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Abstract

The holdout randomization test (HRT) discov-
ers a set of covariates most predictive of a
response. Given the covariate distribution,
HRTs can explicitly control the false discovery
rate (FDR). However, if this distribution is
unknown and must be estimated from data,
HRTs can inflate the FDR. To alleviate the
inflation of FDR, we propose the contrarian
randomization test (CONTRA), which is de-
signed explicitly for scenarios where the co-
variate distribution must be estimated from
data and may even be misspecified. Our key
insight is to use an equal mixture of two “con-
trarian” probabilistic models in determining
the importance of a covariate. One model is
fit with the real data, while the other is fit
using the same data, but with the covariate
being tested replaced with samples from an
estimate of the covariate distribution. CON-
TRA is flexible enough to achieve a power of
1 asymptotically, can reduce the FDR com-
pared to state-of-the-art cvs methods when
the covariate distribution is misspecified, and
is computationally efficient in high dimensions
and large sample sizes. We further demon-
strate the effectiveness of CONTRA on numer-
ous synthetic benchmarks, and highlight its
capabilities on a genetic dataset.

1 INTRODUCTION

Scientific discovery often relies on identifying a subset
of covariates that are most important to a response,
while controlling the number of false discoveries. These
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selection procedures, termed controlled variable selec-
tion (cvs) (Candes et al., 2018), pose hypothesis tests
for the conditional independence of each covariate x;
with the response y given the remaining covariates x_;:

Ho:x; Ly|x_jvsHi:x; Ly|x_j (1)

The advantage of performing Cvs over other variable
selection methods is the explicit control of the false
discovery rate (FDR). Since a ground truth set of
covariates is usually unknown, scientists can specify a
nominal error rate 7 for selecting important covariates,
and can expect no more than 7% of their discoveries
to be false.

Many widely used methods to perform cvs, however,
rely on strong assumptions about the population con-
ditional distribution ¢(y | x) to provide guarantees for
FDR control (Benjamini et al., 2009; Bunea et al., 2006)
in finite samples. To relax these assumptions, Candes
et al. (2018) introduce the conditional randomization
test (CRT) framework, which facilitates FDR control
assuming access to the covariate distribution. Tansey
et al. (2018a) extend CRTs with holdout randomization
tests (HRTS): easy to compute and powerful Cvs test
statistics that use black-box models Gmodel (¥ | X)-

Given a training set (X,Y) and a test set (X',Y’), the
HRT first fits model G¢model(y | x) using (X,Y), then
generates a dataset X’ of “null” variables. The j coor-
dinate of the ¢th sample of )~(’, i;z), is drawn from the
population conditional distribution ¢(x; | x—;). The
HRT then compares the loss £ of ¢nodel between two
datasets: (a) (X’,Y’), and (b) (Ug.m) ,Y’): a set identi-
cal to (X', Y’), but with samples of the jth covariate
replaced with those from X’. To assess the importance
of covariate x;, a p-value is computed by repeating this

comparison M times with a resampled U;m):

M

If this p-value is below a user-specified significance
threshold, the jth covariate is deemed important for
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y. HRTs can guarantee finite-sample control of the
FDR, without assumptions on the distribution of y | x,
and only require that the covariates and null variables
satisfy the swap property (3): for any coordinate j,

d i~
[xj x—5] = [Xjx], (3)
where < indicates equality in distribution.

In practice, a few challenges exist with the HRT. First,
the choice of performance metric can affect the power
of the test to select important covariates. Second, the
population distribution ¢(x; | x_;) is likely unknown
and must be estimated from data. If null variables
are sampled from estimated distributions, they may
not satisfy the swap property (3) exactly. As a result,
L(X’Y') may be consistently lower than L(Ug.m),Y’),
especially if ¢noder €xhibits spurious dependence on a
null covariate: a likely occurrence as shown by Efron
(2012). As a result, the HRT tends to deflate null p-
values and ultimately fails to control the number of
false discoveries.

