
JMLR: Workshop and Conference Proceedings 13: 31-46
2nd Asian Conference on Machine Learning (ACML2010), Tokyo, Japan, Nov. 8–10, 2010.

Ellipsoidal Support Vector Machines

Michinari Momma ∗ michinari.momma@sas.com
SAS Institute Japan

Kohei Hatano hatano@inf.kyushu-u.ac.jp
Kyushu University

Hiroki Nakayama h-nakayama@cj.jp.nec.com

NEC Corporation

Editor: Masashi Sugiyama and Qiang Yang

Abstract

This paper proposes the ellipsoidal SVM (e-SVM) that uses an ellipsoid center, in the
version space, to approximate the Bayes point. Since SVM approximates it by a sphere
center, e-SVM provides an extension to SVM for better approximation of the Bayes point.
Although the idea has been mentioned before (Ruján (1997)), no work has been done
for formulating and kernelizing the method. Starting from the maximum volume ellipsoid
problem, we successfully formulate and kernelize it by employing relaxations. The resulting
e-SVM optimization framework has much similarity to SVM; it is naturally extendable to
other loss functions and other problems. A variant of the sequential minimal optimization
is provided for efficient batch implementation. Moreover, we provide an online version of
linear, or primal, e-SVM to be applicable for large-scale datasets.
Keywords: Bayes point machines, Support vector machines, Pegasos

1. Introduction

The most common interpretation of the support vector machines (SVMs) (Vapnik (1996);
Schölkopf and Smola (2001)) is that SVM separates positive and negative examples by
maximizing the margin that is the Euclidean distance between supporting hyperplanes of
both examples. Another interpretation comes from a concept called the version space. The
version space is a space of consistent hypotheses, or models with no error. SVM maximizes
the inscribing hypersphere to find the center that is the SVM weight vector w. Given
the version space, the “sphere center” completely characterizes the SVM model. The Bayes
point is a point through which all hyperplanes bisect the version space by half, and is shown
to have better generalization ability theoretically and empirically (Herbrich et al. (2001);
Ruján (1997)).

Attempts to approximately find the Bayes point have been done since the early studies
of the version space and the Bayes point. SVM can be considered as an example. The Bayes
point machines (BPM) (Herbrich et al. (2001)) uses a kernel billiard algorithm to find the
center of mass in the version space. The analytic center machines (ACM) (Trafalis and
Malyscheff (2002)) approximate the Bayes point by analytic points of linear constraints.

∗. This work was done while the autor was at NEC Corporation

c©2010 Michinari Momma, Kohei Hatano, and Hiroki Nakayama.



Momma, Hatano, and Nakayama

The idea of using an ellipsoid rather than a sphere has been mentioned in (Ruján
(1997)), although it was neither formulated nor implemented because of its projected high
computational cost O(n3.5). Then a billiard algorithm including BPM has been developed
to alleviate the computational challenge. However, as we have seen in the history of SVM,
seemingly expensive problem can be made efficient by exploiting special structures in the
problem. Sequential minimal optimization (SMO) or decomposition methods are notable
examples of such algorithms (Keerthi et al. (2001); Chen et al. (2005)). Furthermore, recent
development of large scale linear SVMs (Shalev-Shwartz et al. (2007); Hsieh et al. (2008))
impressively improved the scalability of the quadratic optimization into practically linear
order. Learning from the experience, we are encouraged to develop and study the method
of ellipsoidal approximation to BPM, which we refer to as the ellipsoidal SVM (e-SVM).

The e-SVM formulation is based on that of SVMs. Advantages in formulating in such a
way include possible adaptation of theoretical characterization and optimization methods
developed for SVM and extensions to different loss functions. These advantages would not
be realized if we stick to BPM that has to rely on sampling techniques that scale poorly
on a large scale dataset; In BPM, even the soft boundary formulation is nontrivial and the
kernel regularization is used after all.

As an attempt to solving the challenging the kernel batch e-SVM problem efficiently,
we adopt the sequential minimal optimization (SMO). The modified SMO algorithm indeed
shares many convenient features with that for SVM, such as the closed-form solution for
the minimal problem, Karush-Kuhn-Tucker (KKT) condition violation check, etc. Although
there should exist faster algorithms to solve depending on the type of problems, we decide
to start from the simpler SMO algorithm and study how e-SVM compares against BPM
and SVM.

Furthermore, we develop a stochastic gradient based method for solving online linear,
or primal, e-SVM problem using the Online Convex Optimization (OCO) framework. OCO
is initiated by Zinkevich (Zinkevich (2003)). OCO deals with the following online learning
protocol between the learner and the adversary; At each trial t, the learner predicts a point
xt ∈ X , where X is a fixed bounded subset of Rn. Then the adversary gives a convex
function ft : X → R and the learner incurs the loss ft(xt). The goal of the learner is, after
T trials, to minimize the regret:

∑T
t=1 ft(xt)− infx∈X

∑T
t=1 ft(x). This framework captures

other existing framework such as online learning with experts (Littlestone and Warmuth
(1994); Vovk (1990)) from the viewpoint of convex optimization. OCO has been studied
extensively these days. A popular application of OCO is Pegasos (Shalev-Shwartz et al.
(2007); Shalev-Shwartz and Srebro (2008)) and is a state-of-the-art stochastic gradient de-
scent solver for SVMs. The OCO framework is adopted in developing an online algorithm of
e-SVM; Our algorithm outputs an approximation of the underlying problem with expected

error is less than ε in Õ(
n ln R

ν
+ 1

ν2

ε ) steps, where R is the maximum 2-norm of instances
and ν is a parameter. Like Pegasos, the algorithm is efficient in terms of ε: the number of
iteration is Õ(1

ε ), neglecting other terms.
Section 2 formulates the e-SVM optimization problem. Section 3 describes the SMO

algorithm adapted for the kernel e-SVM problem. Section 4 develops an online algorithm
for linear e-SVM. Section 5 gives experimental results. Section 6 concludes the paper.

