepts from imitation, using reinforcement
learning. However, unlike our procedure which is suitable for sequence of observations
(e.g., human motion), their proposed algorithm is only applicable for concept acquisition
from single observations. Moreover, our algorithm makes a stochastic scheme to represent
the concepts and also encodes the acquired knowledge into proto-symbols which are more
meaningful and informative for both recognition and regeneration.

3. Conceptual Imitation

3.1 Concepts

As the aim of this paper is to extract abstract concepts out of demonstrations, some general
basics about concepts are firstly reviewed. According to representational theory of mind,
concept is a mental representation of world in agent’s mind. It can be an abstract idea,
object, or event generally defined as a unit of meaning or knowledge (Zentall et al., 2002).
This unit is constructed based on other units which describe some characteristics about
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the concept. In fact, these physical and/or functional characteristics make principles to
categorize perceptions from world into concepts. For concept acquisition in natural envi-
ronments, three points are desired (Davidsson, 1994). First, concepts should be learned
gradually as experience of the agent is increasing during the lifetime. Second, the concepts
should be learned in parallel to cope with the diversity in type and order of incoming knowl-
edge. Finally, like any learning procedure, it is very favorable to learn fast. Concepts are
categorized into three levels of abstraction, namely, perceptual, relational, and associative
(Zentall et al., 2002). Perceptual concepts are formed based on similarity of instances in
perceptual space. Relational concepts are formed not only by perceptual similarity but also
by external information. However, in associative concepts, physical similarity is not impor-
tant, but shared functional characteristics of the concepts are influential. An illustration of
three types of concepts is provided in Figure 1.
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Figure 1: Three types of concepts (from left to right): Perceptual, Relational, and Associa-
tive.

An important problem with a concept is how to represent it. Three theories are proposed
by Kruschke (2005) to represent the concepts: exemplar, prototype, and rule theories. In
exemplar theory, all instances of a concept are memorized. In prototype theory, a summary
of instances are derived to represent various instances of a concept. This theory is more
abstract and efficient to come up with limitations in memory. Finally, rule theory uses a
match/mismatch process or boundary specification to represent concepts.

3.2 Problem Description

In this work, we want to devise an algorithm for autonomous extraction and learning of
relational concepts from imitation. In this way, demonstrated spatio-temporal behaviors
are abstracted based on similarity in both perceptual and functional space. To this end,
we favor to represent concepts by prototypes. Actually, the ideal situation is when we have
the least number but the most general prototypes to understand a concept. Consequently,
in the face of new demonstrations, the previously learned concepts can be recognized using
generated proto-symbols, and there is no need of learning the behavior (motor commands
to perform the behavior) from scratch. Also, behaviors which are associated with the same
concept can be used alternatively in place of each other according to robot’s comfort or
affordance.
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The real world is full of spatio-tempral experiences with relational concepts. For ex-
ample, there are several perceptually different behaviors which represent “respect” among
people like saluting, removing hat, lowering head, bending down, etc. In fact, all these
behaviors have the same meaning (i.e., respect) for the observers. In addition, there might
be different actions that make the same effect in the environment. For example, there are
different body gestures that make people laugh. In real world, we are facing with instances
of these concepts permanently. A robot which is an inhabitant of the human environment
will also faces similar experiences during colocation and interaction with the human over
its entire lifespan. Hence, there should be an incremental and gradual mechanism to learn
and acquire these concepts.

3.3 How to Teach Relational Concepts?

As described in part 3.1, relational concepts cannot form merely from perceptual obser-
vations, and external information should be also provided. This information can unify
perceptually scattered prototypes which represent the same concept. However, it is inter-
ested to have a simple process to transfer external information from the naive teacher to
the robot. One solution to this problem is same/different judgment. In this method, the
learning agent is exposed to two stimuli. It should decide whether they are associated with
the same or different concept. Based on correctness or incorrectness of the answer, the agent
receives a reward or punishment signal from the teacher. In this work, a similar approach
is used. First, the learning agent observes the teacher’s demonstration. In response to the
teacher, the agent guesses concept of the demonstrated behavior. Next, it reproduces a
behavior which is linked to that concept in its mind. Now, the teacher issues a reward or
punishment signal according to correctness or incorrectness of the learning agent’s response.
In this way, the learning agent gradually develops abstract concepts to increase its reward.
Eventually, the agent will be able to correctly classify novel demonstrations of the learned
concepts.