In attempt to circumvent this issue, Tansey et al.
(2018a) introduce calibrated HRTs, which reweight
terms in the p-value computation. These weights are
learned by fitting B conditional distribution estimators
{qéﬁ) (x; | x_j)}£_,, each using a different bootstrap of
the data. Using these estimators, the authors weight
the mth term in the p-value computation by
é(ﬁ?)(xj\x—j)
W= )
dee’ (xjlx—5)

where (jg;) and qéz) are the lower and upper quantiles of

the B estimators respectively. Intuitively, this reweight-
ing of the p-value computation aims to make null p-
values larger and the non-null p-values smaller. How-
ever, the effectiveness of this method is diminished as
the sample size increases. This is because the boot-
strapped interval shrinks as sample size increases, and

the lower and upper quantile estimators qé? and qﬁfé)

if £(xy) < LE™ x_;y)

otherwise

will be closer to (jg), meaning w(™) is close to 1 and
has no impact on eq. (2). So, if the §.. models are
misspecified, the ability of this technique to sufficiently
calibrate p-values is reduced. Further, the number of
estimators B is often large: Tansey et al. (2018b) set
B =100 in their experiments. This makes calibrated
HRTs computationally expensive in high dimensions.

The issues discussed so far suggest a set of desiderata
for any new cvs procedure. (1) It must be flexible
enough to achieve a power of 1 asymptotically. (2)
It must yield higher p-values than an HRT when the
swap property in eq. (3) is violated. (3) It must be
computationally efficient when performing cvs in high
dimensions and large sample sizes.

Related Work. Cvs methods have been in the lit-
erature for a while, but have traditionally made strong
assumptions about the ¢(y | x) distribution to control
FDR in finite samples (Benjamini et al., 2009; Bunea
et al., 2006). To relax some of these assumptions, Can-
des et al. (2018) introduced the cRT. The CRT can
control FDR in finite samples, but requires the gener-
ation of null variables that satisfy the swap property
(3) exactly. Katsevich and Ramdas (2020) show that
using the population distribution ¢(y | x) to evaluate
L(X')Y') is the uniformly most powerful statistic for
a CRT. In practice, they suggest fitting estimators
Gmodel (¥ | X) to compute this statistic. However, run-
ning CRTs with such statistics would be computationally
infeasible as new models need to be fit to each null
dataset sampled.

To address the generation of null variables, Bellot and
van der Schaar (2019) demonstrate the utility of gen-
erative adversarial networks (GANs) in modeling each
doc(x; | x—;). Barber et al. (2020) provide a theoretical
analysis of knockoff methods that use §.. models and
show that a sufficient condition for FDR control is if G
is e-close in KL to ¢(x; | x_;). However, the authors
do not provide guidance on CRTS.

Liu and Janson (2020) introduce a faster version of
the CRT: the distilled conditional randomization test
(DCRT). The DCRT distills the information x_; contains
about y in a low dimensional representation to create
model-based test statistics that depend only on this dis-
tilled information. This reduces the computational cost
of fitting Gmodel on each null dataset sampled. However,
the DCRT algorithm implicitly assumes that there are
either no interactions between x; and x_; in the gen-
erating process for y, or that the distillation process
can itself be used as a heuristic measure of variable im-
portance. The latter assumption may be problematic
since the goal of CVS is to identify important covariates.
Further, it relies on access to each ¢(x; | x_;), which
as discussed earlier can be an issue.

Tansey et al. (2018a) propose the HRT, which uses the
performance of ¢mogel On held-out data as a CRT test
statistic. This procedure places no assumptions on
the distribution of y | x, and is highly computationally
efficient. Unfortunately, the performance of the HRT is
severely impacted by the quality of the null variables.
If null variables are estimated from finite data and
do not satisfy the swap property eq. (3) exactly, HRTs
deflate p-values and violate FDR control. To combat this
issue, Tansey et al. (2018a) propose an HRT calibration
procedure. However, the effectiveness of the method
decreases with sample size as discussed earlier.

Our contribution. To address the challenges faced
by CRTs and HRTs, we present the contrarian random-
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ization test (CONTRA): a CVs procedure based on CRTs
that uses the log probability of a mixture of two “con-
trarian” models as a CVs test statistic. This mixture
consists of a model fit to the true data and a model fit
to the same data, but with the jth covariate swapped
out for null data. Our contributions can be summarized
as follows. (1) We explore the theoretical properties of
CONTRA and prove that it can control the FDR in finite
samples, and that despite using “contrarian” models
CONTRA achieves an asymptotic power of 1. (2) We
discuss how CONTRA can yield higher p-values than
the HRT when the swap property in eq. (3) is violated,
improving FDR control. (3) We show that CONTRA is
computationally efficient compared to calibrated HRTs
and requires far fewer model evaluations. (4) We study
CONTRA on several synthetic and real datasets. Across
each study, CONTRA exhibits superior FDR control over
multiple baselines even when the swap property is vio-
lated.

