JMLR: Workshop and Conference Proceedings 13: 269-284
2nd Asian Conference on Machine Learning (ACML2010), Tokyo, Japan, Nov. 8-10, 2010.

Multi-task Learning for Recommender Systems

Xia Ning XNING @ CS.UMN.EDU
Computer Science & Engineering Department
University of Minnesota, Twin Cities

George Karypis KARYPIS @CS.UMN.EDU
Computer Science & Engineering Department
University of Minnesota, Twin Cities

Editor: Masashi Sugiyama and Qiang Yang

Abstract

This paper focuses on exploring personalized multi-task learning approaches for collaborative
filtering towards the goal of improving the prediction performance of rating prediction systems.
These methods first specifically identify a set of users that are closely related to the user under con-
sideration (i.e., active user), and then learn multiple rating prediction models simultaneously, one
for the active user and one for each of the related users. Such learning for multiple models (tasks)
in parallel is implemented by representing all learning instances (users and items) using a coupled
user-item representation, and within error-insensitive Support Vector Regression (e-SVR) frame-
work applying multi-task kernel tricks. A comprehensive set of experiments shows that multi-task
learning approaches lead to significant performance improvement over conventional alternatives.

Keywords: Collaborative Filtering, Multi-Task Learning

1. Introduction

The emergence and fast growth of E-commerce have significantly changed people’s traditional per-
spective on purchasing products by providing huge amounts of products and detailed product infor-
mation fast, and thus making online transactions much easier. However, as the number of products
conforming to the customers’ desires has dramatically increased, the problem becomes how to effi-
ciently and effectively help customers identify the products that best fit their personal tastes. During
the recent years, various recommender systems (Herlocker et al. (1999)) have been developed to
address this problem, of which different collaborative filtering algorithms are widely used.

Collaborative filtering predicts a user’s interest (i.e., rating) on an unseen item based on the
historical profiles of that user in relation to the historical profiles of the other users. Conventional
neighborhood-based collaborative filtering approaches focus on generating prediction on an unseen
item as an aggregate of ratings from similar users or similar items (Sarwar et al. (2001)). However,
a notable drawback of these approaches is that they do not take into account relationships that exist
among the users’ preferences and tastes, which cannot be captured via their user- or item-based
similarities. Model-based collaborative-filtering approaches have been developed to address this
problem by using various machine-learning techniques to build recommendation models from a
collection of ratings (Breese et al. (1998)). However, these approaches tend to model the users or
the items independently, and as such they fail to capture relationships that may exist in the com-

©2010 Xia Ning and George Karpis.

MULTI-TASK LEARNING FOR RECOMMENDER SYSTEM

bined user-item space. Matrix Factorization (MF) (Koren et al. (2009b)) represents a new trend
in collaborative filtering, and it has resulted the state-of-the-art performance particularly for large-
scale recommendation problems. A less notable issue with MF is that it does not address a lot user
personalization, which limits its power for user experience analysis if applied commercially.

In this paper, we present multi-task learning methods for collaborative filtering. The methods
first identify a set of related users for the active user based on his/her rating patterns, and then
utilize rating information from all the related users together to build a multi-task regression model
for predicting the active user’s ratings on unseen items. In this fashion, the model for the active
user is not only learned from his/her own preferences and tastes, but also from the knowledge
that is transfered from other related users. The novelty of our methods is that by using the rating
prediction models of a set of related users as the parallel learning tasks, they construct multi-task
learning models that are explicitly personalized to each individual user. This significantly improves
the performance that can be achieved via transfer learning approaches, as the information that is
being learned is now transferred across related learning tasks. The multi-task learning methods
induce a high level of model interpretability and it is able to provide explicit information for further
analysis on user behavior patterns.

The rest of this paper is organized as follows. In Section 2 we briefly review some related work.
In Section 3, we introduce definitions and notations used in the paper. In Section 4, we present
multi-task learning model for collaborative filtering. In Section 5, we present the results of our
methods on multiple benchmark datasets. In Section 7, we discuss computational considerations.
In the end, we present our conclusions.

2. Related Work

Collaborative filtering (CF) has been one of the most successful approaches for building recom-
mender systems. Conventional CF-based recommender systems that have been developed can be
broadly classified into two categories. The first, referred to as neighborhood-based methods (Her-
locker et al. (1999)), computes the recommendations by analyzing the ratings of a set of similar
users or items. The second, referred to as model-based methods (Kitts et al. (2000)), computes the
recommendations by first building machine learning models to capture the relations between users
and their preferences. A review on early works of traditional collaborative filtering is available
in (Breese et al. (1998)), whereas a recent review on up-to-date collaborative filtering methods can
be found in (Adomavicius and Tuzhilin (2005)). In recent years, Matrix Factorization (MF) has
gained great popularity and it has achieved the state-of-the-art performance particularly on large-
scale recommendation tasks. A review on MF for recommender systems is available in (Koren et al.
(2009b)). In Section 7 we will discuss matrix factorization in more details.

Multi-task learning (Caruana (1993)) is a transfer learning mechanism designed to improve
the generalization performance of a given model by leveraging the domain-specific information
contained in the training signals of related tasks. In multi-task learning, multiple related tasks are
represented by a common representation, and then they are learned in parallel, such that information
from one task can be transfered to another task and help achieve performance boost. In recent years,
many sophisticated multi-task learning methods have emerged, which include task clustering (Thrun
and O’Sullivan (1996)), and matrix regularization (Agarwal et al. (2008)), efc. Various studies
have reported promising results with the use of multi-task learning for different problems in face
recognition (Jin and Sun (2008)), and text mining (Keller and Bengio (2006)), etc.

