
JMLR: Workshop and Conference Proceedings 13: 241-252
2nd Asian Conference on Machine Learning (ACML2010), Tokyo, Japan, Nov. 8–10, 2010.

Mining Recurring Concept Drifts with Limited Labeled
Streaming Data

Peipei Li peipeili.hfut@gmail.com
School of Computer Science and Information Engineering
Hefei University of Technology, China, 230009

Xindong Wu xwu@cs.uvm.edu
Department of Computer Science
University of Vermont, Vermont, USA, 05405

Xuegang Hu jsjxhuxg@hfut.edu.cn

School of Computer Science and Information Engineering
Hefei University of Technology, China, 230009

Editor: Masashi Sugiyama and Qiang Yang

Abstract

Tracking recurring concept drifts in data streams is a significant and challenging issue for
machine learning and data mining that frequently appears in real world stream classifi-
cation problems. However, it has received little attention from the research community.
Motivated by this, we propose a Semi-supervised classification algorithm for data streams
with REcurring concept Drifts and Limited LAbeled data, called REDLLA, in which, a
decision tree is adopted as the classification model. When growing a tree, a clustering
algorithm based on k -Means is installed to produce concept clusters and label unlabeled
data at leaves. In view of deviations between history concept clusters and new ones, po-
tential concept drifts are distinguished and recurring concepts are maintained. Extensive
studies on both synthetic and real-world data confirm the advantages of our REDLLA al-
gorithm over two state-of-the-art online classification algorithms and several known online
semi-supervised algorithms, even in the case with more than 90% unlabeled data.

Keywords: Data stream, concept drift, decision tree, clustering

1. Introduction

Data streams are generated from real-world events and their associations, and recurring
events in the real world cause recurring concepts in data streams, such as weather changes,
buyer habits etc. As a sub-type of concept drift, recurring concept drifting is challenging
for many existing classification streaming models/algorithms (Hulten et al., 2001; Fan et
al., 2004; Masud et al., 2008), which still has not yet met proper attention from the research
community. Because existing classification models only store the current concept and have
to re-learn every time when a new concept occurs, re-learning significantly affects the per-
formance of these classification models. Therefore, an ideal classification model for stream
data mining should be capable of learning in one pass, be able to do any-time classification,
track the drift in the data over time, and remember historically learned concepts.

c©2010 Peipei Li, Xindong Wu, and Xuegang Hu.

Peipei Li, Xindong Wu, and Xuegang Hu

Meanwhile, most of existing classification algorithms on data streams assume that all
arrived streaming data are completely labeled and these labels could be used at hand.
Unfortunately, this assumption is violated in many practical applications, especially in the
fields of fraud identification and web user profiling. Under these data stream scenarios, if we
only wait for the future labels passively, it is likely that much potentially useful information
is lost. If we want to label a full stream manually, it is too costly and time-consuming, if
not impossible. Thus, it is significant and necessary to learn actively and immediately.

Motivated by the above analysis, a semi-supervised algorithm of REDLLA for mining
REcurring concept Drifts from Limited Labeled streaming data is proposed. REDLLA pro-
vides several contributions. i) We label the unlabeled data with a clustering approach in the
growing of a decision tree and reuse the unlabeled data combined with the labeled data for
split-tests of the current tree. This is different from the semi-supervised algorithm based on
an ensemble classification model (Masud et al., 2008), which is built as micro-clusters (based
on k -Means) and uses the k -nearest neighbor algorithm to classify. ii) We use the deviations
between clusters to identify new concepts (i.e., concept drifts) and recurring concepts at
leaves. To the best of our knowledge, this is a new method to detect recurring concept
drifts from data streams. iii) We systematically study the performance of our algorithm
in different ratios of unlabeled data with recurring concept drifts. Experiments conducted
on both synthetic and real-world recurring concept drifting data show that REDLLA could
track recurring concept drifts well in data streams with unlabeled data, and that it is com-
parable to the state-of-the-art supervised concept drifting algorithms of CVFDT (Hulten
et al., 2001) and CDRDT (Li et al., 2009) and several online semi-supervised algorithms
involved in (Wu et al., 2006) on the predictive accuracy even on unlabeled data streams.

The rest of this paper is organized as follows. We start with an overview of related work
in Section 2 before we present our REDLLA algorithm in Section 3. Section 4 provides our
experimental study and Section 5 summarizes our results and future work.