Notation: Throughout the paper, we assume that m data points xi in n-dimensional
space and the corresponding (target) label yi ∈ {−1, 1} are given. The bold small letters

32



Ellipsoidal Support Vector Machines

represent vectors and the capital letters represent matrices. The vector/matrix transpose
is T . The kernel matrix is given by K with Kij as its element. trA denotes the trace of a
matrix A. “s.t.” in optimization problems means “subject to”. I is an index set of m data
points: I ∈ {1, . . . , m}. ‖A‖2 denotes the matrix 2-norm and ‖x‖2 the L2-norm of a vector
x.

2. Ellipsoidal support vector machine formulations

Beginning from reviewing the SVM formulation, we develop e-SVM problems by modifying
it step-by-step.

The version space is a space of error zero models. For linear models, it is the error-
zero subspace of weight vectors w. The data points are considered as hyperplanes and
the classification constraints are the feasible region that is a polyhedron. The problem of
finding a maximum hypersphere inside the polyhedron can be formulated as follows:

max
ρ,w,b

ρ s.t.
yi

(
xT

i w + b
)

‖xi‖2
≥ ρ, ‖w‖2 ≤ 1, i ∈ I

which corresponds to maximization of the minimum distance between the center and the
hyperplanes, in the absence of the bias b. By allowing errors in the above problem, we can
get a soft-margin version of the above problem.

min
ρ,w,b,ζ

−mρ + 1/ν

m∑
i=1

ζi s.t. yi

(
xT

i w + b
)

+ t2i ζi ≥ t2i ρ, ‖w‖2 ≤ 1, i ∈ I (1)

where ti is defined to be ‖xi‖2 and ν > 0 is a given constant. Note in the special case with
ti = 1, Problem 1 becomes identical to the ν-SVM formulation.

To better approximate the “center of models”, an ellipsoid, instead of a hypersphere, will
be used to inscribe the polyhedron. The MVIE problem is a well-known log-determinant
optimization problem, see e.g. (Boyd and Vandenberghe (2004)). A representation of an
ellipsoid centered at w is given by E = {Eu + w | ‖u‖2 ≤ 1, E � 0}. Thus the constraints
for SVM (1) are modified as follows:

yi

(
xT

i (Eu + w) + b
)

+ t2i ζi ≥ t2i ρ, ∀u, ‖u‖2 ≤ 1 (2)

Since Equation 2 holds for any u, it suffices to use the lower bound of lhs in order to remove
u:

yi

(
xT

i (Eu + w) + b
)

+ t2i ζi ≥ yi

(
xT

i w + b
)
− ‖Exi‖2 + t2i ζi ≥ t2i ρ (3)

where − yiExi

‖Exi‖2
= arg minu, ‖u‖=1(yix

T
i Eu) is used.

Furthermore, in order to obtain the largest ellipsoid inscribing a polyhedron, the volume
of the ellipsoid should be maximized, which corresponds to maximizing the determinant of
E (|E|), as the volume of an ellipsoid is proportional to the determinant. In an optimization
problem, log-determinant is easier to handle and thus adopted here as well. The resulting

33



Momma, Hatano, and Nakayama

optimization problem is given as follows:

min
E,ρ,ζ,w,b

−λ (r log |E| − (1 − r)trE) − mρ +
1
ν

∑
ζi

s.t. yi

(
xT

i w + b
)
− ‖Exi‖2 ≥ t2i ρ − t2i ζi

‖w‖2 ≤ 1, ζi ≥ 0, i ∈ I, E � 0, (4)

where λ > 0 is a trade-off parameter and r is a constant whose value takes 0 < r ≤ 1. The
additional term trE is introduced to gain numerical stability as suggested in (Dolia et al.
(2006)).

Note the role of ρ and |E| as maximizing margin is similar and redundant; the determi-
nant maximization term can subsume the linear maximization of ρ 1. Hence, ρ is dropped
from the problem hereafter, allowing us to remove λ:

min
E,ζ,w,b

−r log |E| + (1 − r)trE +
1
ν

∑
ζi

s.t. yi

(
xT

i w + b
)

+ t2i ζi ≥ ‖Exi‖2

‖w‖2 ≤ 1, ζi ≥ 0, i ∈ I, E � 0. (5)

This MVIE problem can be solved by using existing techniques, including interior point
methods or cutting plane based approaches. Here we relax the SOC constraint in Problem
5 in order to ease the high computational complexity. This change, as we shall see, plays a
significant role in making the kernelization possible. As the first step, assume the matrix E is
written as E = E0+B, where E0 is the current solution and B is a deviation from it. By the
Taylor expansion, the SOC constraint is written as ‖Exi‖2 = κi + 1

κi
xT

i E0Bxi + O(‖B‖2
2)

where κi is given by κi = ‖E0xi‖2. Using the convexity of SOC, we get the following
inequality: ‖Exi‖2 ≥ κi + (1/κi)xT

i E0Bxi.
Now the SOC constraints are replaced by linear constraints that are much easier to

handle. In the special case with E0 = cI, c → +0, the problem becomes simple and may
be used as the initial problem.

min
B,ξ,w,b

−r log |B| + (1 − r)trB +
∑

i

Ciξi

s.t. yi

(
xT

i w + b
)

+ ξi ≥ xT
i Bxi

‖w‖2 ≤ 1, ξ ≥ 0, i ∈ I, B � 0 (6)

where we define ξi = κ2
i ζi and Ci = 1

t2i ν
. This formulates the ellipsoidal support vector

machines primal problem. Note the Taylor approximation gets less accurate when ‖B‖2

becomes larger, which is the cost for making the formulation feasible for kernelization done
in Section 2.2.

