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Abstract
We tackle the problem of approximate inference in Probabilistic Relational Models (PRMs) and
propose the Lazy Aggregation Block Gibbs (LABG) algorithm. The LABG algorithm makes use
of the inherent relational structure of the ground Bayesian network corresponding to a PRM. We
evaluate our approach on artificial and real data, and show that it scales well with the size of the
data set.
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1. Introduction

Researchers designing graphical models often make the assumption that their data are independent
and identically distributed. In reality this is rarely the case - usually the data has an inherent struc-
ture. The central idea of statistical relational learning is to exploit this structure when learning
models to represent the data. Numerous approaches have been introduced in recent years - for ex-
ample Probabilistic Relational Models (PRMs), Relational Markov networks (RMNs) and Markov
Logic; (see the textbooks of Getoor & Taskar, 2007 and Koller & Friedman, 2009 for details ).

Probabilistic Relational Models (Getoor, 2000) define a language that can be used to describe
the relationships - structural and probabilistic - between classes and variables, and thus allows rep-
resenting dependencies between sets of objects. Heckerman et al. (2004) introduced the directed
acyclic probabilistic entity-relationship (DAPER) model which is based on the entity-relationship
model used to design relational databases. Our work builds on the DAPER framework; more pre-
cisely, we present a framework for PRM specification which provides easy support for aggregation
and an efficient approximate inference algorithm.

In general, the syntax of relational models resembles first-order logic (FOL) models for which
inference is undecidable; hence, it is understandable that inference in relational models is a dif-
ficult problem. Undirected models such as Markov Logic have the advantage of being more ex-
pressive than directed models like PRMs; the drawback is increased complexity during inference.
Markov Logic extends standard FOL formulae with uncertainty, current inference approaches in-
clude LazySAT for MAP estimates and MC-SAT for conditional posterior distributions. Both meth-
ods are based on the satisfiability (SAT) problem, where the ‘lazy’ aspect is exploiting the natural
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sparsity of relational domains. Recent results are very promising, but to our knowledge it is unclear
how well this approach scales with the dataset size. In directed models such as PRMs, much of the
existing work involves constructing a ground Bayesian network (GBN) and performing inference
in this model. This is similar to translating first-order formulae into propositional ones; hence, it
is easy to see that the network generated can be very large, making inference very expensive. Ag-
gregation (Zhang and Poole, 1996) is an approach to this problem based on the idea that the value
of the child node can be computed as a function of the values of the parent nodes, whose com-
putation does not require knowing the number of parents in advance. Recent work (e.g. Milch et
al., 2008, Kisynski & Poole, 2009) has proposed algorithms for exact inference in lifted (i.e. non-
grounded) models using aggregation. In this case, aggregation is used to avoid creating the ground
Bayes net for as long as possible. Structured variable elimination introduced by Pfeffer and Koller
(2000) is extension of the original variable elimination method (Zhang and Poole, 1996) to the rela-
tional domain. However, exact inference computationally expensive, and in the Bayesian networks
community, it is often replaced by approximate inference methods, which can handle large models
much better. In this paper, we propose an approach for approximate inference in PRMs based on
MCMC, which leverages the relational structure of the model for aggregation and sampling order.
In our framework, the ground Bayes net is constructed recursively and incrementally, only to the
extent that it is needed to answer the query at hand. Aggregation of parent nodes is used to keep the
parametrization of the network as small as possible. We propose a block Gibbs sampling algorithm
that can answer the desired query; this algorithm takes full advantage of the special structure of the
ground Bayes net, in order to sample as many variables in parallel as possible. We present scaling
experiments in an artificial data set, showing that the running time of the proposed approach scales
very well with the size of the ground Bayesian network. We also present results of an analysis of
political campaign contributions data in the United States to showcase the ability of the proposed
framework to model real data sets.

The paper is structured as follows. In Sec. 2 we review PRMs and introduce the framework that
we developed to specify such models. Sec. 3 describes the Lazy Aggregation Block Gibbs (LABG)
algorithm that we propose. In Sec. 4 we provide an empirical evaluation, and Sec. 5 contains
conclusions and future work.

