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Abstract

Current research on data stream classification mainly focuses on certain data, in which pre-
cise and definite value is usually assumed. However, data with uncertainty is quite natural
in real-world application due to various causes, including imprecise measurement, repeated
sampling and network errors. In this paper, we focus on uncertain data stream classifica-
tion. Based on CVFDT and DTU, we propose our UCVFDT (Uncertainty-handling and
Concept-adapting Very Fast Decision Tree) algorithm, which not only maintains the ability
of CVFDT to cope with concept drift with high speed, but also adds the ability to handle
data with uncertain attribute. Experimental study shows that the proposed UCVFDT al-
gorithm is efficient in classifying dynamic data stream with uncertain numerical attribute
and it is computationally efficient.

Keywords: Uncertain data streams, Decision Tree, Classification, Concept drift

1. INTRODUCTION

In real-world applications, such as credit fraud detection, network intrusion detection, huge
volume of data arrives continuously with high speed. Such applications could be modeled
as data stream classification problems. Currently, attribute value is usually assumed to
be precise and definite (see, for example, Hulten et al. 2001, Street and Kim 2001, Wang
et al. 2003) by the research community of data stream classification analysis. However,
data uncertainty arises naturally in many applications due to various reasons, including
imprecise measurement, missing values, privacy protection, repeated sampling and network
errors, therefore traditional data stream learning algorithms are not applicable to real-life
applications.

In the case of credit fraud detection, the raw data of customer such as age, address and
vocation may be masked with imprecise values for privacy protection or missing values.
For example, the true age 38 may be substituted with a range of [36, 39]; a probability
vector < (doctor,0.6), (teacher,0.1), (programmer,0.3) > may be used to replace the true
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vocation teacher. The same scenario could be observed in network intrusion detection. In
this paper, we model these applications as a problem of classifying uncertain data streams.
We identify the following characters of uncertain data stream classification:

1. Data with uncertainty: uncertain values have to be handled cautiously, or else the
mining results could be unreliable or even wrong.

2. High speed input data: the classifier should have the ability to process huge volume
of data which arrive at high speed.

3. Concept-drift detecting: the classifier should be capable of detecting and respond-
ing to changes in the example-generating process.

4. Limited memory space: only limited memory space is available to the classifier,
which means that the classifier has to scan the input samples for only once.

In this paper, based on DTU (Qin et al. 2009a) and CVFDT (Hulten et al. 2001), we
propose UCVFDT (Uncertainty handling and Concept-adapting Very Fast Decision Tree)
algorithm for classifying dynamic and uncertain data streams with high speed. Experi-
mental study on both synthetic and real-life data sets shows that UCVFDT has excellent
performance. Even when the uncertainty reaches 20%, the classification performance of
UCVEFEDT is still close to that of CVFDT, which is trained on precise data stream.

This paper is organized as follows. Section 2 reviews the related work. We will introduce
our UCVFEDT algorithm in section 3. The detailed experiment setup and results are shown
in section 4. Section 5 concludes this paper and gives our future work.

2. RELATED WORK

2.1 Uncertain Data Classification

Numerous uncertain data classification algorithms have been proposed in the literature in
recent years. Qin et al. (2009b) proposed a rule-based classification algorithm for uncertain
data. Ren et al. (2009) proposed to apply Naive Bayes approach to uncertain data classifica-
tion problem. Decision tree model is one of the most popular classification models because
of its advantages (Tsang et al. 2009, Quinlan 1993). Several decision tree based classifiers
for uncertain data are proposed by research community. The well-known C4.5 classification
algorithm were extended to the DTU (Qin et al. 2009a) and the UDT (Tsang et al. 2009)
for classifying uncertain data. (Qin et al. 2009a) used probability vector and probability
density function (pdf) to represent uncertain categorical attribute (Qin et al. 2009b) and
uncertain numerical attribute (Cheng et al. 2003) respectively. They constructed a well per-
formance decision tree for uncertain data (DTU). Tsang et al. (2009) used the ”complete
information” of pdf to construct a uncertain decision tree(UDT) and proposed a series of
pruning techniques to improve the efficiency.