Problem 6 has some interesting similarity with other methods. By putting B = Σ−1,
it can be seen as a variant of MVCE problem in which the radius in the original problem
is modified to a prediction dependent constraint. Hence it can be viewed as a supervised
version of (Shivaswamy and Jebara (2007); Dolia et al. (2006)); unlike EKM, e-SVM solves

1. Our preliminary study confirmed that ρ becomes zero in most cases

34



Ellipsoidal Support Vector Machines

the classification problem at the same time. Shivaswamy et al.’s formulation for handling
missing and uncertain data (Shivaswamy et al. (2006)) looks similar to Problem 4, where
the metric in margin is given by the uncertainty in the data point. In e-SVM, margin is
given by the B-norm, which is optimized simultaneously with the classification problem.

2.1 Dual formulation

It can be readily shown that Problem 6 is a convex optimization problem with no duality
gap. Hence the complementarity can be used to solve the primal and the dual problems,
just like SVMs. The Lagrangian is given as follows:

L = −r log |B| + (1 − r) trB +
∑

i

Ciξi −
∑

i

αi

(
yi

(
xT

i w + b
)
− xT

i Bxi − ξi

)
+γ
(
‖w‖2

2 − 1
)
− πT ξ − tr(BD),

where α, γ, π and D are the Lagrange multipliers for the classification constraints, norm
constraint on w, nonnegativity on ξ and positive semidefiniteness on B, respectively. The
optimality condition gives the following relations2:

B−1 =
1
r

(
(1 − r)I +

∑
i

αixix
T
i

)
, D = 0, w =

1
2γ

∑
i

αiyixi,
∑

i

yiαi = 0, Ci − αi − πi = 0.

Thus using the above equations the dual problem is written as follows:

max
α,γ

r log
∣∣B−1

∣∣− 1
4γ

∑
i,j

αiαjyiyjx
T
i xj − γ

s.t. B−1 =
1
r

(
(1 − r)I +

∑
i

αixix
T
i

)
,
∑

i

yiαi = 0, 0 ≤ αi ≤ Ci, γ > 0 (7)

A pleasant surprise is that B−1 is always positive definite since αi ≥ 0, which is a great
advantage, allowing us to remove the constraint B−1 � 0 in (7).

2.2 Kernel formulation

In this subsection, we show how Problem 7 is kernelized. For notational convenience, we use
the matrix notation as well as the vector notation wherever appropriate. Note Problem 7 is
very similar to the SVM problems, with the only difference being the additional r log

∣∣B−1
∣∣

in the objective. By the matrix determinant lemma, the following equality can be shown
to hold;

∣∣B−1
∣∣ = ∣∣∣I + A1/2XXT A1/2

(1−r)

∣∣∣ ∣∣1−r
r I
∣∣ , where X is the data matrix X = [x1 . . . xm]T

and A is a diagonal matrix whose elements are give by Ai,i = αi. Note that the last factor
is a constant so it can be ignored.

By employing the kernel defined feature mapping x 7→ φ(x), or XXT 7→ K, we have

∣∣∣I + 1
(1−r)A

1/2XXT A1/2
∣∣∣ 7→

∣∣∣∣I +
1

(1 − r)
A1/2KA1/2

∣∣∣∣ = ∣∣∣∣I +
1

(1 − r)
KA

∣∣∣∣
(8)

2. The log |B| term forces B to be full-rank. Thus D = 0 holds by complementarity.

35



Momma, Hatano, and Nakayama

The Sylvester’s determinant theorem, a generalization of the Matrix determinant lemma, is
used. After removing the constant terms, the kernel e-SVM optimization problem is given
by

max r log

∣∣∣∣∣I +
1

(1 − r)

∑
i

αikiei
T

∣∣∣∣∣− 1
4γ

∑
i,j

yiyjαiαjKij − γ

s.t.
∑

i

yiαi = 0, 0 ≤ αi ≤ Ci, γ ≥ 0, (9)

with ki being the i-th column of the kernel matrix and ei being a vector of zeros except for
the i-th element being unity.

3. Sequential minimal optimization

Although Problem 9 can be solved by an optimization package, a customized solver should
be developed to take advantage of its similarity to the familiar SVM formulation; ideally
an SVM solver can be modified to handle e-SVM. For this purpose, we develop a variant of
SMO for e-SVM.

The differences from the standard implementation of SMO include ‖w‖2 being normal-
ized to one, step size optimization formula, and KKT conditions. The weight normalization
concerns optimization with respect to γ and can be done via the iterative projection. Step
size optimization and active set selection using the KKT condition are done very similar
to those for SVM. This section focuses on describing essential differences as a guide to
implementation.

3.1 Optimality conditions

SMO chooses an active set, a pair of data points, to optimize at any iteration. The selection
of a pair critically affects the convergence speed. We adopt the selection heuristic described
in (Keerthi et al. (2001)): choose ones that violate the KKT condition most. This subsection
derives the KKT condition and thus gives the criterion for choosing the active set.