2. Probabilistic Relational Models

2.1 Entity-Relationship Model

In database design, the entity-relationship model is a representation of the structure of a data set,
and the DAPER framework (which is the basis of our work) is very related to this model. It consists
of a set of entitiesE ∈ E , whereE represents a class of objects, a set of relationshipsR ∈ R, where
R is linking a set of entity classes R(E1, ..., En) and a set of attributes A ∈ A, where each attribute
A is associated with a class X ∈ X ≡ E ∪ R. We denote A(X) as the set of attributes associated
with X . A DAPER model can be represented graphically by using rectangles to represent entities,
diamonds to represent relations and ellipses to represent attributes; we use dashed lines to connect
entities to relationships and attributes. An example (which we discuss in detail later) is shown in
Fig. 1.

Every entity E ∈ E and every relationship R ∈ R contain a set of objects that are instantiations
of that specific class; we refer to these sets as entity sets and relationships sets respectively. We
denote by σER the set that contains all objects in our data set (also called the skeleton), by σE
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and σR the sets of all entity objects and all relation objects, and by σER(X) the set of objects in
X ∈ X . Every object x ∈ σER(X) is associated with a set of attributes A(x). We use x.A to
denote an attribute of object x and X.A to denote an attribute class associated with class X . Each
x.A ∈ A(σER) has a domain V(A) of possible values. Finally, an instance of an entity-relationship
model, IERA, consists of a skeleton σER where for each x ∈ σER and A ∈ A(x), x.A is assigned
a valid value in V(A).

Making the connection to a relational database, a table corresponds to an entity or relationship
class X ∈ E ∪ R and the rows of the table to the skeleton objects σER(X). The columns of the
table are the set of attributes X.A ∈ A(X) where the entry in row x and column A is denoted x.A.
The relational structure is defined by the foreign keys of the relationship class tables, which are the
set of linked entities R(E1, ..., En).

Example 1 In the political system of the United States, money is an important factor. Recipients
of political contributions are required by law to report details about each donation they receive.
The domain is suitable for modelling using PRMs. Fig. 1 contains an example model. The set
of entities is E = {Recipient ,Contributor ,State} and the set of relationships R contains the
relationship Donation . The linked entities of Donation are R(Recipient ,Contributor ,State)
and every donation object d ∈ σR(Donation) has a attribute object d.Amount .

2.2 Probabilistic Structure

Probabilistic dependencies among the attributes A(X ) are specified by solid arrows. Every at-
tribute X.A is associated with a set of parents denoted pa(X.A). Additionally, we may add a
constraint CAB on every dependency. The notion of a constraint is a generalization of what Fried-
man et al. (1999) calls a slot chain, and can be seen as a first-order expression that defines a subset
of σX (X.A) × σX (Y.B) for which the probabilistic dependency is active. Note that a constraint
is more expressive than a slot chain as there can be multiple paths connecting two attributes; a slot
chain is limited to one path.

Given an entity-relationship model with probabilistic dependencies and a skeleton σER, an un-
rolling process can be used to generate a standard “ground” Bayesian network. A node is created
for every attribute instance of every object x.A ∈ A(σER). Then an arc is added to every pair x.A
and y.B, y.B ∈ A(σER), if X.A ∈ pa(Y.B) and if x.A and y.B satisfy the constraint CAB . The
resulting directed acyclic graph (DAG) is called the Ground Bayesian network (GBN).

Next a local probability distribution is defined for each attribute X.A ∈ A(X ). This local
distribution class - P (X.A | pa(X.A)) - is shared by every object of that attribute class x.A ∈
A(σER(X)).

Example 2 In the political contribution domain there is a probabilistic dependency between the
a = Amount attribute of the Donation relationship and the cat = Category attribute associated
with the Contributor entity. The constraint CAmount,Category will activate the dependency only be-
tween Contributor objects for which the Donation object is intended (contributor [Category ] =
contributor [Amount ]). Similar dependencies exist for demrec = Recipient .Democratic, demstate =
State.Democratic and inc = State.Income. Thus the shared local distribution of the amount is
P (a | cat , demrec , demstate , inc).

