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Abstract

We present an extension of convex-hull non-negative matrix factorization (CH-NMF) which
was recently proposed as a large scale variant of convex non-negative matrix factorization
or Archetypal Analysis. CH-NMF factorizes a non-negative data matrix V into two non-
negative matrix factors V ≈ WH such that the columns of W are convex combinations
of certain data points so that they are readily interpretable to data analysts. There is,
however, no free lunch: imposing convexity constraints on W typically prevents adaptation
to intrinsic, low dimensional structures in the data. Alas, in cases where the data is
distributed in a non-convex manner or consists of mixtures of lower dimensional convex
distributions, the cluster representatives obtained from CH-NMF will be less meaningful.
In this paper, we present a hierarchical CH-NMF that automatically adapts to internal
structures of a dataset, hence it yields meaningful and interpretable clusters for non-convex
datasets. This is also confirmed by our extensive evaluation on DBLP publication records
of 760,000 authors, 4,000,000 images harvested from the web, and 150,000,000 votes on
World of Warcraft guilds.
Keywords: Matrix factorization, Convex Hull, Hierarchical Methods

1. Introduction

Modern applications of data mining and machine learning in computer vision, natural lan-
guage processing, computational biology, and other areas often consider massive datasets
and we need to run expensive algorithms such as principle component analysis (PCA),
latent Dirichlet allocation (LDA), or non-negative matrix factorization (NMF) to extract
meaningful, low-dimensional representations.

If the data are words contained in documents, these methods yield topic models repre-
senting each document as a mixture of a small number of topics and each word is attributable
to one of the topics. In computer vision, where it is common to represent images as vectors
in a high-dimensional space, they extract visual words and have been used for face and
object recognition, or color segmentation. Social networks such as Flickr, Facebook, or
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Figure 1: Didactic example of a set
of data consisting of a mixture of
Gaussian distributions. The panel on
the left shows basis vectors resulting
from an application of the original ver-
sion of convex-hull NMF. The panel
on the right shows basis vectors ob-
tained from the proposed hierarchical
approach to convex-hull NMF. (Best
viewed in color.)

Myspace allow for a wide range of interactions amongst their members, resulting in mas-
sive, temporal datasets relating users, media objects, and actions. Here, low-dimensional
representations may identify and summarize common social activities.

Therefore, given massive matrices of hundreds of millions of entries, how can we effi-
ciently factorize them? How can we create easy-to-understand, low-dimensional represen-
tations? How can we or even non-experts gain inside into the dataset? These are precisely
the questions we address in this paper.

A recent positive development in data mining and machine learning has been the re-
alization that massive datasets are not only challenging but may as well be viewed as an
opportunity (Torralba et al., 2008; Talwalkar et al., 2008). Machine learning and data min-
ing techniques typically consist of two parts: the model and the data. Most effort in recent
years has gone into the modeling part. Massive datasets, however, allow one to move into
the opposite direction: how much can the data itself help us to solve the problem? Halevy
et al. (2009) even speak of the “the unreasonable effectiveness of data”. Massive datasets
are likely to capture even very rare aspects of the problem at hand. Along this line, Thurau
et al. (2009) have recently introduced a data-driven Convex NMF approach, called convex-
hull NMF, that is fast and scales extremely well: it can efficiently factorize gigantic matrices
and in turn extract meaningful “clusters” from massive datasets containing millions of im-
ages and ratings. The key idea is to restrict the “clusters” to be combinations of vertices
of the convex hull of the dataset; thus directly exploring the data itself to solve the convex
NMF problem.

There is, however, no free lunch: by restricting the “clusters” to combinations of vertices
of the convex hull of the dataset, convex-hull NMF cannot adapt to the intrinsic, low
dimensional structure of the data anymore, cf. Fig. 1. Intuitively, for data modeled by
Gaussians, i.e., as a combination of convex sets, convex-hull NMF will assign clusters to
the “extreme” Gaussians and not to each Gaussian. Our main contribution is a simple
and, hence, powerful and scalable generalization of convex hull NMF that automatically
adapts to the intrinsic (low dimensional) structure in the data. The main insight is that
one can use FastMap due to Faloutsos and Lin (1995) within convex-hull NMF to compute
the convex hull vertices on massive datasets. Consequently, we can still solve the convex
NMF problem but additionally adapt to the intrinsic structure in the data, when we split
the data along each 1D FastMap line recursively, stop when some minimum node size is
reached, and apply a post-pruning step. This way, we get meaningful clusters that respect
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Figure 2: Basis vectors resulting from different NMF variants applied to the CBCL Face
Database 1. (a) Standard NMF results in part-based, sparse representations. Data points
cannot be expressed as convex combinations of these basis elements. (b) Convex NMF
(C-NMF) yields basis elements that allow for convex combinations. Moreover, the basis
vectors are “meaningful” since they closely resemble given data points. They are, however,
not indicative of characteristic variations among individual samples. (c) Convex-Hull NMF
(CH-NMF) diversifies the basis vectors resulting in pale faces, faces with glasses, faces with
beards, and so on. (d) Hierarchical CH-NMF (HCH-NMF) as proposed in the current paper
also diversifies the results. Additionally, it automatically groups them, i.e., it identifies
structure within the data. The induced hierarchical decomposition is shown together with
the number of images falling into the corresponding subtrees.