First, consider the dual of (9). The Lagrangian is given by

L = −r log

∣∣∣∣∣1 − r

r
I +

1
r

∑
i

αikiei
T

∣∣∣∣∣+ 1
4γ

∑
ij

yiyjαiαjKij + γ − η
∑

i

yiαi

−
∑

i

δiαi +
∑

i

µi (αi − Ci) .

Solving the optimality conditions, we have

(Fi − η) yi − δi + µi − ei
T B̃ki = 0, γ =

√∑
ij

yiyjαiαjKij/2. (10)

with Fi = 1
2γ

∑
Kijyjαj and B̃ =

(
1−r

r I + 1
r

∑
i αikiei

T
)−1. Hence, by the complementar-

ity, we have the following KKT conditions:

36



Ellipsoidal Support Vector Machines

• For αi = 0, δi > 0, µi = 0 ⇒ (Hi − η) yi ≥ 0
• For 0 < αi < Ci, δi, µi = 0,⇒ (Hi − η) yi = 0
• For αi = Ci, δi = 0, µi > 0 ⇒ (Hi − η) yi ≤ 0

with Hi = Fi − yiei
T B̃ki. Note the first term Fi corresponds to that in (Keerthi et al.

(2001)) and the second term is newly introduced for the e-SVM problem. This means that
replacing Fi by Hi suffices to establish a version of the SMO algorithm for e-SVM and can
be easily integrated into an existing SVM solver.

3.2 Step size computation

As explained, the KKT condition for e-SVM is easily adopted to the existing SMO algo-
rithm. Another important piece in SMO algorithm is to find the optimal step size. The
incremental step for αi can be expressed as

αnew = αold + s (ei − yiyjej) , (12)

which satisfies the constraint
∑

i yiα
new
i = 0 given αold is a feasible solution. Consider the

following objective function, U(s), after removing any constant terms with respect to s:

U(s) = r log
∣∣∣B̃−1

∣∣∣−∑
i,j

1
4γ

αnew
i αnew

j yiyjKij − γ. (13)

The first term is modified using the update formula:∣∣∣B̃−1
∣∣∣ =

∣∣∣B̃old−1 +
s

r

(
kiei

T − yiyjkjej
T
)∣∣∣

=
∣∣∣∣I +

s

r

[
ei

T

−yiej
T

]
B̃old [ki yjkj ]

∣∣∣∣ ∣∣∣B̃old−1
∣∣∣ = ∣∣∣∣ 1 + s

rωii
s
ryjωij

− s
ryiωji 1 − s

ryiyjωjj

∣∣∣∣× const

where ωij is defined to be ωij = ei
T B̃oldki and the matrix determinant lemma is used for

deriving the 2nd line. The resulting matrix is merely a 2× 2 matrix determinant and easily
expandable.

Likewise, we can rewrite the second term in (13) as follows:∑
i,j

αnew
i αnew

j yiyjKij =
∑
i,j

αold
i αold

j yiyjKij − 4γsyi (Fi − Fj) − s2 (Kii − 2Kij + Kjj) .

Hence by putting all the pieces together, we have the following optimality condition on s.

∂U(s)
∂s

= r
∂ log

∣∣∣B̃−1
∣∣∣

∂s
− ∂

∂s

 1
4γ

∑
ij

αiαjyiyjKij

 = 0

⇒ ra1 − a3 + (2ra2 − a1a3 − a4)s − (a2a3 + a1a4)s2 − a2a4s
3 = 0

with a1 = r(ωii − yiyjωjj), a2 = yiyj(ωijωji − ωiiωjj), a3 = yi (Fi − Fj), a4 = Kii+Kii−2Kij

2γ .
This is merely a cubic equation and can be solved analytically.

37



Momma, Hatano, and Nakayama

3.3 Computing B̃

At each iteration, access to B̃ is needed to calculate ω’s. Specifically, the diagonal elements
ωii are required for the KKT violation check and ωij as well as ωii and ωjj for the step size
computation concerning an update of αi and αj . Since we solve the dual α, as well as γ

in SMO, B̃−1 is easily obtained, but getting B̃, in a naive way, would require an inverse
matrix operation that is never done in practice.

A way to efficiently computing B̃ is to employ the rank-one update of matrix inversion
and factorize the matrix in the following way: B̃new = B̃old +

∑
k∈{i,j} σkukv

T
k . By using

the Woodbury formula, B̃ is updated at each SMO step involving update of αi and αj :
B̃new = B̃old + σiuiv

T
i + σjujv

T
j , where ui = B̃oldki, vi = B̃oldT ei, ωii = ki

T vi, σi =

− s
r+sωii

. uj =
(
B̃old + σiuiv

T
i

)
kj , vj =

(
B̃old + σiuiv

T
i

)T
ej , σj = syiyj

r−syiyjkj
T vj

. Note

this decomposition formula on B̃ enables us to do an incremental update of ω:

ωnew
kl = ωold

kl + σiui
T ekvi

T kl + σjuj
T ekvj

T kl

where ωold
kl = ek

T B̃oldkl. We use this iterative update for diagonal ωii as they are used
in any case for the KKT condition violation check. Further efficiency may be realized if
exploiting caching of off-diagonal elements.

4. Online linear e-SVM

4.1 Preliminaries

For a strictly convex function of vectors R(x) : Rn → R, Bregman divergence between two
vectors u and w is defined as DR(u, v) = R(u) − R(v) − ∇R(v)T (u − v). Also, for a
strictly convex function of matrices, R(x) : Rn×n → R, Bregman divergence between two
matrices A and B is

DR(A,B) = R(A) −R(B) − tr(∇R(B)T (A − B)).

