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Abstract

Random forests have become an important
tool for improving accuracy in regression
and classification problems since their incep-
tion by Leo Breiman in 2001. In this pa-
per, we revisit a historically important ran-
dom forest model, called centered random
forests, originally proposed by Breiman in
2004 and later studied by Gérard Biau in
2012, where a feature is selected at random
and the splits occurs at the midpoint of the
node along the chosen feature. If the re-
gression function is d-dimensional and Lip-
schitz, we show that, given access to n ob-
servations, the mean-squared prediction er-

ror is O((n(log n)(d−1)/2)−
1

d log 2+1 ). This pos-
itively answers an outstanding question of
Biau about whether the rate of convergence
for this random forest model could be im-
proved beyond O(n−

1
d(4/3) log 2+1 ). Further-

more, by a refined analysis of the approxi-
mation and estimation errors for linear mod-
els, we show that our new rate cannot be im-
proved in general. Finally, we generalize our
analysis and improve current prediction er-
ror bounds for another random forest model,
called median random forests, in which each
tree is constructed from subsampled data and
the splits are performed at the empirical me-
dian along a chosen feature.

1 INTRODUCTION

Random forests are ubiquitous among ensemble av-
eraging algorithms because of their ability to reduce

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

overfitting, handle high-dimensional sparse settings,
and efficient implementation. Due to these attractive
features, they have been widely adopted and applied
to various prediction and classification problems, such
as those encountered in bioinformatics and computer
vision.

One of the most widely used random forests is
Breiman’s random forest algorithm (Breiman, 2001),
which was inspired by the random subspace method
of (Ho, 1995), spatial feature selection of (Amit and
Geman, 1997), and random decision method of (Diet-
terich, 2000). To this date, researchers have spent a
great deal of effort in understanding theoretical prop-
erties of various streamlined versions of Breiman’s
original algorithm (Arlot and Genuer, 2014; Biau
et al., 2008; Denil et al., 2014; Genuer, 2010, 2012;
Geurts et al., 2006; Mentch and Hooker, 2016; Scornet
et al., 2015; Wager and Walther, 2015). See (Biau and
Scornet, 2016) for a comprehensive overview of current
theoretical and practical understanding. The present
paper is an effort to add to this body of work.

We assume the training data is D =
{(X1, Y1), . . . , (Xn, Yn)}, where (Xi, Yi), 1 ≤ i ≤ n
are i.i.d. with common joint distribution PX,Y . Here,
Xi ∈ [0, 1]d is the feature or covariate and Yi ∈ R is
a continuous response variable. The jth feature of
X will be denoted by X(j). We make the following
assumptions on the statistical regression model.

Assumption 1. The response variable can be writ-
ten as Yi = f(Xi) + εi, for i = 1, . . . , n where
f(x) = E[Y | X = x] is an unknown regression func-
tion and {εi}1≤i≤n are i.i.d. errors. Furthermore,
Var(Y | X) ≡ σ2, for some positive constant σ2, and
X is uniformly distributed on [0, 1]d.

Assumption 2. The regression function f(·) is
bounded in magnitude by a positive constant B and has
bounded first-order partial derivates, i.e., ‖∂fj‖∞ :=
supx∈[0,1]d |∂jf(x)| < ∞ for j = 1, 2, . . . , d. The
largest infinity norm of the partial derivatives is de-
noted by L = maxj ‖∂fj‖∞.
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The efficacy of a predictor Ŷ (x) = Ŷ (x;D) of f(·) will
be measured in terms of its mean squared prediction
error, E[(Ŷ (X) − f(X))2], where the expectation is
with respect to the new input X and the training data
D. Throughout this paper, λ is the Lebesgue measure
and log is the natural logarithm.

As mentioned earlier, many scholars have proposed
and studied idealized versions of Breiman’s original
algorithm (Breiman, 2001), largely with the intent of
reducing the complexity of their theoretical analysis.
Unlike Breiman’s random forests, these stylized ver-
sions are typically analyzed under the assumption that
the probabilistic mechanism Θ that governs the con-
struction of each tree does not depend on the training
sample D (e.g., the splits are not data dependent).
Such models are referred to as purely random forests
(Genuer, 2012). On the other hand, recent works have
proved properties like asymptotic normality (Mentch
and Hooker, 2016; Wager, 2014) or consistency (De-
nil et al., 2014; Scornet, 2016a; Scornet et al., 2015),
where the data may be bootstrapped or the splits
determined by optimizing some empirical objective.
However, these results are asymptotic in nature, and
it is difficult to determine the quality of convergence
as a function of the parameters of the random forest
(e.g., sample size, dimension, and depth to which the
individual trees are grown).

