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Abstract

In this paper we propose a new algorithm for learning polyhedral classifiers. In contrast to
existing methods for learning polyhedral classifier which solve a constrained optimization
problem, our method solves an unconstrained optimization problem. Our method is based
on a logistic function based model for the posterior probability function. We propose an al-
ternating optimization algorithm, namely, SPLA1 (Single Polyhedral Learning Algorithm1)
which maximizes the log-likelihood of the training data to learn the parameters. We also
extend our method to make it independent of any user specified parameter (e.g., number
of hyperplanes required to form a polyhedral set) in SPLA2. We show the effectiveness of
our approach with experiments on various synthetic and real world datasets and compare
our approach with a standard decision tree method (OC1) and a constrained optimization
based method for learning polyhedral sets (Astorino and Gaudioso, 2002).

Keywords: Polyhedral Learning, Logistic Regression, Alternating Optimization

1. Introduction

A polyhedral set is a convex set formed by intersection of finite collection of closed half spaces
(Rockafellar, 1997, chap. 19). Polyhedral sets have many interesting properties making them
useful in many fields. For example, the convex hull of a finite set of points is a polyhedral
set. Another important property of polyhedral set is that any convex connected subset of
<d can be well approximated by a polyhedral set and this makes learning of polyhedral
regions an interesting problem in pattern recognition. Many binary classification problems
are such that the positive examples are all concentrated in a single convex region with the
negative examples being all around that region. Then the class region of one class is well
captured by a polyhedral set. One way of tackling the problem of learning the classifier
in such cases is to formulate it as a large margin one-class classification problem (Tax and
Duin, 1999). This is a variant of the well known Support Vector Machine (SVM) method
(Burges, 1998) and such techniques, under properly chosen kernel function, can learn a ball
that encloses all positive examples and none of the negative examples. Although the SVM
method often gives good classifiers, with a non-linear kernel function, the final classifier may
not provide good geometric insight on the class boundaries in the original feature space.
Such insights are useful to understand the local behavior of the classifier in different regions
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of the feature space. Another well known approach to learn polyhedral sets is the decision
tree method. In a binary classification problem, an oblique decision tree represents each
class region as a union of polyhedral sets (Rokach and Maimon, 2005; Duda et al., chap. 8).
When all positiveexamples belong to a single polyhedral set, one can expect a decision tree
learning algorithm to learn a tree where each non-leaf node has one of the children as a leaf
(representing negative class) and there is only one path leading to a leaf for the positiveclass.
Such a decision tree (which is also called a decision list) would represent the polyhedral set
exactly. However, top down greedy method followed in many decision tree algorithms and
the impurity based heuristics to learn optimal hyperplanes at each node are such that a
general decision tree algorithm fails to learn a single polyhedral set well.

A given set of examples (in a 2-class classification problem) is said to be polyhedrally
separable if there is a convex polyhedral set that contains all positiveexamples and no
negative example (Megiddo, 1988). When a training set is polyhedrally separable, we can
reformulate decision tree learning as learning a decision list of fixed structure. To fix
the structure we need to assume that we know the number of hyperplanes that make the
required polyhedral set. Constrained optimization techniques have been used to learn such
decision lists (Astorino and Gaudioso, 2002; Orsenigo and Vercellis, 2007; Dundar et al.,
2008). Note that these optimization problems are non-convex even though we are learning
a convex set. Here all the positive examples satisfy each of a given set of linear inequalities
(that defines the halfspaces whose intersection is the polyhedral set); however, each of the
negative examples fail to satisfy one (or more) of these inequalities and we do not know a
priori which inequality each negative example fails to satisfy. This is also called the credit
assignment problem and it makes learning polyhedral sets a difficult task (Megiddo, 1988).

In Astorino and Gaudioso (2002), this problem is solved by first enumerating all pos-
sibilities for misclassified negative examples (e.g., which of the hyperplanes caused each
negative example to get misclassified and for each negative example there could be many
such hyperplanes) and then solving a linear program for each possibility to find descent
direction. This approach becomes computationally very expensive.

If, for every point falling outside the polyhedral set, it is known beforehand which of
the linear inequalities it will satisfy (in other words, negative examples for each of the hy-
perplanes of polyhedral classifier are separately given), then the problem becomes much
easier. In that case, the problem becomes one of solving K linear classification problems
independently. But this assumption is very unrealistic. Dundar et al. (2008) relaxes this
assumption a little and assumes that for each sub-classification problem corresponding to
every hyperplane, a small subset of negative examples is known and propose a cyclic opti-
mization algorithm (optimizing one classifier out of K at a time). Still, their assumption
of knowing subset of negative examples corresponding to each hyperplane is not realistic in
many practical applications.