Both DTU and UDT algorithm are extensions of C4.5, they can only be used to deal with
uncertain static data set, while our UCVFDT algorithm is capable of handling uncertain
data stream, in which huge volume of data arrive at high speed.
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2.2 Data Stream Classification

There are two main approaches for classifying data streams: single classifier based approach
and ensemble based approach. For single classifier based approach, the most well-known
classifiers are VFDT and CVFDT. The CVFDT improves the VFDT with ability to deal
with concept drift. After that, many decision tree based algorithms were proposed for data
stream classification (for example, Gama et al. 2005, Gama et al. 2006). For ensemble
based approaches, the initial papers use static majority voting (for example, Street and
Kim 2001, Wang et al. 2003), while the current trend is to use dynamic classifier ensembles
(for example, Zhang and Jin 2006, Zhu et al. 2004). All of algorithms mentioned above
can only handle certain data. Pan et al. (2009) proposed two types of ensemble based
algorithms, Static Classifier Ensemble (SCE) and Dynamic Classifier Ensemble (DCE) for
mining uncertain data streams. To the best of our knowledge, this is the only work devoted
to classification of uncertain data streams. However, in (Pan et al. 2009), class value of a
sample is assumed to be uncertain, while attributes is assumed to have precise value. Our
UCVFDT handles uncertain attributes, while class value is assumed to be precise.

3. UCVFDT

3.1 Problem Definition

In this paper, we only consider data streams with categorical attribute values. For data
streams with numerical attribute values, numerical attributes could be discretized to cate-
gorical attributes using the approach described in (Fayyad and Irani. 1992).

Uncertain attribute model. In this paper, we adopt the model described in (Qin
et al. 2009b) to represent uncertain categorical attribute (UCA), which has definition as
follows:

Definition 1. (Qin et al. 2009b) An uncertain categorical attribute is denoted by X',
X;© is used to denote the ¢-th sample of X/“. Given a categorical domain Dom(X;") =

{vi,...,vm}, X" is characterized by probability distribution over Dom. It can be rep-
resented by the probability vector P =< pi,...,py > such that P(X/ = v;) = p; and
ZT:l pj =1

For a certain categorical attribute X;, we assume sample s; has attribute value X; = v;.
It can be modeled as a special case of uncertain categorical attribute with P(X; = v;) =1,
for all v # vj, we have P(X; = v) = 0. For simplicity, all attributes will be modeled as
uncertain categorical attributes in rest of this paper.

Uncertain data stream classification. Given a stream data S = {s1,s1,...,5,...},
where s; is a sample in S, sy = (X", y). Here X" = {X}, Xj°,..., X} is an attribute
set with d uncertain attributes. y € C' denotes the class label of s;, where C is a set of
class labels on stream data. We build decision tree model y = f(X"¢) from S to classify
the unknown samples.

3.2 Fractional Sample

Note that uncertain tree growing is a recursive process of partitioning the training samples
into fractional samples (Qin et al. 2009a, Tsang et al. 2009). In this paper, we also adopt

211



LIANG, ZHANG,AND SONG

the technique of fractional sample to handle uncertainty. Based on (Quinlan 1993, Tsang
et al. 2009), fractional sample is define as follows.

Definition 2. Assume the split attribute at node N is denoted by X', sample s; is
split into new samples {s1,5:2,...,Sim} by X', m = |Dom(X;")|, where s;; is copy of s;

i

except for attribute X;*, which is set P(X; = v;) = 1, for all v # v;, P(X;¥ = v) = 0.
Thus s4; is a fractional sample of s; on attribute X;“”C.

We associate s; with a weight w;, which can be interpreted as the exist probability at

node N. The weight of s;; is assigned with
wij = wy + P(X} = vj) (1)

which can be interpreted as the probability that s;; falls into the j-th child of node N. All
samples at root are set w; = 1. It is considered that s;; exist with low probability if wy;
is small. Hence, for a given threshold ¢, if w;; < ( is observed, s;; will not be split into
fractional samples.

3.3 Uncertain Information Gain

Information Gain (IG) is widely used in decision tree algorithms to decide which attribute
being selected as the next splitting attribute. Qin et al. (2009a) give the definition of
uncertain information gain (UIG) for building decision tree for uncertain data (DTU). Base
on DTU, for a data set S denoted by node N and an attribute set X" = {X{'*, Xj5°,..., X7}
, formula (2) is used to compute UIG.