Note that during the unrolling process, the attribute instances x.A can have a varying number of
parents. But since the local distribution is shared among all X.A, the notion of aggregation has to
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Figure 1: The DAPER model for the political contributions domain. The constraints C of the de-
pendencies are not displayed for simplicity; see also example 2.

be introduced. If the constraint CAB of a dependency X.A← Y.B applied to x.A returns a multiset
{y.B}, then the function γ : {y.B} → y.Bγ returns a summary of the multiset. γ({y.B}) can be
any function that does not depend on the actual number of elements in the set, e.g. the average,
mean, mode, min, max, logical “and” (for binary variables) etc.

A DAPER model D consists of an entity-relationship model with a probabilistic dependency
structure and a set of local distributions (one for each X.A). The joint probability distribution in a
DAPER model can be written as:

P (IERA | D, σER) =
∏

x.A∈A(σER)

P (x.A | pa(x.A))

=
∏

X∈E∪R

∏
x∈σER(X)

∏
A∈A(x)

P (x.A | pa(x.A))

2.3 Parameter Estimation

In general, neither the local distributions nor the actual probabilistic dependencies are readily avail-
able. In the relational setting the uncertainty can also extend to the structure of the data itself,
known as reference and identity uncertainty (Getoor and Taskar, 2007; Pasula and Russell, 2001),
but for this paper we assume the full skeleton σER is known, and the probabilistic dependencies
are also specified by the designer of the model. Only the conditional probability distributions
P (X.A | pa(X.A)) for each attribute X.A have to be learned from the data. Our software package
use maximum likelihood estimation (MLE), and at the moment supports discrete variables. It is
worth noting that the estimation is very easy to do using a relational data base, because the number
of objects with a certain configuration can usually be computed with a single query.

3. Approximate Inference

Like in Bayes nets, probabilistic inference can be viewed as a process by which influence flows
through the network. But instead of constraining that flow to be between the random variables of
one instance, like in Bayesian networks, PRMs allow flow between interrelated objects as well. In
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large domains, exact inference quickly becomes intractable and approximate inference is necessary.
In this section we describe our inference method: we construct the ground Bayes net in a lazy
manner, in order to capture just the variables needed to answer the query, then we use an efficient
Gibbs sampling method for approximate inference.

3.1 Querying

Given a model D, a query Q = (Y,E) is defined by a set of event variables Y ⊆ A(σER) and a set
of evidence variables E ⊆ A(σER). The set of all classes in the query is Q〈X 〉 = Y〈X 〉 ∪ E〈X 〉
and the set of all objects of a classX ∈ Q〈X 〉 in the event and the evidence is denoted, respectively,
by Y(X) and E(X). Finally, Y(X.A) designates the set {x.A} ⊆ Y(X) associated with the same
attribute class X.A. The goal is to infer the posterior P (Y | E).

Example 3 In the political contribution domain, we might be interested in predicting the political
affiliation of a recipient based on the information about the donations, the contributors and the state
information. The query Q would consist of Y = {Recipient .Democratici}, where i references the
Recipient object of a specific politician and the evidence E would contain all information about the
donations, the contributors and the states.

3.2 Lazy Unrolling

A query can be answered in a Bayes net by taking into account only the subgraph that contains
all event nodes and is d-separated from the full graph given the evidence nodes (see section 3.3).
The d-separated Ground Bayesian network generated by the unrolling process for query Q should
therefore satisfy

(GBNd-sep ⊥⊥ GBNfull) | E,
where GBNfull refers to the ground Bayes net induced by the full model. In the following we refer
to GBNd-sep simply as Ground Bayes net. For traditional BNs there exist algorithms for this task
- e.g. Bayes-Ball, proposed by Shachter (1998) and described in detail in (Koller and Friedman,
2009, page 75). When using PRMs, the structure of the GBN is stored in a first-order representation
rather than explicitly, therefore a different approach is needed.