2. Related Work

In this section we analyze related work in two dimensions. One is related to the algorithms
of CVFDT and CDRDT that will be used in our comparative study, and the other refers
to the strategies and algorithms for unlabeled data and recurring concept drifts.
CVFDT and CDRDT

CVFDT (Concept-adapting Very Fast Decision Tree learner)(Hulten et al., 2001) is
one of the best-known algorithms that can efficiently classify continuously-changing data
streams. In CVFDT, a decision tree is learned by recursively replacing leaves with decision
nodes, and the split-test is installed in the heuristic evaluation function of Information
Gain and the inequality of Hoeffding bounds (Hoeffding, 1963). To handle the concept
drift, CVFDT periodically scans the whole tree to search for internal nodes whose sufficient
statistics indicate that concept drifts occur. An alternative subtree is started at every such
node. Old subtrees are replaced if the alternative ones become more accurate on new data.
However, in cases where history repeats itself, CVFDT does not take advantage of previous
experience and hence converges to new target concepts slowly when the concept drifts occur.

The streaming data algorithm for Concept Drifts in Random Decision Tree ensembling
called CDRDT (Li et al., 2009) is an efficient algorithm for handling different types of con-

242

Mining Recurring Concept Drifts with Limited Labeled Streaming Data

cept drifts in the noisy data streams. It generates an ensemble classifier based on random
decision trees with various sequential data chunks, maintains history data selectively at
this ensemble classifier, and adopts a double-threshold-based mechanism to discern concept
drifts in noise. Because CDRDT maintains old classifiers in an ensemble, it could handle re-
current drifts. This is also validated in the experimental study on the HyperPlane database
with recurring gradual concept drifts. However, both algorithms of CVFDT and CDRDT
mentioned above are only suitable for classification on completely labeled data streams.
Classification algorithms for unlabeled data or recurring concepts

Regarding the classification algorithms on data streams with unlabeled data, there are
two dimensions. On one hand, algorithms employ a decision tree or a classifier in general,
such as a framework of streaming data mining based on decision trees (Fan et al., 2004), a
semi-supervised learning algorithm of clustering-training (Wu et al., 2006), and an OcVFDT
(One-class Very Fast Decision Tree) algorithm for the problem of one-class classification of
data streams (Li, Zhang & Li, 2009). On the other hand, some streaming systems employ
only unsupervised methods to provide a semi-supervised approach, such as a framework for
classification of dynamic evolving data streams with unlabeled data (Aggarwal et al., 2004),
an ensemble classification model (Masud et al., 2008) learned from both unlabeled data and
labeled data. However, these algorithms mentioned above all ignore the issue of recurring
concept drifts. Thus, to handle this issue, many classification algorithms or systems have
been proposed, such as FLORA3 (Widmer & Kubat, 1996), a Splice methodology for the
recurring context problem (Harries et al., 1998), a Recognizing and Treating Recurring
Contexts (RTRC) system (Wang et al., 2006), ensemble learning based approaches to han-
dling data streams with multiple underlying modes (Ramamurthy & Bhatnagar, 2007; Li
et al., 2009), and a framework for classifying email data (Katakis et al., 2009). However,
all of these algorithms do not address the issue of recurring concept drifts in streaming
environments with unlabeled data. Meanwhile, the methods of FLORA3 and Splice are not
oriented to handling streaming data’s large amount.

For simplicity, in this paper, we only consider the recurring concept drifting issue in
streaming data with numerical attributes. We will study streaming data with categorical
attributes or mixed attributes for handling recurring concept drifts in our future work.

3. Our REDLLA algorithm

Our REDLLA algorithm to be presented in this section aims to handle recurring con-
cept drifting data streams with unlabeled data. Algorithm 1 shows the processing flow of
REDLLA below. Firstly, with the incoming of streaming data, unlabeled data are labeled
at leaves using a clustering strategy and the information of unlabeled data is reused for the
growing of the tree (Steps 1-6). Secondly, the recurring concept drifting detection is in-
stalled using concept clusters maintained at leaves (Steps 7-8). Thirdly, to avoid the space
overflow or over-fitting with the continuously growing of the tree, a pruning mechanism
is adopted when reaching a period (Steps 9-10). Lastly, to track the performance of the
current classification model, prediction results are evaluated periodically in the prequential
estimation (Steps 11-12). Technique details involved in this processing are as follows.
Growing a decision tree