In this paper, we focus on another historically signif-
icant model that was proposed by Breiman in a tech-
nical report (Breiman, 2004). Here, importantly, the
individual trees are grown independently of the train-
ing sample D (although subsequent work allows the
trees to depend on a second sample D′, independent
of D). Despite its simplicity, this random forest model
captures a few of the attractive features of Breiman’s
original algorithm (Breiman, 2004), i.e., variance re-
duction by randomization. While feature selection
(by random subset selection) is not directly related
to or incorporated in vanilla centered random forests,
it has nonetheless been considered by others (Biau,
2012). This model also allows one to provide a non-
asymptotic prediction error bound that reveals the de-
pendence on the parameters of the random forest.

Later, in an influential paper, Biau (2012) considered
the same model and rigorously established some infor-
mal, heuristic-based claims made by Breiman. Both
works of Breiman and Biau will serve as the basis for
this article, whose primary purpose is to strengthen
the analysis of this model and offer a full picture of
its fundamental limits. Borrowing the terminology of
(Scornet, 2016b), we shall refer to this model hence-
forth as a centered random forest.

New contributions. In his seminal paper, Biau
(2012, Corollary 6) showed that the mean squared pre-
diction error of a centered random forest is

O(n−
1

d(4/3) log 2+1 ). (1)

Biau also raised the question (Biau, 2012, Remark 7)
as to whether this rate could be improved. We will
answer this in the affirmative and show that the error
(1) can indeed be improved to

O((n log(d−1)/2 n)−r), (2)

where

r :=
2 log2(1− d−1/2)

2 log2(1− d−1/2)− 1
=

1

d log 2 + 1
(1 + δ),

and δ is some positive quantity that decreases to zero
as d becomes large. In particular,

(a) We improve the rate in the exponent from
1

d(4/3) log 2+1 to 1
d log 2+1 and, due to the presence

of the logarithmic term in (2), improve the conver-

gence by a factor of O((log n)−
1

2 log 2 ). Note that
the rate (2) is not minimax optimal for the class
of Lipschitz regression functions in d dimensions,
unless d = 1.

(b) We generalize our proof techniques and use them
to improve the convergence rates of other ran-
dom forest models. In particular, for median
random forests (Duroux and Scornet, 2018), we

improve the rate from O(n
− log2(1−3d−1/4)

log2(1−3d−1/4)−1 ) to

O(n
− 2 log2(1−d−1/2)

2 log2(1−d−1/2)−1 ).

(c) We show that the rate (2) is not generally im-
provable for centered random forests. To accom-
plish this, we show that the approximation error is
tight for all linear models with nonzero parameter
vector. We also characterize the estimation error,
which is, surprisingly, nearly the smallest among
all purely random forests with splitting schemes
that are not data dependent.

Additional comparisons between our work and (Biau,
2012) and (Duroux and Scornet, 2018) are provided in
Table 1. The improvements in (a) and (b) stem from
a novel analysis of the estimation and approximation
errors of the random forest.

Related results. We now mention a few related re-
sults. Scornet (2016b) slightly altered the definition
of random forests so that they could be rewritten as
kernel methods. Scornet (2016b, Theorem 1) showed
that centered kernel random forests, where the trees
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are grown according to the same selection and split-
ting procedure as centered random forests, have mean

squared prediction error O(n−
1

d log 2+3 log2 n). In addi-
tion to the computational advantages of centered ran-
dom forests when n and d are moderately sized, note
that (2) is strictly better. The improved rate (2) is ob-
tained by growing the trees to a shallower depth than
the depth used by Scornet, and this may explain why
he found centered kernel random forests to empirically
outperform centered random forests for certain regres-
sion models (Scornet, 2016b, Model 1, Figure 5).

Other results have been established for function classes
with additional smoothness assumptions. For ex-
ample, a multivariate function on [0, 1]d is of class
Ck([0, 1]d) if all its kth order partial derivatives exist
and are bounded on [0, 1]d. Then, for regression func-
tions in C2([0, 1]d), (Arlot and Genuer, 2014, p. 21)
obtained a similar rate of O(n−r) for d = d ≥ 4 un-
der the so-called balanced purely random forest model,
where all nodes are split at each stage (in contrast to
single splits with centered random forests). However,
in addition to requiring that the regression function
is of class C2([0, 1]d) (instead of just Lipschitz), it is
unclear whether these random forest models can be
modified to adapt to sparsity.

Finally, there are other versions of random forests, al-
beit defined somewhat differently than centered ran-
dom forests, which have better theoretical guaran-
tees. Recently, Mourtada et al. (2019) have shown
that a type of random forest called Mondrian forests
(for batch or online learning) achieve minimax optimal
rates when f(·) belongs to C1([0, 1]d) or C2([0, 1]d), i.e.,

Θ(n−
2

d+2 ) or Θ(n−
4

d+4 ), respectively (Yang and Bar-
ron, 1999, Example 6.5).