4. The Proposed Algorithm

In this algorithm, HMMs are used for abstraction and symbolization of spatio-temporal
perceptions. As a result, relational concepts are represented by HMM exemplars and pro-
totypes which might encode different perceptual information but demonstrate the same
functional properties. People unfamiliar with HMM should refer to Rabiner (1990). Also,
to find the algorithms for motion generation through HMM, one might see Inamura et al.
(2004); Kulic et al. (2008); Billard et al. (2006).

4.1 Learning Phase

The learning algorithm is an iterative procedure where a cycle is repeated whenever a new
demonstration is perceived. To have better understanding about the learning algorithm,
assume we are at the middle of execution where some concepts have been formed, and some
prototypes and exemplars have been stored in the agent’s memory. In our algorithm, an
exemplar is an HMM made up of only one demonstration. However, prototypes are HMMs
formed by consolidating perceptually similar exemplars in the memory. Accordingly, we
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categorize the exemplars and prototypes in two different sets, namely Working Memory
(WM) and Long-Term Memory (LTM), respectively. The HMM exemplars and prototypes
which are stored in the LTM and WM are associated with symbolic concepts according to
the illustration in Figure 2.
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Figure 2: Associative memory of exemplars, prototypes, and concepts.

Now, assume that a novel demonstration is perceived by the robot. First, Likelihood of
this perception (x = x1x2 · · ·xT ) is computed against the HMM prototypes in the LTM, us-
ing forward algorithm. Next, the HMM prototype with the highest likelihood is considered,
and the concept associated with this HMM is selected according to (1) and (2):

i = arg max
m∈LTM

P (x|λm), (1)

k = ci. (2)

Where elements of C (e.g., ci) are simple functions that maps a prototype index (e.g., i)
to a concept index (e.g., k). Then, the action for that concept (i.e., yk) is produced, and
reinforcement signal (reward or punishment) from the teacher is received. Now, it is crucial
to specify three processes of concept acquisition in the learning algorithm (Schank et al.,
1986): when to make a new concept, when to modify a concept, and how to modify a
concept. The scheme of these procedures are as follows.

If reinforcement of the teacher is positive (reward) and the likelihood of the catching
prototype is high enough, the only thing to do is to strengthen that HMM prototype by
the new spatio-temporal perception. In this case, a modified form of re-estimation formulas
suited for multiple observation sequences can be used (Rabiner, 1990). The algorithm works
by over-weighting HMM prototypes in order to consider the fact that they are built from
multiple sequences. To evaluate whether the likelihood is high enough or not, the following
criteria is used. If the log likelihood of the absorbing HMM is greater than the minimum
log likelihood of that HMM’s contents (i.e., perceptions previously encoded in the HMM),
the HMM prototype will be appropriate to be updated by the new perception. We call
the aforementioned minimum log likelihood value ll min which is adjusted whenever a new
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HMM prototype is generated or modified. Note that if the reinforcement signal is rewarding
but the log likelihood of the absorbing HMM is less than ll min, the perception is encoded
as a new HMM exemplar, stored in the WM, and linked to the rewarding concept.

However, if the reinforcement is negative (punishment), the other concepts are tried in
an order based on the likelihood of their HMM prototypes in the LTM. Whenever a concept
is tried, its index is stored in a set of tried concept indices, namely Ctired. This process
repeats until the reinforcement signal of the teacher becomes positive. It means that the
new demonstration belongs to the concept which receives reward from the teacher. Then
the robot modifies this concept exactly the same as explained above, by updating absorbing
HMM prototype (if log likelihood is greater than ll min) or making a new HMM exemplar
(if log likelihood is less than ll min).