Our algorithm is built on an incremental decision tree. That is, a training instance-e

243

Peipei Li, Xindong Wu, and Xuegang Hu

Algorithm 1. REDLLA
Input: A stream of instances: E ; Minimum number of split-examples: nmin; Detection period: DP ;

Pruning period: PP ; Incremental output period: OP.
Output: Classification error

Procedure REDLLA {E, nmin, DP, PP, OP}
1: Create a leaf for tree-T ;
2: for each instance-e ∈ E
3: Sort e into an available leaf-l and store the corresponding information;
4: if the count of arrived instances at leaf-l meets nmin

5: Label unlabeled instances at leaf-l in k -Means;
6: Install a split-test and grow children leaves;
7: if the number of instances arrived % DP == 0
8: Detect recurring concept drifts using history concept clusters and new ones;
9: if the number of instances arrived % PP == 0

10: Install the bottom-up search and prune subtrees regarding classification error;
11: if the number of instances arrived % OP == 0
12: Report the classification result using the prequential estimation;

first traverses the tree-T from the root to an available leaf l, evaluating the appropriate
attribute at each node, and following the branch corresponding to the attribute’s value in
e. Meanwhile, relevant statistics are stored at leaf l, such as the total number of instances,
the distributions of class labels and attribute values of all available features (denoted as the
array variables of classArray and attrArray). If the statistical count at this node is up to
the value of nmin, the k -Means clustering algorithm is installed to label unlabeled data in
each cluster and the labeled information is loaded into attrArray and classArray for split-
tests. The merit of a split-test is evaluated in the method as CVFDT. Correspondingly, the
current leaf-l is replaced with the decision node and children leaves are generated.
Labeling unlabeled data with relevant labeled data

To exploit unlabeled data, we adopt k -Means to create concept clusters and implement
labeling, because k -Means is a simple and efficient clustering algorithm for numerical at-
tributes. The clustering algorithm will be triggered if there are new unlabeled data at the
current leaf. Based on these generated concept clusters, the majority-class method is used
to label unlabeled data as illustrated in Figure 1. In this figure, suppose there are two
clusters at a leaf. Because the number of unlabeled instances belonging to C 1 (i.e., 18) is
more than that belonging to C 2 (i.e., 4), unlabeled instances-a, b, c in this cluster are hence
labeled in the majority-class of C 1, and cluster-1 is also labeled in C 1. Similarly, unlabeled
instances (d∼i) in cluster-2 and cluster-2 are labeled in C 2. Lastly, the information of
unlabeled instances relevant to the attribute values and class labels is stored into attrArray
and classArray. It will be used for split-tests in the growing of this tree.

In terms of the aforementioned semi-supervised mechanism, it is beneficial to improve
the accuracy of labeling unlabeled data. An analysis is given in detail as follows. Suppose
the decision tree generated in REDLLA is a complete binary-tree. The height of this tree
is denoted as l. Apparently, the total number of leaves is up to 2l−1. Meanwhile, suppose
there are m-instances arrived at the current tree and the probability that each training
instance reaches a leaf is equal. Thus, the mean number of instances at a leaf amounts to
m/2l−1 (≥ 1). Therefore, the least probability that all unlabeled data are labeled correctly
at a leaf (denoted as pc) could be expressed in (1).

pc = (1/|class|)m/2l−1
(1)

However, in the case without a decision tree, the value of pc amounts to 1/|class|m. Ap-
parently, the accuracy of labeling unlabeled data is improved largely for the former.

244

Mining Recurring Concept Drifts with Limited Labeled Streaming Data

cluster-1 cluster-2c1 c2c1 c2unlabeled instancea b c d ef gh i
Figure 1: Labeling in majority-class

ab c ddecision treeleaf non-leafMlastMnewMhist M1conceptListbM2Mn-1MnMn-2 1 23 42n-5 2n-42n-3 2n-22n-1 2n
Figure 2: Data structure of concept list

In addition, regarding the setting of parameter-k, we initialize it with the value of
|class|. This is because the number of class labels indicates how many concept clusters in
the clustering. Thus, we first divide the training data at the current leaf into different sets
corresponding to the distribution of class labels, and then select a cluster center randomly
from each set to generate an initial cluster center set. This is beneficial to find optimal
clusters in time. However, if all class labels of the current training data are unknown, we
will select the initial cluster centers randomly from training data.
Recurring concept drifting detection