In this paper we propose a logistic function based probabilistic framework to learn
polyhedral classifier. We model the posterior probability using a logistic function. To
our knowledge this is the first instance of such a model based approach for learning a
polyhedral classifier. We fit this model by maximizing the log likelihood function which
is an unconstrained optimization problem. Also, because of the functional form of the
posterior probability, a simple alternating optimization algorithm can be used to learn the
parameters. We present a second algorithm where we can remove the assumption of knowing
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the number of hyperplanes, by using Bayesian Information Criteria (BIC) which is used for
model selection (T. Hastie and Friedman, 2001, chap. 7). Thus, we propose an algorithm
for polyhedral classification which does not need any user defined parameters.

The rest of the paper is organized as follows. In Section 2 we describe our logistic func-
tion based probabilistic model for polyhedral classifier. Then in Section 3 we derive our
learning algorithms SPLA1 and SPLA2 to learn the parameters of logistic function based
polyhedral classifier. In Section 4, we discuss simulation results on various synthetic and
real world datasets to show the effectiveness of our approach. Finally in the last section we
conclude this paper with some discussions.

2. Polyhedral Classifier Using Logistic Function

Let D = {(xn, tn) : xn ∈ <d ; tn ∈ {0, 1}, n = 1 . . . N} be the training dataset. Let A be
the set of points for which tn = 1. Also let B be the set of points for which tn = 0. First
we restate the polyhedral separability defined in (Megiddo, 1988; Astorino and Gaudioso,
2002).

Definition 1 Polyhedral Separability: Two sets A and B in <d are K-polyhedral sep-
arable if there exists a set of K hyperplanes having parameters (wk, bk), k = 1 . . . K with
wk ∈ <d, bk ∈ <, ∀ k = 1 . . . K such that

1. wT
k x + bk ≥ 0, ∀ x ∈ A, ∀ k = 1 . . . K

2. wT
k x + bk < 0, ∀ x ∈ B, for at least one k ∈ {1, . . . , K}

This means that two sets A and B are K-polyhedral separable if A is contained in a convex
polyhedral set which is formed by intersection of K halfspaces and the points of set B are
outside this polyhedral set.

The Proposed Model

Using the definition of polyhedral separability discussed earlier, let us define a function h(x)
as below

h(x) = min
k:k∈{1,...,K}

(wT
k x + bk)

Clearly if h(x) ≥ 0, then the condition wT
k x + bk ≥ 0, ∀ k = 1 . . . K is satisfied and the

point x will be assigned to set A. Similarly if h(x) < 0, there exists at least one k for
which wT

k x+ bk < 0 and the point x will be assigned to set B. Let us assume that we know
K (number of hyperplanes forming the polyhedral set). Then the polyhedral classifier will
become f(x) = sign(h(x)). Let w̃k = [w bk]T ∈ <d+1 and let x̃n = [xn 1]T ∈ <d+1. We now
express the earlier inequalities as w̃T

k x̃ > 0 and so on. Let y denotes the random variable
that gives the class label for a random feature vector x. We write the posterior probability
of the class labels as

p(y = 1|x, Θ) =
1

1 + e−βh(x)
=

1

1 + e−β mink∈{1,...,K}(w̃T
k x̃)

(1)
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where Θ = {w̃1, . . . , w̃K} is the set of parameters of the K hyperplanes and β > 0 is
a parameter. We feel that this is a good probabilistic model for classification problems
which are (nearly) polyhedrally separable. For polyhedrally separable data, we should
have P (y = 1|x) = 1 if x is a positiveexample (i.e., h(x) ≥ 0) and it should be close to
zero if h(x) < 0. This is easily achieved by taking β sufficiently large. In general, the
posterior probability function given by Eq. (1) well captures classification problems where a
polyhedral classifier is optimal. Now learning a polyhedral set can be formulated as learning
the parameters of all the hyperplanes, Θ, in a maximum likelihood sense (from the given
training data). As it turns out, in maximizing likelihood, the parameter β essentially affects
only the step size in the learning algorithm. Hence from now on we take β = 1 because we
can anyway choose appropriate step size in the learning algorithm.