2 BACKGROUND

In this section we review holdout randomization tests
(HRTs), then discuss their pitfalls in detail. Let x € R?
be a vector of covariates, y € R be a response, and
q(x,y) be the generating distribution over x and y.
Let (X,Y) := {(x®,y)}7 s be a training set of size
Ntrain, and (X’,Y’) be a test set of size niest. Each
sample (x(*,y() in these datasets is drawn iid from
q(x,y). Briefly, the HRT tests the hypothesis in eq. (1)
for each covariate: the conditional independence of
each x; with y having observed all other covariates
x_;. Using a user-specified FDR threshold 7, it selects
a set of covariates S , where FDR is defined with respect
to the set of null covariates S,uu:

o |SmSnull|
FDR:=Ex vy |———|.
%]

HRT procedure. First, the HRT fits a model
Gmodel(Y | X) using (X,Y), and computes a statistic
that uses gmodel’s empirical loss £ on test set (X',Y").
Conditioned on the test set, the HRT samples M “null”
datasets {X/(")}M_  Each dataset X'(™) consists of
Ntest Samples where where the jth component of a sam-

ple X9 i;-i), is drawn from the conditional ¢(x; | x_;).

A set of M statistics {E(U§»m) YY) IM L is computed
where Ugm) is a copy of X', but with the jth column

swapped with that of X/(m), Finally, the importance
of each x; is assessed using the p-value computation in
eq. (2).

Under the null hypothesis for x;, the swap property
eq. (3) is satisfied by definition. As a result, the se-

quence:
T = {£(U"Y),...cu™ Y, cXY')}

is exchangeable, so p-values computed using eq. (2)
stochastically will dominate a Uniform(0,1) distribu-
tion (Tansey et al., 2018a). Such p-values are sufficient
to control the FDR at a nominal rate using standard
multiple testing corrections like Benjamini and Yeku-
tieli (2001) (these are summarized in appendix B).

Under the alternate hypothesis, if £(X'Y’) is typi-
cally smaller than E(Ugm),Y’ ), the HRT will yield low
p-values. The advantage of this property is that the
power (the probability of selecting non-null covariates)
depends entirely on how well §moder models ¢(y | x).
Using a flexible model class can yield HRTs that have
an asymptotic power of 1, meaning the important co-
variates are never missed.

Issues with HRTs in practice. While HRTs are the-
oretically sound, they are not without flaw in practice.
The distributions ¢(x; | x_;) used to generate U§m)
are rarely known and must be estimated from data. If
an estimated complete conditional dec(x; | x—;) is not
equal to the true conditional, the FDR of an HRT will
likely be inflated.

This occurs for the following reason. Since Gmodel 1S
fit using a finite training set, it may exhibit spuri-
ous dependence on a null covariate x; due to depen-
dence with a non-null covariate x;. When ¢nodel i
evaluated on an out-of-distribution set (Ug.m) JY'), it
will likely exhibit higher loss, regardless of whether
or not the null hypothesis is true. In these situ-
ations, the HRT will artificially deflate the p-values
computed using eq. (2). So, the HRT procedure will
inflate FDR unless either Gmoda(y | X) = ¢q(y | x), or
Gec(xj [ x—5) = q(x; | x—).

Tansey et al. (2018a) acknowledge this issue, and intro-
duce a calibration procedure to correct for this behavior.
However, as discussed earlier, this bootstrap-based cal-
ibration technique is ineffective in large sample sizes.
Thus, it is still unclear how to leverage the HRT to yield
an empirical procedure that retains the HRT’s high
power, produces higher p-values than the HRT despite
poor §.. models, and is computationally efficient.

3 CONTRARIAN STATISTICS

The primary goal of this section is to detail a procedure
that is able to achieve a power of 1 asymptotically,
while better controlling the FDR than HRTs when null
variables must be estimated from data. We motivate
CONTRA with the following intuition. The fundamental
issue with HRTs is that null covariates drawn from
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estimated distributions can cause the loss £(X')Y’) to

be lower than £(U ™y ) even if the jth covariate is
not important to y. This is because ¢model performs

worse on the dataset (Ugm),Y’ ), which is not equal in
distribution to (X’,Y’). One solution to this problem
is to bring the true and null losses closer together. By
using a “contrarian” model ¢nix — one that performs
better than §medel ON (Ugm),Y’ ) but worse on (X')Y’)
— p-values computed using eq. (2) can be made higher.
Multiple testing correction procedures will then select
fewer covariates, thus lowering the FDR.