In particular, the Burg divergence between A and B is

tr(AB−1) − ln
∣∣AB−1

∣∣− n.

Burg divergence is the Bregman divergence for R(A) = − ln |A|.

4.2 Problem

Let
f(B, w) = − ln |B| + 1

m

∑
i

Ci`i(B, w),

where `i(B, w) = max(0, xT
i Bxi − yix

T
i w), and Ci = 1

ν‖xi‖ . Let R = maxi ‖xi‖2. Note
that yix

T
i w ≤ ‖xi‖2‖w‖2 ≤ R. To make the loss ` meaningful, we limit the size of xT

i Bxi

at most R. To do this, we introduce a constraint trB ≤ 1/R. Then,

xT
i Bxi = tr(xT

i Bxi) = tr(Bxix
T
i ) ≤ tr(B)tr(xix

T
i ) = tr(B)‖xi‖2

2 ≤ R,

38



Ellipsoidal Support Vector Machines

Algorithm 1 Online e-SVM

1. Let B1 = 1
nRI and w = 0.

2. For t = 1, . . .

(a) Pick up (xt, yt) uniformly randomly from the training set.

(b) Let η1 = 1
2 and ηt = 1

2t for t ≥ 2.

(c) B−1
t+ 1

2

= (1 − ηt)B−1
t + ηtσtCtxtx

T
t , where σt = 1 if xT

it
Btxt − ytx

T
t wt ≥ 0, and

σt = 0, otherwise.

(d) Bt+1 = arg minB�0,trB≤ 1
R

DR(B, Bt+ 1
2
).

(e) wt+ 1
2

= wt + ηtσtCtytxt.

(f) wt+1 = min
{

1, 1
‖w

t+1
2
‖

}
wt+ 1

2
.

where the first inequality follows from the fact that tr(AB) ≤ tr(A)tr(B) for positive
semi-definite matrices A and B. Consider the following problem 3

min
B,w

f(B, w) s.t. B � 0, trB ≤ 1/R, ‖w‖2 ≤ 1. (14)

By using KKT conditions, the optimal solution (B∗, w∗) has the following property:

B∗−1 =
m∑

i=1

αixix
T
i and w∗ =

m∑
i=1

αiyixi,

where each αi satisfies 0 ≤ αi ≤ Ci/m.

4.3 Algorithm

Our algorithm for solving the problem (14) is based on the online convex optimization
algorithm called Regularized Follow the Leader (RFTL) (Hazan (2009)). The algorithm
RFTL captures many existing algorithms. Let

f(B, w, i) = − ln |B| + Ci`i(B,w).

For any given it ∈ {1, ..., m} at trial t, we denote ft(B, w) = f(B, w, it). By following
the RFTL algorithm, the pseudo code for the online e-SVM is given in Algorithm 1.
Note Step 2(c) can be calculated, using the Woodbury formula, as a rank-one update of Bt:
Bt+ 1

2
= 1

ηt

(
Bt − ηtCt

1−ηt+ηtCt
Btx(Btx)T

)
.

4.4 Analysis

In this subsection, we analyze the algorithm and derive some properties. Proofs are provided
in Appendix.

3. Note that, for simplicity, we omit the bias term and the trace term and assume that the solution exists.

39



Momma, Hatano, and Nakayama

Let Ξ = (B, w) and R(Ξ) = − ln |B| + 1
2‖w‖2. Further, for Ξ = (B, w) and Ξ′ =

(B′, w′), we denote
DR(Ξ,Ξ′) = DR(B, B′) + DR(w, w′),

where DR(B, B′) = tr(BB
′−1)−ln

∣∣∣BB
′−1
∣∣∣−n, and DR(w,w′) = 1

2‖w−w′‖2
2, respectively.

Finally, given R > 0, let F be the set of feasible region, i.e., F = {(B, w) ∈ Rn×n×Rn| B �
0, trB ≤ R, ‖w‖2 ≤ 1}.

We can prove the following upper-bound of regret.

Theorem 1 For any T ≥ 1,

T∑
t=1

ft(Ξt) − inf
Ξ∈F

T∑
t=1

ft(Ξ) ≤ O

(
n ln

R

ν

)
+ O

(
(n +

1
ν2

) ln T

)
.

The final solution for use is an average over all learning steps. The following theorem
states the convergence speed of the online e-SVM.

Theorem 2 For any T ≥ 1, let Ξ̄ = (B̄, w̄), where B̄ = 1
T

∑T
t=1 Bt and w̄ = 1

T

∑T
t=1 wt.

Then,

E[f(Ξ̄)] ≤ inf
Ξ∈F

f(Ξ) + O

(
n ln R

ν

T

)
+ O

(
(n + 1

ν2 ) ln T

T

)
.

Therefore, we can have the following Corollary for the number of steps toward the ε-
approximate solution.

Corollary 3 After Õ(
nln R

ν
+ 1

ν2

ε ) steps, our algorithm outputs the final hypothesis Ξ̄, whose
expected approximation error is less than ε. w.r.t. the problem ( 14).

Stopping Criterion For a practical implementation, we consider the following stopping
criterion: Run the algorithm for T steps, where T is such that

1
T

(
n ln

R

ν
+

T∑
t=1

DR(Bt, Bt+ 1
2
)

)
≤ ε,

where ε is a precision parameter. Since the left hand side is an upperbound of loss of the
final hypothesis Ξ̄, after T steps, the algorithm outputs an ε-approximation (in terms of
expectation).

