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Abstract

In a low-rank linear bandit problem, the
expected reward of an action (represented
by a matrix of size d1 ⇥ d2) is the inner
product between the action and an unknown
low-rank matrix ⇥⇤. We propose an algo-
rithm based on a novel combination of online-
to-confidence-set conversion (Abbasi-Yadkori
et al., 2012) and the exponentially weighted
average forecaster constructed by a cover-
ing of low-rank matrices. In T rounds, our
algorithm achieves eO((d1 + d2)3/2

p
rT ) re-

gret that improves upon the standard lin-
ear bandit regret bound of eO(d1d2

p
T ) when

the rank of ⇥⇤: r ⌧ min{d1, d2}. We
also extend our algorithmic approach to the
generalized linear setting to get an algo-
rithm which enjoys a similar bound un-
der regularity conditions on the link func-
tion. To get around the computational in-
tractability of covering based approaches, we
propose an efficient algorithm by extend-
ing the "Explore-Subspace-Then-Refine" al-
gorithm of Jun et al. (2019). Our efficient al-
gorithm achieves eO((d1 + d2)3/2

p
rT ) regret

under a mild condition on the action set X
and the r-th singular value of ⇥⇤. Our upper
bounds match the conjectured lower bound
of Jun et al. (2019) for a subclass of low-rank
linear bandit problems. Further, we show
that existing lower bounds for the sparse lin-
ear bandit problem strongly suggest that our
regret bounds are unimprovable. To comple-
ment our theoretical contributions, we also
conduct experiments to demonstrate that our
algorithm can greatly outperform the perfor-
mance of the standard linear bandit approach
when ⇥⇤ is low-rank.
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1 INTRODUCTION

Low-rank models are widely used in various appli-
cations, such as matrix completion, computer vision,
etc (Candès and Recht, 2009; Basri and Jacobs, 2003).
We study low-rank (generalized) linear models in the
bandit setting (Lai and Robbins, 1985). During the
learning process, the agent adaptively pulls an arm
(denoted as Xt) from a set of arms based on the
past experience. At each pull, the agent observes a
noisy reward corresponding to the arm pulled. Let
⇥⇤ 2 Rd1⇥d2 be an unknown low-rank matrix with
rank r ⌧ min{d1, d2}. The learner’s goal is to max-
imize the total reward:

PT
t=1 µ (h⇥⇤

, Xti) where T is
the time horizon, Xt 2 Rd1⇥d2 is an action pulled at
time t that belongs to a pre-specified action set X and
µ(·) denotes a link function. Note that in the standard
linear case the link function is identity.

Many practical applications can be framed in this low-
rank bandit model, where the rank of arm features
has no restriction. For traveling websites, the rec-
ommendation system needs to choose a flight-hotel
bundle for the customer that can achieve high rev-
enue. Often one has m features of size d1 for a flight
(x1, . . . , xm 2 Rd1) and m features of size d2 for a hotel
(y1, . . . , ym 2 Rd2). It is natural to form a d1 ⇥ d2 ma-
trix feature via outer products summation

Pm
i=1 xiy

T
i

for each bundle, the rank of which can be any value in
{0, 1, . . . ,min{m, d1, d2}}. One can model the appeal
of a bundle by a (generalized) linear function of the
matrix feature

Pm
i=1 xiy

T
i . In online advertising with

image recommendation, the advertiser selects an im-
age to display and the goal is to achieve the maximum
clicking rate. The image is often stored as a d1 ⇥ d2

matrix, and one can use a generalized linear model
(GLM) with the link function being the logistic func-
tion to model the click rate (Richardson et al., 2007;
McMahan et al., 2013). In all of these applications,
one puts some capacity control on the underlying ma-
trix linear coefficient ⇥⇤ and a natural condition is ⇥⇤

being low-rank. We note that the examples such as on-
line dating and online shopping discussed in Jun et al.
(2019) can also be formulated as our model.
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In this paper, we measure the quality of an algo-
rithm in terms of its cumulative regret1. A naive
approach is to ignore the low-rank structure and di-
rectly apply the standard (generalized) linear bandit
algorithms (Abbasi-Yadkori et al., 2011; Filippi et al.,
2010). These approaches suffer eO(d1d2

p
T ) regret.2

However, in practice, d1d2 can be huge. Then a natu-
ral question is:

Can we utilize the low-rank structure of ⇥⇤ to
achieve o(d1d2

p
T ) regret?

Jun et al. (2019) studied a subclass of our problem,
where the actions are rank one matrices. They pro-
posed an algorithm that achieves eO((d1 + d2)3/2

p
rT )

regret under additional incoherence and singular value
assumptions of an augmented matrix defined via the
arm set and ⇥⇤ and a singular value assumption of ⇥⇤.
They also provided strong evidence that their bound
is unimprovable.