After all above, if the new demonstration is associated with none of the concepts which
have representations (HMM prototypes) in the LTM, the agent should search in the WM.
This is the case when instances of a concept have been observed previously, but they have
not been consolidated into HMM prototypes yet. In this case, the likelihood of the new
perception is computed against the HMM exemplars associated to the concepts which do
not have representations in the LTM (so, they have not been tried yet), using forward
algorithm:

P (x|λm) ,m ∈WM, cm /∈ Ctried. (3)

Consequently, the concepts are tried (i.e., their associated actions are produced) in an order
based on the likelihood of their HMM exemplars in the WM. If a concept is rewarded, the
new perception is encoded into an HMM as an exemplar, stored in the WM, and linked to
that concept.

The last case is when all the concepts are tried, but no reward is issued by the teacher.
In this case, a new concept is generated. Also, the perceived signal is encoded into an
HMM, stored as an exemplar in the WM, and connected to the new concept. In some
experiments, it is favourable to have only one motor representation for each concept, for
example because of difficulty in generation of motor commands at each demonstration (like
our experiment where the robot’s inverse kinematics is not known). In this case, we can
generate or learn motor programs for a concept whenever a new concept emerges, and store
these motor commands or their encoded information in the memory. In this paper, we use
motor babbling to generate appropriate motor commands for each concept (cf. 4.2).

Following the procedure explained so far, the WM is overpopulated with exemplars after
a short time. So, we must have an abstraction and consolidation mechanism to merge HMM
exemplars and make HMM prototypes which are stored in the LTM. For this purpose,
whenever an exemplar is stored in the WM of a concept and the number of exemplars
associated with that concept exceeds a threshold number (Numth), then a clustering process
gets started on both the HMM exemplars and prototypes of that concept. In this work, we
use a mechanism similar to the algorithm proposed by Kulic et al. (2008) to cluster HMMs
based on the pseudo-distance:

D (λ1, λ2) =
1
T

[
logP

(
O1|λ1

)
− logP

(
O1|λ2

)]
, (4)
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where λ1 and λ2 are two HMM models, O1 is an observation sequence generated by λ1, and
T is the length of O1. Finally a symmetric distance is defined as:

Ds =
D (λ1, λ2) +D (λ2, λ1)

2
. (5)

Now that the distances between HMMs are specified, an agglomerative algorithm which
performs a complete link hierarchical clustering is used to construct new prototypes. Final
clusters are selected based on two criteria, i.e., surpassing the minimum number of elements
and falling behind the maximum distance measure. Maximum distance measure is defined
according to mean and standard deviation of the distances between all the HMMs in the
concept:

Dcutoff = µ−Kcutoff · σ. (6)

After this operation, if new clusters are produced, corresponding HMM prototypes are
trained with their associated elements in the clusters, using Baum-Welch algorithm or
modified re-estimation formulas explained before. These consolidated prototypes are stored
in the LTM. Pseudocode for concept learning algorithm is provided in Figure 3. In the
pseudocode, New L, New W, and New C are functions to make new prototypes, exemplars,
and concepts.

4.2 Motor Babbling

As demonstrations are perceived by the robot’s visual system, these perceptual motion tra-
jectories or the generalized motion patterns generated by HMMs should be transformed
to motor space for imitation. To this end, we should use a mechanism for hand-eye co-
ordination. If inverse kinematics of the robot is given, it can be simply used to make
motor programs; otherwise (e.g., for the robotic marionette in our experiment), it should
be learned. It is known that this knowledge is acquired by human (during infancy) for a
large part through motor babbling. Actually, infants try to learn sensory-motor system of
their body by performing random primitive movements and following those with interesting
effects. So, for the purpose of hand-eye coordination by motor babbling we use the algorithm
introduced by Ajallooeian et al. (2009a). This algorithm is summarized as follows. First,
a number of temporary goals are determined on the visual path of the teaching trajectory.
Robot starts with an initial joint configuration and makes small perturbations in its joint
variables. In this way, the end-effectors sweep all the temporary goals gradually. Next, the
visuomotor information at temporary goals is piled up and a mapping form sensory space
to motor space is learned with a feedforward neural network. For more details, the reader
is referred to Ajallooeian et al. (2009a).