Definition 3. Uncertain Information Gain (Qin et al. 2009a):

UIG(S,X/'<) = Entropy(S) — Z Pccgigj)) x Entropy(Si;) (2)
j=1

Here, m = |Dom(X;'*)|. Entropy(S) denotes expected information entropy, which can
be defined as follows (Qin et al. 2009a):

c]
Entropy(S) = = _ Ps(y)log Ps(yx) (3)
k=1

Here, Ps(yi) denotes the ratio of the sum of probabilities of each sample in y to the
sum of probabilities of each sample. Ps(yx) can be computed by (Qin et al. 2009a):

Ps(yx) = Pgés(ﬁf) (4)

Here, PC' denotes the sum of probabilities of each sample in S, which is named proba-
bilistic cardinality(Qin et al. 2009a). Based on (Qin et al. 2009a), probabilistic cardinality
is defined as follows:

|S|

PC(S) = Zwt (5)
t=1
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Si; denotes the set of samples in S that X = v;, PC(S,y;) denotes the sum of
probabilities of each sample in y;. Here we have

5]

PC(Si;) =Y w; x P(X}ie = v)) (6)
t=1
S|

PC(S,yx) = Zwt x P(C(st) = yx) (7)
t=1

At each node of decision tree, for each possible value v; € Dom(X ") of each attribute
X', for each class yi, we associate it with a sufficient statistic n;;,. In order to collect
statistical data for formula (5), (6) and (7), we only need to update n;;j, for each new coming
sample s"* as follows:

nijk = Nijk + PC {8 }ij, yr) (8)
Similarly, for removing a sample s°? from node N, we update n;jk as follows:
niik = nijr — PC({s"%Vij, yk) 9)

For the sake of efficiency and limited memory available, we do not save all the samples
observed from the stream for multiple scans

3.4 CVFDT

Hulten et al. (2001) proposed to choose the best split attribute when building decision
tree for data streams based on Hoeffding bound (Hoeffding 1963). After n independent
observation of a real-valued random variable r with range R, the Hoeffding bound ensures
that, with confidence 1 — 4, the true mean of r is at least ¥ — &, where 7 is the observed
mean of the samples and ¢ = \/R2In(1/6)/2n. Let G(X;) be the evaluation function used
to choose test attributes. Assume G is to be maximized, and let X, be the attribute
with highest observed G after seeing n examples and X}, be the second-best attribute. Let
AG = G(X,) — G(X}). Given a desired §, the Hoeffding bound guarantees that X, is the
correct choice with probability 1 — 6 if n examples have been seen at this node and AG > ¢.
Then the node can be split using the current best attribute, and succeeding examples will
be passed to the new leaves.

According to 3.2, a sample s; exists at node N with probability w; in uncertain decision
tree. For uncertain data, the count for n observation at node N is represented by expected
count, which is defined as follows:

B
n=> w = PC(S) (10)

Here S denotes fractional samples observed at node N, so we have

R2In(1/96)
_ 11
=7\ 2PC(s) (11)
We name Hoeffding bound following formula (11) as probabilistic Hoeffding bound.
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3.5 Building UCVFDT

Here, based on probabilistic Hoeffding bound, we use the uncertain information gain as
the split evaluation function to choose the best splitting attribute. We extend CVFDT
to our UCVFDT (Uncertainty-handling and Concept-adapting Very Fast Decision Tree)
algorithm. Like CVFDT with the capability of detecting concept drift, UCVFDT works
by keeping its model consistent with a sliding window of uncertain samples. The pseudo
code is illustrated in Algorithm 1. Function G(.) denotes uncertain information gain. ¢
is a threshold for fractional sample, (X"<); denotes uncertain attribute set at node I, n;j
denote the sufficient statistics for computing uncertain information gain. Please refer to
(Hulten et al. 2001) for details of other parameter.