the structure of the data, i.e., that diversify the results even better than convex-hull NMF.
Our extensive experimental evaluation shows that the method, called hierarchical convex-
hull NMF, achieves similar reconstruction quality as convex-hull NMF with only a small
overhead while it produces more diversified clusters on DBLP publication records of 760.000
authors, 4 million tiny images, and 150 million votes on World of Warcraft guilds.

We proceed as follows. We start off by briefly reviewing non-negative matrix factoriza-
tion (NMF) in Section 2, including convex NMF and convex-hull NMF. Then, we introduce
hierarchical convex-hull NMF in Section 3. Before concluding, we present our extensive
experimental evaluation in Section 4.

2. Non-Negative Matrix Factorization

Assume an m × n input data matrix V = (v1, . . . ,vn) consisting of n column vectors of
dimensionality m. We consider factorizations of the form V ≈Wm×kHk×n . The resulting
matrix W contains a set of k � n basis vectors which are linearly combined using the
coefficients in H to represent the data. Common approaches to achieve such a factorization
include Principal Component Analysis (PCA) (Jolliffe, 1986), Singular Value Decomposition
(SVD) (Golub and van Loan, 1996), Vector Quantization (VQ), or non-negative Matrix
Factorization (NMF) (Lee and Seung, 1999). Note that the factorizations resulting from
these methods differ since each method imposes other constraints: PCA constrains W to
be composed of orthonormal vectors and results in a holistic H, VQ constrains H to unary
vectors, and NMF assumes V,W and H to be non-negative matrices and often leads to
part-based, sparse representations of the data. That is, in the case of NMF, the matrix
W often represents meaningful parts and H tends to be sparse. From this point of view,
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NMF marks a middleground between distributed and unary representations (Lee and Seung,
1999). Next to the the data-compression aspects of NMF, the intuitive interpretability of
the resulting factors makes it especially interesting for many applications.

Various variants and improvements to NMF have been introduced in recent years. For
example, Cai et al. (2008) presented a matrix factorization that obeys the geometric data
structure. Kim and Park (2008), achieve a speed improvement for NMF by using a novel
algorithm based on an alternating nonnegative least squares framework. Another interesting
variation is presented by Suvrit (2008) where optimization is based on a block-iterative
acceleration technique. Recently, Mairal et al. (2010) have presented a very elegant online
NMF approach based on sparse coding that also scales to large matrices (for additional
related work, please see reference in (Mairal et al., 2010)). In this work, however, we build
on Convex-NMF (C-NMF) recently introduced by Ding et al. (2009), and it is not clear
how to adapt these advanced NMF techniques to it as C-NMF represents the data matrix
V as a convex combination of data points, i.e. V = VGHT where each column i of G is a
stochastic vector that obeys ‖gi‖1 = 1,gi ≥ 0 . This is akin to Archetypal Analysis according
to Cutler and Breiman (1994) where both matrices G and HT are to be stochastic. C-NMF
yields interesting interpretations of the data because each data point is now expressed as a
weighted sum of certain data points. Consider e.g. Fig. 2. Here, we applied several NMF
variants to analyze the CBCL Face Database 1 which consists of 2,429 19x19 gray-scale
face images1. As one can see, standard NMF results in part-based, sparse representations.
Data points, however, do not correspond to convex combinations of these parts. In contrast,
C-NMF yields basis elements that express data points as convex combinations of given data
points. In turn, the “meaning” of these basis elements is intuitively understandable (even
to non-experts); one of the main goals of the current paper.

Convex NMF Convex non-negative matrix factorization (C-NMF) was introduced by Ding
et al. (2009) and minimizes J = ‖V −VGHT ‖2 , where V ∈ Rm×n,G ∈ Rn×k,H ∈ Rn×k.
The matrices G and H are updated iteratively until convergence using the following update
rules

Gik = Gik

√
(Y+H)ik + (Y−GHTH)ik

(Y−H)ik + (Y+GHTH)ik
(1)

and

Hik = Hik

√
(Y+G)ik + (HGTY−G)ik

(Y−G)ik + (HGTY+G)ik
(2)

where Y = VTV, and the matrices Y+ and Y− are given by Y +
ik = 1

2 |Yik| + Yik and
Y −ik = 1

2 |Yik| − Yik , respectively.
For the initialization of G and H two methods are proposed. The first initializes to

(almost) unary representations based on a k-means clustering of V. The second assumes a
given NMF or Semi-NMF solution.