3. Learning Algorithm for the Polyhedral Classifier

To learn the parameters of the logistic function based polyhedral classifier, we maximize
the binomial log likelihood function. For a given dataset D = {xn, tn}N

n=1, the likelihood
function can be written as,

P (t|Θ, D) =
N∏

n=1

P (tn = 1|xn, Θ)tn(1 − P (tn = 1|xn, Θ))1−tn

where P (tn = 1|xn, Θ) is given by Eq. (1). Taking log of the likelihood, we get,

L(Θ) =
N∑

n=1

{tn lnP (tn = 1|xn, Θ) + (1 − tn) ln(1 − P (tn = 1|xn, Θ))} (2)

where Θ = {w̃1, . . . , w̃K}. The min function in the posterior probability (cf. Eq. (1))
gives special structure to the problem of maximizing the log-likelihood. We now derive an
efficient alternating optimization algorithm for polyhedral learning as follows.

Let Sk = {x | k = argminj∈{1,...,K}(x̃T w̃j)} be the set of those training examples
for which w̃T

k x̃ = minj∈{1,...,K}(w̃T
j x̃). For a given set of parameters, Θ, one can easily

compute sets {Sk}K
k=1. In that case, for xn ∈ Sk, P (tn = 1|xn, Θ) = σk(xn), where,

σ(x) = (1 + e−w̃T x̃)−1 is the logistic regression function and σk(xn) is defined as σ(xn)
evaluated at w̃k. Given sets {Sk}K

k=1, the likelihood function can now be written as

L(Θ) =
K∑

k=1

∑
xn∈Sk

{tn lnσk(xn) + (1 − tn) ln(1 − σk(xn))}

=
K∑

k=1

Lk(w̃k) (3)

where Lk(w̃k) =
∑

xn∈Sk
{tn lnσk(xn)+(1−tn) ln(1−σk(xn))}. Thus, if sets Sk, k = 1 . . .K

are known, maximization of the likelihood function L(Θ) given by Eq. (2) with respect to
Θ = {w̃1, . . . , w̃K} boils down to maximization of each of Lk(w̃k) with respect to w̃k as is
clear from Eq. (3). This insight allows us to derive an alternating maximization algorithm
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to maximize the likelihood L(Θ). In one step, we find sets Sk using latest estimate of
parameter set Θ = {w̃1, . . . , w̃K}. In the next step, for each k, using newly computed sets
Sk, k = 1 . . . K, we find new estimates of w̃k by maximizing Lk(w̃k) with respect to w̃k.
We alternatively repeat these two steps until we reach a situation where sets Sk, k = 1 . . .K
do not change in consecutive iterations. To maximize the likelihood Lk(w̃k) with respect
to w̃k, we can use any of the following two iterative approaches.

1. Gradient Ascent Simple gradient ascent update in this case would be

w̃c+1
k = w̃c

k + α
OLc

k(w̃
c
k)

||OLc
k(w̃

c
k)||

, ∀ k = 1 . . . K

where superscript c corresponds to iteration c (we follow this notation for all quantities
in the algorithm). Let nc

k be the number of points falling in set Sc
k. Let Φc

k be the
matrix whose rows are the points falling in the set Sc

k. Similarly tc
k is nc

k-dimensional
column vector of class labels corresponding to points falling in the set Sc

k. Let Γc
k be

a column vector of dimension nc
k, whose elements are σc

k(xn), where σc
k(xn) = (1 +

e−x̃T
n w̃c

k)−1 for xn ∈ Sc
k. Then Lc

k(w̃
c
k) =

∑
xn∈Sc

k
{tn lnσc

k(xn)+(1−tn) ln(1−σc
k(xn))}

and

OLc
k(w̃

c
k) =

∑
xn∈Sc

k

(tn − σc
k(xn))x̃n

= (Φc
k)

T (tc
k − Γc

k)

2. Newton Method The Newton algorithm, for minimizing Lc(w̃k) takes the following
form.

w̃c+1
k = w̃c

k + (Hc
k)

−1OLc
k(w̃

c
k)

Again superscript c corresponds to iteration c. Hc
k is the hessian matrix corresponding

to set Sc
k, whose elements are the second derivatives of Lc

k(w̃k) with respect to w̃k

evaluated at w̃c
k.