In algorithm 1, the process for handling a sample could be summarized into four parts.
Firstly, from step 11 to step 15, the new coming sample is associated with an ID and a weight,
then it is saved to the sliding window. Secondly, from step 16 to step 20, an outdated sample
is remove from the tree, it is also deleted from the slide window (Algorithm 3). Thirdly,
step 21 is for tree growing (Algorithm 2). Lastly, step 22 and step 23 is for checking split
validity of an internal node periodically, please refer to (Hulten et al. 2001) for more details.

Algorithm 2 lists the pseudo code for growing uncertain decision tree. Sufficient statistics
are collected from fractional samples from step 5 to step 9. From step 14 to step 19, a sample
is split into a set of fractional samples. From step 21 to 39, the uncertain information gain is
computed using sufficient statistics at leaf nodes. Based on probabilistic Hoeffding bound,
split attribute is chose and the leaf node is split into an internal node.

Algorithm 3 lists the pseudo code for removing an outdate sample from uncertain deci-
sion tree. The original sample is split into a set of fractional samples, and sufficient statistics
is updated by subtracting probabilistic cardinality of all these fractional samples.

3.6 Classifying test sample

Given an uncertain test sample s; =< X%, ? >, a classification model for uncertain data is a
function that maps attributes X% to a probability distribution vector < P(y1,y2,. - -, y‘(;|) >
(Qin et al. 2009a, Tsang et al. 2009). For computing such probability distribution, we
recursively defined fy(s¢,w) = Z;n:l f(v,j)(8tj,wiz) at node N. Here, (N, j) represents
the j-th sub tree of node N. If node N is leaf node [, we define fi(sy,w) = wyj. <
PCs(y1), PCs(y2), - .., PCs(yjc|) >. Here, S represents samples observed by node I. Fi-
nally, we compute class probability distribution for s; using f,(s¢, w), where r denotes the
root of UCVFDT, and set w; = 1 for all test sample. The test sample will be predicted to
be of class y; which has the largest P(y), k = 1,2, ...|C]|.

Algorithm 4 lists pseudo code for classifying an uncertain test sample s;. In algorithm 4,
dist =< PCs(y1), PCs(y2), - -, PCs(y|c|) >, l.dist = fi(stj,we;) is probability distribution
over classes at node L.

3.7 Time Complexity and Space Complexity

Like CVFDT, The memory requirement by UCVFDT are dominated by the sufficient statis-
tics and are independent of the total number of samples seen. It is able to keep the model in
memory proportional to O(hdmc). Here, h denotes the number of nodes in uncertain deci-
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Algorithm 1 the learning algorithm for UCVFDT

Inputs:

S a stream of samples,
X" an uncertain categorical attribute vector,
G(.) wuncertain information gain for split evaluation,

) one minus the desired probability of choosing the correct attribute at any given
node,
T a user-supplied tie threshold,

w the size of the window,

Nmin the number between checks for growth,
f the number between checks for drift.

¢ a user-supplied weight threshold,

Outputs:

HT  a decision tree for uncertain samples.

: Let HT be a tree with a single leaf [; , the root.

2: Let ALT(I1) be an initially empty set of alternate trees for /;.

@

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

Let G(X,) be the G obtained by predicting the most frequent class for S following
formula (7).
Let (X"); = X" [J{Xs}
Let W be be the window of sample, initially empty.
for each class y; do

for each possible value v; of each attribute X € X" do

Let Nyjk = 0.

end for
end for
for each sample (X", y) in S do

Sort(X"e,y) into a set of leaves L using HT of any node (X", y) passes through.
Let ID be the maximum id of the leaves in L.
Weight (X"e,y) with value 1.
Add ((X*"e,y),ID) to the beginning of W.
if | W] >w then
Let ((Xg,yw), IDyy) be the last element of W.
ForgetSamples(HT,(X e, yw), L Dy Q). //refer to Algorithm 3
Let W=W with ((X%,yy), D) removed.
end if
UCVFDTGrow(HT,G,(X",y),0,nmin,T,C). / /refer to Algorithm 2
if If there have been f samples since the last checking of alternate trees then
CheckSplitValidity (HT,9).
end if
end for
Return HT.
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Algorithm 2 UCVFDTGrow(HT,G,(X",y),0,nmin,T,()

// Refer to Algorithm 1 for the details of input parameters;