2 RANDOM FORESTS

In general terms, a random forest is a predictor that
is built from an ensemble of randomized base re-
gression trees {Ŷ (x; Θm,D)}1≤m≤M . The sequence
{Θm}1≤m≤M consists of i.i.d. realizations of a random
variable Θ, which governs the probabilistic mechanism
that builds each tree. These individual random trees
are aggregated to form the final output

ŶM (X; Θ1, . . . ,ΘM ,D) :=
1

M

M∑
m=1

Ŷ (X; Θm,D).

When M is sufficiently large, Theorem 3.3 from (Scor-
net, 2016a) justifies using

Ŷ (X) = Ŷ (X,D) := EΘ[Ŷ (X; Θ,D)]

in lieu of Ŷ (X; Θ1, . . . ,ΘM ,D), where EΘ denotes ex-
pectation with respect to Θ, conditionally on X and

D. We henceforth work with this asymptotic random
forest.

The randomized base regression tree Ŷ (X; Θ,D) is a
local weighted average of all Yi for which the corre-
sponding Xi falls into the same node of the random
partition as X. For concreteness, let t = t(X,Θ,D) be
the terminal node of the random partition containing
X and define the individual tree predictor via

Ŷ (X; Θ,D) :=

∑n
i=1 Yi1(Xi ∈ t)∑n
i=1 1(Xi ∈ t)

1(E), (3)

where E is the event that
∑n
i=1 1(Xi ∈ t) is nonzero.

We then take the expectation of these individual pre-
dictors with respect to the randomizing variable Θ
yielding

Ŷ (X) =

n∑
i=1

EΘ[Wi]Yi,

where Wi = Wi(t) := 1(Xi∈t)
N(t) 1(E) are the weights

corresponding to each observed output and N(t) :=∑n
i=1 1(Xi ∈ t) is the total number of observations

that fall into the same box of the random parti-
tion as X. The node t is a Cartesian product and
thus can be decomposed into the product of its sides∏d
j=1[aj(X), bj(X)], where aj(X) = aj(X,Θ,D) and

bj(X) = bj(X,Θ,D) are its left and right endpoints,
respectively, along the jth axis.

Let us now formally define how each base tree
Ŷ (x; Θm,D) of a centered random forest and me-
dian random forest are constructed. We first describe
the centered random forest from (Breiman, 2004) and
(Biau, 2012).

Centered random forest:

(i) Initialize with [0, 1]d as the root.

(ii) At each node, select one feature j in {1, 2, . . . , d}
with probability (pj)1≤j≤d, where

∑d
j=1 pj = 1.

(iii) Split the node at the midpoint of the interval
along the direction of the selected feature.

(iv) Repeat steps (ii) and (iii) for the two daugh-
ter nodes until each node has been split exactly
dlog2 kne times.

Remark 1. Let us briefly mention that this model is
similar in spirit to a recent random forest model pro-
posed by (Basu et al., 2018), coined iterative random
forests. Iterative random forests explicitly learn fea-
ture sampling probabilities, and so the results from the
present paper could be useful for studying a simplified
variant of the model.
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The split probabilities (pj)1≤j≤d determine how fre-
quently a particular direction is split. The agnostic
choice pj = 1/d leads to the aforementioned rate (2).
On the other hand, if the regression function f(·) is
sparse and depends on only a small subset of the d vari-
ables, then by tuning these probabilities to be large for
relevant variables and small otherwise, one can show
convergence rates that do not degrade severely with
the ambient dimension. In Section 3.2, we will con-
sider data-driven choices of (pj)1≤j≤d with the aide of
a second sample D′, independent of D. In this case,
the probabilities are data-dependent, i.e., pj = pj(D′),
and therefore our forthcoming prediction error bounds
are written conditional on them.

The next random forest model we study is similar to
centered random forests, though there are two impor-
tant differences. First, each tree is constructed from
subsampled data and, second, the splits are performed
at the empirical median in an interval along a ran-
domly chosen feature—thus making the splits data-
dependent. As we will see, if the split probability
sequence (pj)1≤j≤d from centered random forests are
uniform over the d features, i.e., pj = 1/d, then these
two random forest models have nearly identical con-
vergence rates.

Median random forest:

(i) Select, uniformly without replacement, n0 < n
data points among Dn. Only these n0 observa-
tions will be used in the tree construction.

(ii) Initialize with [0, 1]d as the root.

(iii) At each node, select uniformly at random one
feature j among {1, 2, . . . , d}.

(iv) Split the node at the empirical median of the X
(j)
i

in the interval along the selected feature.

(v) Repeat steps (iii) and (iv) for the two daugh-
ter nodes until each node has been split exactly
dlog2 kne times.

Though each tree in a median random forest is
built from subsampled data, as with centered random
forests, the output is computed with all the response
values Yi in D, per (3).