This observation allows the design of an recursive algorithm, similar to the First-order Bayes-
ball algorithm (Meert et al., 2010), that constructs a partial Ground Bayesian network on an ‘as
needed’ basis. Starting off with the set of event variables Y, the parents and children are itera-
tively loaded subject to the rules that open/break a probabilistic path in the graph (Shachter, 1998).
Eventually the evidence variables E should break all paths, at which point the partial GBN will be
d-separated. As the probabilistic dependencies are usually between attributes of different classes,
the structure of the resulting GBN depends on the relational model. Examples of resulting GBNs
can be found in Fig. 2.

The GBN induced by a query Q will consist of the evidence nodes in E whose values are fixed
to the observed values; all other nodes S = A(GBN)\{E} are not observed and therefore must be
sampled during the inference procedure.

3.3 Block Gibbs Sampling

The underlying independence assumptions in Bayesian networks make Gibbs sampling a natural
choice. It is well known that in a Bayesian network, samples from the proposal distribution for
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(a) A simple 1:n (A-C) and n:1 (A-D) relationship (b) A m:n relationship

(c) Two linked relationships (C-A-D) (d) A larger GBN based on a more complex
query

Figure 2: The structure of the resulting of the ground Bayesian network for different probabilistic
relationships

a variable Xi can be computed based only on the assignment of x(−i) to the Markov blanket of
Xi (Pearl, 1988); as a result, samples can be repeatedly drawn for all variables, generating in the
end true samples from the desired conditional distribution. In the context of PRMs it is possible to
leverage the structure of the GBN to reduce the computational complexity.

All sampling nodes in the GBN are associated with attribute objects x.Ai ∈ S and all x.Ai ∈
S(X.A) for some X ∈ S〈X 〉 share the same local distribution P (X.A | pa(X.A)). Each x.Ai
can have a varying number of parents and children, therefore the full conditional distribution is
Pφ(x.Ai | x.A(−i)), where x.A(−i) is an assignment to A(σER)\{x.Ai}.

Let C = x.Ai ∪ Children(x.Ai); then:

Pφ(x.Ai | x.A(−i)) =
P (x.Ai, x.A(−i))∑
x.Ai

P (x.Ai, x.A(−i))
=

∏
x.A∈A(σER) P (x.A | pa(x.A))∑

x.Ai

∏
x.A∈A(σER) P (x.A | pa(x.A))

=
∏
x.A∈C P (· | ·)

∏
x.A/∈C P (· | ·)∑

x.Ai

∏
x.A∈C P (· | ·)

∏
x.A/∈C P (· | ·)

∝ P (x.Ai | pa(x.Ai))
∏

y.B∈Children(x.Ai)

P (y.B | pa(y.B))

The contribution of each child y.B is therefore the likelihood L(x.Ai | y.B,pa(y.B)\{x.Ai}).
As x.Ai is in pa(y.B) for each y.B, the influence is flowing ‘upwards’ without the need for aggre-
gation. Furthermore, if pa(y.B)\{x.Ai} 6= ∅ (e.g. y.B has other parents besides x.Ai) there will
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also be influence flowing through the resulting V-structure. The other contribution to Pφ is the factor
P (x.Ai | pa(x.Ai)) which is influence flowing ‘downwards’, in aggregated form if necessary.

In general, if the number of parent attribute classes of any x.A is smaller than the number of
parent attribute objects, there is at least one parent attribute class for which aggregation has to be
performed, because the shared local distribution constrains each parent to be single-valued. On the
other hand, influence from child to parent is not aggregated since the above equation contains a
product of the likelihoods L(· | ·) of all children nodes.