1: if the weight of (X"¢,y) < ¢ then
2:  Return.
end if
Let [ be the root of HT.
for each class y; do

for each possible value v; of each attribute X" € X" do

Increment n;j; (1) following formula (8).

end for
end for
10: for each tree T4y in ALT(1) do
11:  UCVFDTGrow(Tarr,G, (X", y),0,Nmin,T,C)-
12: end for
13: Label [ with the majority class among the samples seen so far at [ following formula

(7).
14: if [ is not a leaf then then
15:  Split (X", y) into a set of fractional samples F.
16:  for each sample s;; in E do
17: Reweight s;; following formula (1).
18: Let [; be the branch child for s;;.
19: UCVFDTGI‘OW(lj,G,Stj,(s,nmm,T,C).
20: end for
21: else
22:  Let ny and no be be the expect count of samples last seen and current seen at [
computed by formula (10).

23: if If the samples seen so far at [ are not all of the same class and n; — ng > Nyin

then
24: Compute G(X) for each attribute X € X" — {X,} using n;j;(l) and formula
(2).
25: Let X}, X} be the attribute with highest and second-highest G.
26: Compute ¢ using formula (11) and 9.
27: Let AG = G(XY) — G(X}).
28: if AG >¢cor AG <=¢ < 7 then
29: Replace ! by an internal node that splits on X <.
30: for each branch of the split do
31: Add a new leaf j, and (X"¢); = X" — {X}}.
32: Let ALT(l;) = {}.
33: for each class y; and each v; possible value of each attribute X/ € (X");
do
34: Let nijk(l]’) =0.
35: end for
36: end for
37: end if
38: end if
39: end if
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Algorithm 3 ForgetSamples(HT, (X3, yw), I Dy,C)

// Refer to Algorithm 1 for the details of input parameters;

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

Let [ be the root of HT.

if (XU, yy)’s weight < ¢ or I.ID > ID,, then

Return.

1
2
3
4: end if
5:
6
7
8
9

for each class y; do
for each possible value v; of each attribute X € X< do
Decrement n;;j(1) following formula (9).
end for

: end for

for each tree T, in ALT(l) do
ForgetSamples(Tp, (X, Yw), L Dy,C).
end for
if [ is not a leaf then
Split (X%, yy) into a set of fractional sample E.
for each sample s,,; in F do
Reweight s,,; following formula (1).
Let I; be the branch child for s,;.
ForgetSamples(Tyt,5u;j I Dw,C)-
end for

end if

Algorithm 4 ClassifySample(HT,s;)

Inputs:

HT  a decision tree for uncertain data,
St a test sample,

Outputs:

— =
= O

dist  probabilistic distribution over C.
Let [ be the root of HT.
if is [ leaf node then then
dist = dist 4 l.dist
else
Split s; into a set of fractional sample F.
for each s;; in E do
Reweight following formula (1).
Let [; be the branch child for s;;.
ClassifySample(l;,s;).
end for

. end if
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sion tree and alternate trees, d denotes the number of attributes, m = maz®_ ;| Dom(X}*)|
and ¢ denotes the number of class label. In order to keep model up-to-date, the time
complexity of UCVEFDT is O(l,dmc), where [,, denotes the number of nodes in uncertain
decision tree and alternate trees, while CVFDT’s is O(l.dmc), where . denotes the length
of the longest path an sample will have to take through decision tree times the number of al-
ternate trees. Apparently, I, >= l.. It is concluded that UCVFDT is more time-consuming
than CVFDT for handling uncertainty. We will compare running time of UCVFDT to
CVFDT’s in our experiment.

4. EXPERIMENT STUDY

In order to measure the classification performance of UCVFDT, we perform experiments
on both synthetic data set (Moving hyperplane (Hulten et al. 2001), SEA (Street and Kim
2001)) and real-life data set (CoverTypel).

Since no benchmark uncertain data set can be found in the literature, we simulate
uncertainty (u%) by converting categorical attributes into probability vectors using the
approach described in (Qin et al. 2009b). For example, when we introduce uncertainty of
10%, attributes will take the original value with 90% probability, and 10% probability to
take any of the other values. A data set with u% in categorical data is denoted by Uu. We
use Ud for the number of attributes which are made uncertain.