270

MuLTI-TASK LLEARNING FOR RECOMMENDER SYSTEMS

A number of different CF-based rating prediction methods have been developed that directly
or indirectly combine the prediction models of different users and as such can be considered as
instances of multi-task learning. An example is Yu et al. (Yu et al. (2006)), in which they assume
that the ratings from each user are generated from a latent function that is derived from a common
Gaussian process prior. They formulate the rating prediction problem for each user as an ordinal
regression problem. They simultaneously learn the regression models for all the users iteratively by
first obtaining a multivariate Gaussian on each latent function through expectation propagation, and
then collaboratively updating the Gaussian process prior based on all latent functions. Similarly, in
Yu (Yu and Tresp (2005)), they formulate the collaborative filtering as a maximum-margin matrix
approximation problem with regularization. They prove that under certain circumstances, such a
formulation is equivalent to a kernel learning problem similar to (Yu et al. (2006)), in which each
user is modeled by a prediction function, and the common structure of all prediction functions
is modeled by a kernel. By doing matrix factorization on the entire user-item rating matrix, all
such prediction functions are essentially learned simultaneously. The close relationship between
maximum-margin matrix factorization for collaborative filtering and multi-task learning has also
been observed and studied in (Argyriou et al. (2008)).

Another similar approach was developed by Abernethy et al. (Abernethy et al. (2009)), in which
they formulate the rating prediction problem as a linear map from user Hilbert space to item Hilbert
space by an operator, and they solve the problem by looking for the best operator that can achieve
such a map with minimum loss and penalty. They argue that if only users (or items) have attributes
available, and a certain rank penalty is applied so as to enforce information sharing across prediction
operators, the operator estimation formulation results in a multi-task learning method based on low-
rank representation of the prediction functions.

A different methodology was developed by Phuong et al. (Phuong and Phuong (2008)), in which
they formulate the rating prediction problem as binary classification (i.e., like or dislike). They build
one classifier for each user, and all the classifiers are learned and boosted together. The classification
algorithm fits a decision stump for each user on his/her weighted ratings, whereas the boosting
algorithm selects a stump for each user that gives the lowest overall error for a subset of classifiers
(corresponding to a certain class), and then updates weights on items correspondingly until best
performance is achieved.

3. Definitions and Notations

In this paper, the symbols u and ; will be used to denote the users and items, respectively, Individual
users and items will be denoted using different subscripts (i.e., #;, i). The user for which a prediction
needs to be computed will be referred to as the active user and will be denoted by u,.. Similarly, the
item whose rating needs to be predicted will be referred to as the active item and will be denoted
by i.. The rating of user u; on item i; will be denoted by r; ;. The set of items rated by user #; will
be denoted by 7;, and the set of users that have rated ;; will be denoted by 7{;. The average rating
of user u; on items J; is then denoted by 7;.. The set of all users and items in the system will be
denoted by 9/ and 7, respectively, and the entire set of ratings will be represented by a user-item
rating matrix R, whose (i, j) entry stores the rating of user #; on item ; (i.e., r; ;), if user u; has ever
rated item j;, otherwise the entry is marked as empty. The size of that matrix is |Z{| X |7]. For a
certain active user u,, the identified set of related users (described in Section 4) is denoted by N..
The set of items rated by a set of users N is denoted by 7 .

271

MULTI-TASK LEARNING FOR RECOMMENDER SYSTEM

4. Multi-Task Learning for Collaborative Filtering

A characteristic of existing multi-task learning formulations for collaborative filtering is that they
treat the problem of learning the CF-based rating prediction models for the individual users as
different learning tasks and they build a single multi-task prediction model that combines all these
learning tasks. A direct consequence of that is that from the point of view of a specific user (i;),
the resulting multi-task model will be influenced both from the learning tasks that correspond to
users that exhibit similar rating patterns with u; (i.e., related tasks) and from the learning tasks
that correspond to users that exhibit highly dissimilar and uncorrelated rating patterns with ; (i.e.,
unrelated tasks). This goes against the transfer learning principle that underlies multi-task learning
approaches (Thrun and O’Sullivan (1996)), which are designed to leverage information that can be
concurrently learned from a set of related tasks.

Motivated by this observation, the multi-task learning approach that we developed for solving
the CF-based rating prediction problem does not build a single model for all the users, but instead
builds a multi-task model that is explicitly designed for each user. Specifically, for each active
user u,, our approach first identifies m users, N. = {u,,,..., U, }, that are related to u,, treats
their corresponding rating prediction problems as the related learning tasks, and uses them to build
a multi-task learning-based rating prediction model for u, using e-SVR. This model takes into
account the ratings from the users in {#.} U N, and does not include any rating information from
users that are unrelated to u.. Moreover, the model is personalized for u, since models built for
different users will tend to have different sets of related users.