Indeed, convex-NMF is related to k-means clustering and results in similar basis vectors
W but it typically outperforms k-means in terms of cluster accuracy. Recall, however,
that our goal is to analyse massive, high-dimensional datasets. Unfortunately, the C-NMF

1. MIT Center For Biological and Computation Learning, http://cbcl.mit.edu/projects/cbcl/

software-datasets/
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Algorithm 1: CH-NMF
Input: Data matrix Vm×n

Output: Matrices X and H
1 Compute k eigenvectors el, l = 1 . . . k of the covariance matrix of Vm×n;

2 Project V onto the 2D-subspaces E2×n
o,q = VT [eo, eq], o = 1 . . . k, q = 1 . . . k, o 6= q;

3 Compute and mark convex hull data points conv(Eo,q) for each 2D projection;
4 Combine marked convex hull data points (using the original data dimensionality m) Sm×p =
{conv(E1,2), . . . , conv(Ek−1,k)};

5 Optimize JS = ‖S− SIp×kJk×p‖2 such that ‖ii‖1 = 1 for ii ≥ 0 and ‖ji‖1 = 1 for ji ≥ 0;

6 Optimize J = ‖vi −XhT
i ‖2 for i = 1 . . . n where X = Sm×pIp×k such that ‖hi‖1 = 1 and hi ≥ 0;

update rules (1) and (2) have a time complexity of O(n2). Moreover, although the iterative
algorithm comes down to simple matrix multiplications, the size of the involved matrices
quickly becomes another limiting factor (similar to the intermediate blowup problem in
tensor decomposition (Kolda and Sun, 2008)), since VTV results in an n × n matrix.
Switching to an online update rule would avoid memory issues but it would at the same
time introduce additional computational overhead. Overall, we can say that C-NMF does
not scale to large datasets. In the following, we will review Convex-Hull NMF (CH-NMF),
which is a recent C-NMF method that is well suited for large-scale data analysis.

Convex-Hull NMF Convex-Hull NMF aims at a data factorization based on the data
points residing on the data convex hull. Such a data reconstruction has two interesting
properties: first, the basis vectors are real data points and mark, unlike in most other clus-
tering/factorization techniques, the most extreme and not the most common data points.
Second, any data point can be expressed as a convex and meaningful combination of these
basis vectors. This offers interesting new opportunities for data interpretation as indicated
in Fig. 2 and demonstrated by Thurau et al. (2009).

More precisely, following Ding et al. (2009), one seeks a factorization of the form V =
VGHT , where V ∈ Rm×n,G ∈ Rn×k,H ∈ Rn×k. One further restricts the columns of G
and H to convexity, i.e., ‖gi‖1 = 1,gi ≥ 0 and ‖hj‖1 = 1,hj ≥ 0 . Indeed, Ding et al. also
consider convex combinations but not for the matrix H. In other words, CH-NMF aims
at factorizing the data such that each data point is expressed as a convex combination of
convex combinations of specific data points. The task now is to minimize

J = ‖V −VGHT ‖2 (3)

such that ‖gi‖1 = 1,gi ≥ 0 and ‖hj‖1 = 1,hj ≥ 0 . To do so, one sets X = Vm×nGn×k .
The intuition is as follows. Since we assume a convex combination for X, and by definition
of the convex hull, the convex hull conv(V) of V must contain X. Obviously, we could
achieve a perfect reconstruction, giving J = 0, by setting G so that it would contain exactly
one entry equal to 1 for each convex hull data point while all other entries were set to zero.
Or more informal: following the definition of the convex hull we can perfectly reconstruct
any data point by a convex combination of convex hull data points. Therefore, our goal
becomes to solve Eq. (3) by finding k appropriate data points on the convex hull:

J = ‖V −XHT ‖2 (4)
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(a) CH-NMF bv=4 (b) HCH-NMF bv=4 (c) CH-NMF bv=8 (d) HCH-NMF bv=8 (e) HCH-NMF bv=16