Our algorithms are implemented in Java language based on WEKA? and MOA? software
packages, and the experiments are conducted on a PC with Core 2 CPU, 2G memory and
Windows XP OS. For all of experiments, the parameters of UCVFDT were set as follows:
6 = 0.0001, f = 20000, 7 = 0.05, ¢ = 0.0005, w = 100000, 7,5, = 300. The parameters of
CVFDT are the same as those of (Hulten et al. 2001).

4.1 Experimental Results in Moving Hyperplane

Moving hyperplane have been widely used to simulate time-changing concepts (for example,
Hulten et al. 2001, Wang et al. 2003). A moving hyperplane in d-dimensional space is
denoted by: Zle a;z; = ag. We followed the same procedure in (Wang et al. 2003) to
simulate drift. We used K for the total number of dimensions whose weights involved in
concept changing, Parameter ¢ € R and s; € {1, —1} specify the magnitude and direction
of the change (every M samples) for weights aq, a, ..., ar. For more detailed descriptions
of moving hyperplane, please refer to (Wang et al. 2003).

In our experiment, we set M = 1000, numerical attributes are uniformly discretized
into 5 bins using the method described in (Fayyad and Irani. 1992). Experiment results
are obtained by testing the accuracy and training time of models every 10,000 samples
throughout the run using the subsequent 5,000 sample as the test data.

1. URL: http://www.kdd.ics.uci.edu.
2. URL: http://www.cs.waikato.ac.nz/ml/weka/.
3. URL: http://www.cs.waikato.ac.nz/ abifet/MOA/.
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4.1.1 UCVFDT vs. DTU

We examine how well UCVFDT would compare to a system using traditional drift-tracking
methods. We thus compare UCVFDT, DTU-Window. We simulate DTU-Window by
running DTU on W for every 100,000 examples instead of for every example. We experiment
with d = 30, K = 5, Uu = U0,U5,U10,U15,U20. Ud = K = 5. Stream size is set
|S| = 1,000,000 with noise p=5%. Fig.1, Fig.2 and table 1 show experiment results.

Comparison of Classification Accuracy: Fig.1 shows the accuracy of UCVFDT,
DTU-Window and CVFDT. Here CVFDT is a special case of UCVFDT that runs on data
set with U0. In Fig.1, and vertical axis represents classification accuracy. Fig.1(A), Fig.1(B)
and Fig.1(C) gives the experiment result for U10, U15 and U20 respectively. It can be
observed that DTU-Window is better than UCVFDT when ¢ is small, but with increasing of
¢, which implies concept drift dramatically, UCVFDT outperform DTU-Window. CVFDT
performs the best, because CVFDT is trained on precise data, from which more information
is acquired. Fig.2 shows a detailed view of one of the runs from Fig.1, the one for U20. In
Fig.2, horizontal axis represents parameter number samples. It can be observed from Fig.2
that DTU-Window is close to UCVFDT. But DTU-Window is at a cost of 72.5 times of
UCVFEDT on training time spending. More details about training time will be analyzed in
the following paragraph.

(A) Experiment result for U10 (B) Experiment result for U15 (C) Experiment result for U20
85 T 85 T T 85 T
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Figure 1: Comparison of UCVFDT DTU-Window and CVFDT by Accuracy.

(A) Experiment result for q10 (B) Experiment result for q15 (C) Experiment result for q20
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Figure 2: Accuracy as a function of the number of samples seen.

Running Time and Tree Size: We compare training time and tree size of UCVFDT
to DTU-Window’s. Table 1 shows a detailed view for Fig.1(B), Fig.1(C), Fig.1(D). The
differences in model size and run times are very large. The average model size of UCVFDT
is about 229, and DTU-Window’s is 3105; The average training time of UCVFDT is 1.72s,
DTU-Window’s is 124.81s. DTU-Window is more time-consuming than UCVFDT, because
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DTU-Window have to train on examples in W from scratch every time, while UCVFDT
learn from a sample in an incremental way. Overall speaking, UCVFDT achieve better
accuracy with far fewer nodes and training time than DTU-Window.