The multi-task model of user u. is learned using error-insensitive Support Vector Regression
(e-SVR) (Smola et al. (2003)). The input to the model are tuples of the form

(Ui, 1), 1i5)

, where u; € {u,} U N, ij € T;, and r; ; is the rating that u; has given to ;. The user-item tuples (i.e.,
(u;,;)) represent the instances on which the model is being learned and their corresponding ratings
(i.e., r; ;) represent the target values that are estimated by the learned regression function f(-). Once
f(*) has been estimated, the prediction from the active user u, on an unrated item ;. is determined
as f((Us, i)

Following the previously developed kernel-based approaches for multi-task learning (Erhan
et al. (2006)), the multi-task kernel function 9¢,,, on training instances (i.e., user-item tuples) for
support vector regression is defined as

Kome (Wi 1), Uiy i 7)) = Ky, wir) X Kilijs i), (D

where K, and K; are kernel functions defined on the users and the items, respectively. When %,
and %; are valid kernels (i.e., positive semi-definite), %, is a valid kernel as well (Vapnik (1998)).
Both the training instance representation and the multi-task kernel are essential in order to enable
multiple task learning in parallel coupling with information transfer. Intuitively, the kernel function
Km: compares two tasks (users) (4;, i), ¥i; € I; and (uy,ij),Viy € Iy by computing their similarity
as the tensor of corresponding user similarity (i.e., %) and item similarity (i.e., ;). In case u; = uy,
the kernel regression minimizes learning errors for only user u; (i.e, ¢, (4;, u;) is constant, and thus
single-task learning). In case j; = i, the kernel regression transfers user taste on item i; across user
u; and uy through %, (i.e, K; (i, i;) is constant). Note that the above two cases are integrated within
one model learning process. In the rest of this section we discuss the methods that we developed for
selecting the related users N, for the active user u,, and for computing the %, and %; functions.

272

MuLTI-TASK LLEARNING FOR RECOMMENDER SYSTEMS

4.1 Selection of Related Users

We developed two different approaches for selecting the users that will be used as the parallel tasks
in our multi-task learning framework. Both of them take advantage of the “like-minded users”
insight utilized by user-based collaborative filtering approaches, that is, to look for a set of users
who rate items in a way that is consistent with the active user’s rating behaviors.

4.1.1 SELECTION OF MoST SIMILAR USERS

The first approach, for a given user u,, selects the m most related users Nx = {iy,, Us,, ..., Uy, } aS
those users whose historical ratings on co-rated items are the most similar to user u,.. The historical
rating similarity between two users is computed using the modified version of Pearson correlation
coeflicient employed by user-based approaches (Herlocker et al. (1999)), which is given by
> (rig =1)Trjx—T;.)
. ix€lc
simy, (U;, uj) = py(U;, u;) - , ()

Y (rig—7i)? [X (rjx—T;.)?

iK€l ix€le

where 7. is the set of items that have been co-rated by users u; and u; (i.e, I = I; N 1), F;. and
7;. are the average ratings of users u; and u; over all their rated items 7; and 7 ;, respectively. p,
is a penalty factor that linearly penalizes the similarity value when the number of co-rated items
is smaller than a pre-defined small constant C, and p, is defined as p,(u;,u;) = min(|7.|,C)/C.
Note that since the Pearson correlation coefficient can be negative, we only select the users whose
similarity to the active user u,. is positive. We refer to the above method as USMgjy,.

Note that users with consistent negative similarities can also provide meaningful information
from an opposite perspective. However, we did not include such users during user selection in order
to avoid the complexity during model training (i.e., handling negative signs).

4.1.2 SELEcTION OF M0oST COVERING USERS

A limitation of USMy;,, is that it does not take into account which items the selected users have
provided ratings on. The items that are rated by the selected users but not by the active user are
critical in order to generate accurate rating predictions for the active user on his/her unseen items.
Note that the user similarity between users u, and u; is calculated on the items that are co-rated by
u, and u;. Consider the following extreme scenario. If the active user u, and another user u; have
rated a same set of items (i.e., 7. = 7;) and the corresponding ratings are identical, then their user
similarity will be the highest, and thus by USMg;n, user u; is very likely to be selected. However,
such a user #; does not bring any additional information into model training, and therefore, he/she
is not a good one to select.

The above example suggests that there are two aspects that we need to consider when select
users. One is how similar the users are with the active user, and this aspect is the focus of USMgjp,.
The other is how informative the selected users are. We use the number of items that are rated by a
certain user u; but not by the active user to measure ¥;’s informativeness, and we propose the method
which selects users that collectively maximize the coverage of the unrated items for u,., in addition
to the selection of users that rated in a consistent way with u,.. We developed a rather simple greedy
approach for combining these two heuristics, referred to as USMcy,, as Program 1 shows. Along
the user list identified by USMgim (i.€., (s, Us,, . .., Us,,), this approach selects the user who have

273

MULTI-TASK LEARNING FOR RECOMMENDER SYSTEM

rated maximum number of items that are not rated by both of the active user and the users that are
already selected by USM,yg (line 9). In the user list (i.e., (s, Us,, ..., Us,,)), the users are sorted
in descending order based on their user similarity with the active user, In case that fewer users are
selected by USM.y, than required, USMcy, chooses the most similar users from the rest of the user
list (line 26). Note that by USM.y,, we also increase the chances that the active item has already
been rated by some selected users.

Algorithm 1: USMcvg
Data: (u,,,u.,,...,u,,), m, I,
Result: V.
begin
N = {u,,}
i=n=1
while (i < 2m) do
for j = 1 to WINDOWS_SIZE do
k=i+]
if k > 2m then
| gotoLL

else
| count the number of items that have been rated by u,, but not rated by u. or Yu € N,

look for u,, with maximum non-zero count in this window if such user u,, exists then
Ni=N.U{u, 1}

n=n+1

L i= kmax
else
L i = i+WINDOWS_SIZE
if n > m then
L break

L: if n < m then
| select m — n most similar users that are not selected into N.

end

4.2 Kernel Functions for Users and Items

In order to construct a valid multi-task kernel %C,;; as in Equation 1, a valid user kernel %, and a
valid item kernel ; are required. For the kernel on users, we use the user-similarity function as
defined in Equation 2 to construct %,,. Similarly, we use an item-similarity function to construct the
kernel ; on items.