Remark 2. Since X(j) is uniformly distributed on
[0, 1], it has a binary expansion

X(j) d=
∑
k≥1

Bk2−k,

where {Bk}∞k=1 are i.i.d. Bern(1/2). Thus, for the
centered random forest model, if Kj = Kj(X,Θ) is

the number of times the nodes are split along the jth

feature, each endpoint of [aj(X), bj(X)] is a randomly
stopped binary expansion of X(j), viz.,

aj(X)
d
=

Kj∑
k=1

Bk2−k, bj(X)
d
= 2−Kj +

Kj∑
k=1

Bk2−k.

(4)

The representations (4) will also prove to be useful
when we derive converse results for this random forest
model.

Armed with these concepts and notation, we are now
ready to present our main results.

3 MAIN RESULTS

We begin our analysis with the standard approxi-
mation/estimation error decomposition of the mean
squared prediction error:

E[(Y (X)− f(X))2]︸ ︷︷ ︸
approximation error

+E[(Ŷ (X)− Y (X))2]︸ ︷︷ ︸
estimation error

, (5)

where Y (X) := E[Ŷ (X) | X1, . . . ,Xn,X]. As is gen-
erally true with purely random forests, the estimation
error is typically of order σ2kn/n. What does vary
with the specific random forest model, however, is the
approximation error. Below we give a general upper
bound on the approximation error that is valid for any
random forest model. Due to space constraints, the
proof of Theorem 1 is given in the supplementary ma-
terial.

Theorem 1. For any random forest model whose
construction depends on the data only through
X1, . . . ,Xn, under Assumption 2,

E[(Y (X)− f(X))2]

≤ d
d∑
j=1

‖∂fj‖2∞E[(EΘ[bj(X)− aj(X)])2] +B2P(Ec).

(6)

Despite its simple proof, Theorem 1 leads to nontriv-
ial improvements over past work. It is now easy to
isolate precisely where our improvements manifest. In
standard analysis of random forest models, the quan-
tity EΘ[(bj(X)−aj(X))2] is typically analyzed directly,
where the Θ-averaging occurs on the outside of the
square. On the other hand, the bound (6) allows the
Θ-averaging to occur inside the square, and thus by
Jensen’s inequality, it represents a uniform improve-
ment, i.e.,

(EΘ[bj(X)− aj(X)])2 ≤ EΘ[(bj(X)− aj(X))2].
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Another interpretation of this improvement is that
infinite forests perform better than single trees.
Indeed, for single trees, the rate would depend
on EΘ,D[(bj(X) − aj(X))2] instead of (EΘ[bj(X) −
aj(X)])2, leading to the same rate as (Biau, 2012).
The Θ-averaging can partly, though not fully, mitigate
the suboptimality of the tree construction.

Both Biau (2012) and Duroux and Scor-
net (2018) bound the approximation er-

ror by O(k
log2(1−3d−1/4)
n ) = O(k

− 1
d(4/3) log 2

n ).
We will use (6) to improve this bound to

O(k
2 log2(1−d−1/2)
n ) = O(k

− 1
d log 2

n ). Note that this
bound is the same as (Arlot and Genuer, 2014,
Corollary 9) when d ≥ 4, though the authors ana-
lyze the balanced purely random forest model and
make a stronger assumption that f(·) has bounded
second-order partial derivatives.

3.1 Centered Random Forests

In this subsection, we derive bounds on the mean
squared prediction error of a centered random forest
in terms of kn and the probability sequence (pj)1≤j≤d.
As a consequence, we also obtain rates of convergence.

Theorem 2 (Centered random forests). Let P := {j :
pj 6= 0} and d0 := #P. Under Assumption 1 and
Assumption 2 and conditional on (pj)1≤j≤d,

E[(Ŷ (X)− f(X))2] ≤ d
d∑
j=1

‖∂jf‖2∞k2 log2(1−pj/2)
n

+
12σ2kn
n

8d0√∏
j∈P pj × logd0−1

2 (kn)
+B2e−n/(2kn).

Consequently, if p := minj pj, r := 2 log2(1−p/2)
2 log2(1−p/2)−1 , and

kn = c(n(logd0−1
2 n)1/2)1−r for some constant c > 0

independent of n, then, conditional on p, there exists
a constant C > 0 independent of n, such that

E[(Ŷ (X)− f(X))2] ≤ C(n(logd0−1
2 n)1/2)−r. (7)

Remark 3. Since theoretically favorable choices of kn
depend on unknown quantities, in practice, good values
can be chosen using cross-validation.

Remark 4. We emphasize that d0 is simply the num-
ber of nonzero feature selection probabilities and so it
need not correspond to any sparsity assumptions in the
regression model. However, if the regression function
is sparse and the set of nonzero feature selection prob-
abilities P corresponds to the set of relevant variables,
then d0 equals the sparsity level.