4.3 Recall Phase

In the recall phase, there is no more external information by the teacher. So, the robot
should use the acquired knowledge in the learning phase to classify concept of each novel
demonstration and produce appropriate motor actions to realize that concept. For this
purpose, HMM prototypes in the LTM are used. So, the likelihood of the perceived motion
patterns against HMM prototypes is obtained through forward algorithm. Next, HMM
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1: x:= Sense() 
2: triedC  

3: )x( :
 ,

mPArgMaxi
triedm CcLTMm




  

4: if ( i is not null) 
5:      kyy ,:  ick , 

itriedtried cCC   

6:       Perform ( y ) 

7:      :R Get_Reinforcement() 
8:       if (

ii minllPR _)|x(log ,0   ) 

9:            update i with x  

10:      else if (
ii minllPR _)|x(log ,0   ) 

11:           :p New_W(), kc p :  

12:           Try_Clustering (k) 
13:      else if ( 0R ) 
14:            go to line 3 and repeat the steps 
15: else if ( i is null) 
16:      )x( :

 ,
mPArgMaxj

triedm CcWMm



  

17:      if ( j is not null) 

18:           
kyy ,:  jck , 

jtriedtried cCC   

19:            Perform ( y ) 

20:            :R Get_Reinforcement() 
21:            if ( 0R ) 
22:                 :p New_W(), kc p :  

23:                  Try_Clustering (k) 
24:            else if ( 0R ) 
25:                 go to line 16 and repeat the steps 
26:       else if ( j is null) 

27:            find *y  through babbling such that Perform( *y )=x 

28:            :p New_W(), :q New_C(), qc p : , *: yy q   

 
Try_Clustering(k)        

1:      if (number of exemplars linked to k thNum ) 

2:           cluster the elements linked to concept k 
3:            for clusters satisfying criteria for making new prototypes 
4:                :p New_L(), kc p :  

Figure 3: Psuedocode of the concept learning algorithm for each demonstration.

with the largest likelihood is chosen, and eventually, the observed motion is recognized as
one of the learned concepts by selecting the concept associated with this HMM. Now, the
generalized motion pattern is generated by the selected HMM and transform into motor
commands through motor babbling. However, if the motor program of each concept (or its
encoded representation) is stored in the memory during learning phase, this information
can be used to retrieve appropriate motor commands. Finally, the robot uses these motor
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commands to realize the concept. The last note is that if there is no prototype in the robot’s
LTM (e.g., because of immature learning), the robot employs the aforementioned process
on the HMMs in the WM.

5. Experimental Studies

To test the proposed algorithm for imitation learning in a human-robot interaction task,
we set up an experiment which might be called conceptual hand gesture imitation. In
this experiment, five people are asked to draw six signs by moving their hands in the air.
Signs are “Heart”, “Rectangle”, “Infinity”, “Tick”, “Arc”, and “Eight”. The subjects can
freely start hand movements from any point, but they have to keep their hand in the view
field of the robot’s camera. Each sign might be produced with different types of hand
trajectories. For example, one subject might sketch the Tick sign from left to right and
another one from right to left, but the meaning of both sketches is the same for the subjects.
In our experiment, we have one type of perceptual representation for the signs Rectangle
and Infinity but two representations for each remaining sign. These demonstrations are
incrementally provided to the robot. Samples of demonstrated hand motion patterns are
provided in Figure 4.