Figure 3: Resulting basis vectors of CH-NMF (a,c) for 4, resp. 8 basis vectors (bv) and
of HCH-NMF (b,d,e) for 4, 8, resp. 16 basis vectors. The data samples are drawn from
10 randomly placed Gaussian distributions in 2D. For 4 basis vectors (b), HCH-NMF
essentially mimics CH-NMF. For more basis vectors (d,e), however, it starts to adapt to
the structure of the data: the basis vectors reside on the convex hulls of the Gaussians.
CH-NMF’s basis vectors (a,c), in contrast, remain on the convex hull of the entire data.
By design, it considers the ”extreme” Gaussians only and does not adapt to the structure
of the data. (Best viewed in color.)

such that xi ∈ conv(V), i = 1, . . . , k .
Finding a solution to Eq. (4), however, is not necessarily straight forward. It is known

that the worst case complexity for computing the convex hull of n points in m dimensions is
Θ(n

m
2 ). Moreover, the number of convex hull data points may tend to n for high dimensional

spaces, see e.g. (Donoho and Tanner, 2005; Hall et al., 2005) so that computing the convex
hull of large datasets quickly becomes practically infeasible. CH-NMF therefore seeks an
approximate solution by subsampling the convex hull. It exploits the fact that any data
point on the convex hull of a linear lower dimensional projection of the data also resides on
the convex hull in the original data dimension. Since V contains finitely many points and
therefore forms a polytope in Rm, we can resort to the main theorem of polytope theory,
see e.g. (Ziegler, 1995). In our context, it says that every vertex of an affine image of
P , i.e., every point of the convex hull of the image of P , corresponds to a vertex of P .
Therefore computing the convex hull of several 2D affine projections of the data offers a
way of subsampling conv(V). This is an efficient way as computing the convex hull of a
set of 2D points can be done in O(n log n) time (de Berg et al., 2000).

This subsampling strategy is the main idea underlying CH-NMF and, indeed, vari-
ous methods can be used for linearly projecting the data to a 2D space. Thurau et al.
(2009) proposed to use PCA, i.e., projecting the data using pairwise combinations of the
first d eigenvectors of the covariance matrix of V as summarized in Alg. 1. For massive,
high-dimensional data, however, computing the covariance matrix may take a lot of time.
Therefore, we propose to use instead FastMap introduced by Faloutsos and Lin (1995), but
please see next section.

The main point here is, triggered by the idea that the expected size of the convex hull
of n Gaussian data points in the plane is Ω(

√
log n) (Hueter, 1999). CH-NMF extracts

only approximately p = j
√

log n candidate points. This candidate set grows much slower
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than n. Given a candidate set of p convex hull data points S ∈ conv(V), we now select
those k convex hull data points that yield the best reconstruction of the remaining subset
S. This, again, can be formulated as a convex NMF optimization problem. We now have
to minimize the following reconstruction error

JS = ‖Sm×p − Sm×pIp×kJk×p‖2 (5)

under the convexity constraints ‖Ii‖1 = 1, Ii ≥ 0 and ‖Ji‖1 = 1,Ji ≥ 0 . Since p � n,
solving (5) can be done efficiently using a quadratic programming solver. Note that the
data dimensionality is m. The convex hull projection only served to determine a candidate
set; all further computations are carried out in the original data space.

By obtaining a sufficient reconstruction accuracy for S, we can set X = Sm×pIp×k and
thereby select k convex hull data points for solving Eq. (4). Typically, I results in unary
representations. If this is not the case, we simply map SI to their nearest neighboring data
point in S.

Given X, the computation of the coefficients H is straight forward. For smaller datasets
it is possible to use the iterative update rule from Eq. (2). However, since we do not further
modify the basis vectors X, we can also find an optimal solution for each data point vi

individually Ji = ‖vi −Xhi‖2 using common solvers. Obviously, this can be parallelized.

3. Hierarchical CH-NMF

Modern datasets are not only massive, but often very complex. This makes it challenging
to find useful information in the data. Fortunately, most datasets typically have a low
intrinsic dimension. That is, the data lie on a smooth, structured low-dimensional manifold.
As an illustrative (already low-dimensional) example consider Fig. 3. It depicts a typical
”non-convex data” situation. We have drawn data points from 10 randomly positioned
Gaussians in 2D and were interested in computing overcomplete representations, i.e., the
number of basis vectors is greater than the dimensionality of the input. Overcomplete
representations have been advocated because they have greater robustness in the presence of
noise, can be sparser, and can have greater flexibility in matching structure in the data. By
design, CH-NMF assigns clusters to the ”extreme” Gaussians and not to ”inner” Gaussians,
cf. Figs. 3 (a,c). Although we can still reconstruct each data point perfectly, this is
discouraging. The intrinsic (low dimensional) structure of the data is not captured and, in
turn, the representation of the data found is not as meaningful as it could be.