Proof. First, Biau (2012, Section 5.3, p. 1089) shows
that P(Ec) ≤ e−n/(2kn). Next, let Kj = Kj(X,Θ)

be the number of times the nodes are split along
the jth feature and note that Kj is conditionally dis-
tributed Bin(dlog2 kne, pj) given X. Then, conditional
on (pj)1≤j≤d,

EΘ[bj(X)− aj(X)] = EΘ[2−Kj ]

= EK∼Bin(dlog2 kne,pj)[2
−K ]

= (1− pj/2)dlog2 kne

≤ klog2(1−pj/2)
n .

Thus, by Theorem 1, the approximation error
E[(Y (X)− f(X))2] is bounded by

d

d∑
j=1

‖∂jf‖2∞k2 log2(1−pj/2)
n +B2e−n/(2kn). (8)

Next, we bound the estimation error of the random
forest. In particular, we show that, conditional on
(pj)1≤j≤d, E[(Ŷ (X)− Y (X))2] is at most

12σ2kn
n

8d0√∏
j∈P pj × logd0−1

2 kn

. (9)

Henceforth, we let K ′j , [a′j(X), b′j(X)′], and t′ denote
the feature selection frequency, terminal node side, and
terminal node, respectively, from an independent copy
Θ′ of Θ. It is shown in (Biau, 2012, Section 5.2, p.
1085) that

E[(Ŷ (X)− Y (X))2] ≤ 12σ2k2
n

n
EΘ,Θ′ [λ(t ∩ t′)]. (10)

We can use the representations (4) to show that for any
Θ and Θ′, the sides of the node are nested according to
[a′j(X), b′j(X)] ⊆ [aj(X), bj(X)] if and only if K ′j ≥ Kj

and hence

λ([aj(X), bj(X)] ∩ [a′j(X), b′j(X)]) = 2−max{Kj ,K
′
j}.
(11)

Using this, we have that λ(t ∩ t′) equals

d∏
j=1

λ([aj(X), bj(X)] ∩ [a′j(X), b′j(X)])

= 2−
∑d

j=1 max{Kj ,K
′
j}

= 2−dlog2 kne− 1
2

∑d
j=1 |Kj−K′j |, (12)

where the equality in (12) follows from the identity

d∑
j=1

max{Kj ,K
′
j} =

1

2

d∑
j=1

Kj +
1

2

d∑
j=1

K ′j

+
1

2

d∑
j=1

|Kj −K ′j |

= dlog2 kne+
1

2

d∑
j=1

|Kj −K ′j |.
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Next, note that conditional on X, (K1, . . . ,Kd) has
a multinomial distribution with dlog2 kne trials and
event probabilities (pj)1≤j≤d. We take the expected
value of (12) and use Lemma S.1 from the supplemen-
tary material, yielding

EΘ,Θ′ [2
− 1

2

∑d
j=1 |Kj−K′j |] = EΘ,Θ′ [2

− 1
2

∑
j∈P |Kj−K′j |]

≤ 8d0√∏
j∈P pj × logd0−1

2 kn

.

(13)

Combining (10), (12), and (13) proves (9). The choice
of kn that leads to the prediction error bound (7) is
determined by (approximately) optimizing the sum of
the bounds (8) and (9) on the approximation and es-
timation errors.

Remark 5. In proving the estimation error bound (9),
we depart from the strategy of (Biau, 2012), which we
now briefly outline. Biau’s approach consists of apply-
ing Hölder’s inequality to the expectation of (12) and
resultant expected product, i.e.,

EΘ,Θ′ [2
−

∑d
j=1 max{Kj ,K

′
j}]

≤ k−1
n

∏
j∈P

(EΘ,Θ′ [2
− d

2 |Kj−K′j |])1/d. (14)

With Kj conditionally distributed Bin(dlog2 kne, pj)
given X, Biau uses the previous inequality together

with the fact that, for d ≥ 2, EΘ,Θ′ [2
− d

2 |Kj−K′j |] ≤
12√

πpj(1−pj) log2 kn
(Biau, 2012, Proposition 13), to

conclude that the estimation error is of order
O((kn/n)(log2 kn)−d0/(2d)). Our approach is different.
Instead of reducing the calculations so that the expec-
tations involve only their marginals Kj and K ′j, we
work with their joint multinomial distribution.

Remark 6. In the fully grown case when kn = n (i.e.,
when there is on average one observation per terminal
node), (9) shows that the estimation error still decays
as O((log n)−(d0−1)/2), due to the correlation between
trees.

Remark 7. It is a standard result for partitioning
based regression predictors that the estimation error
is of order σ2kn/n and hence our improvement (9) is
only in terms of the logarithmic factor (log n)(d0−1)/2.
Note that if the split probabilities (pj)1≤j≤d are uni-
form over the d input features, the logarithmic fac-
tor multiplying 12σ2kn/n is small if the tree depth
dlog2 kne is greater than a constant multiple of d, i.e.,

dlog2 kne � d =⇒ 8d√
(1/d)d logd−1

2 kn

� 1.