Hc
k = OOLc

k(w̃
c
k)

= −
∑

xn∈Sc
k

σc
k(xn)(1 − σc

k(xn))x̃nx̃T
n

We know that set Sc
k contains nc

k number of points. Let Sc
k = {xn1 , . . . ,xnnc

k
}. Let

Rc
k be a diagonal matrix of size nc

k × nc
k corresponding to set Sc

k, whose elements are
Rc

k(i, i) = −σc
k(xni)(1 − σc

k(xni)), i = 1 . . . nc
k. Then Hc

k can be rewritten as

Hc
k = (Φc

k)
T Rc

kΦ
c
k

Putting all this together, Newton update for w̃k can be written as

w̃c+1
k = w̃c

k + ((Φc
k)

T Rc
kΦ

c
k)

−1(Φc
k)

T (tc
k − Γc

k)
= ((Φc

k)
T Rc

kΦ
c
k)

−1((Φc
k)

T Rc
kΦ

c
kw̃

c
k + (Φc

k)
T (tc

k − Γc
k)

= ((Φc
k)

T Rc
kΦ

c
k)

−1(Φc
k)

T Rc
kz

c
k
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Algorithm 1: Single Polyhedral Learning Algorithm 1 (SPLA1)
Input: Training dataset D = {xn, tn}N

n=1, K (#hyperplanes)
Output: {w̃k}K

k=1

begin
1. Step1: Initialization Initialize w̃0

k, k = 1 . . . K such that they all pass through
the range of training data. Initialize c = 0.

2. Step2: Compute sets S0
k, k = 1 . . . K

S0
k = {xn | k = argminj∈{1,...,K}(x̃

T
n w̃0

j )}, ∀ k = 1 . . . K

c = c + 1

3. Step3: Update the parameters

Newton Method w̃c
k = ((Φc−1

k )T Rc−1
k Φc−1

k )−1(Φc−1
k )T Rc−1

k zc−1
k , ∀ k = 1 . . . K

Gradient Ascent w̃c
k = w̃c−1

k − α(Φc−1
k )T (tc−1

k − Γc−1
k ), ∀ k = 1 . . . K

4. Step4: Update the clusters Sc
k, k = 1 . . . K

Sc
k = {xn | k = argminj∈{1,...,K}(x̃

T
n w̃c

j)}, ∀ k = 1 . . . K

5. Step5: Termination Criteria
if Sc

k = Sc−1
k , ∀ k = 1 . . . K then

stop;

else ;

c = c + 1;

go to Step3;

end

where zc
k = Φc

kw̃
c
k +(Rc

k)
−1(tc

k−Γc
k). This implementation of Newton method is called

Iteratively Re-weighted Least Squares (IRLS) (Bishop, 2006, chap. 4). This method
requires that at every iteration we need to find inverse of hessian matrix for each k.
However, the method does not need choice of a step size parameter unlike the gradient
ascent method.

The complete description of our first polyhedral learning algorithm, SPLA1, is provided in
Algorithm 1.

Implementation Issues

1. In SPLA1 described by Algorithm 1, initial parameters are chosen so that all the
hyperplanes pass through the data. Otherwise it could happen that the sets Sk

corresponding to one or more hyperplanes are empty which will lead to numerical
difficulties. So, to avoid this situation one simple technique used is to partition the
data in K equal parts, where K is the number of hyperplanes. Now for k th partition,
we find a linear classifier and use its parameters as initial parameters (w̃0

k).

2. After c th iteration, once sets Sc
k, k = 1 . . .K are found, to find new estimate w̃c+1

k of
w̃k, partial log-likelihood Lc

k(w̃k) is maximized with respect to w̃k. But the solution
of this maximization does not exist in closed form. So we use either gradient ascent or
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Newton algorithm to iteratively maximize Lc
k(w̃k). We limit the number of iterations

for this maximization between 1 and 10 (In Algorithm 1 we write this step for one
iteration for maximization). This does not affects the overall performance but saves
lots of computations.

3. It is important to note that in Step 3 of SPLA1, the parameters of optimal classifiers
for sets Sk, k = 1 . . . K are learnt using logistic regression. The advantage of using
logistic regression is that it does not require any user defined parameter. One can
also use other generic classifiers like support vector machine (SVM). The problem
with using SVM to find a linear classifier is that it requires a user defined penalty
parameter (C). Fixing one value of C for all sets Sk, k = 1 . . .K in Step 3 of
SPLA1 for all iterations may not be a good choice because at every iteration different
classification problem will appear corresponding each set Sk, ; k = 1 . . . K. Hence, we
use logistic regression at Step 3 of SPLA1.