5. Experimental study

5.1 Effect of Approximation on Predictive Performance

It is important to examine the quality of e-SVM solutions to understand how the approx-
imation and relaxation used in e-SVM affect the performance. First, we examine how the
relaxation in Problem 6 compares against the exact problem, Problem 5, using some bench-
mark datasets available in (Fan). SeDuMi (Sturm (1999)) is used for both problems in
order to eliminate differences coming from different implementation. Except splice, where

40



Ellipsoidal Support Vector Machines

Table 1: Comparison between Problem 5 and 6
model splice mushroom a1a a2a a3a w1a w2a w3a
exact error rate (%) 17.37 0.81 24.09 16.24 16.06 2.92 2.91 2.85
(5) time (sec) 525.9 2249.1 1512.9 2282.8 3823.2 3191.3 4544.4 9789.3

approx. error rate (%) 17.67 0.97 24.09 16.25 16.22 2.96 2.97 2.98
(6) time (sec) 320.0 807.2 612.6 966.3 1201.8 1028.3 1606.8 2411.6

Data set SVM BPM e-SVM

thyroid 4.96 (.24) 4.24 (.22) 4.42 (.25)
heart 25.86 (.40) 22.58 (.33) 20.87 (.32)
diabetes 33.87 (.21) 31.06 (.22) 29.68 (.24)
wave 13.19 (.12) 12.02 (.08) 11.59 (.07)
banana 16.24 (.14) 13.70 (.10) 12.76 (.08)
wisc-bc 4.22 (.13) 2.56 (.10) 3.28 (.12)
bupa 37.04 (.39) 34.5 (.38) 32.71 (.35)
german 30.07 (.22) 27.16 (.24) 26.34 (.27)
brest 35.17 (.51) 33.04 (.48) 31.96 (.51)
sonar 14.90 (.38) 16.26 (.36) 16.87 (.38)
iono 7.94 (.25) 11.45 (.25) 5.92 (.21) 0 500 1000 1500 2000 2500 3000 3500 4000

0

2000

4000

6000

8000

10000

size

tim
e 

(s
ec

)

 

 

BPM
ESVM(SMO)

Figure 1: left: Error rates for hard margin/bounary classifiers. right: Computing time for
BPM and e-SVM.

we randomly split into 3/4 for training and 1/4 for testing, the supplied test sets are used
for performance evaluation. For all datasets, we use the first 30 principal components to
reduce the dimensionality. The linear kernel is used as a kernel formulation is not avail-
able in Problem 5. Hyperparameters are tuned using the three-fold cross-validation (CV)
inside the training set. The result is summarized in Table 1. Although the linearization
used in Problem 6 seems a crude approximation, the effect is very limited, but is more
computationally efficient.

5.2 Comparison against BPM

Next, we examine how the ellipsoidal approximation to the Bayes Point affect the general-
ization ability. To this end, we reproduce similar study as done in the original BPM paper
(Herbrich et al. (2001)). Also, BPM and e-SVM are compared against SVM as a reference.
A wide range of datasets in the UCI machine learning repository (Blake and Merz (1998))
are used. Both SVM and e-SVM are implemented in pure MATLAB, using the SMO.
Note ν-SVM formulation is adopted in this study, since e-SVM is based on ν-SVM. BPM’s
implementation follow (Herbrich et al. (2001)) and is implemented in C.

For the experimental setting, 100 randomizations are done and the average error rates
are reported in Figure 1 left. In order to evaluate significance of statistics, the paired t-tests
are conducted for comparing BPM with SVM, and e-SVM with SVM. Bold numbers denote
the test results being significant. For hard margin e-SVM, r is set to 1 − 10−6. The radial
basis function (RBF) kernel is used for this experiment. For further details of experimental
design, see (Herbrich et al. (2001)). The overall performance for BPM and e-SVM is very
similar. This suggests that the approximations made to formulate e-SVM do not affect the

41



Momma, Hatano, and Nakayama

Table 2: Comparison between soft-margin SVM and e-SVM (%-error)
model ionosphere mushroom splice dna letter satimage usps
SVM 7.41 0.74 15.31 5.48 20.82 16.20 8.13

e-SVM 7.12 0.00 14.67 4.72 20.54 13.60 6.48

classification performance for the datasets examined. In comparison with SVM, the hard
boundary/margin classifiers significantly outperform those of SVM.4

Figure 1 right shows the computing time to see how e-SVM (RBF kernel) scales in
comparison with BPM, using the adult dataset (Blake and Merz (1998)). The size of the
training set is increased from 100 up to 4000. Test performance is observed to check if the
there is no significant difference between the methods. Obviously, e-SVM runs much faster
than BPM as the data size grows.

5.3 Comparison against soft-margin SVM

We apply bigger datasets for illustrating performance difference between SVM and e-SVM.
In this experiment, we focus on soft-margin classifiers and use the linear kernel. We conduct
the nested CV to tune hyperparameters and evaluate for both methods. The outer CV is
set to 10-fold and the inner CV 5-fold. Table 2 shows the results. Note the datasets used
are of medium size in both data points and dimensionality, as opposed to those in Table 1.
As mentioned in (Herbrich et al. (2001)), advantage in BPM-like methods tend to dissipate
when used in a soft-margin case. However this experiment show that e-SVM, or BPM, can
out-perform SVM for most datasets as it captures some covariance structure in relatively
higher dimensional space.