In the growing of the tree, the concept drifting detection is installed to distinguish con-
cept drifts from noise with a certain number of instances (namely, the detection period of
DP)1 at leaves. We first create a set of concept clusters using newly arrived instances at
the current leaf, called M new. If it is the first detection period, these concept clusters are
directly stored in the concept list-conceptList at this leaf. Otherwise, they are used to com-
pare with the last set of concept clusters (called M last) for drifting detection. To measure
the deviation between cluster sets of M new and M last, we define two variables, namely i) r
to specify the radius of a concept cluster (the radius of Mnew and Mlast is called rnew and
r last respectively), and ii) dist to refer to the distance between concept clusters as follows.

Definition 1 The radius of a concept cluster specifies the mean Euclidean distance over

all instances in this cluster: r =
∑|mp|

i=1

√∑|A|
j=1(mpj − eij)2/|mp|, where ei = {ei1, · · · , ei|A|} ∈

mp, |A| indicates the attribute dimension, mp refers to the pth current cluster centroid, which
is composed of {mp1, · · · ,mp|A|} and |mp| means the number of instances in this cluster.

Definition 2 The distance between two concept clusters m l and mh refers to the Eu-
clidean distance between these two cluster centroids with respect to attribute set-A: dist =√∑|A|

i=1(mli − mhi)2.
According to statistics theory, for a stationary distribution of the instances, the online

error of Näıve Bayes will decrease; while the distribution function of the instances changes,
the online error of Näıve Bayes at the node will increase (Duda et al., 2001). In our
algorithm, the change of data distribution and the change of online error of Näıve Bayes
imply the distribution change of attribute values in partial attributes or in all attributes
(namely, the change of concept clusters). Therefore, we could obtain three cases of concept
drifts as illustrated in Figure 3 regarding the deviation of concept clusters. That is,

1. In this paper, we consider all arrived training instances in a detection period as a streaming data chunk,
namely, the value of detection period indicates the size of a data chunk.

245

Peipei Li, Xindong Wu, and Xuegang Hurlastdist o2rnewo1 o1 o2rlast distrnew o1 rlast o2distrnewc) dist ≥ rlast+rnew → a true driftrlast distrnew o2o1 →impaction from noiseb) max(rlast, rnew) < dist < rlast+rnewrlastdistrnewo1 o2a) 0 ≤ dist ≤ max(rlast, rnew) → a potential drift
Figure 3: Cases of concept drifts

i) If the value of dist is less than the value of max(r last, rnew), a potential concept drift
is considered.

ii) If the value of dist is less than the total sum of r last and rnew and more than the
value of max(r last, rnew), it is considered as the noise impact. Thus, the set-Mlast maintains
invariably while the set-Mnew is discarded.

iii) Or else, a true concept drift is considered. This detection strategy is built on the
distribution change of attribute values over the recent two data chunks.

In terms of the aforementioned description of concept drifting detection, if there is no
concept drift occurring at the current leaf, the current set-M new will be changed into an
old set, called M last, while all remaining concept clusters generated over the previous data
chunks consist in a set of history concept clusters, called M hist. Otherwise, the concept
clusters in M new contain the new (drifting) concept, and we further judge whether it is a
recurring concept by comparing the deviation between concept clusters in M new and the
ones in M hist. If this is a new concept compared to all concepts in M hist, this cluster will
be stored into conceptList (as illustrated in Figure 2); Or else, this cluster is integrated into
the cluster in M hist.
Pruning mechanism and Error Estimator

Considering the open-ended characteristic of a data stream, if the count of instances
arrived at the tree amounts to the pruning period-PP, several sub-trees from bottom to
top with the roots whose classification error rates are more than 50% are cut off according
to the simple pruning principle. This is conductive to avoid possible over-fitting or space
overflow if the current decision tree grows continuously. Meanwhile, as shown in Steps 11-12
in Algorithm 1, if the count of instances arrived at the tree is up to the output period-
OP, we adopt the prequential evaluation (Gama et al., 2009) to evaluate the classification
performance for the current model. Where the prequential error is computed based on an
accumulated sum of a loss function between the prediction value ŷi and the observed value
yi, namely, g =

∑OP
i=1 L(yi, ŷi). The mean error rate is given by g/OP.