Table 1: Tree Size and Running Time.

Uu | q UCVFDT DTU-Window
nodes leaves training time (s) | nodes leaves training time(s)
0.5 1484 1189 0.67 8988.7  7191.2 6.04
1 | 186.5 150 1.6 3752.1  3001.8 42.8
U10 5 | 2822 226.6 2.18 1167.5  934.2 146.83
10 | 260.4 208.8 1.74 1136.2  909.2 145.49
15 | 284 228 2.38 1141.8  913.6 160.06
20 | 276.5 221.9 2.37 1141 913 165.75
0.5 | 1484 1189 0.67 9487.1  7589.8 5.65
1 |169.1 1359 1.47 3451.8 2769.4 42.2
Uls 278.6 2235 2.14 1271.6  1017.4 167.53
10 | 306.3  246.5 1.7 1325.9 1060.9 167.53
15 | 275.9 221.3 2.25 1339.5 1071.7 180.19
20 | 259.6 208.3 2.16 1354.5 1083.7 185.49
0.5 | 148.3 118.8 0.69 10088.4  8070.9 5.19
1 | 1559 125.2 1.28 3893.2  3114.8 38.46
U20 5 | 233.1 186.8 2.01 1509.3  1207.6 197.75
10 | 2114 170.2 1.28 1589.3  1271.6 193.95
15 | 242.2  194.3 2.21 1618.2  1294.7 199.59
20 | 2544 204.2 2.19 1625.5  1300.5 196.15

4.1.2 UCVFDT vs. CVFDT

In this group of experiments, we compare the classification performance of UCVFDT to
CVFEDT. For stream data we set d = 10, K = 2,4,6,8, Ud = K = 2,4,6,8, |S| = 1,000, 000
with noise p=5%. CVFDT run with data stream without uncertainty. Experiment results
show that UCVFDT and CVFDT induce trees with similar number of nodes, the average
tree size of UCVFEFDT is about 285 while CVFDT’s is about 340. Training time needed by
UCVFEDT averages out to 1.8s, while CVFDT averages out to 0.4s. It can be concluded
that UCVFEDT take more time to handle uncertain information. For lacking of space, we
only report accuracy in detail. Table 2 gives the accuracy of CVFDT and UCVFDT with
Uu=Ub,U10,U15,U20,U25 and ¢q = 1,5, 10; Overall speaking, the accuracy of UCVFDT
remains relatively stable. Even when the extent of uncertainty reaches 25%, the accuracy is
still comparable to CVFDT over certain or precise data. It shows that UCVFDT is robust
against data uncertainty.
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Table 2: Comparison of UCVFDT and CVFDT by Accuracy.

UCVFDT
KUd) | a | OVEDT —e—— 15— 015 020 U
1| 7995 |79.96 79.75 79.83 79.89 79.73
P 5| 8482 | 851 851 85.06 84.01 83.79
10| 85.48 | 8548 853 8527 85.23 84.86
1| 7175 | 7145 71.42 71.04 71.15 71.35
4 81.2 | 80.86 81.32 80.59 80.39 80.7
10| 8248 |81.89 81.65 81.86 81.62 81.26
1| 75.18 | 7475 74.06 73.89 73.53 73.13
6 7844 | 76.95 7853 782 7841 77
10| 79.44 | 7924 7879 7834 7819 T7.72
1| 7857 | 7839 77.75 77.38 7718 176.71
8 51 7991 | 792 79.03 78.83 7815 7872
10| 79.48 |79.06 7876 78.02 77.46 77.45

SEA

We examine UCVFDT’s abrupt concept drift mechanism by comparing with CVFDT using
another synthetic data SEA. Here, we do not compare UCVFDT with DTU, because DTU
can not handle data stream. SEA is described in (Street and Kim 2001) and it is used for
generate abrupt concept drift data set. It is generated using three attributes, where only
the two first attributes are relevant. The points of the data set are divided into 4 blocks
with different concept. In each block, the classification is done using f; + f2, where f; and
fo represent the first two attributes and 6 is a threshold value. In this group experiment

we set 0 = 9,8,7 and 9.5 for the data blocks. Numerical attributes were discretized into

10 bins, and were simulated uncertain information with Uu = 10%, 20% and 30%. We set
stream data |S| = 500,000 with p=10% noise. After every 500 training samples, we use the
subsequent 1000 sample as test data to test the model.

