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Abstract

Deep learning has shown tremendous success
on a variety of problems. However, unlike tra-
ditional computational paradigm, most neu-
ral networks do not have access to a mem-
ory, which might be hampering its ability to
scale to large data structures such as graphs,
lookup-tables, databases. We propose a the-
oretical framework for a neural architecture
where sketch based memory is integrated into
a neural network in a uniform manner at every
layer. This architecture supplements a neural
layer by information accessed from the mem-
ory before feeding it to the next layer, thereby
significantly expanding the capacity of the net-
work to solve larger problem instances. We
show theoretically that problems involving
key-value lookup that are traditionally stored
in standard databases can now be solved using
neural networks augmented by our memory
architecture. We also show that our memory
layer can be viewed as a kernel function. We
show benefits on diverse problems such as
long tail image classification, language model,
large graph multi hop traversal, etc. arguing
that they are all build upon the classical key-
value lookup problem (or the variant where
the keys may be fuzzy).

1 Introduction

Memory is an integral part of human learning and
plays an important role in all of our daily activities and
decision making. For example, if past events could not
be remembered, it would be impossible for language,
relationships, or personal identity to develop (Eysenck,
2012). Thus, it might not be unreasonable to assume
artificial intelligence would also require similar capabil-
ities of memorization. Traditional von Neumann com-
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putation paradigm captures such notions of memory:
working memory (RAM) and episodic memory (hard
disk); this enables it to precisely store and process vast
amounts of information.

Neural computation paradigm, on the other hand, is
focused on generalization by “memorizing” the func-
tion (approximately) in a set of trained edge weights,
which has led to huge successes (Devlin et al., 2018;
He et al., 2016b; Oord et al., 2016). Notably, prod-
uct key memory (Lample et al., 2019) enhances this
type of long term memory without much increase in
computation. Specifically, it converts the usual weight
matrix by input vector calculation in a dense layer to
a k-nearest neighbor look-up of the input vector across
a much larger matrix, which can be considered as the
memory. Furthermore, some recent work, like DNC
(Graves et al., 2016, 2014; Grefenstette et al., 2015;
Kurach et al., 2016; Kaiser and Sutskever, 2015), also
have tried to augment neural networks with different
types of scratchpad as working memory in a problem
specific manner. In general, however, there is not a
unified way to equip neural networks with memory nor
do we have a good theoretical understanding whether
memory brings anything fundamental to the table.

In this paper, we propose a theoretical framework

SketchMem, of an external memory architecture for
long term episodic memory. The idea of sketching to
store a complex object has been proposed in Ghazi
et al. (2019); Panigrahy (2019); the main idea is to
computing a a recursive sketch that capture the essen-
tial properties of a complex input as it is processed by
a modular deep network – such recursive sketches can
be used to compare so that underlying by just looking
at the similarity between two sketches. Our framework
can be viewed as a simplification of this sketching
method and an abstraction of other mentioned propos-
als for memory for specific applications such as BERT
(Lample et al., 2019). The main intuition behind our
theoretical framework stems from the key advantage
of having explicit episodic memories provides better
scalability to larger problem instances. Certainly a
deep network of a fixed size cannot solve problems that
need more information than can be retained by all the
parameters in the network. For example, consider a
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tion K(x, y) = (1 − arccos(x.y)/π)c (where c is some
parameter) (Claim 3.6).

We also experimentally demonstrate (Sec. 4) the scala-
bility and efficiency of SketchMem. In particular, we
gain improvements on long-tail image classification and
entity resolution tasks. Finally, in Sec. 5, we conclude by
discussing the present work in context of other memory
augmented neural networks.