This observation allows for “lazy” computation of aggregations. Algorithm 1 presents our ap-
proach. The sampling nodes S are partitioned into blocks, where each block contains all attribute
objects of the same attribute class X.A. Then an attribute class is randomly selected with prob-
ability proportional to the size of its block to ensure that each attribute object is equally likely to
be sampled. After selecting a sampling attribute class, only attribute objects of that type will be
sampled in that step. In the LazyAggregation() step we precompute all aggregation values of par-
ent attributes for which two attribute objects x.Ai, x.Aj ∈ S(X.A) are conditionally independent.
This is the case for all parent attributes pa(X.A) since (x.Ai ⊥⊥ x.Aj) | pa(X.A) as well as for
the parents pa(Y.B)\X.A of the children attribute objects y.B except for X.A itself. In this case,
because x.Ai and x.Aj would not be mutually independent given a common child attribute object,
the aggregation is computed in the Aggregation() step.

Algorithm 1 generates a Gibbs trajectory guaranteed to converge to P (S | E) if the PRM model
satisfies the standard constraints defined by Getoor (2000). The desired marginal posterior P (Y | E)
can be found by marginalizing the latent variables S\{Y} since Y ⊆ S.

Algorithm 1 Lazy Aggregation Block Gibbs (LABG)
Input:
Query Q = (Y,E)
Number of samples N

S← Unroll GBN for Q
Pφ← Compute Full Conditional for x.A ∈ S
s(0)← Sample initial state
for t = 1 to N do

s(t)← s(t−1)

X.A← Select attribute class in A(S)
LazyAggregation(X.A) , if necessary
for all x.A ∈ S(X.A) do

Aggregation(x.A) , if necessary
s(t)〈x.A〉 ← Sample Pφ(x.A)

end for
end for
P (S | E)← Density Estimate of {s(0),...,s(N)}
P (Y | E)←Marginalize S\{Y} from P (S | E)
return P (Y | E)
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4. Experiments

The algorithm we presented only samples new values for a subset of all sampling variables during
a Gibbs step. In order to compare convergence and performance properties, we compare LABG
against two other samplers. The Lazy Aggregation Standard Gibbs (LASG) sampler makes use
of the GBN structure when computing aggregate values, but samples all inference variables in S.
We also use a traditional Gibbs sampler that does not make use of the GBN structure and thus
recomputes aggregations redundantly.

4.1 Artificial Dataset

To illustrate the computational performance of our algorithm, we use an artificial data set whose as-
sociated relational and probabilistic model are depicted in Fig. 3; the local distributions are given in
Table 1. The set of entities and relationship classes are E = {A,B,C,D} andR = {AB,AC,AD}
respectively and all attribute classes are Bernoulli distributed. The model is designed to cover basic
set of possible configurations, namely one 1:n relationship (A→ C), one n:1 relationship (A→ D)
and one m:n relationship (A → B). The constraint C for all dependencies is the traditional slot
chain, e.g. A.a[A] = A.a[AB], B.a[AB] = B.a[B] for the dependency A.a → B.a. Where
necessary, the aggregation function used is the average. We are assessing the quality of the pos-
terior (besides checking the convergence) by performing a simple classification query P (A.a |
B.A,C.A,D.A) for 19 query variables of attribute class A.a. The unrolled GBN is of moderate
size with 19 sampling nodes and a total of 526 nodes. Figure 4 shows the cumulative mean of the
LABG algorithm. Convergence was fast; we used a burn-in of 100 samples and then collected 200
samples from three parallel Gibbs trajectories. This proved sufficient to classify 17 out of the 19
variables correctly using a simple MAP estimate.

D C

A

AD AC

D.a C.a

A.a

AB

B

B.a

Tuesday, June 8, 2010

Figure 3: A DAPER model based on the artificial dataset
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Figure 4: Inference on 19 A.a attribute objects shows solid convergence

Figure 5: Convergence plot of three parallel chains for the Lazy Aggregation Block Gibbs sampler
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A0 A1

0.29 0.71

D0 D1

A0 0.34 0.66
A1 0.6 0.4

C0 C1

A0 0.27 0.73
A1 0.42 0.58

B0 B1

A0 0.59 0.41
A1 0.31 0.69

Table 1: The local distributions for P (A.a), P (D.a | A.a), P (C.a | A.a), P (B.a | A.a)

Table size
A 100
B 50
C 2000
D 500
AB 200

Table size
A 500
B 10
C 10000
D 50
AB 1000

Table 2: A small and a large instance of artificial datasets generated using the same local distribu-
tions (Table 1)