The item similarity between j; and i; is defined based on the adjusted cosine similarity that is
used to determine the similarity between items in the context of item-based collaborative filtering
algorithms for recommender systems (Sarwar et al. (2001)). It is calculated as follows:

2 (rii =T) (e — i)
uke(l/(c

\/ Y i =) | X (Vk,j—fk,-)2,

ureU, urEU,

3)

sim;(i;, i) = pi(ii, i) -

274

MuLTI-TASK LLEARNING FOR RECOMMENDER SYSTEMS

where U is the set of users that have rated both items j; and i}, 7. is the average ratings of user
uy over all the items that he/she rated (i.e, 7;), and p; is a penalty factor that linearly penalizes the
similarity value when the number of co-rating users is smaller than a pre-defined small constant C
and is given by p;(i;, i;) = min(|U.|, C)/C.

Note that both the modified Pearson correlation coefficient in Equation 2 and the adjusted
cosine similarity in Equation 3 are computed only on the co-rated and co-rating items and users,
respectively, and then penalized by a factor, they may not necessarily lead to valid kernels (i.e.,
positive semi-definite) to be used directly as K, and K, respectively. In such cases, the approach
described in Saigo et al (Saigo et al. (2004)) is used to convert a symmetric matrix into positive
semi-definite by subtracting from the diagonal of the matrix its smallest negative eigenvalue. After
converting user similarity matrix and item similarity matrix into valid kernel matrix and used as %,
and %(;, respectively, K, in Equation 1 is a valid kernel.

5. Experimental Methodology

5.1 Datasets

We evaluated the performance of our methods on multiple data-

sets. The first dataset is from MovieLens', which contains 100,000 ratings from 943 users on 1,682
movies. Each user rates more than 20 movies. The rating scores fall in the range 1 to 5 as integers.
We refer to this dataset as MLI0OK. The second dataset is from MovieRating?. It contains 43,865
ratings from 500 users on 1,000 movies. Each user rates more than 11 movies, and the rating scores
fall in the range of 1 to 5 as integers. This dataset is referred to as MR. The third dataset is a subset
extracted from BookCrossing® by selecting the users who have no less than 20 ratings. Thus, the
extracted dataset contains 217,736 ratings from 3,305 users on 108,385 books. The rating scores
fall in range 1 to 10 as integers. This dataset is referred to as BX. The next dataset is extracted from
Wikilens* in which 150 users are selected with more than 20 ratings each, resulting in 2,599 items
rated and 11,559 ratings in total. The rating scores range from 0.5 to 5.0 with granularity 0.5. The
dataset is referred to as Wiki. The fifth dataset is extracted from Yahoo! Music user ratings of songs,
provided as part of the Yahoo! Research Alliance Webscope program >. Totally 5,000 users are
sampled with each having more than 20 ratings, and there are 675,279 ratings on 95,984 items. The
rating scores range from 1 to 5 as integers. This dataset is referred to as Music. For all the datasets
above, higher rating represents higher preferences. Characteristics of the datasets is summarized in
Table 1. We did not test the multi-task learning methods on very large datasets like Netflix dataset
due to time constrains, but we discuss the scalability problem in Section 7.

5.2 Model Learning

We used the publicly and freely available support vector machine tool svmlight (Joachims (2002))
which implements an efficient soft margin optimization algorithm. We implemented support vector

99_99

regression using svmlight by specifying the -z option as ”’r” (i.e., support vector regression).

1. http://www.grouplens.org/node/73

2. http://www.cs.usyd.edu.au/~irena/movie_data.zip

3. http://www.informatik.uni-freiburg.de/~cziegler/BX/
4. http://www.grouplens.org/node/425

5. http://research.yahoo.com/Academic_Relations

275

MULTI-TASK LEARNING FOR RECOMMENDER SYSTEM

Table 1: Dataset summary

ML100K! MR? BX® Wiki* Music®
users 943 500 3,305 150 5,000
items 1,682 1,000 108,385 2,599 95,984
ratings 100,000 43,865 217,736 11,559 675,279
min |7 20 11 20 20 20
rating range 1-5 1-5 1-10 0.5-5.0 1-5
avg rating 3.53 3.59 7.77 3.52 3.49
sparsity 93.7% 91.2% 99.9% 97.0% 99.9%

In this table, min | 7| is the minimum number of ratings per user.

5.3 Evaluation Methodology and Performance Metrics

In the following sections, we will collectively refer to the multi-task learning methods as MTCF.
The performance of the methods is evaluated using a five-fold cross validation framework. For each
user, all of his/her ratings are randomly split into five equal-sized folds. For the active user u,., 4 out
of his/her 5 folds are used in training, and his/her remaining fold is used for evaluation. For other
users, all of their 5 folds are used to compute user similarity with u,’s 4 training folds and to select
items from. This is done in order to maximize the opportunity for the active user to identify the best
set of related users and items.

We used Mean Absolute Error (MAE) as the statistical accuracy metric. MAE is a widely used
evaluation metric in recommender system community, which is defined as

2ijlpij—rijl
n

MAE = 4
where n is the number of predictions that are made from users on items, p; ; is the predicted rating
on item j; from user i (if any), and r; ; is the corresponding true rating. MAE measures the average
absolute deviation of recommendations from true user-specified ratings. Lower MAE indicates
more accurate recommendations.

6. Results

In this section we present the experimental evaluation of the multi-task learning methods that we
developed for building collaborative filtering-based recommender systems.