95

90

85

80

75

70

65

60

(A) Experiment result for U10

(B) Experiment re

sult for U20

(C) Experiment resuit for U30

95

90

85

80

75

70

65

0 100 200 300 400 500 600 700 800 900 1000
Number of Examples %500

60
0 100 200 300 400 500 600 700 800 900 1000

Number of Examples

x 500

0 100 200 300 400 500 600 700 800 900 1000

Number of Examples

Figure 3: Comparison of CVFDT and UCVFEDT on SEA.

x 500

Fig.3 gives the detailed view of the experiment result. It can be observed that both
CVFDT’s accuracy and UCVFDT’s accuracy drop badly when data set suffers abrupt
concept drift. Because CVFDT learns from certain data, It recover a little better than
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UCVFDT. But even uncertainty reaches 20%, the UCVFDT’s ability to handle abrupt
concept drift is still close to CVFDT.

4.3 Forest Covertype

Forest CoverType is a benchmark problem in the UCI KDD Archive. This problem relates
to the actual forest cover type for given observation that was determined from US Forest
Service (USFS) Region to Resource Information System (RIS). Forest CoverType includes
581,012 samples with 7 cover type, each sample has 54 attributes including 10 remotely
sensed data and 44 cartographic data.

In this group experiments, remotely sensed data is discretized into 5 bins, and were
converted into uncertainty with Uu = 10%, 15% and 20%. We allow the training examples
to arrive one by one to form a data stream and we test the prediction accuracy of the
learned model every 5,000 examples throughout the run using the subsequent 5,000 samples
as the test data. Experimental results show that average accuracy of CVFDT is 65% while
average accuracy of UCVFDT is 65.5%, 65.3% and 63.9% for uncertainty U10,U15 and
U20 respectively. Fig.4. shows a detailed view of experimental results. Overall speaking,
the accuracy of UCVFDT remains relatively stable. Even when the extent of uncertainty
reaches 20%, the accuracy is still quite close to CVFDT over certain data. It shows that
UCVFDT is robust against data uncertainty.

(A) Experiment result for U10 (B) Experiment result for U5 (C) Experiment result for U20
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Figure 4: Comparison of CVFDT and UCVFDT on CoverType.

4.4 Analysis of Parameters in UCVFDT

We experiment on moving hyperplane with d = 30, ¢ = 5, Uu = U20, |S| = 1,000, 000,
p="5%, Ud =15, K = 5,10 and 15.

(A) Experiment result for k=5 (B) Experiment result for k=10 (C) Experiment result for k=15
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Figure 5: Experiment with 7,
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(A) Experiment result for k=5 (B) Experiment result for k=10 (C) Experiment result for k=15
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Figure 6: Experiment with w

Parameter n,,;,: We examine how the parameter n,;, impact UCVFDT’s training
time and accuracy. Here we set w = 10,000. Fig.5 gives the result. In Fig.5, the vertical
axis represents classification accuracy and the minor vertical axis represents time lasting of
tree building. Fig.5(A), Fig.5(B) and Fig.5(B) gives the experiment result for K = 5,10
and 15. It can be observed from Fig.5 that with increasing of n,,;,, both the classification
accuracy and training time is decreasing.

Parameter w: We examine how the size of sliding window impact UCVFDT’s training
time and accuracy. Here we set n,,;;, = 300. Fig.6 shows the result. The vertical axis in
Fig.6 is the same as in Fig.5. It can be observed from Fig.6 that w can not be neither too
small nor too large, or it will lead to a bad performance.

5. CONCLUSION

In this paper, we extended the DTU and CVFDT to a new algorithm UCVFDT. In order to
choose the best splitting attribute from uncertain attributes in tree growing, we proposed
probabilistic Hoeffding bound and improved the method for computing the uncertain in-
formation gain. Our experiments on both synthetic data and real-life data show that even
when data set is highly uncertain, UCVFDT still perform excellent. UCVFDT has the
ability to handle uncertainty, which makes it more applicable to real-life applications.
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