Thus, the improvement to the estimation error mani-
fests only for deep trees. However, with these specifi-
cations for (pj)1≤j≤d, the leading term in the approx-

imation error bound (8) is d2L2k
−d−1/ log 2
n —which is

small precisely when dlog2 kne � d—so the improve-
ment to the estimation error is in fact always present
in the regime of interest for small mean squared pre-
diction error.

3.2 Data-driven Approach for Split
Probabilities

To avoid the curse of dimensionality—which plagues
high-dimensional regression models—and the associ-
ated undesirable consequences (e.g., overfitting and
large sample requirements), it is typically assumed
that f(·) is sparse in the sense that it only depends on
a small subset S of the d features, where s := |S| � d.
In other words, f(·) is almost surely equal to its re-
striction to the subspace of its relevant features in S.
Conversely, the output of f(·) does not dependent on
irrelevant features that belong to Sc. Of course, the
set S is not known a priori and must be learned from
the data.

The approximation error upper bound (8) involves
a subtle interplay between the split probabilities
(pj)1≤j≤d and the size of the partial derivatives of the
regression function—directions that have larger vari-
ability require more splits—and thus have higher selec-
tion probabilities. If each direction contributes equally
to the variability of the regression function, then (by
a Lagrange multipliers argument),

d∑
j=1

‖∂jf‖2∞k2 log2(1−pj/2)
n ≈ L2

∑
j∈S

k2 log2(1−pj/2)
n

are minimized when the (pj)1≤j≤d are uniform over the
set of relevant features, i.e., pj = 1/s for j ∈ S and
pj = 0 otherwise. Similarly, the factor (

∏
j∈P pj)

−1/2

from the estimation error (9) is separately minimized
when the (pj)1≤j≤d are uniform over the set of relevant
features. When this is the case, Theorem 2 yields the
rate

(n(logs−1 n)1/2)−
1

s log 2+1 ,

which beats the minimax optimal rate Θ(n−
2

d+2 )
(Yang and Barron, 1999, Example 6.5) for Lipschitz
regression models in d dimensions roughly when s ≤
b0.72dc (cf., d ≤ b0.54sc from (Biau, 2012, p. 1069)).

Since the set S is not known a priori, how can one
learn these split probabilities from the data? To avoid
entanglement with the same data used to train the
random forest, one solution is to adaptively select can-
didate strong features using a second sample D′ =
{(X′1, Y ′1), . . . (X′n, Y

′
n)}, independent of D (which can
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be done, for example, by sample-splitting). Here, can-
didate strong features are those that maximize the de-
crease in variance (the impurity) that would be ob-
tained if the root node [0, 1]d is split along the direc-

tion j at position z, denoted by ∆̂(j, z) (Breiman et al.,
1984, Definition 8.13) and constructed from the second
sample D′. Indeed, it was recently shown in (Klu-
sowski and Tian, 2021) that if Y is an additive model
with smooth component functions, then one can, with
high probability, identify the relevant variables accord-
ing to the size of ∆̂(j, z). This is similar in spirit to
Breiman’s random forests, except that the candidate
features are chosen from a random subset and the de-
crease in variance ∆̂(j, z) depends on a current node
of the tree.

3.3 Median Random Forests

Following the same path as the previous subsection,
here we derive bounds and rates of convergence for
the mean squared prediction error of a median random
forest.

Theorem 3 (Median random forests). Suppose n0 ≥
2dlog2 kne. Then, under Assumption 1 and Assump-
tion 2,

E[(Ŷ (X)−f(X))2] ≤ 256d2L2k2 log2(1−d−1/2)
n +2σ2kn/n.

Consequently, if r := 2 log2(1−d−1/2)
2 log2(1−d−1/2)−1 and kn = cn1−r

for some constant c > 0 independent of n, then there
exists a constant C > 0 independent of n, such that

E[(Ŷ (X)− f(X))2] ≤ Cn−r.