2 Architecture

The main idea is to use similarity preserving hashing to
store information associated with each layer output in
the neural-memory, and retrieve them during inference
when similar layer outputs are produced in future; this
is then added to the input to the next layer. For con-
creteness think of a network that takes as input a facial
image and outputs at a certain layer an embedding of
the facial features x that can be used to identify the
person. Even for the same person the output of that
layer may differ each time – so it makes sense to use a
similarity preserving hash function to lookup (one or
more locations) the neural memory. The contents of the
neural memory are trainable and may be used to store
useful metadata such as address, age, gender (though
not expected to be in an interpretable format) for each
person. If the number of persons is large we will clearly
need an external neural memory as the information
required to store all the metadata may be much larger
than the capacity in the edges of the network.

Related objects from the neural memory are retrieved
by creating (one or more) similarity preserving hashes
of the output from a layer that is used to index into
the neural memory. The similarity preserving hash can
be implemented using similarity preserving sketching
methods such as LSH (Locality Sensitive hashing, as
described below). Let x denote the output of a layer in
a neural network. The neural memory takes x as input
query vector, and hashes x into k bucket ids using k
independent LSH functions h1, ..., hk. Each bucket is
addressed by its bucket id and contains a learnable
vector. The tuple of learnable vectors zh1(x), ..., zhk(x)

(for brevity, we denote these vectors zh1
, ..., zhk

) can
be tuple-sketched into a single sketch vector by first
padding each of them with zeros to make them all of
the same dimension and then producing the sketch
y = R1zh1

+ .. + Rkzhk
by using simple random sub-

space embedding matrices R1, ..., Rk. See Figure 1 for
a schematic of the neural memory architecture. This
sketch vector y is then added to the layer output x to
be fed to the next layer (after possibly dropping suffi-
cient number of trailing dimensions from y to match
the dimension of x).

Locality Sensitive Hashing (LSH) is a popular
variant of hashing that tends to hash similar objects
to the same buckets. Let us look at an LSH that
maps an input to one (or a few locations) out of the
m hash buckets. It is well-known that LSH provably
provides sub-linear query time and sub-quadratic
space complexity for approximate nearest neighbor
search. More specifically, fix 0 < r1 < r2, where
r1 is the threshold for nearby points, and r2 is the
threshold for far-away points, i.e. for x, y ∈ R

d, we
say x and y are nearby if |x − y|2 ≤ r1 and they
are far-away if |x − y|2 ≥ r2, where |x|2 is the 2-
norm of the vector x. Let c = r2/r1 > 0 denote the
distance gap as a ratio. Let p1 ≤ Pr(h(x) = h(y) :
|x− y|2 ≤ r1) and p2 ≥ Pr(h(x) = h(y) : |x− y|2 ≥
r2) denote lower and upper bounds on the collision
probability of nearby points and far-away points,
respectively. Define ρ = log(1/p1)

log(1/p2)
. Then LSH-based

nearest neighbor search has a O(nρ) query time
and O(n1+ρ) space complexity for a c approximate
nearest neighbor query (Andoni et al., 2014; Andoni
and Razenshteyn, 2015; Andoni et al., 2015).

In this work, we use random hyperplane based LSH
(Charikar, 2002, described in the box) to sketch a vector
into a hash bucket due to its simplicity, although other
types of hashing such could be used as well – for exam-
ple min-hash (Broder, 1997) could be used on a set or
a tuple object to map that object to a discrete hash
bucket. See the next paragraph for a brief description
of the random hyperplane based LSH.

We first fix the notation for the rest of the paper.
Let d be an upper bound on the width of each layer
output; we assume that if layer outputs are of different
lengths then we zero pad them to make them of width
d. Let N be the number of (key, value) pairs, k be the
number of LSH hashes, m be the number of buckets
in one hash table, M be the total number of buckets
in neural memory (note M = mk), h1(x), ..., hk(x)
be the indices of the k hash buckets for vector x, s
be the dimensionality of the trainable vector in each
bucket, r be the dimensionality of keys and values,
and Z ∈ R

M×s be the collection of learnable vectors
of the LSH memory. The random hyperplane based
LSH makes use of a random matrix W ∈ R

d×b, where
b = logm. For an input vector x ∈ R

d, we first compute
the vector (sgn(x·w1), sgn(x·w2), ..., sgn(x·wb)), where
sgn() is the sign function and wi is the i-th column
of W . Then these b bits are concatenated together to
get a logm bit index for a table of size m. To ensure
that each hash function accesses a distinct section of
the table of buckets, hi() accesses buckets starting at
offset m(i− 1) so that the final index is in [1..M ]. The
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hyperplane hash function is chosen due to its simplicity
and good performance in practice (Andoni et al., 2015).