Convergence of SPLA1

Algorithm SPLA1 is like an instance of expectation maximization algorithm. The expecta-
tion step is the Step4 of SPLA1 algorithm, where the sets Sk, k = 1 . . .K are recomputed.
The maximization step is the Step3 of SPLA1 algorithm, conditional expectation of the
complete log-likelihood is maximized given the sets Sk, k = 1 . . .K. But the solution of
this maximization does not exist in closed form. Using gradient ascent or Newton method we
assure that the conditional expectation of the complete log-likelihood is increased. Hence,
one complete iteration of both Step3 and Step4 increases the log-likelihood effectively. Thus
we can expect that the algorithm converges. However, at present we do not have complete
convergence proof.

3.1 Fixing the Number of Hyperplanes for Polyhedral Classifier

The problem with SPLA1 is that it needs the number of the hyperplanes (K) as an input.
To decide the number of hyperplanes we use Bayesian Information Criteria (BIC) which is
a technique often used for model selection. We first briefly state the BIC criteria and then
we propose a variant of SPLA1 which finds the number of hyperplanes in the polyhedral
set automatically using BIC criteria.

Bayesian Information Criteria (BIC)

BIC is used for model selection when the fitting is done using maximizing the log-likelihood
(T. Hastie and Friedman, 2001, chap. 7). The general BIC form is

BIC = −2L(Θ) + p log(N) (4)

where N is the number of points, p is number of parameters in the model and L is the
log-likelihood. One need to minimize BIC to find the final solution. Using BIC, complex
models are penalized more as it gives more preference to simpler models. If we assume
that the prior over different models is uniform, then choosing the model with minimum
BIC is equivalent to choosing the model with largest (approximate) posterior probability
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Algorithm 2: Single Polyhedral Learning Algorithm 2 (SPLA2)
Input: D = {xn, tn}N

n=1

Output: {w̃k}K
k=1

begin
1. Step1: Initialization Initialize K as K = 1. Learn a linear classifier using

logistic regression and find BIC1.

2. Step2: K = K + 1.

3. Step3: Learn the model for K

• Learn the polyhedral classifier with K hyperplanes using SPLA1 given in Algorithm 1.

• Find the BICK value for the model learned for current value of K.

4. Step4: Termination Criteria
if BICK > BICK−1 then
stop;

return ΘK−1;

else ;

K = K + 1;

go to Step3;

end

(T. Hastie and Friedman, 2001, chap. 7). Also given a set of models, the probability that
BIC will choose correct model approaches one as the sample size N → ∞.

Finding Number of Hyperplanes using BIC

In our case, number of parameters p is K(d + 1) if there are K number of hyperplanes
which form the required polyhedral set. Ideally, for model selection using BIC, the function
given by Eq. (4) should be minimized with respect to both p and Θ. Here we use rather a
heuristic approach to minimize BIC. We start with a single hyperplane as a classifier and
then keep on increasing the number of hyperplanes (K). For each value of K we learn the
polyhedral classifier. Let ΘK be the set of parameters when the number of hyperplanes is
K. Now find BIC value for each K and choose that K for which the BIC value is minimum.
With this simple modification we propose our new polyhedral learning algorithm SPLA2
described fully as Algorithm 2.

4. Experiments

To test the effectiveness of our polyhedral learning algorithm SPLA2, we test its perfor-
mance on several synthetic and real world datasets. We compare our approach with OC1
(Murthy et al., 1994) which is an oblique decision tree algorithm. We also compare our
approach with a constrained optimization based approach for learning polyhedral sets dis-
cussed in Astorino and Gaudioso (2002). This constrained optimization based approach
successively solves linear programs. We call it PC-SLP (Polyhedral Classifier-Successively
Linear Program) approach. We choose only this method for comparison because the other
constrained optimization based approaches need extra information in terms of individual
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negative examples for each of the hyperplane of the polyhedral set (e.g., Dundar et al.
(2008)). Since the objective here is to explicitly learn the hyperplanes that define the poly-
hedral set, we feel that comparisons with other general PR techniques (e.g., SVM) are not
relevant.