4. Experiments

To validate the efficiency and effectiveness of our algorithm, we have performed extensive
experiments on benchmark concept drifting databases and real-world databases. We first
discuss the characteristics of databases mentioned above, and then compare our experimen-
tal results against concept drifting data stream algorithms of CVFDT and CDRDT (learned
from completely labeled data) and several semi-supervised algorithms involved in (Wu et

246

Mining Recurring Concept Drifts with Limited Labeled Streaming DataA 4t 8t 12t 16tB C D A B C D A B C D A B C Dtime stampconcept
Figure 4: Recurring concept drifts in SEA

-1010 t 2t 3t 4ttime stampwi
Figure 5: Recurring concept drifts in HyperPlane

al., 2006). All experiments are conducted on a P4, 3.00GHz PC with 2G main memory,
running Windows XP Professional, and all algorithms are implemented in C++.
Streaming data

SEA SEA (Street & Kim, 2001) is a well-known data set of concept shifts. It consists
of a three-dimensional feature space with two classes and four concepts. To simulate the
recurring concept drifting streaming data, these four concepts change in the cyclic order
as illustrated in Figure 4 (where A, B, C and D each refer to a concept in this data set
respectively) and each concept contains t instances. In our experiments, the drifting period
is set to t=10k. All data are generated using the SEA generator from MOA (an experimental
tool for Massive Online Analysis) (Bifet et al., 2010) and the 10% class noise is introduced
in this data set. The total size of the data set is up to 1000k (k=1000) instances.

HyperPlane HyperPlane is a benchmark database of data streams with a gradual
concept drift. The detailed description is the same to that in (Li et al., 2009). To simulate
a recurring concept drifting case, we fix two dimensions and change their weights. Each
dimension changes as illustrated in Figure 5. We also generate 1000k training instances in
MOA with 10% class noise and specify the drifting periods t=10k.

Real databases The Elec data set is a widely used real dataset, which was collected
from the Australian New South Wales Electricity Market (Harries, 1999). This data set
contains about 45k instances with two class labels. In our experiments, we reorganize this
data set and generate a data sets with the yearly period (from 1995 to 1998). Meanwhile,
to simulate the recurring concept drifts with sufficient learning data, these data occur
periodically as similarly as SEA.
Experimental evaluations

Considering the parameter settings in our algorithm, they are given as follows: nmin =0.2k,
, τ=0.05, δ = 10−7, DP=0.2k, OP=0.5k and PP=500k. The values of nmin, τ and δ are
empirical values obtained from (Hulten et al., 2001). The lower the value of DP, the more
the false alarms; while the higher the value of DP, the more the missing concepts. To
achieve a trade-off between false alarms and missing concepts in REDLLA, we empirically
select DP=0.2k. However, the values of OP and PP are specified by the user demand. In
our algorithm, They are set to OP=1k and PP=500k. Parameters in algorithms of CVFDT
and CDRDT follow default values in (Hulten et al., 2001) and (Li et al., 2009) respectively.
All experimental results are averaged over 10 runs.
Labeling accuracy

In this subsection, a set of experiments is conducted to reveal the mean predictive
accuracy that unlabeled data are labeled varying with the values of ulr from 10% to 99%,
in which ulr specifies the ratio of unlabeled data that are randomly selected corresponding
to the distribution of class labels. Due to less variance of labeling accuracy, we only give

247

Peipei Li, Xindong Wu, and Xuegang Hu Eleculr (%)accuracy (%) 1 5 10 20 30 40 50 60 70 80 90 95 990102030405060708090100Seaulr (%)accuracy (%) 0102030405060708090100 1 5 10 20 30 40 50 60 70 80 90 95 990 ulr (%)accuracy (%) HyperPlane102030405060708090100 1 5 10 20 30 40 50 60 70 80 90 95 99
Figure 6: Labeling accuracy on the database of SEA, HyperPlane, Elec