3 Formal Guarantees for Learning

Problems involving Memorization

We theoretically show the expressive power of Sketch-
Mem in this section.

Let D = {(xi, yi)}Ni=1 be the set of (key, value) pairs,
where xi and yi are i.i.d. samples of two independent
distributions. Assume xi and yi are random variables
uniformly chosen from {0, 1}l. Let W denote the train-
able parameter of the neural network without the mem-
ory and n = |W | the size of W . Note that after training
W is a random variable that depends on xi and yi.

Claim 3.1. Without SketchMem, instances of prob-
lems 1.1, 1.2 with N (key,value) pairs from the above
distribution cannot be learnt with accuracy better than
O(

√

n/N)

This follows from a simple information theoretic argu-
ment. See App. B for the full proof.

Next, we show instances of problem 1.1 can be solved
by a SketchMem agumented network. Let E be the
N × d matrix denoting the outputs of the LSH layer
for N keys. The entries of E are obtained from entries
of memory content matrix Z ∈ R

N×s by a linear trans-
form involving the sketching matrices R1, .., Rk and
the LSH hash indices, as explained in Figure 1. We will
also assume that the keys are random and long enough
so that the hash buckets are uniform random and in-
dependent (this is true in the hyperplane LSH, e.g. if
we use orthogonal hyperplanes). The following claim
(proven in App. C) shows that any E can be obtained
by inverting this linear transform to get a suitable Z
and solving for it is a well conditioned problem (note
that condition number for matrix A is the ratio of its
largest to smallest singular value of AtA).

Claim 3.2. Let RB denote the linear transform that
transforms entries in Z to entries in E (think of Z,E
flattened into a single vector). With high probability,
Rt

B has condition number at most O(logN) (under
reasonable assumptions). Hence for any loss function
L, ∇ZL is 0 iff ∇ZE is 0.

Proof sketch. For intuition, consider the case when
s = d = 1; that is, the values stored in the buckets are
one dimensional and the random matrices R1, .., Rk are
1× 1 that are essentially scalars. In this case Rt

B can
also be viewed as a bipartite graph with N nodes on
left (corresponding to keys) and M nodes on right (cor-
responding to buckets) and Nk edges (corresponding
to the hash lookups). The degree on the left nodes is
k and by a balls-and-bins argument we can bound the
maximum degree on the right by O(logN) with high

probability (see for example Raab and Steger (1998)).
Given this sparse random structure we can lower bound
|Rt

Bx|22/|x|22 by k/2 and upper bound it by O(k logN)
giving a condition number bound of O(logN)

Claim 3.3. With one layer of SketchMem followed
by a single linear layer denoted by matrix A ∈ R

d×l,
problem 1.1 can be learnt using memory of size M =
O(Nk logN), where k = O(logN) and sk = Ω(d),
assuming At is well conditioned through out gradient
descent training. Further, with gradient descent one
can achieve error below ǫ in O(κ logN log(1/ǫ)) steps
where κ is a upper bound on condition number of At.

Proof. Assume first for simplicity that there is no col-
lision in the k LSH buckets for a certain key xi from
any other key and that At is fixed and well conditioned.
Denote the corresponding value vector yi ∈ R

d. Then
we are training the vectors of entries in the k the LSH
buckets, denoted by zh1(xi), ..., zhk(xi), or zh1

, ..., zhk

for brevity. The output is ŷ = A(R1zh1
+ ...+Rkzhk

),
where Ri are random sketching matrices. The loss is
measured by

|yi −A(R1zh1
+ ...+Rkzhk

)|22,
where |v|2 is the 2-norm of vector v. Let zb denote
a single vector obtained by concatenating zh1

, ..., zhk

and Rb denote a single matrix obtained by stacking
R1, .., Rk horizontally. Then ŷ = Rbzb and Rt

b is well
conditioned as it is a sufficiently rectangular random
matrix when sk ≥ Ω(d) (see Rudelson and Vershynin
(2009)). Since this loss function is strongly convex, in
a gradient descent minimization the loss goes below ǫ
in O(κ log(1/ǫ)) steps for that (key,value) pair, (Boyd
and Vandenberghe, 2004).