Hierarchical convex-hull NMF (HCH-NMF) is a convex NMF approach that automat-
ically adapts to the low intrinsic dimensionality of data as illustrated in Figs. 3 (b,d,e).
The elegance of HCH-NMF stems from two facts:

• It naturally falls out of running CH-NMF using FastMap (Faloutsos and Lin, 1995)
for efficiently computing and marking convex hull data points.

• In turn, it provably solves the convex NMF problem as it directly makes CH-NMF
manifold-adaptive.

The latter point is difficult to prove for a two-steps approach: run any clustering approach,
then run CH-NMF on the clusters. Also, employing any of the existing large-scale manifold
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Algorithm 2: HCH-NMF: Hierarchical Convex-Hull NMF
Input: Data, i.e., the set of rows vi of Vm×n; the pairwise distances D; the minimal size MinSize of

a leave
Output: A hierarchical decomposition of D represented as tree T

1 if |V| < MinSize then
2 return CH-NMF(Leaf) for l (even multiple of k) basis vectors
3 else
4 Rule←ChooseRule(V);
5 Vs ← {vi ∈ V | Rule(vi) = true};
6 Vf ← {vi ∈ V | Rule(vi) = false};
7 LeftTree←MakeTree(Vs);
8 RightTree←MakeTree(Vf );
9 return (Rule,LeftTree,RightTree)

learning methods is difficult. As Talwalkar et al. (2008), argue they require a O(n3) spectral
decomposition of matrices where n is the number of samples. When the matrix is sparse,
these techniques can be implemented relatively efficiently. However, when dealing with a
large, dense matrix, the involved matrix products become expensive to compute.

As summarized in Alg. 2, HCH-NMF is based on a hierarchical decomposition of RD

in form of a tree2. That is, it starts with the empty tree and repeatedly searches for the
best test for a node according to some splitting criterion such as weighted variance along
the FastMap dimension. Next, the examples V in the node are split into Vs (success)
and Vf (failure) according to the test. For each split, the procedure is recursively applied,
obtaining subtrees for the respective splits. We stop splitting if a minimum number MinSize
of examples is reached or the variance in one node is small enough. In the leaves, we run
CH-NMF on the examples falling into the leaves to find l basis vectors. Finally, we may
run a post-processing step to find the best k basis vectors. In other words, HCH-NMF is
conceptually easy, yet scalable to massive datasets and powerful as our experimental results
will demonstrate.

Let us briefly review FastMap. FastMap computes a u-dimensional Euclidean embedding
and proceeds as follows. Given pairwise distances among objects, in our case the rows of
the data matrix V, we select a pair of distant objects called pivot objects. Then, we draw
a line between the pivot objects. Essentially, it serves as the first coordinate axis. For each
object o, we determine the coordinate value fm(o) along this axis by projecting o onto this
line. Next, the pairwise distances of all objects are updated to reflect this projection, i.e.,
we compute the pairwise distances among the objects in the subspace orthogonal to the line.
This process is repeated until, after u iterations, we get the u coordinates as well as the
u-dimensional representation of all objects. Ostrouchov and Samatova (2005) have shown
that the pivots are taken from the faces, usually vertices, of the convex hull of the data
points in the original implicit Euclidean space. This justifies the idea to employ FastMap
in step (3) ”compute and mark convex hull data points” of CH-NMF.More importantly for
HCH-NMF, it suggests a natural splitting criterion to produce a hierarchical decomposition:
Split the data according to the weighted variance along the 1D FastMap line. More precisely,
we compute the splitting rule as summarized in Alg. 3. Essentially, we run one iteration

2. In this paper, we follow Dasgupta and Freund’s (2009a) random projection trees (RPTs). We do not
split along a random direction but note that this could easily be achieved.
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Algorithm 3: ChooseRule based on FastMap
Input: Data, i.e., the set of rows vi of Vm×n; the minimal size of a leave MinSize
Output: A splitting rule Rule for the data

1 Pick any data point t ∈ V;
2 Let x be the farthest point from t in V;
3 Let y be the farthest point from x in V;
4 for i = 1, 2, . . . n do
5 Project vi onto the line spanned by x and y;
6 Let fm(vi) be vi’s 1D coordinate value;

7 Sort the values fm(vi) generating the list s1 ≤ s2 ≤ . . . ≤ sn;
8 for i = 1, 2, . . . n do

9 µ1 = 1
i

Pi
j=1 sj ;

10 µ2 = 1
n−i

Pn
j=i+1 sj ;

11 ci =
Pi

j=1(sj − µ1)
2 +

Pn
j=i+1(sj − µ2)

2;

12 Find i that minimizes ci and set θ = (si + si+1)/2;
13 Rule(v) := fm(v) ≤ θ;
14 return (Rule)

of FastMap and split along the “FastMap” line w.r.t. weighted variance. That is, we pick
a pair of distant objects x and y (lines 1-3). Then, we project the data onto the line and
compute for each data point its 1D coordinate value (lines 4-6). Now, we compute the split
variable θ that minimizes the weighted variance (lines 8-12) and return the corresponding
splitting rule (lines 13-14). Thus, for each splitting variable, determining the split point s
can be done very quickly. In turn, by scanning all of the inputs, determining the best split
is feasible and scales as O(n log n).