In the next few sections, we will introduce CONTRA, a
procedure to build such contrarian models, then discuss
its useful theoretical and empirical properties.

Building a contrarian test. Let (X,Y) be a train-
ing set of size niraim, and (X',Y’) be a test set of size
Ntest- Lach sample (x (1) y )) in these datasets is drawn
iid from ¢(x,y). CONTRA first fits a probabilistic model

Gmodel(y | X) to (X,Y), and a set of conditional distri-

bution estimators {(j(])(xj | x_;)}4_, using X. Then,

CONTRA generates M+1 null datasets. One to train
models: X, and M to compute p-values: {X’(m WM

The jth coordinate of each element X(*) in X is drawn

from the estimated qéc (xj | x—; = x®) conditional on

the ith training sample in X. Each X/(m) g gener-
ated the same way, but conditioned on the test set X’
instead.

The next step in CONTRA is to fit a set of d probabilistic
models {7 (v | X;,X_;)}4-;. Each model g s fit
using the data (U;,Y), Where U; is identical to X,
but with the jth column of X replaced with the jth
column of X. These models will serve as the basis for

our contrarian models {qml)X 31:1, where

~(7)

1
G0 %) 1= 5 (Gmoaaly | x)+450( | %)).

2

Each qui)X is a mixture of the model fit to the true data

(model, and the model fit to the null data ¢,.y for the
jth covariate.

To test the conditional independence of each covariate
x; with y conditioned on x_;, CONTRA first computes
the following test statistic using the test set:

Ntest

> —loggll (y =y | x =x).
=1

(9 (X'Y') =

Finally, a computation similar to eq. (2) is used to
compute p-values for each covariate:

M
M1+1<1+mz_:1]l{£(j)(x’ N > U (U m>Y)}>
(4)

where Ugm) is a copy of X’, but with the jth column
swapped with that of X/(m),

fj}x over model Will decrease the

)(X',Y') and €@ (U™ Y"). This is
because the mixture of ¢modqer and qnull will perform
worse on the set (X’,Y’), but better on (Ugm),Y’). At
first glance, this seems to mitigate the FDR control

issue of HRTs but at the cost of power to select non-null
covariates.

Intuitively, the use of §
gap between (U

In the next few sections, we show that CONTRA re-
tains the most important property of the HRT: finite
sample FDR control when the null variables satisfy the
swap property in eq. (3). Despite using contrarian
models, CONTRA achieves power 1 asymptotically when
the model distributions ¢meoder and qAI(jJ)H converge in
probability to ¢(y | x) and ¢(y | x—;).

3.1 CONTRA controls FDR and achieves power
1

To prove properties about CONTRA’s FDR and power,
we discuss the p-values produced by CONTRA.

Finite sample FDR. Procedures that control the
FDR require null p-values to exhibit stochastic domi-
nance over a Uniform(0, 1) random variable (Benjamini
and Hochberg, 1995; Benjamini and Yekutieli, 2001).

Proposition 1. Null p-values p; produced by CONTRA
on a test dataset (X', Y') will stochastically dominate
u ~ Uniform(0,1) for any covariate x; that is indepen-
dent of response y having observed the other covariates
X_j-

The proof of prop. 1 can be seen from the fact that
CONTRA is a variant of the CRT. We show this formally
in appendix A.1, but outline a sketch here. We note
that for each null covariate x;, the (X',Y’) is equal in

distribution to any null dataset (U‘gm),Y' ). As a result,
(U)(X'Y') is equal in distribution to €(j)(U§m),Y’).
Since the distribution functions of the test and null
statistics are equal, they share the same cumulative
distribution function (CDF). We can then show that
the p-value computation in eq. (4) will yield a random
variable whose CDF is always greater than or equal to
the CDF of a uniform random variable: the definition
of stochastic dominance.

Asymptotic power of 1. The power of a CVS pro-
cedure is the probability that an important covariate
x; is selected. An important covariate x; is selected
only when its p-value is below a certain threshold. In-
tuitively then, the lower the p-value, the more likely
x; is to be selected.
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Proposition 2. If §moder and qnu” converge in prob-
ability to distributions q(y | x) and ¢(y | x—;) respec-
tively, the CONTRA p-value for an important covariate
x; will converge in probability to 0 in the limit of the
sample size, thus yielding a method with power 1.
The proof sketch is as follows. We know that ql(l{l)n
converges in probability to ¢(y | x—;) since X; is gen-
erated specifically to be independent of y | x_;. We
then analyze the difference of the two inner terms of
the p-value computation in eq. (4) by showing that
(9)(X!,Y") L0 (U™ Y') < 0. We show that an up-
per bound for this difference is the sum of two negative
KL terms, which will be strictly negative when the
null hypothesis is not true. The proof is shown in
appendix A.2.