The model presented above allows a meaningful comparison of the proposed inference methods
both in terms of convergence as well as performance. The query selected to ensure that the structure
of the GBN is the same for all experiments performs inference on one attribute object Y = {A.a1}
given all attribute objects E = {C.ai}. The structure induced by the 1:n dependency (A→ C) is a
Naive Bayes since the nodes of class C can only have one parent which is already in the event set.
Every child node of class D of the n:1 dependency (A → D) can have multiple parents in A, and
since neither A or D are in the evidence, all loaded nodes of type A and D will be sampling nodes.
Hence, the lazy construction of the GBN will also load all the children nodes C of the A nodes that
have already been loaded as parents of D. The same recursive mechanism loads nodes of type B as
well. The resulting GBN will quickly grow in size and it will contain many children of type B and
D with multiple parents in A. This type of query is well suited for the proposed Lazy Aggregation
method.

To assess the convergence properties, three parallel Gibbs trajectories were run for both LABG
and LASG. As the LABG algorithm samples only the variables of one randomly selected attribute
class during one Gibbs step, the auto-covariance of the posterior samples is larger than when using
LASG. This in turn leads to a slower traversal of the posterior probability mass as the Gibbs jumps
in the state space are smaller. Hence, the LABG algorithm needs more samples to approximate
the posterior. These effects are illustrated in Figures 5 and 6: LABG needs around 700 samples
for convergence whereas LASG converges after around 400 samples. LASG also displays a lower
inter-chain variance, because it is more ‘guided’ than LABG. These effects can be seen in Figure 7,
which shows two chains respectively of LABG and LASG.

The Lazy Aggregation makes use of the GBN structure while the Block Gibbs is a compromise
in regards to convergence speed and precision. Both mechanisms are increasing the computational
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Figure 6: Convergence plot of three parallel chains for the Lazy Aggregation Standard Gibbs sam-
pler

Figure 7: Comparison of convergence between the LABG and LASG samplers. Note that the limit
of the y-axis has been changed to allow greater detail in the plot
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efficiency of the LABG algorithm (Figure 8): the former by minimizing the number of aggregations
that need to be computed, and the latter by sampling fewer variables. This tradeoff seems to pay
off, as LABG is about three times faster than LASG, but convergence only takes roughly twice as
many samples. Furthermore, Lazy Aggregation seems to have a greater effect when the size of the
GBN increases, which confirms that we avoid more computation if we have more nodes that share
the same children. We conclude that the proposed algorithm scales well with larger queries or when
increasing the data set.

Thus the compromise between speed and accuracy is flexible and the algorithm can be adapted
depending on the precision needed for the inferential goals. The best results are typically generated
using the LASG sampler during the burnin phase for fast convergence, while the samples are being
collected efficiently using LABG.

Figure 8: For both the big and small artificial dataset, a comparison of the average time needed to
compute one Gibbs step for the three discussed Gibbs samplers.

4.2 Political Contributions

In the United States, running a political campaign to be elected into Congress is an expensive en-
deavour. The amount of money at the disposal of a candidate is an important factor in a successful
campaign. Recognizing this influence and the problems that come with it - corrupt lobbying, vested
corporate interests - the recipient of a political contribution is required by law to report the donation.
As a consequence of the recent trend towards government transparency and data digitalization, this
data is now publicly available for bulk download1 .

In order to model the data with a PRM, we considered a subset of the data, consisting of the
federal contributions for the cycle 2007-2008. The recipients are either individuals running for
Congress (House or Senate), Political Action Committees (PACs) or presidential candidates (Barack

1. http://www.transparencydata.com/
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Obama, John McCain). To guarantee statistical significance, only recipients who received more than
1000 contributions are included in the model. The political affiliation of candidates for Congress is
easily available. PACs on the other hand usually redistribute their donations to candidates of both
parties, which makes it harder to determine their affiliation. Each contributor is associated with a
name, the US state where the donation was made, and a industry category (e.g. Oil & Gas, Gun
Rights, Retired). The size of the dataset and the cardinality of the attributes are displayed in Table
3. We augmented the data with information about the contributor state: a binary variable indicating
the income level (above or below the US average) and a binary variable for the political affiliation
of the state based on the outcome of the previous presidential election.