How large should we grow the tree? Clearly, a very large tree might produce too many
basis vectors. The basis vectors are likely to be not meaningful and the tree essentially
“overfits” the data. A small tree, however, might not capture the important structure in the
data at all. Reconsider standard CH-NMF. It corresponds to a tree of depth zero. In other
words, the tree size is a tuning parameter governing HCH-NMF’s complexity and one of its
key advantages: the diversified meaningfulness of its factorization. The preferred strategy,
as for example explained in (Hastie et al., 2001), proceeds as follows. We grow a large tree
T0, stop the splitting process only when some minimum leaf size, say 200, is reached. Then,
this tree is pruned in a post-processing step. We omit a detailed algorithmic description
but rather briefly describe it now. The goal is to compute k ≥ l many basis vectors that
reconstruct the data the best. We achieve this by successively merging neighboring leafs
until we get k basis vectors. In each step, we find the two neighboring leafs that — if
merged — produce the lowest reconstruction error over the covered examples. As this can
be time consuming, we efficiently approximate it by always selecting the two neighboring
leaves with highest resulting cluster accuracy when merging them.

In conclusion, HCH-NMF with a tree of depth 0 essentially coincides with CH-NMF.
Moreover, the well known fact that if Z is any convex set that contains a convex hull
conv(U) of a set U , in particular Z = conv(U ∪ V ), then conv(U) ⊆ Z, see e.g. (Boyd
and Vandenberghe, 2004), essentially proves the following correctness theorem.
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HCH-NMF

CH-NMF

HCH-NMF

CH-NMFHCH-NMF

CH-NMF

HCH-NMF

CH-NMF

Figure 4: Boxplots of reconstruction errors (left) and computation times [sec.] (right)
(both in log-space) of HCH-NMF and CH-NMF for varying numbers of synthetically gener-
ated data averaged over five reruns. As mentioned before, the Frobenius norm for CH-NMF
has to be lower as CH-NMF approximates the convex hull of the complete data distribution
and ignores the intrisic structure. Thus, for the purpose of interpretation and diversity this
is probably not the right metric. (Best viewed in color.)

Theorem 1 HCH-NMF solves the convex NMF problem. It produces convex combinations
of the data points in terms of basis vectors that minimize (3) but reside on convex hulls of
clusters of data points.

Due to the hierarchical decomposition of the data, HCH-NMF can adapt to the structure
underlying the data as illustrated in Figs. 3 (b,d,e). Indeed, it is akin to k-means. Because
k-means clustering is a NP-hard optimization problem, see e.g. (Dasgupta and Freund,
2009b), this suggests that it is very unlikely that there exists an efficient algorithm for it.

4. Experiments

Our intention here is to investigate whether HCH-NMF can indeed find easy-to-interpret
basis vectors in massive datasets and how it compares to CH-NMF. To this aim, we imple-
mented both in Python using FastMap and the h5py HDF5 interface to deal with massive
data. For optimization we used the cvxopt library by Dahl and Vandenberghe3. (H)CH-
NMF offers many opportunities for parallelization. In the experiments, we only distributed
the final reconstructions equally among all available cores. All experiments were run on
a standard Intel 3GHz computer with two cores. We report running times only for com-
parison of CH-NMF and HCH-NMF. Clearly, a C/C++ implementation would run several
orders of magnitude faster.

We conducted four different experiments. To compare running time and reconstruction
performance in a controlled setup, we compared (H)CH-NMF on synthetically generated
data. Our main focus, however, are three additional experiments on non-convex massive

3. http://abel.ee.ucla.edu/cvxopt/
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Figure 5: (Top/dashed box) Clus-
ters and corresponding basis vectors
(histograms) found by HCH-NMF
on the DBLP dataset. By describ-
ing the basis vectors, we gain an in-
tuitively understandable description
of academic careers: 97% of all au-
thors are best described by the typ-
ical phases of an academic career.
Indeed, there are renown, extremely
prolific exceptions. Because the ba-
sis vectors are actual data points,
we can identify them as Papadim-
itriou and Reddy. (Bottom/solid
box) Clusters and corresponding ba-
sis vectors found by HCH-NMF on
the World of Warcraft R© dataset.
(Best viewed in color.)

real-world datasets, namely, publication histories of 760, 000 DBLP authors, 1.4 million
activity profiles of guilds, and 4 million images of the Tiny image dataset (Torralba et al.,
2008). We show that HCH-NMF provides better descriptions of the datasets than CH-NMF.
For the sake of a better visualization, we show small trees.