Dataset Description

We generate two polyhedrally separable datasets in different dimensions which are described
below,

1. Dataset 1: 10-dimensional polyhedral set 1000 points are sampled uniformly
from [−1 1]10. A polyhedral set is formed by intersection of following three halfspaces

(a) : x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + 1 ≥ 0
(b) : x1 − x2 + x3 − x4 + x5 − x6 + x7 − x8 + x9 − x10 + 1 ≥ 0
(c) : x1 + x3 + x5 + x7 + x9 + 0.5 ≥ 0

Points falling inside the polyhedral set are labeled as positive examples and the points
falling outside this polyhedral set are labeled as negative examples. The number of
positiveand negative examples sampled are 493 and 507 respectively.

2. Dataset 2: 20-dimensional polyhedral set 1000 points are sampled uniformly
from [−1 1]20. A polyhedral set if formed by intersection of following four halfspaces

(a) : x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 8x9 + 8x10 + 20x11+
8x12 + 7x13 + 6x14 + 5x15 + 4x16 + 3x17 + 2x18 + x19 + x20 + 20 ≥ 0

(b) : −x1 + 2x2 − 3x3 + 4x4 − 5x5 + 6x6 − 7x7 + 8x8 − 9x9 + 15x10 − 11x11+
10x12 − 9x13 + 8x14 − 7x15 + 6x16 − 5x17 + 4x18 − 3x19 + 2x20 + 15 ≥ 0

(c) : x1 + x3 + x5 + x7 + 2x8 + 8x10 + 2x12 + 3x13 + 3x15 + 3x16 + 4x18 + 4x20 + 8 ≥ 0
(d) : x1 − x2 + 2x5 − 2x6 + 6x9 − 3x10 + 4x13 − 4x14 + 5x17 − 5x18 + 6 ≥ 0

Points falling inside the polyhedral set are labeled as positive examples and the points
falling outside this polyhedral set are labeled as negative examples. The number of
positiveand negative examples sampled are 462 and 538 respectively.

Apart from these two synthetic datasets, we also illustrate the performance of our algorithm
on a simple 2-dimensional dataset where the polyhedral set is a square. Here the dataset
is obtained by uniformly sampling from [−2 2]× [−2 2] in <2 and the positiveexamples are
those fully inside [−1.1 1.1] × [−1.1 1.1]. This dataset is used only to illustrate how the
algorithm learns and for this we show how the polyhedral set being learnt evolves during
the iterative optimization procedure.

We also test SPLA2 on several real world datasets downloaded from UCI ML repository
(Asuncion and Newman, 2007). The real world datasets that we use are described in Table 1.
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Data set Dimension # Points
Ionosphere 34 351
Pima Indian 8 768
Breast-Cancer 10 683

Table 1: Details of real world datasets used from UCI ML repository

Experimental Setup

We implemented SPLA1 and SPLA2 in MATLAB. For OC1 we have used the downloadable
package available from internet (Murthy et al., 1993). We implemented PC-SLP approach
also in MATLAB. All the simulations were done on a PC (Core2duo, 2.3GHz, 2GB RAM).

Simulation Results

Figure 1 illustrates how SPLA1 evolves the parameters of polyhedral classifier (square in
this case) on the simple 2-dimensional dataset described earlier. At every iteration the
polyhedral classifier learned by SPLA1 becomes better than the previous one and finally
converges to the correct polyhedral set.

We now discuss performance of SPLA2 in comparison with other approaches on different
datasets. The results provided are based on 10 repetitions of 10-fold cross validation. We
show average values and standard deviation (computed over 10 repetitions) of accuracy,
time taken and the number of hyperplanes learnt. Note that in SPLA2 we automatically
learn the number of hyperplanes also. The results are presented in Table 2. We show results
with both Gradient Ascent (SPLA2-GA) and Newton method (SPLA2-Newton). For the
gradient ascent we show results obtained with appropriately chosen step size α. We also
show results obtained with Newton method of SPLA1, where we specify the number of
hyperplanes. Table 2 shows results obtained with OC1 and SLP also for comparisons.

We see that SPLA-GA (SPLA with gradient ascent updates) is always faster than SPLA-
Newton (SPLA with Newton updates) as SPLA-Newton needs to compute inverse of hessian
at every iteration. In some cases, SPLA-Newton performs inferior to SPLA-GA. This
happens because Newton method, in general, performs better when the error surface has
quadratic form. In our case, the likelihood function is non smooth because of the min
function.