The experimental evaluation consists of two components in the following order. First, we eval-
uate the performance of the different methods for selecting related users. Second, we compare the
performance achieved by our methods against those achieved by other widely used approaches for
collaborative filtering-based recommender systems. The reported running times were obtained on
workstations running Linux with Intel Xeon CPUs running at 2.66Ghz.

6.1 Evaluation of the Related User Selection Methods

Table 2 shows the MAE achieved by MTCEF for the two related users selection schemes described
in Section 4.1. These results show that the performance of the two related user selection schemes is

276

MuLTI-TASK LLEARNING FOR RECOMMENDER SYSTEMS

Table 2: MAE of the methods for selecting related users.

ML100K MR BX
method m=10 m=30 m=50 m=10 m=30 m=50 m=5 m=10 m=30
USMgim 0.714 0.712 0.714 0.715 0.709 0.710 1.177 1.175 1.175
USM,y 0.712 0.712 0.714 0.713 0.709 0.710 1.176 1.174 1.174
Wiki Music

method m=5 m=10 m=30 m=10 m=30 m=50

USM;im 0.809 0.801 0.802 0.969 0.963 0.964

USM.\e 0.808 0.802 0.802 0.967 0.960 0.961

In this table, m is the number of users selected.

very similar across the different datasets and number of related users, although USM,,, is slightly
better than USMg;y,. This may because the information brought by extra users selected from USMyg
has already been covered by users solely from USMgi,. Comparing the performance of the MTCF
schemes as a function of the number of related users m, we see their performance initially improves
as m increases, but it subsequently degrades as m is further increased. However, for some datasets
(e.g., ML100K) the performance differences are rather small. Table 3 shows corresponding compu-
tational complexities of different user selection methods.

6.2 Evaluation of the Training Instance Selection Methods

The recommendation performance achieved by the schemes that reduce the size of the training set
by selecting a smaller subset of the ratings for each related user is shown in Table 4. Comparing the
MAE achieved by these methods over those shown in Table 2, we see that by selectively reducing
the size of the training set the accuracy of the resulting MTCF models actually improves (except
MR).

We believe that these approaches lead to improved performance for two reasons. First, each
of the related users may have provided ratings for some items that are not similar with the items
rated by the active user. By removing such items and corresponding ratings from model learning,
unrelated (i.e., noisy) information is eliminated, resulting in a more accurate model. Second, by
restricting the set of ratings from each related user, we also reduce the total number of training
instances that involve other users, increasing the importance of the active user’s own ratings during
the learning, and thus the model learned is more focused on the active user.

Comparing the performance of the two rating selection schemes, we see that ISMy, tends to
perform better than ISMp.x and that the best overall results are usually obtained when ISMcy, is
involved. Moreover, the results of Table 4 illustrate that unlike the earlier experiments in Sec-
tion 6.1, USMy, tends to outperform USMg;, when the number of ratings is restricted, Also, the
performance of the MTCF models can improve as the number of related users increases. This is
especially true for the schemes using USM¢y, and ISMye.

Table 5 shows the average learning time, as well as the average number of support vectors,
for MTCF models with different number of selected ratings. Comparing these results with those
of Table 3, we see that by reducing the number of training instances, we can achieve significant

277

MULTI-TASK LEARNING FOR RECOMMENDER SYSTEM

Table 3: Computational complexities of different related user selection methods.

MK100K MR BX

metric method 0 30 m=50 m=10 m=30 m=50 m=5 m=10 m=30

USMgm 1.551 14.863 69.094 1.208 9.878 28424 2.028 6.040 12.767
USM.,, 1.740 14.825 67.804 1.208 10.261 31.205 2909 6.125 12.425
USMgim 1188 3491 5887 1040 2984 4939 722 1133 2154

#sv USM.,, 1247 3640 6024 1092 3067 4988 898 1204 2015

Wiki Music

metric method o 10 =30 m=10 m=30 m=50

USMim 0351 1.213 8.608 5423 4247 12532
USM,,, 0372 1322 8.799 5.679 4447 129.54
USMim 616 1143 2823 1710 4720 7012
USM.,, 636 1193 2873 1739 4743 7026

t

#sv

In this table, m is number of related users. t is model learning time in second, and #sv is the number of support
vectors in the regression model.

reductions in the amount of time required to train the models, and also the number of support
vectors used in the resulting models.

6.3 Comparison with Other Methods

Table 6 compares the performance achieved by the multi-task learning schemes developed in this pa-
per against the performance achieved by some popular methods for building collaborative filtering-
based recommender systems. Specifically, the performance of our methods is compared against
four different schemes. The first, denoted by “e-SVR”, is a regression-based approach using e-
SVR, in which a model is learned for each user using his/her own ratings as the training instances.
The second, denoted by “SVD”, is the approach based on singular value decomposition (Sarwar
et al. (2001)), which has been shown to be closely related to multi-task learning. The third, denoted
by “uKNN?”, is the standard user-based method described in (Herlocker et al. (1999)). Finally, the
fourth, denoted by “iKINNN™, is the standard item-based approach described in (Sarwar et al. (2001)).

The results in this table show that MTCF achieves the best performance among the different
schemes in four out of the five datasets. Its MAE is on the average lower by 1.9%, 9.1%, 11.2%,
and 5.4% than that of the e-SVR, SVD, uKNN, and iKNN schemes, respectively. Compared to the
second best-performing scheme (e-SVR), its actual performance gains varies across the different
datasets. For some of them the gains are rather small (e.g., ML100K and BX), whereas for the rest
the gains are substantial (e.g., MR, Wiki and Music).