Figure 4: Samples of demonstrated signs by the subjects.

The robot is a robotic marionette controlled by 8 servo motors that pull the attached
strings. The teacher uses same/different judgment explained in section 3 to provide ex-
ternal information for the robot. More precisely, the teacher issues a rewarding signal if
his demonstrated action and the robot’s response have the same meaning for the teacher,
and a punishing signal if they do not have the same meaning. As previously noted, in our
experiment different perceptual representation of hand trajectories pertaining to one sign
have the same meaning for the teacher. Hence, each sign is considered as a distinctive
concept which might have irregularly scattered representations in the robot’s visual space.
The robot should understand that these perceptions belong to one concept and imitate that
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concept. Note that this problem can be simply solved if we find the overall hand movement,
take it as a complete shape, and use algorithms for shape classification (Ajallooeian et al.,
2009b). However, instead, we are interested to use sequence of hand movements as percep-
tual data. The first reason is to define an experiment to evaluate our conceptual imitation
model which is suited for relational concepts. The second reason is that tracking hand
movement can help to use dynamics of incoming samples in the waveform of a trajectory
to identify the gesture faster and more confidently.

5.1 Hand Detection and Tracking

For hand detection, we use a saliency based model of visual attention. It is a biologically
inspired bottom-up model proposed by Itti et al. (1998). In this model the image is filtered
and subsampled to make a Gaussian pyramid. The pyramid levels are decomposed into
channels from which feature maps are constructed. Accordingly, this model can be used
to select specific objects by weighting feature channels. Details of image processing and
saliency operations for hand motion extraction from video are described by Ajallooeian
et al. (2009b). In this study, we also take advantage of Kalman filtering to track the hand
motion path (Emanuele and Alessandro, 1998). Therefore, more accurate and smoother
trajectory is achieved for hand.

5.2 Results

The experiment was conducted in a natural room environment, i.e., no artificial background
or other simplifications were used. Perceptions are visual information derived from video
frames of demonstrations. Hand motion path is extracted through visual attention model
in part 5.1. Finally, trajectory of changes in the hand location specified in the camera
coordinate is considered as the input to the learning algorithm. It means that the task
space is selected as the relative displacement in the hand trajectory. So, the perception is
invariant to the translations in the camera coordinate. Total number of demonstrations in
this experiment was 210, including 43 demonstrations for Heart (22 for type 1 and 21 for type
2), 23 demonstrations for Rectangle, 20 demonstrations for Infinity, 42 demonstrations for
Tick (21 for each type), 42 demonstrations for Arc (21 for each type), and 40 demonstrations
for Eight (20 for each type). We employed our proposed algorithm to learn the concept of
demonstrated hand gestures. In the concept learning algorithm, we chose Kcutoff = 0.5,
Numth = 3 , and the number of states for HMMs was set to 10. For initializing state
distribution of HMMs (i.e., mean and covariance of the state), a rough clustering of the
data is performed, and then a Gaussian Mixture Model (GMM) is estimated by Expectation
Maximization (EM), using the k-means clusters at initialization. Minimum number of
elements to form a new cluster (HMM prototype) was set based on the following rule.
There should be at least one prototype and one exemplar or three exemplars in a candidate
cluster to make a new prototype. We used k-fold cross validation with k = 5 to evaluate
the performance of our algorithm for abstraction and recognition of the concepts. So,
the experiment was repeated five times with different combinations of demonstrations for
training and test.

Results of this experiment are summarized as follows. The reinforcement (average of five
experiments) of the teacher over the learning procedure on the training data is illustrated
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in Figure 5. More accurately, this plot shows the first reinforcement of the teacher for
each incoming demonstration. Note that due to the discrete nature of reinforcement (1
for reward, and -1 for punishment), the result in the figure is smoothed with a window
length of 10 to clearly reflect the expected behavior. The reason that reinforcement is
falling at the first demonstrations is that there are not enough prototypes in the LTM at
the beginning. However, after a while, all concepts are perceived for at least one time.
From this moment, number of exemplars for the concepts is getting increased by each new
demonstration. Hence, consolidation is performed more efficiently, and consequently more
informative prototypes are produced.
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Figure 5: Reinforcement over demonstrations.