We summarize our contributions below.

1. We propose Low Rank Linear Bandit with On-
line Computation algorithm (LowLOC) for the low-
rank linear bandit problem, that achieves eO((d1 +
d2)3/2

p
rT ) regret. Notably, comparing with the

result in Jun et al. (2019), our result
• applies to more general action sets which can

contain high-rank matrices and
• does not require the incoherence and bounded

eigenvalue assumption of the augmented ma-
trix mentioned in the previous paragraph.

Our regret bound also matches with their conjec-
tured lower bound. For LowLOC, we first design
a novel online predictor which uses an exponen-
tially weighted average forecaster on a covering of
low-rank matrices to solve the online low-rank lin-
ear prediction problem with O((d1 + d2)r log T ) re-
gret. We then plug in our online predictor to the
online-to-confidence-set conversion framework pro-
posed by Abbasi-Yadkori et al. (2012) to construct
a confidence set of ⇥⇤ in our bandit setting, and at
every round we choose the action optimistically.

2. We further propose Low Rank Generalized Linear
Bandit with Online Computation algorithm (Low-
GLOC) for the generalized linear setting that also
achieves eO((d1 + d2)3/2

p
rT ) regret. LowGLOC

is similar to LowLOC but here we need to design
a new online-to-confidence-set conversion method,
which can be of independent interest.

3. LowLOC and LowGLOC enjoy good regret but are
unfortunately not efficiently implementable. To
overcome this issue, we provide an efficient al-
1See Section 3 for the definition.
2 eO omits poly-logarithmic factors of d1, d2, r, T .

gorithm Low-Rank-Explore-Subspace-Then-Refine
(LowESTR) for the linear setting, inspired by the
ESTR algorithm proposed by Jun et al. (2019). We
show that under a mild assumption on action set X ,
LowESTR achieves eO((d1 + d2)3/2

p
rT/!r) regret,

where !r > 0 is a lower bound for the r-th singu-
lar value of ⇥⇤. Comparing with ESTR, LowESTR
does not need the incoherence and the eigenvalue
assumption of the augmented matrix while the as-
sumptions on the action set of the two algorithms
are different. We also provide empirical evaluations
to demonstrate the effectiveness of LowESTR.

2 RELATED WORK

Our work is inspired by Jun et al. (2019) where they
model the reward as x

>
t ⇥

⇤
zt. xt 2 X ⇢ Rd1 is a left

arm and zt 2 Z ⇢ Rd2 is a right arm (X and Z are left
and right arm sets, repsectively). Note this model is
a special case of our low-rank linear bandit model be-
cause one can write x

>
t ⇥

⇤
zt =

⌦
⇥⇤

, xtz
>
t

↵
and define

the arm set as XZ>. Their ESTR algorithm enjoys
O((d1 + d2)3/2

p
rT/!r) regret bound under the as-

sumptions: 1) an augmented matrix K
⇤ = X⇥⇤

Z
>

is incoherent (Keshavan et al., 2010) and has a fi-
nite condition number, where X 2 Rd1⇥d1 is con-
structed by d1 arms from X that maximizes kX�1k2
and Z 2 Rd2⇥d2 is constructed by d2 arms from Z
that maximizes kZ�1k2, and 2) kX�1k2 and kZ�1k2
are upper bounded by a constant. Their algorithm re-
quires explicitly finding X and Z, which is in general
NP-hard, even though they also proposed heuristics
to speed up this step. Comparing with ESTR, our
LowLOC and LowGLOC algorithm are also not com-
putationally efficient, but they both apply to richer
action sets (matrices of any rank) without assump-
tions on K

⇤, X and Z and their regret bound does
not depend on !r. Our LowESTR algorithm is com-
putationally efficient if the action set admits a nice ex-
ploration distribution (see details in Section 6). Low-
ESTR achieves O

⇣
(d1 + d2)3/2

p
rT/!r

⌘
regret bound

but it does not require assumptions on K
⇤, X and Z

as well.

Katariya et al. (2017b) and Kveton et al. (2017) also
studied rank-1 and low-rank bandit problems. They
assume there is an underlying expected reward matrix
R̄, at each time the learner picks an element on (it, jt)
position and receives a noisy reward. It can be viewed
as a special case of bilinear bandit with one-hot vec-
tors as left and right arms. Katariya et al. (2017b) is
further extended by Katariya et al. (2017a) that uses
KL based confidence intervals to achieve a tighter re-
gret bound. Our problem is more general comparing
to these works. Johnson et al. (2016) considered the
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same setting as ours, but their method relies on the
knowledge of many parameters that depend on the un-
known ⇥⇤ and in particular only works for continuous
arm set.