Proof. We follow the proof of (Duroux and Scor-
net, 2018, Lemma 6.1), but with some important
modifications. Let x ∈ [0, 1]d and let C =
{N0, N1, . . . , N2dlog2 kne} be the number of points in
the successive nodes containing x (for example, N0

is the number of points in the root node of the tree,
i.e., N0 = n0). We also let jk denote the feature index
selected at the kth step. The counts in C implicitly
depend on Dn and Θ, but we suppress these depen-
dencies for clarity. Then bj(X)−aj(X) can be written
as a product of independent beta distributions:

bj(X)− aj(X)
d
=

dlog2 kne∏
k=1

B
1(jk=j)
k ,

where Bk are independent and distributed Beta(nk +

1, nk−1 − nk), conditional on Nk = nk. Consequently,

EΘ|C [bj(X)− aj(X)] =

dlog2 kne∏
k=1

EΘ|C

[
B

1(jk=j)
k

]

=

dlog2 kne∏
k=1

(d− 1

d
+

1

d
Bk

)
,

(15)

since PΘ|C(jk = j) = 1/d. Now, by Jensen’s inequality
for the square function,

EX1,...,Xn
[(EΘ[bj(X)− aj(X)])2]

≤ E[(EΘ|C [bj(X)− aj(X)])2]

= EC [EX1,...,Xd|C [(EΘ|C [bj(X)− aj(X)])2]].

Furthermore, using (15), we have

EX1,...,Xn|C [(EΘ|C [bj(X)− aj(X)])2]

=

dlog2 kne∏
k=1

EX1,...,Xn|C

[(d− 1

d
+

1

d
Bk

)2]
. (16)

We must calculate the first and second moments of a
Beta(nk + 1, nk−1−nk) distribution in (16). Doing so
yields

dlog2 kne∏
k=1

(
1− 2

d
+

1

d2
+ 2

nk + 1

nk−1 + 1

(1

d
− 1

d2

)
+

(nk + 1)(nk + 2)

(nk−1 + 1)(nk−1 + 2)

1

d2

)
.

Next, we use the relation nk ≤ dnk−1/2e ≤ (nk−1 +
1)/2 to further bound the above expression by

dlog2 kne∏
k=1

(
1− 2

d
+

1

d2
+
nk−1 + 3

nk−1 + 1

(1

d
− 1

d2

)
+

(nk−1 + 3)(nk−1 + 5)

(nk−1 + 1)(nk−1 + 2)

1

4d2

)
≤
dlog2 kne∏
k=1

((
1− 1

2d

)2

+
2

d(nk−1 + 1)

)
. (17)

Now, nk ≥ bnk−1/2c ≥ (nk−1 − 1)/2 and hence by in-
duction, nk ≥ (1/2)kn0 − 1. Furthermore, by assump-
tion, n02−dlog2 kne ≥ 1. Putting these facts together,
we have

1

nk−1 + 1
≤ 1

(1/2)k−1n0
≤ 2k−1−dlog2 kne. (18)
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Continuing from (17) and using (18), we have

log2

dlog2 kne∏
k=1

((
1− 1

2d

)2

+
1

d(nk−1 + 1)

)

≤ log2

dlog2 kne∏
k=1

((
1− 1

2d

)2

+
2k−dlog2 kne

d

)
≤ 2dlog2 kne log2(1− d−1/2) + 8.

This shows that

EX1,...,Xn
[(EΘ[bj(X)− aj(X)])2]

≤ 28(1− d−1/2)2dlog2 kne

≤ 256k2 log2(1−d−1/2)
n ,

and hence by Theorem 1, the approxima-
tion error E[(Y (X) − f(X))2] is at most

d
∑d
j=1 ‖∂jf‖2∞256k

2 log2(1−d−1/2)
n . This quantity

is further upper bounded by 256d2L2k
2 log2(1−d−1/2)
n .

Finally, it is shown in (Duroux and Scornet, 2018,
Section 6.2) that the estimation error has the bound

E[(Ŷ (X)− Y (X))2] ≤ 2σ2kn/n.

In Table 1, we catalogue our improvements in Theo-
rem 2 and Theorem 3 to (Biau, 2012) and (Duroux and
Scornet, 2018) in terms of the estimation, approxima-
tion, and prediction errors of a kn that optimizes our
upper bounds on the tradeoff between the goodness-
of-fit and complexity. To make more the comparisons
between the two random forest models easier to see,
for centered random forests, we consider the agnostic
choice pj = 1/d, producing p = 1/d. For the sake of
clarity, we also ignore logarithmic factors in n and re-

place the rate 2 log2(1−d−1/2)
2 log2(1−d−1/2)−1 with the more palatable

lower bound (d log 2 + 1)−1.

Remark 8. According to (Yang and Barron, 1999,
Example 6.5), the minimax rate for Lipschitz regres-

sion models in d dimensions is Θ(n−
2

d+2 ). Thus, we

see our rate 2 log2(1−d−1/2)
2 log2(1−d−1/2)−1 for median and centered

random forests is minimax optimal only when d = 1.

Remark 9. Compare our choice kn = Θ(n
d log 2

d log 2+1 )
with that of (Biau, 2012, Corollary 6) and (Duroux
and Scornet, 2018, Theorem 3.1), namely, kn =

Θ(n
d(4/3) log 2

d(4/3) log 2+1 ). Thus, a better prediction error bound
is achieved if the trees are shallower.