5.4 Large-scale datasets by online linear e-SVM

To illustrate applicability of online linear e-SVM to large scale datasets. We use the full
adult dataset with 45,222 records in 14 dimensions, and covtype (Blake and Merz (1998))
with 581,012 records in 54 dimensions. We use half for training and the rest for testing. We
set ε to 10−3 for the stopping condition. The test error for adult was 15.6% and covtype
23.4% with computing time 76 sec and 14386 sec, respectively, while SMO took 887 sec
for adult and more than 3 days for covtype. 5 Note we did not handle data with sparse
format. A better handle of sparse structure should reduce the computing time. At any rate,
this observation shows, for large scale datasets, the online e-SVM is particularly useful for
building linear e-SVM models.

6. Conclusion

In this paper, the ellipsoidal support vector machine was proposed. The formulation is
based on that of the familiar SVM and familiar convex optimization methods are applied
to solve kernel and primal e-SVM. The framework is flexible for possible modification of

4. We conducted the same study with soft margin models and found that the advantage dissipates as noted
in (Herbrich et al. (2001)).

5. For reference, SVM obtained 16.2% and 23.8%, respectively. Again, e-SVM keeps advantage; Small
performance lift can translate in significant error reduction for large-scale datasets.

42



Ellipsoidal Support Vector Machines

loss functions or application to other problems. Also, by the minimum volume ellipsoid
interpretation, it can be used to learn the metric guided through the maximum margin
framework. None of these advantages is available in BPM and thus novel in e-SVM. e-SVM
showed comparable performance with BPM, indicating the approximations in e-SVM do
not affect the performance over wide variety of datasets. Online e-SVM was shown to be
applicable to real large scale problems with some performance advantage.

Acknowledgments

We are deeply grateful to Professor John E. Mitchell at Rensselaer Polytechnic Institute and
Dr. Ralf Herbrich at Microsoft for fruitful discussion and referees for their useful comments.

Appendix A. Proofs

First, we prove Theorem 1. As a preparation, we prove several Lemma’s.

Lemma 1 (Cf. Hazan (2009)) For any T ≥ 1 and any Ξ∗ ∈ F ,
T∑

t=1

ft(Ξt) −
T∑

t=1

ft(Ξ∗) ≤ DR(Ξ∗,Ξ1) +
T∑

t=1

1
ηt

DR(Ξt,Ξt+ 1
2
).

Proof By definition of Dft , we have

f(Ξt) − ft(Ξ∗) = ∇ft(Ξt)(Ξt − Ξ∗) − Dft(Ξ
∗,Ξt)

=
1
ηt

(∇R(Ξt) −∇R(Ξt+ 1
2
))(Ξt − Ξ∗) − DR(Ξ∗,Ξt),

where the second equation follows from the update of 2. (c) and (e) in Algorithm 1 and the
fact that Dft = DR.

By using the following relationship for any x, y, z

(x − y)(∇R(z) −∇R(y)) = DR(x, y) − DR(x, z) + DR(y, z),

we have

ft(Ξt) − ft(Ξ∗) =
1
ηt

(DR(Ξ∗,Ξt) − DR(Ξ∗,Ξt+ 1
2
) + DR(Ξt,Ξt+ 1

2
)) − DR(Ξ∗,Ξt)

≤ 1
ηt

(DR(Ξ∗,Ξt) − DR(Ξ∗,Ξt+1) + DR(Ξt,Ξt+ 1
2
)) − DR(Ξ∗,Ξt),

where the last inequality follows from the Pythagorean Theorem for Bregman divergences
(e.g., Cesa-Bianchi and Lugosi (2006)). So we have
T∑

t=1

ft(Ξt) −
T∑

t=1

ft(Ξ∗) ≤
(

1
η1

− 1
)

DR(Ξ∗,Ξ1) +
(

1
η2

− 1 − 1
η1

)
DR(Ξ∗,Ξ2)

+
T−1∑
t=2

(
1

ηt+1
− 1 − 1

ηt

)
DR(Ξ∗, Zt) −

1
ηT

DR(Ξ∗,ΞT ) +
T∑

t=1

1
ηt

DR(Ξt,Ξt+ 1
2
)

≤ DR(Ξ∗,Ξ1) +
T∑

t=1

1
ηt

DR(Ξt,Ξt+ 1
2
),

43



Momma, Hatano, and Nakayama

where the last inequality holds since the second and forth term is negative and the third
term is zero.

Lemma 2 For any t ≥ 1, DR(Bt, Bt+ 1
2
) ≤ 4η2

t

(
n + 1

ν2

)
.

Proof

DR(Bt, Bt+ 1
2
) = tr(BtB

−1
t+ 1

2

) − ln
∣∣∣∣BtB

−1
t+ 1

2

∣∣∣∣− n

= tr((1 − ηt)I + BtηtσtCtxtx
T
t ) − ln

∣∣((1 − ηt)I + BtηtσtCtxtx
T
t

∣∣− n.

Note that, since
∣∣I + uvT

∣∣ = 1 + uT v, we have

∣∣((1 − ηt)I + ηtBtσtCtxtx
T
t

∣∣ = (1 − ηt)n

∣∣∣∣(I +
ηt

1 − ηt
σtCiBtxtx

T
t

∣∣∣∣
= (1 − ηt)n

∣∣∣∣1 +
ηt

1 − ηt
σtCtx

T
t BT

t xt

∣∣∣∣ .
Therefore,

DR(Bt,Bt+ 1
2
) = tr((1 − ηt)I + ηtBtσtCtxtx

T
t ) + − ln((1 − ηt)n(1 +

ηt

1 − ηt
σtCtx

T
t BT

t xt)) − n

= tr(−ηtI + ηtBtσtCtxtx
T
t ) − n ln(1 − ηt) − ln(1 +

ηt

1 − ηt
σtCtx

T
t BT

t xt).