7. Discussion
7.1 Comparison with Matrix Factorization

Since matrix factorization methods represent the state-of-the-art in recommender systems, due to
their high accuracy and suitability to large-scale problems, we compare our methodologies and

278

MuLTI-TASK LLEARNING FOR RECOMMENDER SYSTEMS

Table 4: MAE of the different methods for reducing the number of training instances.

dataset k USMin/ISM USMin/ISM.y USMe,o/ISM USM.ye/ISM.y

m=30m=50m=70 m=30m=50m=70 m=30m=50m=70 m=30m=50m=170

10 0.711 0.712 0.730 0.709 0.710 0.713 0.706 0.703 0.706 0.710 0.704 0.710
ML100K 30 0.707 0.706 0.713 0.709 0.709 0.709 0.705 0.703 0.703 0.710 0.700 0.707
50 0.703 0.704 0.708 0.707 0.704 0.707 0.707 0.701 0.704 0.707 0.702 0.703

m=1 m=5m=10 m=1 m=5m=10 m=1 m=5m=10 m=1 m=5m=10

5 0713 0.723 0.728 0.712 0.714 0.715 0.712 0.724 0.728 0.712 0.711 0.715
MR 10 0713 0.727 0.732 0.711 0.718 0.719 0.712 0.728 0.730 0.710 0.719 0.718
30 0719 0.725 0.724 0.718 0.721 0.720 0.716 0.721 0.726 0.714 0.719 0.720

1 1.164 1.164 1.166 1.161 1.162 1.164 1.164 1.164 1.166 1.161 1.162 1.164
BX 5 1167 1.168 1.172 1.165 1.166 1.169 1.167 1.169 1.172 1.164 1.166 1.169
10 1.171 1.174 1.176 1.169 1.172 1.174 1171 1174 1177 1.169 1.172 1.175

1 0806 0.804 0.812 0.806 0.805 0.812 0.790 0.783 0.785 0.788 0.783 0.785
Wiki 5 0.802 0.804 0.809 0.801 0.803 0.809 0.790 0.785 0.791 0.786 0.784 0.790
10 0.800 0.803 0.806 0.802 0.804 0.805 0.791 0.787 0.794 0.789 0.786 0.793

m=5m=10m=30 m=5m=10m=30 m=5m=10m=30 m=5m=10 m=30

5 0969 0963 0.960 0950 0945 0947 0946 0947 0950 0.965 0.959 0.958
Music 10 0964 0959 0961 0949 0943 0948 0951 0.946 0951 0961 0.957 0.959
30 0962 0961 0963 0951 0947 0952 0952 0.947 0953 0961 0959 0.962

In this table, m is the number of related users and k is the maximum number of ratings selected from each related user.
USM./ISM., is the paired user selection method and item selection method. Bold numbers are the best performance of each
dataset.

results with ME. We implemented the MF method BRISMF as described in Takécs et al. (2009),
which gives a typical MF performance. Out of five datasets as described in Table 1, BRISMF
outperforms MTCF on three datasets (ML100K: 0.682 vs 0.700, MR: 0.697 vs 0.710, BX: 1.146
vs 1.161, where the first number for each dataset is MAE by BRISMF and the second number is
best MAE from MTCEF as presented in Table 6). On the other two datasets, MTCF actually slightly
outperforms BRISMF (Wiki: 0.789 vs 0.783, Music 1.002 vs 0.943). As it shows, our methods do
not outperforman MF significantly. However, we still compare these two categories of methods so
as to illustrate their respective values.

The intuition behind MF methods is that users’ tastes can be determined and expressed by some
latent factors, and users make ratings on items mainly based on the item properties according to
such factors. The main idea following this is to look for a factor space with low dimensionality,
which optimally describes all user in the system, and meanwhile all items can be mapped into the
same space as feature vectors. Regularization is usually applied in order to avoid overfitting. One

279

MULTI-TASK LEARNING FOR RECOMMENDER SYSTEM

Table 5: Computational complexities of different training set reduction schemes.

method metric MLI1G0K metric MR
k=10 k=30 k=50 ! k=5 k=10 k=30
t USM,,o/ISM,, 0466 1.874 5394 USM,,/ISM,,, 0.012 0012 0.014
#sv (m = 50) 473 979 1,335 (m=1) 64 68 82
method metri BX metri Wiki
etho e k=1 k=5 k=10 ene k=1 k=5 k=10
t USM_/ISMyy; 0.008 0.009 0.009 USMy,/ISMyy, 0.032 0.084 0.177
#sv (m=5) 47 56 68 (m = 10) 159 304 406
method metric Music

k=5 k=10 k=30

t USM;/ISMy, 0.038 0.052 0.155
#sv (m =10) 156 198 366

In this table, k is maximum number of ratings selected for each related user. m is the number of related
users. t is model learing time in second. #sv is the number of support vectors.

Table 6: Performance comparison with other methods

dataset MTCF e-SVR SVD uKNN iKNN
ML100K 0.700 0.703 0.746 0.691 0.705
MR 0.710 0.724 0.789 0.730 0.727
BX 1.161 1.164 - 1.218 1.199
Wiki 0.783 0.816 0.852 0.961 0.944
Music 0.943 0.956 - 1.053 0.979

In this table, bold numbers are the best performance for each dataset.

problem with such matrix factorization or low-rank approximation, as a compromise to its high
accuracy, is that the model itself suffers from poor interpretability, due to the existence of a latent
space with unknown structures. Therefore, in practical applications, to reason the predictions and
furthermore enhance user experience within MF framework become not easy. This disadvantage of
MF has been pointed out and well discussed by Koren (Koren (2010)).