1 51 101 151 201 251 301 351 401 451 5055606570758051015202530 #instances (k)Sea error rate (%)error rate (%) CDRDT REDLLA CVFDTA B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B
Figure 7: Drifting tracking on Sea with recurring concept drifts

the average value here. As shown in Figure 6, we can draw a conclusion that a higher
predictive accuracy of labeling unlabeled data is achieved in our approach. More precisely,
on SEA, the highest labeling accuracy is up to 97% in case of ulr=1% while the lowest one
is 93.9% in case of ulr=99%. On HyperPlane, the labeling accuracy could be up to 99%
in cases of ulr≤80% while the lowest one also amounts to 93% in the case of ulr=99%. In
addition, on Elec, the average predictive accuracy is about 94% over different values of ulr
varying from 1% to 99%. In sum, as the unlabeled ratio increases, the labeling accuracy
is reduced by a small margin if the value of ulr is less than 95%. These data confirm that
our method enables achieving a better performance on the clustering accuracy even with
limited unlabeled data.
Prediction performance on databases with recurring concept drifts

In this subsection, we aim to evaluate whether our technique of REDLLA could handle
scenarios where there are recurring concept drifts2. In the following figures, dotted lines are
used to mark the drifting positions, error rates in the tracking and prediction accuracies
marked in the right-y-axis refer to the values of CVFDT.

Figure 7 plots the tracking curves over sequential data chunks in SEA with the 10k-
drifting period. From this figure, we can find that i) if a concept drift occurs, the fluctuation
of error rates in REDLLA is weaker than those in CDRDT and CVFDT. In CDRDT, error
rates fluctuate by a range of (10%, 30%) while in REDLLA they are limited in the range of
(5%, 10%). ii) With the alternative changes of concepts, tracking curves present a similar
change trend for all of the same concepts in REDLLA as in CDRDT. To further verify
whether the current model in REDLLA adapts to these recurring concept drifts, Figure
8 presents the performance of REDLLA on the predictive accuracy over sequential data

2. In this subsection, we present tracking results over the sequential data chunks of different databases in
case of ulr=90% in Figures 7, 9 and 11. Because we think the ratio of unlabeled data is sufficient to
meet the real demand. Actually, the shapes of tracking curves in other cases of ulr varying from 1% to
99% are consistent with this case. A difference relies that the less the value of ulr, the lower the error
rate in the learning.

248

Mining Recurring Concept Drifts with Limited Labeled Streaming DataSea accuracy (%)31323334353637accuracy (%) #instances(k)1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 9517276808488 CDRDT CVFDTREDLLA-ulr=90% REDLLA-ulr=0%
Figure 8: Predictive performance on Sea with recurring concept drifts

CDRDT REDLLA CVFDT1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481818283848error rate (%) #instances (k)HyperPlane
Figure 9: Drifting tracking on HyperPlane with recurring concept driftsaccuracy (%) HyperPlane1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951CDRDT CVFDTREDLLA-ulr=90% REDLLA-ulr=0%#instances(k)455565758595

Figure 10: Predictive performance on HyperPlane with recurring concept drifts102030405060error rate (%) 4050607080 error rate (%)1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221Elec#instances (k)96 97 98 96 97 98 96 97 98 96 97 98 96 97 98CDRDT REDLLA CVFDT
Figure 11: Drifting tracking on Elec with recurring concept driftsElec#instances (k)accuracy (%) 1 51 101 151 201 251 301 351 4013540455055606570 CDRDT CVFDTREDLLA-ulr=90% REDLLA-ulr=0%

Figure 12: Predictive performance on Elec with recurring concept drifts

249

Peipei Li, Xindong Wu, and Xuegang Hu

chunks3 compared to CDRDT and CVFDT. In this figure, on one hand, we observe that the
predictive curve in REDLLA is similar to CDRDT. A higher accuracy is rapidly reached and
maintained steadily after the 51st data chunk. However, the predictive accuracy in CVFDT
will be steady until reaching the 401st data chunks. Apparently, CVFDT is impacted from
the concept drifting period more than CDRDT and REDLLA. On the other hand, we can
see that the average predictive accuracy of REDLLA in the case with ulr = 90% is improved
by 40% compared to CVFDT while it is lower that of CDRDT by around 4%. Actually,
REDLLA outperforms CDRDT on the predictive accuracy if the value of ulr is no more
than 60%. In other words, in the cases of ulr ≤ 60%, the prediction accuracy in REDLLA
could be improved and the best value is about 3% in the case of ulr = 0%.