Even if there may be collisions, we look at the ma-
trix Ŷ of all outputs by stacking together the outputs
ŷ for all keys. Let ŷB, eB, zB denote the flattened
version of Ŷ , E, Z into single column vectors. Then
ŷB = ABeB = ABRBzB , where AB is a block diagonal
matrix with N copies of A along the diagonal and so
At

B is well conditioned. From Claim 3.2 the Rt
B has

condition number at most O(logN) with high probabil-
ity. Therefore (ABRB)

t has bounded condition number.
Even if A is allowed to be trained, the above argument
holds as long as At is well conditioned throughout the
gradient descent.

Claim 3.4. The LSH hash function maps the fuzzy
keys in a ball B(x, ǫ) into at most NO(ǫ) hash buckets.
Thus with SketchMem, an instance of problem 1.2 with
N fuzzy keys can be viewed as an instance of problem
1.1 with at most O(N1+O(ǫ)) (key, value) pairs.

Proof. In the fuzzy (key, value) lookup problem instead
of using a fixed key x, the query key is a random point r
from a ball B(x, ǫ). The main idea is that even though
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the number of possible keys in B(x, ǫ) may be large, the
number of hash buckets they get mapped to is bounded
and at most NO(ǫ) – this is proven by bounding the en-
tropy of the distribution of the hash bucket-id h(r) (for
any one of the LSH hash functions h) given x to be at
most log(NO(ǫ)) based on the the ideas in (Panigrahy,
2006). Specifically we can obtain the bound for the
entropy I = H(h(r)|x) ≤ O(ǫ logN). The number of
buckets that cover a significant fraction of B(xi, ǫ) is at
most 2I . For any one random hyperplane w Lemma 3 in
(Panigrahy, 2006) shows that H(sgn(r · w)|x)) ≤ O(ǫ)
which implies that from logm random hyperplanes I =
H(h(r)|x)) ≤ O(ǫ logm) = O(ǫ logN). Lemma 2 in
(Panigrahy, 2006) shows that 2I = 2H(h(r)|x) = NO(ǫ)

buckets cover more than 1/I fraction of the ball. So by
using k > Õ(1/I) = O(1/ǫ) LSH functions, with high
probability most of each of the balls are covered. See
the proof of Theorem 4 in in (Panigrahy, 2006) for the
details. Therefore, the problem of N fuzzy (key, value)
pairs essentially breaks down to a problem of N1+O(ǫ)

(bucket-id, value) pairs via the LSH hash functions.

Claim 3.5. Running gradient descent using an em-
bedding table of size N and the rest of the network of
size n is equivalent to running gradient descent with a
SketchMem of size O(Nk), k = Ω(logN) and the same
network initialization in the following sense: there is
a one to one correspondence between parameter values
in the two cases and a critical point of the first case is
also a critical point of the second case, and vice versa.

Proof. N is the size of the vocabulary corresponding
to the embedding table. We will argue that training
with an embedding layer is equivalent to training with
SketchMem access at the first layer. For simplicity
first assume all the Nk buckets for the N words are
distinct. In this case, we can interpret the output value
of the memory layer

∑k
j=1Rjzhj

to the embedding
entry for a lookup word, this is because in the back
propagation, the gradient coming above the summation
node can be viewed as the gradient coming to the
embedding entry ei in the case when there was an
actual embedding layer. Even if there may be collisions,
let E denote the N × k matrix of embeddings obtained
for the N words based on the hash the lookups into
Z. The transform of entries from Z to E is linear
and that linear transform has condition number at
most O(logN) with high probability (see Lemma 3.2)
Therefore, ∇ZL = 0 iff ∇EL = 0.