There are other works that utilize the low-rank struc-
ture in different model settings. For example, Gopalan
et al. (2016) studied low rank bandits with latent
structures using robust tensor power method. Lale
et al. (2019) imposed low-rank assumptions on the fea-
ture vectors to reduce the effective dimension. These
work all utilize the low-rank structure to achieve bet-
ter regret bound than standard approaches that do not
take the low-rank structure into account.

3 PRELIMINARIES

We formally define the problem and review relevant
background in this section.

3.1 Low-rank Linear Bandit

Let X ⇢ Rd1⇥d2 be the arm space. In each round t,
the learner chooses an arm Xt 2 X , and observes a
noisy reward of a linear form:

yt = hXt,⇥
⇤i+ ⌘t,

where ⇥⇤ 2 Rd1⇥d2 is an unknown parameter and ⌘t

is a 1-sub-Gaussian random variable. Denote the rank
of ⇥⇤ by r, we assume r ⌧ min{d1, d2}. Let the r-th
singular value of ⇥⇤ is lower bounded by !r > 0. We
use hA,Bi := trace(AT

B) to denote the inner product
between matrix A and B. We follow the standard
assumptions in linear bandits:

k⇥⇤kF  1 and kXkF  1, for all X 2 X .

In this low-rank linear bandit problem, the goal of the
learner is to maximize the total reward

PT
t=1hXt,⇥⇤i,

where T is the time horizon. Clearly, with the knowl-
edge of the unknown parameter ⇥⇤, one should always
select an action X

⇤ 2 argmaxX2X hX,⇥⇤i. It is natu-
ral to evaluate the learner relative to the optimal strat-
egy. The difference between the learner’s total reward
and the total reward of the optimal strategy is called
pseudo-regret (Audibert et al., 2009):

RT :=
TX

t=1

hX⇤ �Xt,⇥
⇤i.

For simplicity, we use the word regret instead of
pseudo-regret for RT .

3.2 Generalized Low-rank Linear Bandit

We also study the generalized linear bandit model of
the following form: E [yt|Xt,⇥⇤] = µ (hXt,⇥⇤i) where

µ (·) is a link function. This framework builds on the
well-known Generalized Linear Models (GLMs) and
has been widely studied in many applications. For ex-
ample, when rewards are binary-valued, a natural link
function is the logistic function µ(x) = exp(x)/(1 +
exp(x)). For the generalized setting, we assume the
reward given the action follows an exponential family
distribution:

P (y|z = hX,⇥⇤i) = exp

✓
yz �m(z)

�(⌧)
+ h(y, ⌧)

◆
,

(1)

where ⌧ 2 R+ is a known scale parameter and m,�

and h are some known functions. From basic calcula-
tion we get m

0(z) = E[y|z] := µ(z). We assume the
above exponential family is a minimal representation,
then m(z) is ensured to be strictly convex (Wainwright
and Jordan, 2008), and thus the negative log likelihood
(NLL) loss `(z, y) := �yz+m(z) is also strictly convex.

We make the following standard assumption on the
link function µ(·) (Jun et al., 2017).
Assumption 1. There exist constants Lµ, cµ �
0,µ > 0, such that the link function µ(·) is
Lµ�Lipschitz on [�1, 1], continously differentiable on
(�1, 1), infz2(�1,1) µ

0(z) := µ and |µ(0)|  cµ.

One can write down the above reward model (1) in an
equivalent way:

yt = µ (hXt,⇥
⇤i) + ⌘t,

where ⌘t is conditionally R-sub-Gaussian given Xt and
{(Xs, ⌘s)}t�1

s=1. Using the form of P(y|z), Taylor expan-
sion and the strictly convexity of m(·), one can show
that R = supz2[�1,1]

p
µ0(z) 

p
Lµ by the defini-

tion of the sub-Gaussian constant. An optimal arm is
X

⇤ 2 argmaxX2X µ (hX,⇥⇤i). The performance of an
algorithm is again evaluated by cumulative regret:

RT =
TX

t=1

µ (hX⇤
,⇥⇤i)� µ (hXt,⇥

⇤i) .

Other notations. We use O and ⌦ for the standard
Big O and Big Omega notations. eO and e⌦ ignore the
poly-logarithmic factors of d1, d2, r, T . f(x) ⇣ g(x)
indicates f and g are of the same order ignoring the
poly-logarithmic factors of d1, d2, r, T . For any set S,
we use |S| to denote its cardinality.