Another problem of MF, which is related to the first one, is that MF is doing global optimization,
and thus personalization is to a large extent ignored. Most of MF algorithms optimize a function of
prediction errors over the entire system without consideration of the intrinsic difference that natu-
rally exists between user communities. All the users within the system are treated as homogeneous
through a relatively small yet same set of factors, and therefore community bias may not be effec-
tively modeled in the user factor space, unless the latent space has a sufficient large dimensionality
to necessarily cover user community variance, which in effect goes against the initial principle of
MF methodology (i.e., low-rank factorization).

280

MuLTI-TASK LLEARNING FOR RECOMMENDER SYSTEMS

Compared to MF methods, neighborhood-based methods provide a higher level of tractability
for user community analysis, as well as a stronger emphasis on user personalization, in compen-
sation to its relatively low accuracy. Considering MTCF as a formal framework, it very naturally
formulates user communities through the concept of "related” users. Another advantage of MTCF is
that it is very handy to incorporate other source of information, once available, into model learning
so as to improve recommendation performance. For example, item properties or product specifica-
tions can readily be used in neighborhood-based methods, but may not be easily incorporated into
MEF. The simple, tractable and flexible nature of neighborhood-based methods may still distinguish
themselves as a good candidate for real applications of recommender systems.

7.2 Computational Considerations

Computational scalability is a major consideration in recommender systems. In the context of
model-based approaches for recommender systems, there are two relevant aspects in terms of com-
putational scalability. The first has to do with the amount of time required to build the models and
the second with the amount of time required to compute the predictions.

Since model building is an off-line process, this aspect of the system can tolerate methods that
have relatively high computational requirements given that they exhibit reasonable scaling proper-
ties as the numbers of users and/or their ratings increase over time. The multi-task learning methods
described in Section 4 need to learn a separate model for each user in the system through multiple
steps. In our experience, the e-SVR model learning step takes by far the largest amount of time. The
amount of time required for updating the e-SVR models will be lower because for many of them,
the sets of users involved will remain the same. When new ratings are added, the regression function
estimated in the earlier learning cycle can be used as the initial function to be further optimized so
as to take into account the updates.

The prediction aspect of recommender systems is often a real- or a near real-time component
and as such it is important to be able to compute the predictions fast. The time required for this step
depends on the number of user-item tuples that make up the model’s support vectors and whether
or not the active item was part of the items used in training the model. If the active item was not
used in the training step, then the item-to-item similarities between the active item and the items
in support vectors need to be computed on the fly. Otherwise, the item-to-item similarities can be
directly retrieved from the saved model.

The above discussion suggests two optimizations that can save computational costs for the
MTCEF system. The first is to reduce the number of models to be learned, which will lower the
expense of off-line computations and space. The second is to reduce the number of items used for
training.

7.2.1 REDUCING THE MODELS LEARNED

Our approach to reduce the number of models being learned is motivated by the following observa-
tion. If two users are among the m related users for each other and their sets of related users overlap
significantly, then their multi-task models should be quite similar, due to overlapping training sets,
and thus they can be used interchangeably to some extent.

We formalize this idea by using a maximal independent set (MIS) in the user-to-user graph
formed during related user selection. Specifically, we construct an undirected user-to-user graph G

281

MULTI-TASK LEARNING FOR RECOMMENDER SYSTEM

in which there is an edge between u; and u; if

(1) u;€Nj, and
(i) wuje N;, and
(i) INiNNGl/INiUN| 26,

where 6 is a threshold that measures the minimum overlap between the two sets of related users.
Then, using a greedy algorithm, we find a maximal independent set MIS of G, and we learn multi-
task models only for the users in MIS.

During prediction, if the active user u, is part of MIS, its prediction is determined by its own
multi-task model. Otherwise, its prediction is determined by other models through two ways. The
first simply selects the user u; € MIS such that u; € N, and |N; N N.|/IN: U N.| is the highest
among N. in MIS, and then computes the prediction using u;’s model. Note that because MIS is
maximal, there has to exist such a user u; that satisfies the above constraint. The second computes
the predictions using the models of N, within MIS and determines the final rating as the weighted
average of these predictions. For the predictions obtained from u;’s model (#; € N.), the weight
corresponds to |N; N N.|/INi U N« (i.e., the degree of overlap among their sets of related users).

7.2.2 SELECTION OF ITEM RATINGS

We developed two methods to select ratings for the related users. By doing this, we can reduce the
number of training instances, and meanwhile further exclude inconsistent rating information. In the
first method, for each related user, we calculate the average item similarity between each of his/her
rated items and all the rated items of the active user. Based on the average similarity, we select
the top k most similar items and corresponding ratings from that related user. Note that the item
similarity is calculated from the entire user space (Equation 3), and thus the average item similarity
can be dominated by two different subsets of users. The first subset is the selected users. If an
item has high average item similarity that mainly comes from the selected users (i.e., other users
seldom rated the item), then this item is very specific to the selected users and thus to the multi-
task model. Inclusion of such items can provide information on user-specific rating behaviors. The
second subset is the other users rather than the selected ones. If an item is similar because many
non-selected users rated it in a consistent way, then such items provide background preferences that
are not specific to a certain user. By incorporating such items into model training, we can regularize
the rating predictions so as to avoid extreme rating behaviors.