We also show that our LSH based memory layer acts
like a kernel transform. See App. A for more details.

Claim 3.6. (informal) A single layer of the LSH based
memory access can be viewed as a kernel transform with
kernel function K(x, y) = (1− arccos(x.y)/π)logm.

One can view the LSH table as a kernel that projects
x into a k-sparse M dimensional vector Φ(x) that is

a hot encoding of the buckets an input is mapped to.
Since LSH tends to map similar inputs to similar set of
buckets one can compute the expected value of the dot
product Φ(x).Φ(y) for two similar inputs x, y which
turns out to be K(x, y) = (1 − arccos(x.y)/π)logm.
Based on methods from (Arora et al., 2019; Du et al.,
2019) this can be used to show that even just one layer
of LSH memory with a linear output node can learn
polynomial functions.

4 Experiments

We now present empirical studies for our proposed
architecture in order to establish that (i) SketchMem
can scale to tasks involving memory; (Sec. 4.1), (ii)
SketchMem is flexible and can be applied to different
scenarios, e.g. in recurrent networks (Sec. 4.2), and (iii)
SketchMem brings improvement in real world problems
(Sec. 4.3). More experiment details are in App. D.

For all experiments we use SketchMem with k = 5
hash functions, total number of buckets M = 5× 220,
dimensionality of the trainable vector in each bucket
s = 50, width of a sketch vector d = 50, and memory is
augmented to every layer, unless mentioned otherwise.

4.1 Warm-up

Crisp Key to Value Prediction We consider the
key-value problem 1.1. It is set up as a regression from
xi to yi with mean square loss. The keys are generated
as random 50-bit vectors, i.e. xi ∈ {0, 1}50 and similarly
yi ∈ {0, 1}50. We compare memory based SketchMem
and Prod-Key Mem (Lample et al., 2019) against a
simple neural network of depth 3 and width 50 with
ELU non-linearity, totaling in 7, 650 parameters. In
SketchMem, the neural network component is of the
same size and structure, but memory lookups have
been added after each layer. Prod-Key Mem has been
chosen so that total size is similar to SketchMem. We
see from Figure 2a that even with constant size neural
network part, both SketchMem and Prod-Key Mem
can leverage the external memory to correctly store and
retrieve a large number of key-value pairs. Moreover,
to achieve similar accuracy as SketchMem for N = 104

by simply increasing the neural network size, we would
need internal width of 600, which would increase the
computational cost to 18 million FLOPs compared to
400 thousand FLOPs for SketchMem with 50 width.
Note that we are not looking to generalize to unseen
key-value pairs, which is impossible. Instead we focus
on known key-value relations and utilizing memory.

Fuzzy Key to Value Prediction We turn to the
case of value retrieval when the key is noisy (problem
1.2). For this problem, we set up the data-set similar
to the previous case with additional constraint that all
keys are separated by

√
d distance. Each time when
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Backbone Net closed-set setting open-set setting
ResNet-10 > 100 6 100 & > 20 < 20 > 100 6 100 & > 20 < 20

Methods Many Medium Few Overall Many Medium Few F-meas

Plain Model [1] 40.9 10.7 0.4 20.9 40.1 10.4 0.4 0.295
Lifted Loss [2] 35.8 30.4 17.9 30.8 34.8 29.3 17.4 0.374
Focal Loss [3] 36.4 29.9 16.0 30.5 35.7 29.3 15.6 0.371
Range Loss [4] 35.8 30.3 17.6 30.7 34.7 29.4 17.2 0.373

+ OpenMax [5] - - - - 35.8 30.3 17.6 0.368
FSLwF [6] 40.9 22.1 15 28.4 40.8 21.7 14.5 0.347
OLTR [7] 43.2 35.1 18.5 35.6 41.9 33.9 17.4 0.474