Synthetic Data: Along the lines of Ding et al. (2009) and Thurau et al. (2009), we
evaluated the mean reconstruction error and run-time performance using a varying number
of data points sampled from three randomly positioned Gaussians in 2D. As already shown
in (Thurau et al., 2009), CH-NMF outperforms C-NMF for larger numbers of samples: it is
several orders of magnitude faster while achieving competitive reconstruction errors. There-
fore, we only compared HCH-NMF against CH-NMF. We varied the number of sampled
data points ranging from 100 to 5000 in steps of 100. The maximum number of iterations
for any numerical optimization was 100. The number of basis vectors was set to 12, i.e., we
searched for overcomplete representations. The results averaged over 5 reruns are summa-
rized in Fig. 4. As one can see, HCH-NMF produces an overhead in running time for smaller
sample sizes. For larger sample sizes, HCH-NMFs catches up. The reconstruction error is
slightly higher than for CH-NMF but still lower than for k-means (as reported by Thurau
et al. (2009)). The higher reconstruction error is due to the natur of convex hulls: any point
within the convex hull can perfectly reconstructed. Hence, CH-NMF is a lower bound of
HCH-NMF in terms of reconstruction error.
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Bibliographic Analysis based on DBLP: Bibliographic databases such as DBLP4

are a rich source of information. Here, we are interested in the question whether there are
common patterns in the development of academic careers. To this aim, we extracted from
DBLP the cumulative publication histograms of 757, 368 authors, cf. Fig. 5 (Top/dashed
box). A publication histogram consists of the number of publications listed in DBLP in
her first year, second year, and so on. We have cumulated the publications numbers of
the years. The longest histogram we found spanned 68 years. To get equal length curves
we filled missing years with 0. Following Aitchison (1982), we use logarithmic histogram
values in our analysis. The idea is that the publication histogram of an author is a good
descriptor for her activity and also to some extend for her success (but of course has not to
imply impact/quality). A senior researcher, for example, is likely to have contributed over
several years but there are exceptionally prolific authors. PhD students, on the other hand,
may not have published many papers. We expected HCH-NMF to discover these variations.
This was indeed the case as shown in Fig. 5 (Top/dashed box). The patterns found can
be summarized as ”the majority of authors fall into one of the phases of a regular academic
career (student, junior, senior) but of course there are illustrious exceptions. It took 1 hour
to compute the model, i.e., growing the tree and pruning it. CH-NMF took 45 minutes
essentially yielding the union of all shown basis vectors, hence, giving the wrong impression
”there is a Papadimitriou in all of us”.

Social Network World of Warcraft R©: This dataset consists of recordings of the
online appearance of characters in the computer game World of Warcraft R©. It is assumed
that World of Warcraft R© has about 12 million p(l)aying customers. The game takes place
in a virtual medieval fantasy environment. World of Warcraft R© is often considered one
large social platform which is used for chatting, team-play, and gathering. Compared to
well known virtual worlds that mainly serve as chat platforms such as Second-life R©5, World
of Warcraft R© is probably the real second life as it has a larger and more active (paying)
user base. Moreover, a whole industry is developing around World of Warcraft R©. It is
estimated that 400.000 people world-wide are employed as gold-farmers, i.e. collecting
virtual goods for online games and selling them over the Internet. Players organize in
groups, which are called guilds. Unlike groups known from other social platforms, such as
Flickr, membership in a guild is exclusive. Obviously, the selection of a guild influences
with whom players frequently interact. It also influences how successful players are in
terms of game achievements. We assume that the level distribution among a guild is a good
descriptor for its success and activity. For example, a guild of very experienced level 80
characters has a higher chance for achievements than a guild of level 10 players. Also, a
level histogram gives an indicator for player activity over time. If players are continuously
staying with a particular guild, we expect an equally distributed level histogram, as the
characters are continuously increasing their level over time. The data was crawled from
the publicly accessible site www.warcraftrealms.com. We viewed each character online
appearance as a vote. Characters observations span a period of 4 years. Every time a
character is seen online, he votes for the guild he is a member of according to his level.
We accumulate the votes into a level-guild histogram, going from level 10 (level 1-9 are
excluded) to level 80 (the highest possible level). Players advance in level by engaging in

4. http://www.informatik.uni-trier.de/~ley/db/

5. http://secondlife.com/
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(Best viewed in color.)

the game, i.e. completing quests or other heroic deeds. Following Aitchison (1982), we use
logarithmic histogram values in our analysis. In total, we collected 150 million votes of 18
million characters belonging to 1.4 million guilds.