4 LOW-RANK LINEAR BANDIT
WITH ONLINE COMPUTATION

We first present our algorithm, LowLOC (Algorithm 1)
for low-rank linear bandit problems. Before diving into
details, we summarize our results as follows:
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Algorithm 1 Low-Rank Linear Bandit with Online
Computation (LowLOC)

1: Input: arm set: X , horizon: T , 1
T -net for Sr:

S̄r(
1
T ), failure rate �, EW constant ⌘ ⇣ 1

log(T/�) .
2: Initial confidence set

C0 = {⇥ 2 Rd1⇥d2 : k⇥k2F  1}.
3: for t = 1, . . . , T do
4: (Xt,

e⇥t) := argmax(X,⇥)2X⇥Ct�1
hX,⇥i.

5: Pull arm Xt and receive reward yt.
6: Compute EW predictor

ŷt =
P|S̄r( 1

T
)|

i=1 e�⌘Li,t�1f⇥i,t

P|S̄r( 1
T

)|
j=1 e�⌘Lj,t�1

,

where f⇥i,t , hXt,⇥ii for ⇥i 2 S̄r(
1
T ).

7: Update losses Li,t =
Pt

s=1(ys � f⇥i,s)
2, for i =

1, . . . , |S̄r(
1
T )|.

8: Update Ct according to Equation (2), where Bt

is defined in Lemma 2.
9: end for

Theorem 1 (Regret of LowLOC (Algorithm 1)). For
8� 2 (0, 0.25], with probability at least 1 � �, Algo-
rithm 1 achieves regret:

RT = eO
 
(d1 + d2)

3/2
p
rT

s

log

✓
1

�

◆!
.

Note that LowLOC achieves the desired goal of out-
performing the standard linear bandit approach with
eO(d1d2

p
T ) regret. Furthermore, this bound does not

depend on any other problem-dependent parameters
such as least singular value of ⇥⇤ and does not require
any other assumption which appeared in Jun et al.
(2019). In the following sub-sections, we explain de-
tails of our algorithm design choices.

4.1 OFU and Online-to-confidence-set
Conversion

This algorithm follows the standard Optimism in the
Face of Uncertainty (OFU) principle. We maintain a
confidence set Ct at every round that contains the true
parameter ⇥⇤ with high probability and we choose the
action Xt according to

(Xt,
e⇥t) = argmax(X,⇥)2X⇥Ct�1

hX,⇥i.

Typically, the faster Ct shrinks, the lower regret we
have. The main diffculty is to construct Ct that
leverages the low-rank structure so that we only have
eO((d1 + d2)3/2

p
rT ) regret. Our starting point is to

use the online-to-confidence-set conversion framework
proposed by Abbasi-Yadkori et al. (2012) who builds
the confidence set based on an online predictor. At

each round, an online predictor receives Xt, predicts
ŷt, based on historical data {(Xs, ys)}t�1

s=1, observes the
true value yt and suffers a loss `t (ŷt) , (yt � ŷt)

2. The
performance of this online predictor is measured by
comparing its cumulative loss to the cumulative loss
of a fixed linear predictor using coefficient ⇥:

⇢t(⇥) =
tX

s=1

`s(ŷs)� `s(h⇥, Xsi).

The key idea of online-to-confidence-set conversion
(adapted to our low-rank setting) is that if one can
guarantee supk⇥kF1,rank(⇥)r ⇢t(⇥)  Bt for some
non-decreasing sequence {Bt}Tt=1, we can use this in-
formation to construct the confidence interval for ⇥⇤

as:

Ct = {⇥ 2 Rd1⇥d2 :

k⇥k2F +
tX

s=1

(ŷs � h⇥, Xsi)2  1 + �t(�)}, (2)

where �t(�) = 1 + 2Bt + 32 log
��p

8 +
p
1 +Bt

�
/�
�

and � is the failure probability.

Lemma 8 in appendix guarantees that ⇥⇤ is contained
in \t�1Ct with high probability and Lemma 9 further
guarantees the overall regret

RT = eO(
p

d1d2�T�1(�)T ) = eO
⇣
(d1 + d2)

p
BT�1T

⌘
.

(3)

Therefore, the problem to achieve the
eO((d1 + d2)3/2

p
rT ) regret bound reduces

to designing an online predictor which guar-
antees supk⇥kF1,rank(⇥)r ⇢t(⇥)  Bt and
Bt = eO ((d1 + d2)r). To achieve this rate, the
key is to leverage the low-rank structure of ⇥⇤.