SPLA always generates smaller sized decision trees as compared to OC1. This happens
because we have a model based approach which is specially designed for polyhedral classi-
fiers whereas OC1 is a greedy approach to learn piecewise linear classifiers. For synthetic
datasets, we see that cross validation accuracies of SPLA are greater than that of OC1 with
a huge margin. OC1 is a top down greedy approach which minimizes the cost function
at every node using a random search algorithm. As the dimension increases, the search
problem explodes combinatorially. As a consequence, performance of OC1 decreases as the
dimension is increased which is apparent from the results shown in Table 2. Also OC1,
which is a general decision tree algorithm gives a tree with a large number of hyperplanes.

For real word datasets also, SPLA outperforms OC1 always. We see that for Breast
Cancer dataset and Ionosphere dataset, polyhedral classifiers learnt using SPLA give very
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Figure 1: Learning square shaped concept using SPLA1
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Data set Method Accuracy Time(sec.) # hyperplanes
Dataset1 SPLA1-GA(α = 0.9) 90.80±4.93 0.06 3

SPLA2-GA(α = 1) 95.36±1.07 0.15±0.01 2.89±0.17
SPLA1-Newton 94.59±3.40 6.85±1.19 3
SPLA2-Newton 97.22±0.36 18.96±1.36 2.4±0.12
OC1 77.53±1.74 6.65±0.87 22.01±5.52
PC-SLP 71.26±5.46 27.70±10.07 3

Dataset2 SPLA1-GA(α = 1.2) 90.89±2.99 0.09±0.001 4
SPLA2-GA(α = .9) 92.16±1.18 0.28±0.02 3.36±0.19
SPLA1-Newton 88.04±6.02 5.86±1.22 4
SPLA2-Newton 88.44±2.10 23.33±2.26 2.79±0.23
OC1 63.64±1.48 10.01±0.67 27.36±6.98
PC-SLP 56.42±0.79 189.91±19.73 4

Ionosphere SPLA1-GA(α = .3) 89.65±1.98 0.06±0.004 2
SPLA2-GA(α = .9) 90.57±1.19 0.09±0.004 1.98±0.06
SPLA2-Newton 88.40±1.25 0.37±0.001 1
OC1 86.49±2.08 2.4±0.11 8.99±3.36
PC-SLP 78.77±3.96 45.31±35.66 2

Pima Indian SPLA1-GA 69.13±1.39 0.09±0.01 2
SPLA1-Newton 76.88±0.74 17.63±2.48 2
SPLA2-Newton 76.76±0.60 21.07±1.62 1.29±0.10
OC1 70.42±2.18 3.88±1.74 12.83±4.94
PC-SLP 67.03±0.36 27.07±5.96 2

Breast Cancer SPLA1-GA 89.50±5.17 0.05±0.01 2
SPLA1-Newton 93.84±2.87 11.85±1.98 2
SPLA2-Newton 95.77±0.39 17.18±1.75 1.91±0.15
OC1 94.89±0.81 1.52±0.13 5.82±0.95
PC-SLP 83.87±1.42 22.86±1.07 2

Table 2: Comparison Results

high accuracy. This can be assumed that both these datasets are nearly polyhedrally
separable. This shows that SPLA can capture the required polyhedral set well. In general,
SPLA-GA is much faster than OC1.

Compared to PC-SLP (Astorino and Gaudioso, 2002), SPLA approach always performs
superior in terms of both time and accuracy. As discussed in Section 1, SLP which is a
nonconvex constrained optimization based approach, has to deal with credit assignment
problem combinatorially which degrades its performance both computationally and quali-
tatively. On the other hand, because of our probabilistic model based approach, SPLA does
not suffer from such problem.

SPLA, in general, outperforms a generic decision tree method as well as any specialized
algorithm for learning polyhedral sets (e.g., PC-SLP).
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5. Conclusions

In this paper, we have proposed a new approach for learning polyhedral classifiers. For that
we propose logistic function based posterior probability function and find the parameters
by maximizing the likelihood. The major advantages that we achieve are twofold. First is
that the optimization problem we solve is unconstrained. And because of special structure
of the posterior probability function we are able to derive simple alternating optimization
algorithm where simple gradient ascent or Newton method are applicable to iteratively opti-
mize the parameters. We show experimentally that our approach efficiently finds polyhedral
classifiers when the data is actually polyhedrally separable. For real world datasets also our
approach performs better than any general decision tree method or specialize method for
polyhedral sets.
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