Class Size
Recipient 430
State 50
Donation ∼ 2300000
Contributor ∼ 2300000

Attribute Cardinality
Category 115
Recipient.Democratic 2
Amount 6
Income 2
State.Democratic 2

Table 3: The number of objects in the entities and relationships of the PRM and the cardinality of
the attributes

Figure 9: The model making use of the information about the state of the contributor is performing
better (80%) than the bare model only making use of the industry category of the contributor (74%)

The query from example 2 attempts to predict the political affiliation based on the donation,
contributor and state information. As mentioned above, there is no clear ground truth available for
PACs. To examine the quality of the model, we split the data about the individual recipients in a
training and test set. The test set contains 30 democratic and 30 republican individual candidates
for Congress, randomly selected; the model is trained using the contributions for the remaining 370
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Figure 10: A scatter plot of the size of the Markov blanket and the log likelihood of the recipient.
The red and blue colours indicate republican and democratic affiliations respectively. A circle means
the recipient has been correctly classified whereas a diamond indicates a misclassification.

recipients. To compute the accuracy of the learned PRM, the proposed inference method (Algorithm
1) is run for each recipient in the test set. The structure of the GBN is different for each query. The
number of nodes in a specific GBN depends on the number of contributions the recipient has re-
ceived. The size of the resulting GBNs and the performance of the algorithm is presented in Table 4.

GBN Size (nodes)
Min 2045
Max 23201
Average 4482

Running Time (s)
Average Min Max

Unrolling GBN 235 209 303
Gibbs Sampling 4.8 2.8 13.3

Table 4: Statistics about the size of the GBNs and the running time of the algorithm. During
inference, 200 Gibbs samples showed to be sufficient.

Fig. 9 shows the accuracy of the augmented model compared to a simplified model that did not
make use of the additional information about the State . The inclusion of the additional information
increases the quality of the model. Among the 12 recipients that were classified incorrectly, nine
are Democrats and three are Republicans. To gain more insight into the results, we also examine
the log-likelihood information. Specifically, we are interested in the log-likelihood of the individual
recipients, which can be computed from the Markov blanket of the recipient object. As the number
of nodes in the Markov blanket depends on the number of donations a recipient receives, the log-
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Figure 11: The ratio between the log-likelihood and the size of the Markov blanket allow for a direct
comparison of recipients. The mean of the democratic and republican recipients is similar, but the
democratic recipients display a higher variance.

likelihood values of the individual recipients cannot be compared directly. Fig. 10 illustrates this
correlation; we note that most misclassifications are found in the top-left region where the log-
likelihood is high and the number of donations low. By “normalizing” the log-likelihood by the
number of nodes in the Markov blanket, we obtain scaled values for each recipient, which are more
directly comparable. In Fig. 11 the model’s struggle with democratic recipients becomes apparent;
even though the mean is almost the same (dem = −2.57, rep = −2.58), the variance of the scaled
likelihood is larger (dem = 0.041, rep = 0.015) for the democratic recipients. We conclude that
the pattern of contributions of democratic recipients is more complex to model than for republican
contributions.

5. Conclusions and future work

We presented an approximate inference method for probabilistic relational models which scales well
with the size of the ground Bayesian network. Note that we have an implemented software package
that allows the specification of a DAPER model as presented, the learning of its parameters as well
as query specification and answering. An advantageous sampling order and aggregation are central
parts of this framework, and we leverage the special structure of the GBN as much as possible,
to increase efficiency. The framework is able to efficiently learn a model from real data and its
flexibility makes it suitable for exploratory data analysis. We are currently testing the package on
much larger data sets, as well as on some models where ground truth is available, and where we can
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assess precisely the accuracy of the predictions. We are also augmenting the software package with
other types of distributions and learning algorithms.
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