Running HCH-NMF took about 2.5 hours and revealed some very interesting patterns
as shown in Fig. 5 (Bottom/solid box). As for CH-NMF, see Thurau et al. (2009),
we can also spot singular events, in our case large updates to the game content (this is a
regular procedure that makes novel content available and also allows a further advancement
in character level). Apparently, large updates to the game can result in a restructuring
of social groups. More interestingly, HCH-NMF adapts to the low-dimensional structure
and in turn provides better descriptions of clusters. For instance, 90% of the data can be
described in terms of just four basis vectors: ”formed early then slowly disbanded till 1st
update”, ”improving till 1st update”, ”very active with 1st update”, and ”Boosted activity
with 1st update”. That was surprising. We knew that most guilds are rather seldom active,
see Thurau et al. (2009). Therefore, we ”zoomed” into the model, a feature of HCH-NMF
not supported by CH-NMF. Specifically, we had a look at the pivot and split elements
of the first level of the induced tree, see Fig. 6 (Top). This revealed that most of the
90% are actually ”seldom active”: they lay between the ”constantly active till 2nd update”
and ”seldom active” guild on the FastMap line. The four basis vectors of the 90% cluster
together are archetypical guilds to reconstruct this pattern. Running CH-NMF took about
2 hours and produced essentially the same basis vectors. The major difference was that it
used the ”seldom active” guild directly and did not factorize it.

Massive Image Collection: Our final experiment applies HCH-NMF to a subset
of 4 million images of Torralba et al.’s (2008) 80 million tiny images. The images are
represented as 384 dimensional GIST feature vector. The result of running HCH-NMF is
shown in Fig. 7. As already reported by Thurau et al. (2009), some of the basis vectors
discovered show a geometric similarity to Walsh filters that are found among the principal
components of natural images (Heidemann, 2006). This suggests that the extremal points
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Figure 7: HCH-NMF clusters (columns) and corresponding basis vectors of the 4 million
tiny images. From left to right, the basis vectors capture different aspects of the images such
as dark-light-dark, horizontal-cross/circle-vertical, complex-plain-complex. (Best viewed in
color.)

in this large collection of natural images are located close to the principal axes of the
data. On the other hand, the split elements as shown in Fig. 6 (Bottom/solid box)
are mostly ”realistic” images. This suggests that they are located in the center of the
data/clusters. In contrast to CH-NMF, HCH-NMF adapted to low-dimensional structure
and grouped the basis vectors into easy-to-understand clusters. From left to right, the basis
vectors, i.e., the columns, capture different aspects of the images such as dark-light-dark,
horizontal-cross/circle-vertical, complex-plain-complex. Overall, running HCH-NMF took
only 23 hours and 37 minutes. This is remarkable as we used an external USB hard disk and
the running time can be considerably reduced using an internal hard disk and implementing
HCH-NMF fully in C/C++.

5. Conclusion

We have introduced hierarchical convex-hull NMF. It seeks to leverage convex NMF by au-
tomatically adapting to the geometric structure of the data. It is fast and straightforward
to implement, provably solves the convex NMF problem, combines the interpretability of
both convex NMF as well as hierarchical decomposition methods, and scales well to massive,
high-dimensional datasets. These contributions advance the understanding of descriptive
analytics of massive, high-dimensional datasets and is an encouraging sign that applying
NMF techniques in the wild, i.e., on hundreds of millions of data points may not be insur-
mountable.

There are several interesting directions for future work. One is the application of HCH-
NMF to other challenging datasets, such as Wikipedia, Netflix, Facebook, or the blogsphere,
and to use it for applications such as collaborative filtering. For the latter case, it is inter-
esting to develop bottom up HCH-NMF variants and to investigate the missing values case.
Another important avenue is parallelization. HCH-NMF suggests a natural data-driven
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parallelization: the training set is partitioned into subsets associated with separate pro-
cessors. Finally, HCH-NMF is highly relevant for high-dimensional classification problems.
Here, it is infeasible to include enough training samples to cover the class regions densely.
As Cevikalp et al. (2008) have recently pointed out, irregularities in the resulting sparse
sample distributions cause local classifiers such as nearest neighbors and kernel methods
to have irregular decision boundaries. One solution is to ”fill in the holes” by building a
convex model of the regions spanned by the training samples. Using HCH-NMF, we even
take the geometric structure of each class into account.
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