4.2 Online Low Rank Linear Prediction

We adopt the classical exponentially weighted average
forecaster (EW) framework (Cesa-Bianchi and Lugosi,
2006) which uses N experts to predict ŷt with the fol-
lowing formula

byt =
PN

i=1 e
�⌘Li,t�1fi,tPN

j=1 e
�⌘Lj,t�1

. (4)

In above, fi denotes the i-th expert that makes a pre-
diction fi,t at time t, Li,t�1 ,

Pt�1
s=1 `s(fi (Xt)) is the

cumulative loss incurred by expert i, and ⌘ is a tuning
parameter. By choosing ⌘ carefully, one can guarantee
that this predictor achieves O (logN log(T/�)) regret
comparing with the best expert among the expert set.
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See backgrounds on the construction of EW in Sec-
tion G and Proposition 3.1 in Cesa-Bianchi and Lugosi
(2006).

In our setting, an expert can be viewed as a ma-
trix ⇥ that satisfies k⇥kF  1 and rank (⇥)  r,
and makes prediction according to f⇥,t , h⇥, Xti.
There are infinitely many such experts and there-
fore we cannot directly use EW which requires fi-
nite number of experts. Our main idea is to con-
struct N experts which guarantees logN is small and
these N experts can represent the original expert set
Sr , {⇥ 2 Rd1⇥d2 : k⇥kF  1, rank (⇥)  r} well,
and then apply EW using these N experts. We con-
struct an "-net S̄r("), i.e., for any ⇥ 2 Sr, there exists
a ⇥̄ 2 S̄r("), such that

��⇥� ⇥̄
��
F

 ✏. We further
prove that |S̄r(")|  (9/")(d1+d2+1)r in Lemma 7, so
the number of experts N in Equation (4) is at most
(9T )(d1+d2+1)r if we set " = 1/T .

The following lemma summarizes the performance of
this online predictor.
Lemma 2 (Regret of EW under Squared Loss). Let
⌘ = 1

2(2+
p

2 log(2T/�))2
in EW forecaster (4). Then, for

any 0 < � < 0.25, with probability at least 1 � �, we
have

sup
k⇥kF1,rank(⇥)r

⇢T (⇥) = eO
✓
(d1 + d2)r log

✓
1

�

◆◆
.

To obtain Theorem 1, one just needs to plug
Lemma 2 into Equation (3) by defining BT as
supk⇥kF1,rank(⇥)r ⇢T (⇥).

5 LOW-RANK GENERALIZED
LINEAR BANDIT

We also study the low-rank generalized linear bandit
setting. The main structure of our algorithm Low-
GLOC (Algorithm 2) is similar to LowLOC, so we fo-
cus on the key differences in this section.

We still use EW to perform online predictions, but
instead of the squared loss, we use negative log likeli-
hood (NLL) loss `s(ŷs) = �ŷsys +m(ŷs) to construct
the forecaster in Equation (4), where m(·) is as de-
fined in Section 3. Therefore, the performance of EW
using NLL loss relative to a fixed linear predictor ⇥ is
measured by:

⇢
GLB
T (⇥) =

TX

t=1

�ŷtyt +m(ŷt)

�
TX

t=1

�h⇥, Xtiyt +m(h⇥, Xti).

Algorithm 2 Low-rank Generalized Linear Bandit
with Online Computation (LowGLOC)

1: Input: arm set: X , horizon: T , 1
T -net for Sr:

S̄r(
1
T ), failure rate �, EW constant ⌘ ⇣ 1

log(T/�) ,
function m(·) in the generalized linear model.

2: Initial confidence set
C0 = {⇥ 2 Rd1⇥d2 : k⇥k2F  1}.

3: for t = 1, . . . , T do
4: (Xt,

e⇥t) := argmax(X,⇥)2X⇥Ct�1
hX,⇥i.

5: Pull arm Xt and receive reward yt.
6: Compute EW predictor

ŷt =
P|S̄r( 1

T
)|

i=1 e�⌘Li,t�1f⇥i,t

P|S̄r( 1
T

)|
j=1 e�⌘Lj,t�1

,

where f⇥i,t , hXt,⇥ii for ⇥i 2 S̄r(
1
T ).

7: Update losses Li,t =
Pt

s=1 �f⇥i,sys +m(f⇥i,s),
for i = 1, . . . , |S̄r(

1
T )|.

8: Update Ct according to Equation (5), where
B

GLB
t is as defined in Lemma 14.

9: end for

If there exists a non-decreasing sequence {BGLB
t }Tt=1

such that supk⇥kF1,rank(⇥)r ⇢
GLB
t (⇥)  B

GLB
t , we

construct CGLB
t in the following way:

CGLB
t = {⇥ 2 Rd1⇥d2 :

k⇥k2F +
tX

s=1

(ŷs � h⇥⇤
, Xsi)2  �

GLB
t (�)}, (5)

where

�
GLB
t (�) = 2 +

4

µ
B

GLB
t

+
32Lµ

2
µ

log

  
p
Lµ

s
8

2
µ

+

s
2

µ
BGLB

t + 1

!
1

�

!

and � is the failure probability.