Since − ln(1 − x) ≤ x + x2

c(1−c) for 0 ≤ x ≤ c < 1,

DR(Bt, Bt+ 1
2
) ≤ tr(ηtBtσtCtxtx

T
t ) + 4nη2

t − ln(1 +
ηt

1 − ηt
σtCtx

T
t BT

t xt).

Further, since − ln(1 + x) ≤ −x + x2 for 0 ≤ x and tr(BxxT ) = xT BT x,

DR(Bt,Bt+ 1
2
) ≤ tr(ηtBtσtCtxtx

T
t ) + 4nη2

t − ηt

1 − ηt
σtCtx

T
t BT

t xt +
(

ηt

1 − ηt
σtCtx

T
t BT

t xt

)2

≤ +4nη2
t +

(
ηt

1 − ηt
σtCtx

T
t BT

t xt

)2

≤ 4η2
t

(
n +

1
ν2

)
.

Lemma 3 For any B∗ such that B∗ � 0 and trB ≤ R, DR(B∗, B1) ≤ n ln R
ν .

Proof Let λ1, . . . , λn be eigenvalues of B∗−1. Then, by definition of B∗−1 and the inequality
of arithmetic and geometric means,

DR(B∗, B1) ≤ ln(nR)n + ln
∣∣B∗−1

∣∣ ≤ − ln(nR)n + ln Πn
i=1λi = − ln(nR)n + ln

(
trB∗−1

n

)n

.

44



Ellipsoidal Support Vector Machines

Further, by definition of B∗−1, the r.h.s. is given as

− ln(nR)n − n lnn + n ln

(∑
i

α∗
i trxix

T
i

)
≤ n ln

R

ν
,

where the last inequality follows from the fact that αi ≤ Ci/m.

Proof of Theorem 1

Proof Note that

DR(wt+ 1
2
, wt) =

1
2
‖wt+ 1

2
− wt‖2 =

1
2
‖ηtσtCtytxt‖2 ≤ η2

t

2ν2
,

and DR(w∗,w1) = 1
2‖w

∗‖2 ≤ 1
2 . By combining these with Lemma 1,2, and 3 and the fact

that ηt = 1/(2t), we complete the proof.

Proof of Theorem 2

Proof By convexity of f and linearity of expectation, we have

E
[
f(Ξ̄)

]
≤ 1

T
E

[
T∑

t=1

ft(Ξt)

]
.

Then, by applying Theorem 1, for any Ξ∗ ∈ F , the right hand side is further bounded by

1
T

E

[
T∑

t=1

ft(Ξ∗)

]
+ O

(
n ln R

ν

T

)
+ O

(
(n + 1

ν2 ) ln T

T

)
. (15)

Note that E
[∑T

t=1 ft(Ξ∗)
]

= f(Ξ∗), which implies

E
[
f(Ξ̄)

]
≤ inf

Ξ∈F
f(Ξ) + +O

(
n ln R

ν

T

)
+ O

(
(n + 1

ν2 ) lnT

T

)
,

as claimed.

References

C. L. Blake and C. J. Merz. UCI Repository of machine learning databases, 1998.
http://www.ics.uci.edu/∼mlearn/ MLRepository.html.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, New
York, NY, USA, 2004. ISBN 0521833787.

45



Momma, Hatano, and Nakayama

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,
2006.

Pai-Hsuen Chen, Chih-Jen Lin, and Bernhard Schölkopf. A tutorial on ν-support vector machines:
Research articles. Appl. Stoch. Model. Bus. Ind., 21(2), 2005.

A.N. Dolia, T. De Bie, C.J. Harris, J. Shawe-Taylor, and D.M. Titterington. The minimum volume
covering ellipsoid estimation in kernel-defined feature spaces. In ECML. 2006.

Rong-En Fan. Libsvm data: Classification, regression, and multi-label.
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

Elad Hazan. A survey: The convex optimization approach to regret minimization.
http://www.cs.princeton.edu/ ehazan/papers/OCO-survey.pdf, 2009.

Ralf Herbrich, Thore Graepel, and Colin Campbell. Bayes point machines. JMLR, 2001.

C. Hsieh, K. Chang, C. Lin, S. Keerthi, and S. Sundararajan. A dual coordinate descent method
for large-scale linear SVM. 2008.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to Platt’s
SMO algorithm for SVM classifier design. Neural Comput., 13(3), 2001.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information and
Computation, 1994.

Pál Ruján. Playing billiards in version space. Neural Comput., 9(1), 1997.

B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, 2001.

Shai Shalev-Shwartz and Nathan Srebro. Svm optimization: inverse dependence on training set size.
In ICML, 2008.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal Estimated sub-GrAdient
SOlver for SVM. In ICML, 2007.

P. Shivaswamy and T. Jebara. Ellipsoidal kernel machines. AISTATS, 2007.

Pannagadatta K. Shivaswamy, Chiranjib Bhattacharyya, and Alexander J. Smola. Second order
cone programming approaches for handling missing and uncertain data. JMLR, 7, 2006.

J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Opti-
mization Methods and Software, 11–12, 1999.

Theodore B. Trafalis and Alexander M. Malyscheff. An analytic center machine. Mach. Learn., 46
(1-3), 2002.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1996.

V. Vovk. Aggregating strategies. In Proceedings of the 3rd Annual Workshop on Computational
Learning Theory, pages 371–386, 1990.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
ICML, 2003.

46