SketchMem (Ours) 44.5 36.9 18.7 37.2 43.1 35.7 18.1 0.440

Table 1: Top-1 classification accuracy on ImageNet-LT compared to methods presented in [1]: He et al. (2016a) ,
[2]: Oh Song et al. (2016), [3]: Lin et al. (2017), [4]: Zhang et al. (2017), [5]: Bendale and Boult (2016), [6]: Gidaris
and Komodakis (2018), [7]: Liu et al. (2019).

|V| Small baseline Large baseline SketchMem

2048 39.48% 41.23% 74.71%
8192 65.09% 66.78% 74.87%

Table 2: Accuracy for the patent assignee resolution, for
different embedding vocabulary size |V|. Small baseline
has about 82 millon FLOPs/sample, large baseline
has about 246 million FLOPs/sample, and SketchMem
model has about 90 million FLOPs /sample.

kNN and SketchMem could be due to the approximate
nearest neighbor that SketchMem performs, and will
be studied in future work.

Compact BERT models Pretrained masked lan-
guage models such as BERT has shown impressive per-
formance for a range of NLP tasks (Devlin et al., 2018).
Augmenting BERT models with SketchMem provides
an computationally efficient way of increasing the model
capacity. We examined the effect of memory augmenta-
tion for compact BERT models with 2, 4, 8 and 12 trans-
former layers. In this experiment, SketchMem is aug-
mented to the attention layer in every transformer layer.
For an input token embedding sequence {x1, x2, ..., xn},
the i-th output of the SketchMem-augmented atten-
tion layer is atten(x1, ..., xi, ..., xn) + sketchmem(xi),
where atten(x1, ..., xi, ..., xn) is the original attention
layer output and sketchmem(xi) is the SketchMem out-
put. Table 3 compares 5 compact BERT models with
their SketchMem augmented counterparts. The models
are pretrained on the wiki and books dataset (Devlin
et al., 2018). BERT-tiny, BERT-mini, BERT-small and
BERT-medium are pretrained for 5 epochs, and BERT-
base is pretrained for 15 epochs. All the models are
then finetuned for 3 epochs for downstream tasks. For
all 5 models, the SketchMem uses 3 hash functions and
1024 (210) memory buckets. We observed that Sketch-
Mem augmented models boost performance for both
masked language modeling and downstream tasks, with
a tiny additional computational cost.

5 Discussion and Related Works

We proposed a uniform framework for augmenting a
neural network with external memory to improve the
capacity of the network independent of the problem.
The neural memory uses LSH and sketching to ac-
cess information in the memory during inference – the
memory contents are trained using a simple problem
independent mechanism during training. We demon-
strated theoretically and empirically that adding neural
memory enables bounded sized neural networks to learn
a wide variety of problems that may need to store large
amounts of data and thus hard to solve by bounded
sized neural networks.

The idea of augmenting a neural network with
memory has been suggested in several papers like
LSTM (Hochreiter and Schmidhuber, 1997), Neural-
RAM (Kurach et al., 2016), NeuralStack (Grefenstette
et al., 2015), NeuralGPU (Kaiser and Sutskever, 2015),
NTM (Graves et al., 2014), DNC (Graves et al., 2016).
Their purpose has, however, been different – most of
these prior work have been focused around augmenting
the neural network with a working memory for solving
one instance of the problem. On the other hand, we
propose to use SketchMem in a persistent fashion as
an episodic memory, i.e. use content of memory across
different problem instances.