Lemma 12 guarantees that the true parameter ⇥⇤

is contained in \t�1CGLB
t with high probability.

Lemma 13 further guarantees that the overall regret
of LowGLOC satisfies

RT = eO(
q

d1d2�
GLB
T�1 (�)T )

= eO((d1 + d2)
q

BGLB
T T/µ).

Following the online-to-confidence-set conversion idea
as used in LowLOC, we prove that

B
GLB
T = O

 
L
2
µ + c

2
µ

µ
(d1 + d2)r log T log

✓
T

�

◆!

in Lemma 14.
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We next present the regret of LowGLOC in the follow-
ing theorem, which can be easily achieved by plugging
Lemma 14 into Lemma 13 as described in above para-
graph.

Theorem 3 (Regret of LowGLOC). For 8� 2
(0, 0.25], with probability at least 1 � �, Algorithm 2
achieves regret:

RT = eO
 
(d1 + d2)

3/2

s
L2
µ + c2µ

2
µ

rT log

✓
1

�

◆!
.

To the best of our knowledge, this is the first algo-
rithm that achieves o(d1d2

p
T ) regret bound for low-

rank GLM bandits.

6 EFFICIENT ALGORITHM FOR
THE LINEAR CASE

At every round, LowLOC and LowGLOC need to
calculate exponentially weighted predictions, which
involves calculating weights of the covering of low-
rank matrices. These approaches have high compu-
tation complexity even though their regret is ideal.
In this section, we propose a computationally efficient
method LowESTR (Algorithm 3) that also achieves
eO((d1+d2)3/2

p
rT ) regret under mild assumptions on

the action set X as follows.

Assumption 2. There exists a sampling distribu-
tion D over X with covariance matrix ⌃, such that
�min(⌃) ⇣ 1

d1d2
and D is sub-Gaussian with parame-

ter �
2 ⇣ 1

d1d2
. (see Definition 1 in Section C for the

definition of sub-Gaussian random matrices.)

This assumption is easily satisfied in many arm sets.
To guarantee the existence of above sampling distri-
bution D, we only need the convex hull of a subset
of arms Xsub ⇢ X contains a ball with radius R  1,
which does not scale with d1 or d2. For example, if
X is the Euclidean unit ball/sphere in Rd1⇥d2 , we can
simply set D to be the uniform distribution over X .
Notably, different choices of D satisfying Assumption 2
do not affect the overall regret.

We extend the two-stage procedure "Explore Sub-
space Then Refine (ESTR)" proposed by Jun et al.
(2019). In stage 1, ESTR estimates the row and col-
umn subspaces of ⇥⇤. In stage 2, ESTR transforms the
original problem into a d1d2-dimensional linear ban-
dit problem and invokes LowOFUL algorithm (Algo-
rithm 4) (Jun et al., 2019), which leverages the esti-
mated row/column subspaces of ⇥⇤.

6.1 Description for LowESTR

LowESTR also proceeds with the two-stage framework
as ESTR, but we use different estimation method in
stage 1.

Stage 1. We are inspired by a line of work on low-
rank matrices recovery using nuclear-norm penalty
with squared loss (Wainwright, 2019). The learner
pulls arm Xt 2 X according to distribution D and
observes the reward yt up to a horizon T1, then uses
{Xt, yt}T1

t=1 to solve a nuclear-norm penalized least
square problem in (6) and receives an estimated b⇥ for
⇥⇤. Notably, instead of invoking an NP-hard prob-
lem in stage 1 as ESTR, the optimization problem (6)
in LowESTR is convex and thus can be solved eas-
ily using standard gradient based methods. Assump-
tion 2 guarantees

���b⇥�⇥⇤
���
2

F
⇣ (d1+d2)

3r
T1

in Theo-
rem 16 (Section E). We get the estimated row/column
subspaces of ⇥⇤ simply by running an SVD step.

Stage 2. In stage 2, we apply LowOFUL algorithm
(Algorithm 4) proposed by Jun et al. (2019) in our
setting. The key idea is reducing the problem to linear
bandit and utilizing the estimated subspaces in the
standard linear bandit method OFUL (Abbasi-Yadkori
et al., 2011).

We now present the overall regret of Algorithm 3.
Theorem 4 (Regret of LowESTR for Low Rank
Bandit). Suppose we run LowESTR in stage 1 with
T1 ⇣ (d1 + d2)3/2

p
rT

1
!r

and �
2
T1

⇣ 1
T1 min{d1,d2} .