Figure 6 shows the average smoothed size of the WM and the LTM during learning.
Number of HMM prototypes produced at the end of the learning process of each experiment
is listed in Table 1. In most cases, the algorithm finds the same number of HMM prototypes
as the number of types which perceptually represent each sign. In all, however, there
are always one or two prototypes more than what is expected. For example, in the first
experiment, three prototypes emerge for the Eight sign, but there are two types of perceptual
representation for that in the task. This outcome is because of the fact that the features
making perceptions out of demonstrations are not scale invariant, but the subjects can
freely sketch the signs. We also illustrate the proto-symbol space of HMMs (Takano and
Nakamura, 2006) for the fifth experiment in Figure 7. This space is constructed based
on distances between all pairs of HMM prototypes and classical multidimensional scaling
method (Seber, 1984). Distance between each pair of HMMs is obtained according to (6).
In Figure 7, the first and second principal coordinates of multidimensional scaling are used
to visualize dissimilarity of HMMs in the proto-symbol space.

To summarize performance of our proposed method, recognition accuracy of the algo-
rithm for classifying the concepts in the test data is provided in Table 2. This table also
shows some statistics about the number of generated exemplars and prototypes in the WM
and the LTM. In addition, Table 3 demonstrates the average confusion matrix for this exper-
iment. Finally, an example of signs (Infinity) produced by the robotic marionette through
babbling algorithm for hand-eye coordination is demonstrated in Figure 8.
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Figure 6: Load in (a) working and (b) long term memory.

Experiment no. Heart Rectangle Infinity Tick Arc Eight Total
1 2 1 1 2 2 3 11
2 2 2 1 3 2 2 12
3 3 1 2 2 2 2 12
4 2 1 2 2 2 2 11
5 2 1 2 2 2 2 11

Table 1: Number of HMM Prototypes Generated for each Concept
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Figure 7: Proto symbol space of HMMs in the LTM for the fifth experiment.
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Accuracy Size of WM Size of LM
Mean % Std % Mean Std Mean Std

88.30 4.78 32.40 8.73 11.40 0.55

Table 2: Statistical Information for the experiment with 5-fold cross validation

Concept Heart Rectangle Infinity Tick Arc Eight
Heart 97.50 0.00 0.00 0.00 0.00 2.50

Rectangle 5.00 87.00 4.00 0.00 0.00 4.00
Infinity 15.00 0.00 80.00 0.00 0.00 5.00

Tick 2.22 0.00 0.00 97.78 0.00 0.00
Arc 6.94 6.67 11.67 0.00 72.50 2.22

Eight 5.00 0.00 0.00 0.00 0.00 95.00

Table 3: Average Confusion Matrix for the experiment with 5-fold cross validation

    

Figure 8: An example of hand-eye coordination with the robot.

6. Conclusion

In this study, we introduced a model for conceptual imitation. The main contribution was to
devise an incremental and gradual learning algorithm for autonomous learning and acquisi-
tion of relational concepts from demonstrations, using reinforcement signals and interactive
teaching. HMMs were used to abstract spatio-temporal demonstrations into stochastic
perceptual prototypes and exemplars. Consequently, relational concepts formed as a col-
lection of irregularly scattered HMMs unified based on their functional properties. This
abstraction leads to efficient memory management, generalization of acquired information,
ease of knowledge transfer, and flexibility of choice between different alternatives. Finally,
we evaluated the algorithm in an experimental scenario, namely conceptual hand gesture
imitation. The experiment was conducted on a robotic marionette. Results showed that
our algorithm is successful for acquisition of concepts, emergence and self-organization of
prototypes, recognition, and regeneration of conceptual behaviors.
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