Several works store certain statistics of the training
data to improve performance – however they lack the
kind of theoretical guarantees we provide. In particular,
Khandelwal et al. (2019) explicitly stores the hidden
representation of the entire training dataset to improve
language model predictions and cloze test. Similarly,
REALM (Guu et al., 2020) and RAG (Lewis et al.,
2020) retrieve from an external datastore for each pre-
diction, however, the designs are very task specific,
unlike SketchMem which is a generic framework. An-
other use case of retaining parts of training data has
been to prevent catastrophic forgetting McCloskey and
Cohen (1989); Ratcliff (1990). Techniques have been
developed to ensure the distribution of stored exam-
ples is representative of the distribution of true exam-
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Model BERT-tiny BERT-mini BERT-small BERT-medium BERT-base

FLOPS/token (rel.) 1.000 8.000 32.00 64.00 216

+ SketchMem 1.029 8.117 32.23 64.47 217.05

MLM (Acc) 31.55 47.50 55.39 58.56 65.82

+ SketchMem 32.46(+2.88%) 49.67(+4.57%) 56.96(+2.83%) 60.27(+2.92%) 67.02(+1.82%)

MNLI (Acc) 63.40 72.63 76.19 78.63 82.19

+ SketchMem 65.63(+3.51%) 73.72(+1.50%) 79.27(+4.04%) 81.79(+4.02%) 86.10(+4.76%)

SQuAD 1.1 (f1) 12.99 65.88 77.57 82.43 88.32

+ SketchMem 42.31(+225%) 69.77(+5.90%) 80.41(+3.66%) 84.89(+2.98%) 89.31(+1.12%)

SQuAD 2.0 (f1) 50.09 59.17 65.09 68.90 76.56

+ SketchMem 51.70(+3.21%) 60.20(+1.74%) 65.97(+1.35%) 70.73(+2.65%) 78.31(+2.29%)

Table 3: Compact BERT models. Denote the number of transformer layers as L, the hidden embedding size as
H, and fix the number of self-attention heads to be H/64 and feedforward size to be 4H. The 5 models have
the following parameters: BERT-tiny (L=2, H=128), BERT-mini (L=4, H =256), BERT-small (L=4, H=512),
BERT-medium (L=8, H=512) and BERT-base (L=12, H=768). SketchMem is fixed to have 3 hash functions and
1024 memory buckets. The FLOPS row counts flops per token for the feedforward network and the feedforward
network + SketchMem. Note in the MNLI task, BERT-small + SketchMem outperforms BERT-medium, while it
uses much less flops than BERT-medium.

ples; (Isele and Cosgun, 2018; de Masson d’Autume
et al., 2019) and the episodic memory is used to ei-
ther constraint the gradient updates (Lopez-Paz and
Ranzato, 2017; Chaudhry et al., 2019), locally adapt
the base model to a new test example (Vinyals et al.,
2016; Sprechmann et al., 2018), or for experience replay
(Wang et al., 2019; de Masson d’Autume et al., 2019).
Another work (Sukhbaatar et al., 2019) augments the
transformer with a persistent embedding table that
may be attended to in addition to the input tokens.
Product key memory (Lample et al., 2019) augments
the dense layers in transformer with a large matrix-
memory and uses product quantization to enable fast
look-up. However, we would like to point out all of
these methods require custom design for selection and
use of past training data as opposed to SketchMem.

As the name suggests, SketchMem tries to store
sketches of useful training examples. The idea of sketch-
ing to represent and store the neural processing of a
complex input has been studied theoretically in Ghazi
et al. (2019); Panigrahy (2019) previously. They pro-
pose the idea of using a recursive sketch to store essen-
tial properties of a complex input so that underlying
objects can be compared just by sketch similarity. Our
sketching method can be viewed as a simplification of
those methods. Sketching has been used to get a con-
densed representation of several types of objects includ-
ing documents (Broder, 1997), large graphs(Das Sarma
et al., 2010), sets and vectors (Clarkson and Woodruff,
2009).

Finally, the idea of combining LSH with neural net-
works habe been explored before, but most works have
suggested it as a method to speed up the training in-

stead of increasing its memory capacity. For example
Spring and Shrivastava (2017) and Kitaev et al. (2020)
use LSH to find active neurons in a layer quickly by
identifying those weight vectors in a layer that have a
high inner product with the input and dropping the rest
during the forward=backward pass (similar to random
dropout but chosen carefully). This allows training of
transformers with self-attention for very long sequences
by restricting attention to only important candidates.
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