Figure 9 presents the tracking curves over sequential data chunks of HyperPlane. It
shows that there is little impact from recurring concept drifts on the fluctuation of error
rates for all algorithms. This is because HyperPlane is a very slowly drifting data set. In
addition, considering the predictive accuracy of REDLLA in Figure 10, it is improved by
25% and 35% respectively compared to CDRDT and CVFDT even in the case of ulr=90%.

Figure 11 reports the tracking curves over the data chunks of Elec with the year period.
In general, all algorithms perform similarly for the recurring concepts, but the fluctuation
of error rates in a period changes a lot. This indicates that the drifting period is less than
the yearly-period. In this figure, as the training data arrive, error rates of classification in
REDLLA fluctuate moderately, even with a large margin of reduction (e.g., the tracking
curve in the period of 96). Meanwhile, with respect to the predictive accuracy over these
sequential data chunks as shown in Figure 12, CDRDT and CVFDT present a low predictive
accuracy steadily while REDLLA gradually increases its accuracy. After seeing the 101st

data chunk, a stable predictive model in REDLLA is maintained. In other words, the
predictive accuracy is not affected by concept drifts any more after a certain interval of
instances. This is similar to the case in CDRDT. However, the predictive accuracy in
REDLLA could be improved by 20% even in the case of ulr=90% while the best value is
up to 30% in the case of ulr=0%.

In addition, we also compare our experimental results with several semi-supervised algo-
rithms on the streaming data generated using the method involved in (Wu et al., 2006), the
average predictive accuracy classified on 5k-sized test data in REDLLA amounts to 98% even
if 101k-sized training data contains less than 80% unlabeled instances. It performs as well
as clustering-training (Wu et al., 2006), and outperforms algorithms of co-training(Blum &
Mitchell, 1998), tri-training(Zhou & Li, 2005) and self-training(Zhu, 2001) by a large mar-
gin (up to 30%)4. In sum, all of these results confirm that the current model in REDLLA
could adapt to recurring concept drifts and achieve a higher precision after learning over
certain data chunks compared to other state-of-the-art algorithms of CDRDT and CVFDT,
and several semi-supervised algorithms.
Runtime Overheads

In this subsection, we compare REDLLA with CVFDT and CDRDT on the consumption
of runtime. A summary of experimental results in Table 1 shows that REDLLA wins

3. Predictive accuracy refers to the value of 1-prequential error rate over the training data. In Figures 8,
10, 12, we also give the prediction result of REDLLA in the best case (i.e., ulr = 0%) as the comparison.

4. All experimental results of (Wu et al., 2006; Blum & Mitchell, 1998; Zhou & Li, 2005) and (Zhu, 2001)
involve in the given values in (Wu et al., 2006).

250

Mining Recurring Concept Drifts with Limited Labeled Streaming Data

Table 1: Runtime overheads
Time(s)

Algorithm SEA HyperPlane Elec

REDLLA 26 82 4

CDRDT 53 26 6

CVFDT 417 634 28

twice while CDRDT wins once. More precisely, i) on Hyperplane, the time consumption in
CDRDT is about 3/10 of that in REDLLA. This is because the deviation of runtime between
both algorithms depends on the split-tests in the growing of the decision tree and the labeling
of unlabeled data. The more the dimension of attributes, the more the time overhead.
Thus, the time consumption in REDLLA is more than CDRDT in general. ii) However,
on SEA, the runtime overhead in REDLLA is about 1/2 of that in CDRDT. Because these
databases have only three attribute dimensions. It is possible that the number of instances
accumulated at leaves in CDRDT is much more due to the random feature selection used
in the training. Meanwhile, the Näıve Bayes classifier is adopted at leaves, and the time
consumption will be increased in CDRDT. iii) On Elec, the average time consumption in
REDLLA is similar to that in CDRDT regarding the different periods. iv) Meanwhile, the
runtime overhead in CVFDT is 7 times more than that in REDLLA and CDRDT. This is
due to the fact that a large number of alternative subtrees is generated, especially in the
case with more concept drifts. The time overhead is hence demanded heavily.

5. Conclusions

This paper presented a Semi-supervised classification algorithm for data streams with RE-
curring concept Drifts and Limited LAbeled data (REDLLA). In this algorithm, we adopt
k -Means to generate concept clusters at leaves in tandem of incrementally building a ho-
effding tree. Meanwhile, we use the deviation between concept clusters to detect recurring
concept drifts. Experimental evaluations reveal that in comparison to several represen-
tative concept-drifting data stream algorithms and online semi-supervised algorithms, our
REDLLA algorithm is efficient and effective for mining recurring concept drifts even in cases
with a large volume of unlabeled data. Meanwhile, how to reduce the space consumption,
how to fix the periods of recurring concept drifts accurately and how to predict unknown
concepts in advance are still challenging and interesting issues for our future work.