The second method, in addition to using the ratings identified as above for each related user,
we also use ratings on the items that are not rated by the active user but have been rated by that
related user. The motivation of this method is that it is possible the unseen items of the active user
are diverse from his/her already rated items, and thus accurate predictions on such unseen items
cannot be produced simply from his/her own rated items and their most similar items from his/her
related users. By incorporating related users’ rated items that are not rated by the active user, we
may include those items that are similar to the active user’s unrated items into model learning so as
to improve prediction accuracy. Note that the similarity between two items is measured using the
item-similarity function defined in Equation 3.

Due to space constraints, we do not present the results of MIS-based algorithms. However, the
conclusion is the MIS-based methods do not degrade recommendation performance but significantly
lower down the running time.

282

MuLTI-TASK LLEARNING FOR RECOMMENDER SYSTEMS

8. Conclusions

In this paper, we presented a model for collaborative filtering based on multi-task learning. This
model leverages information from a set of related users and leads to more accurate predictions. The
experimental results show that the multi-task model consistently gives better predictions than other
existing methods.

Acknowledgments

This work was supported in part by NSF (IIS-0905220, OCI-1048018, I0S-0820730), NIH (RLMO008713A).
Access to research and computing facilities was provided by the Digital Technology Center and the
Minnesota Supercomputing Institute.

References

Jacob Abernethy, Francis Bach, Theodoros Evgeniou, and Jean-Philippe Vert. A new approach to
collaborative filtering: Operator estimation with spectral regularization. J. Mach. Learn. Res., 10:
803-826, 2009.

G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey
of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Trans-
actions on, 17(6):734-749, 2005.

Alekh Agarwal, Alexander Rakhlin, and Peter Bartlett. Matrix regularization techniques for online
multitask learning. Technical Report UCB/EECS-2008-138, EECS Department, University of
California, Berkeley, Oct 2008.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature learn-
ing. Mach. Learn., 73(3):243-272, 2008.

John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive algorithms for
collaborative filtering. In Proc. 14th Conf. Uncertainty in Artificial Intelligence, pages 43-52.
Morgan Kaufmann, 1998.

Richard A. Caruana. Multitask learning: A knowledge-based source of inductive bias. In Proceed-
ings of the Tenth International Conference on Machine Learning, pages 41-48. Morgan Kauf-
mann, 1993.

Dumitru Erhan, Pierre-Jean L’Heureux, Shi Yi Yue, and Yoshua Bengio. Collaborative filtering on
a family of biological targets. Journal of Chemical Information and Modeling, 46(2):626-635,
2006.

Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An algorithmic frame-
work for performing collaborative filtering. In SIGIR '99: Proceedings of the 22nd annual in-
ternational ACM SIGIR conference on Research and development in information retrieval, pages
230-237, New York, NY, USA, 1999. ACM.

Feng Jin and Shiliang Sun. A multitask learning approach to face recognition based on neural
networks. In IDEAL ’08: Proceedings of the 9th International Conference on Intelligent Data
Engineering and Automated Learning, pages 24-31, Berlin, Heidelberg, 2008. Springer-Verlag.

283

MULTI-TASK LEARNING FOR RECOMMENDER SYSTEM

Thorsten Joachims. Optimizing search engines using clickthrough data. In KDD *02: Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 133—-142, New York, NY, USA, 2002. ACM Press.

Mikaela Keller and Samy Bengio. A multitask learning approach to document representation using
unlabeled data. IDIAP-RR 44, IDIAP, 2006.

Brendan Kitts, David Freed, and Martin Vrieze. Cross-sell: A fast promotion-tunable customer-item
recommendation method based on conditionally independent probabilities. In In Proceedings of
ACM SIGKDD International Conference, pages 437-446. ACM Press, 2000.

Yehuda Koren. Factor in the neighbors: Scalable and accurate collaborative filtering. TKDD, 4(1),
2010.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. 42(8):30-37, 2009a.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30-37, 2009b.

Nguyon Du Phuong and Tu Minh Phuong. Collaborative filtering by multi-task learning. In IEEE
International Conference on Research, Innovation and Vision for the Future., pages 227-232,
2008.

Hiroto Saigo, Jean-Philippe Vert, Nobuhisa Ueda, and Tatsuya Akutsu. Protein homology detection
using string alignment kernels. Bioinformatics, 20(11):1682—1689, 2004.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based collaborative filtering
recommendation algorithms. In WWW °01: Proceedings of the 10th international conference on
World Wide Web, pages 285-295, New York, NY, USA, 2001. ACM.

J. Ben Schafer, Joseph Konstan, and John Riedl. Recommender systems in e-commerce, 1999.

Alex J. Smola, Bernhard Schélkopf, and Bernhard Scholkopf. A tutorial on support vector regres-
sion. Technical report, Statistics and Computing, 2003.

Gébor Takacs, Istvan Pilaszy, Bottyan Németh, and Domonkos Tikk. Scalable collaborative filtering
approaches for large recommender systems. J. Mach. Learn. Res., 10:623-656, 2009.

Sebastian Thrun and Joseph O’Sullivan. Discovering structure in multiple learning tasks: The
tc algorithm. In In International Conference on Machine Learning, pages 489-497. Morgan
Kaufmann, 1996.

V. Vapnik. Statistical Learning Theory. John Wiley, New York, 1998.

Kai Yu and Volker Tresp. Learning to learn and collaborative filtering. In In Neural Information
Processing Systems Workshop on Inductive Transfer: 10 Years Later, 2005.

Shipeng Yu, Kai Yu, Volker Tresp, and Hans-Peter Kriegel. Collaborative ordinal regression. In
ICML °06: Proceedings of the 23rd international conference on Machine learning, pages 1089—
1096, New York, NY, USA, 2006. ACM.

284