We invoke LowOFUL (Algorithm 4) in stage 2 with
k = r(d1 + d2 � r), �? = T2

k log(1+T2/�)
, B = 1,

B? = �(T1), and the rotated arm sets X 0
vec defined

in Algorithm 3, the overall regret of LowESTR is, with
prob at least 1� 2�,

RT = eO
✓
(d1 + d2)

3/2
p
rT

1

!r

◆
.

We believe that this “Explore-Subspace-Then-Refine"
framework can also be extended to the generalized
linear setting. In stage 1, an M-estimator that min-
imizes the negative log-likelihood plus nuclear norm
penalty (Fan et al., 2019) can be used instead, while
in stage 2, one can revise a standard generalized linear
bandit algorithm such as GLM-UCB (Filippi et al.,
2010) by leveraging the low-rank knowledge in the
same way as LowOFUL. We leave this extension for
future work.

6.2 Computational Complexity

Before we end this section, we note that the compu-
tational complexity of LowESTR is polynomial in the
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Algorithm 3 Low Rank Explore Subspace Then Refine (LowESTR)
1: Input: arm set X , time horizon T , exploration length T1, rank r of ⇥⇤, spectral bound !r of ⇥⇤, sampling

distribution for stage 1: D; parameters for LowOFUL in stage 2: B,B?,�,�?.
2: Stage 1: Explore the Low Rank Subspace
3: Pull Xt 2 X according to distribution D and observe reward Yt, for t = 1, . . . , T1.
4: Solve b⇥ using the problem below:

b⇥ = argmin⇥2Rd1⇥d2

1

2T1

T1X

t=1

(Yt � hXt,⇥i)2 + �T1 k⇥knuc . (6)

5: Let b⇥ = U bSV T be the SVD of b⇥. Take the first r columns of U as bU , the first r rows of V as bV . Let bU?
and bV? be orthonormal bases of the complementary subspaces of bU and bV .

6: Stage 2: Refine Standard Linear Bandit Algorithm
7: Rotate the arm feature set: X 0 := {[bU bU?]TX[bV bV?] : X 2 X}.
8: Define a vectorized arm feature set so that the last (d1� r)(d2� r) components are from the complementary

subspaces:

X 0
vec := {vec(X 0

1:r,1:r); vec(X 0
r+1:d1,1:r); vec(X 0

1:r,r+1:d2
); vec(X 0

r+1:d1,r+1:d2
) : X 0 2 X 0}.

9: For T2 = T � T1 rounds, invoke LowOFUL (Algorithm 4) with arm set X 0
vec, the low dimension k =

(d1 + d2)r � r
2 and �(T1) ⇣ (d1+d2)

3r
T1!2

r
, B,B?,�,�?.

Algorithm 4 LowOFUL (Jun et al., 2019)

1: Input: T, k, arm set A ⇢ Rd1⇥d2 , failure rate �

and positive constants B,B?,�,�?.
2: ⇤ = diag(�, . . . ,�,�?, . . . ,�?), where � occupies

the first k diagonal entries.
3: for t = 1, . . . , T do
4: Compute at = argmaxa2A max✓2Ct�1h✓, ai.
5: Pull arm at and receive reward yt.
6: Update Ct = {✓ :

���✓ � ✓̂

���
Vt


p
�t},

where
p
�t =

q
log |Vt|

|⇤|�2 +
p
�B +

p
�?B?,

Vt = ⇤+
Pt

s=1 ata
T
t ,

✓̂t = (⇤+A
T
A)�1

A
Ty.

(Here A = [aT1 ; . . . ; a
T
t ] and y := [y1, . . . , yt]T ).

7: end for

relevant quantities.

Proposition 5 (Computational complexity of Low-
ESTR). The computational complexity of LowESTR
(Algorithm 3) is at most

O
�
d1d2(d1 + d2)

3
rT/!

2
r + d

2
1d

2
2T

2 + d
3
1d

3
2T
�
.

In stage 1, we solve a convex optimization problem
with unknown ⇥ 2 Rd1⇥d2 using subgradient method,
of which the complexity is O(T1d1d2/✏

2) (✏ refers to
the target accuracy). The complexity of the SVD step
at the end of stage 1 is O(d1d2 min{d1, d2}).

In stage 2, LowOFUL algorithm (Algorithm 4) domi-
nates the computational complexity. In iteration t of
LowOFUL, usually at = argmaxa2A max✓2Ct�1h✓, ai
can be solved with an oracle in constant time, the com-
plexity of least square estimation is O(d21d

2
2t + d

3
1d

3
2)

due to matrix multiplication and Cholesky factoriza-
tion. Thus, in T2  T iterations, the computational
complexity of stage 2 is at most O(d21d

2
2T

2 + d
3
1d

3
2T ).