4 TIGHTNESS OF BOUNDS

In this section, we show that the approximation er-
ror bound (8) for centered random forests we derived
in Theorem 2 cannot be improved in general. To see

Table 1: The old approximation error, estima-
tion error, and mean squared error (MSE) bounds
from (Biau, 2012) (for centered random forests) and
(Duroux and Scornet, 2018) (for median random
forests) and the new bounds from Theorem 2 and The-
orem 3.

APPROX. ERR. EST. ERR. MSE

OLD k
− 1

d(4/3) log 2
n kn/n n−

1
d(4/3) log 2+1

NEW k
− 1

d log 2
n kn/n n−

1
d log 2+1

this, consider the linear model Y = 〈β,X〉+ ε, where

β = (β(1), . . . ,β(d)) is a d-dimensional parameter vec-
tor. Then we have the following lower bound on the
approximation error of a centered random forest. This
lower bound decays with kn at the same rate as the ap-
proximation error upper bound in Theorem 2, regard-
less of the split probabilities (pj)1≤j≤d. We provide the
proof of Theorem 4 in the supplementary material.

Theorem 4. Suppose Y = 〈β,X〉 + ε, where β =

(β(1), . . . ,β(d)) is a d-dimensional parameter vector.
Also, assume n ≥ 2dlog2 kne. Then, under Assump-
tion 1 and conditional on (pj)1≤j≤d,

E[(Y (X)− f(X))2] ≥ 1

96

d∑
j=1

|β(j)|2k2 log2(1−pj/2)
n .

We also argue that the estimation error bound (9) de-
rived in the proof of Theorem 2 is nearly tight when
the split probabilities are uniform over all d features.
To this end, Lin and Jeon (2006, Theorem 3) showed
that if wmax is the maximum number of observations
per terminal node, the estimation error for any purely
random forest (with uniformly distributed input X) is
at least a constant multiple of1

σ2

wmax
× (d− 1)!

2d logd−1 n
. (19)

Now, the number of observations per terminal node of
a centered random forest is on average about wavg =
n/kn and hence from (9), centered random forests
nearly achieve the best-case estimation error (19),
namely,

σ2

wavg
×

√
(8d)d

logd−1(n/wavg)
. (20)

Taken together, (19) and (20) imply that centered ran-
dom forests have nearly the lowest estimation error

1The lower bound in (Lin and Jeon, 2006, Theorem 3)
is actually for the mean squared prediction error, but the
proof therein is for the estimation error.
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among all purely random forests with splitting schemes
that are not data dependent. More rigorously, we
can prove the following estimation error lower bound,
which is valid for any probability sequence (pj)1≤j≤d.
The proof of Theorem 5 is furnished in the supplemen-
tary material.

Theorem 5. Let P := {j : pj 6= 0} and d0 :=
#P. Suppose dlog2 knepj ≥ 1 for j ∈ P and n ≥
2dlog2 kne. Then, under Assumption 1 and conditional
on (pj)1≤j≤d,

E[(Ŷ (X)−Y (X))2] ≥ σ2kn
5n

(47)−d0∏
j∈P pj × (dlog2 kne)d0−1

.

Combining the sharpness of our approximation and
estimation error bounds for linear models, we con-
clude that the rate (2) is not generally improvable
and hence centered random forests do not achieve
the d-dimensional minimax optimal rate Θ(n−

2
d+2 ) for

d-dimensional Lipschitz regression functions. While
centered random forests enjoy near optimal estima-
tion error (19) (among all purely random forests),

their O(k
− 1

d log 2
n ) approximation error is far from the

optimal Θ(k
−2/d
n ) required to achieve the minimax

rate. Only in the one-dimensional setting do cen-
tered or median random forests achieve the minimax
optimal rate Θ(n−2/3) for Lipschitz regression func-
tions in one dimension (Yang and Barron, 1999, Ex-
ample 6.5)—in the multi-dimensional setting, the rate
is suboptimal. These converse statements shed light
on the importance of more sophisticated tree con-
struction mechanisms—like Mondrian random forests
(Mourtada et al., 2019)—if optimality is to be guar-
anteed.

5 Conclusion

As explained in the introduction, centered random
forests were conceived by Leo Breiman in 2004 as a
way to theoretically explain some of the heuristics of
his original algorithm (which uses CART methodology
for the trees) from 2001, such as the ensemble princi-
ple. Because of these connections, centered random
forests have since then become a sort of theoretical
benchmark model in the literature and have inspired
the development of other variants that more closely re-
semble the original algorithm. Continuing from (Biau,
2012), our work completes the history of this influ-
ential random forest model by providing a full char-
acterization of its fundamental limits. In doing so,
we also reveal the importance of more sophisticated
tree constructions (such as Mondrian random forests
(Mourtada et al., 2019) or constructions that use both
the input and output data, since otherwise ensembles
of such trees may have suboptimal performance.
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