6. Acknowledgements

This research is supported by the 973 Program of China under award 2009CB326203, the
National Natural Science Foundation of China (NSFC) under grants 60828005 and 60975034
and the Natural Science Foundation of Anhui Province under grant 090412044.

References

Albert Bifet, Geoff Holmes, Richard Kirkby and Bernhard Pfahringer. Moa: Massive online
analysis. Machine Learning Research, 11: 1601-1604, 2010.

251

Peipei Li, Xindong Wu, and Xuegang Hu

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training.
In: Annual Conference on Computational Learning Theory, pages 92-100, 1998.

Charu C. Aggarwal, Jia W. Han, and Philip S. Yu. On Demand Classification of Data
Streams. In: KDD’04, pages 503–508, 2004.

Chen Li, Yang Zhang, and Xue Li. Ocvfdt: One-class very fast decision tree for one-class
classification of data streams. In: KDD’09, pages 79–86, 2009.

David P. Helmbold and Philip M. Long. Tracking drifting concepts by minimizing disagree-
ment. Machine Learning, 14: 27–45, 1994.

Dwi H. Widyantoro. Exploiting unlabeled data in concept drift learning. Journal Infor-
matika, 8: 54–62, 2007.

Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data streams.
In: KDD’01, pages 97–106, 2001.

Gerhard Widmer and Miroslav Kubat. Learning in the Presence of Concept Drift and
Hidden Contests. Machine Learning, 23: 69–101, 1996.

Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. Tracking recurring contexts
using ensemble classifiers: an application to email filtering. Knowledge and Information
Systems, 22: 1-23, 2009.

João Gama, Raquel Sebastião, and Pedro P. Rodrigues. Issues in evaluation of stream
learning algorithms. In: KDD’09, pages 329–338, 2009.

Michael B. Harries, Claude Sammut, and Kim Horn. Extracting hidden context. Machine
Learning, 32: 101–126, 1998.

Michael Harries. Splice-2 comparative evaluation: Electricity pricing. Technical report, the
University of South Wales, 1999.

Mohammad M. Masud, Jing Gao, Latifur Khan, and Jia W. Han. A practical approach
to classify evolving data streams: training with limited amount of labeled data. In:
ICDM’08, pages 929-934, 2008.

Naoki Abe and Hiroshi Mamitsuka. Query learning strategies using boosting and bagging.
In: ICML’98, pages 1–9, 1998.

Pei P. Li, Xin D. Wu, Xue G. Hu, Qian H. Liang, Yun J. Gao. A Random Decision Tree En-
semble for Mining Concept Drifts from Noisy Data Streams. Journal of Applied Artificial
Intelligence, 24: 680–710, 2010.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classification. John Willey
& Sons, Inc., 2001.

Sasthakumar Ramamurthy and Raj Bhatnagar. Tracking recurrent concept drift in stream-
ing data using ensemble classifiers. In: ICMLA, pages 404–409, 2007.

Shuang Wu, Chunyu Yang, and Jie Zhou. Clustering-training for data stream mining. In:
ICDMW’06, pages 653–656, 2006.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58: 13–30, 1963.

Wei Fan, Yian Huang, and Philip S. Yu. Decision tree evolution using limited number of
labeled data items from drifting data streams. In: ICDM’04, pages 379–382, 2004.

William N. Street and YongSeog Kim. A streaming ensemble algorithm (sea) for large-scale
classification. In: KDD’01, pages 377–382, 2001.

Xiao J. Zhu. Semi-supervised learning literature survey. Report No. 1530, University of
Wisconsin, 2001.

Yong Wang, Zhan H. Li, Yang Zhang, Long B. Zhang, and Yun Jiang. Improving the
Performance of Data Stream Classifiers by Mining Recurring Contexts. In: ADMA’06,
pages 1094-1106, 2006.

Zhi H. Zhou and Ming Li. Tri-training: Exploiting unlabeled data using three classifiers.
IEEE Transaction on Knowledge and Data Engineering. 17: 1529–1541, 2005.

252