Combining the complexity results in two stages, tak-
ing the target accuracy ✏ = 1/

p
T1 and T1 =

O

⇣
(d1 + d2)3/2

p
rT

1
!r

⌘
as stated in Theorem 4, the

overall computational complexity in Proposition 5 is
achieved.

7 LOWER BOUND FOR
LOW-RANK LINEAR BANDIT

In this section, we discuss the regret lower bound of the
low-rank linear bandit model. Suppose d1 = d2 = d,
we first present a ⌦(dr

p
T ) lower bound, which is a

straightforward extension of the linear bandit lower
bound (Lattimore and Szepesvári, 2018).
Theorem 6 (Lower Bound). Assume dr  2T and
let X = {X 2 Rd⇥d : kXkF  1}. Then 9⇥ 2 Rd⇥d,
where k⇥k2F  d2r2

128T , rank(⇥)  r, s.t.

E [RT (⇥)] = ⌦(dr
p
T ).

Above bound is tight when r = d as it matches
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with the standard d
2-dimensional linear bandit lower

bound, but for small r, our upper bound is larger than
the lower bound by a factor of

p
d/r.

Nevertheless, we conjecture that ⌦(d3/2
p
rT ) is the

correct lower bound for small r. It is well-known that
the regret lower bound for sparse linear bandit problem
(dimension d, sparsity s) is ⌦(

p
sdT ) (Lattimore and

Szepesvári, 2018). Our low-rank linear bandit prob-
lem can be viewed as a d

2-dimensional linear bandit
problem with dr degrees of freedom in ⇥⇤. Then, us-
ing the analogue of the degrees of freedom between
sparse vectors and low-rank matrices, one can plug in
d
2 for d and dr for s in the sparse linear bandit re-

gret lower bound and then achieve ⌦(d3/2
p
rT ) as our

lower bound.

8 EXPERIMENTS

In this section, we compare the performance of OFUL
and LowESTR to validate that it is crucial to utilize
the low-rank structure.

We run our simulation with d1 = d2 = 10, r = 1
and d1 = d2 = 10, r = 3. In both settings, the
true ⇥⇤ 2 Rd1⇥d2 is a diagonal matrix. For r = 1,
we set diag(⇥⇤) = (0.5, 0, . . . , 0) while for r = 3,
diag(⇥⇤) = (0.5, 0.5, 0.5, 0, . . . , 0). For arms in both
settings, we draw 256 vectors from N(0, Id1d2) and
standardize them by dividing their 2-norms, then we
reshape all standardized d1d2-dimensional vectors to
d1 ⇥ d2 matrices. We use these matrices as the arm
set X . For each arm X 2 X , the reward is generated
by y = hX,⇥⇤i + ", where " ⇠ N(0, 0.012). We run
both algorithms for T = 3000 rounds and repeat 100
times for each simulation setup to calculate the aver-
aged regrets and their 1-standard deviation confidence
intervals at every time step.

We leave the hyper-parameters of OFUL and Low-
ESTR in the appendix (Section H). Regret comparison
plots are displayed in Figure 1.

We observe that in both plots, LowESTR incurs less
regret comparing to OFUL within several hundreds
of time steps. Further, as we increase the rank from
r = 1 to r = 3, the cumulative regret gap between the
two approaches becomes smaller. This phenomenon is
compatible with our theory.

Other than the comparisons between OFUL and Low-
ESTR, we also conduct simulations to see the sensitiv-
ity of LowESTR to the eigenvalue parameter !r. We
observe that LowESTR indeed performs better as !r

goes larger, which again matches with our theory. The
detailed description and the plot for the sensitivity ex-
periments are left to the appendix (Section H).

Figure 1: Regret comparison between OFUL and Low-
ESTR for the two settings. We plot the averaged cu-
mulative regret in red and blue curves, and 1-standard
deviation for each method within the yellow shadow
area.

9 CONCLUSION AND FUTURE
WORK

In this paper, we studied the low-rank (generalized)
linear bandit problem. We proposed LowLOC and
LowGLOC algorithm for the linear and generalized lin-
ear setting, respectively. Both of them enjoy Õ((d1 +
d2)3/2

p
rT ) regret. Further, our efficient algorithm

LowESTR achieves Õ((d1+ d2)3/2
p
rT/!r) regret un-

der mild conditions on the action set.

There are several interesting directions we left for fu-
ture work. First, building on some preliminary ideas in
Section 6 about how to extend LowESTR to the gen-
eralized linear setting, it should be possible to obtain
a similar regret bound under certain regularity condi-
tions on the link function. Second, it will be interesting
to investigate if one can design an efficient algorithm
whose regret does not depend on 1/!r. Third, in Sec-
tion 7, we argued that Õ((d1 + d2)3/2

p
rT ) should be

a tight lower bound. It will be nice to formally prove
this.
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