Prop. 2 highlights a noteworthy property of CONTRA.
Despite using ql(ﬁl)x, which is designed intentionally to
exhibit higher loss than ¢uode1 On the test set, the
asymptotic guarantees of CONTRA are just as strong as
those of any HRT. While it is theoretically possible for
HRTs to enjoy higher power in small sample sizes, we
will soon show empirically that this difference in power
is negligible.

3.2 CONTRA prevents FDR inflation

We have thus far seen that CONTRA preserves the use-
ful attributes of HRTs: finite sample FDR control when
qgg)(xj | x_;) = q(x; | x_;) and an asymptotic power
of 1. In this section, we will discuss the primary advan-
tages of CONTRA over the HRT that make it a useful
empirical procedure: (a) its null p-values are higher
than those of the HRT when the swap property is vio-
lated, and (b) it is still computationally efficient with
respect to HRTSs.

Higher null p-values. To highlight the main pitfall
of HRTs in practice, consider the following scenario.
Let x;, and x; be two covariates that have high mutual
information, but only xj is in the Markov blanket of
the response y. In finite samples, Gmodel can exhibit
spurious dependence on x; (Efron, 2012). As a result,

if the estimated q(J) # q(x; | x_;), the loss of Gmoder 0N

(X', Y") will typically be less than its loss on (Ugm) Y'),
even when X; is not important toy. This is because the
performance of §oqe1 Will suffer when it is evaluated
on a distribution other than the one being trained, as
studied in the domain adaption literature (Crammer
et al., 2008; Daumeé III, 2009). In these situations, the
resulting p-values will be deflated, leading to a violation
of FDR control.

Contrarian models prevent deflated p-values. To under-
~(4)

stand how CONTRA does so, consider the loss of ¢, ;.

on each of (X',Y’) and (U; (m) y7). The mixture ¢

mix
contains q,(ﬁ])n, which is exphc1tly fit to data containing

samples from q£c), and thus performs better than ¢model

on (U(m) Y’). Additionally, the inclusion of qnu)n in
4(7)

i Will also result in worse performance than ¢model
on (X')Y"). Consequently, the indicator function in the
CONTRA p-value computation (4) will be 1 with greater
probability than the inner term of the HRT p-value (2)

across datasets (X')Y’ ,Ugm) ).
5(7)

mix OVEr gmodel i practice

A further advantage of using ¢

is observed when the supports of G and q(x; | x—5)
do not match. In such cases, the log-likelihood of ¢model

is not well-defined, while the log-likelihood of ¢7) is

well-defined. This relates to the theoretical analysis
of Barber et al. (2020), who show that the empirical
KL between ¢(x; | x_;) and ¢ bounds the FDR in the

case of knockoffs. See appendix D for a full discussion.

Computational efficiency. CONTRA requires an es-
timator Gmodel (y | x) for ¢(y | x) fit using training data
(X,Y). For each covariate x;, it also requires a con-

ditional model ql(;ﬁ (x; | x—;), and a single null model

qAr(i)n(y | X;,x_;) fit using (U;,Y), where Uj is a copy
of X, but with the jth column replaced with samples
from qég). This means there are 2d+1 models fit in
total.

To compute p-values using these models and a test set
(X’,Y’), M null datasets {X'(™}M_ must be sampled.
For each covariate, §mix must be evaluated on the test
sets to compute loss £U). This results in a total of 2d-M

model evaluations, as there are M null replications for
A(7)

i consists of both

each of the d covariates, and ¢

Gmodel and qnull' It is worthy to note, in addition, that
the computations required for the jth covariate are
independent of those required for all other covariates,
making CONTRA embarrassingly parallel.

In comparison to CONTRA, HRTs still need to fit d+1
models (Gmodel and {qﬁi’ ?:1), and also sample M null
datasets. However, since the HRT loss only involves
Gmodel, @ total of d-M model evaluations on the test

sets are required.

Thus, CONTRA is able to lessen the FDR compared
to HRTS when cjéﬁ) # q(x; | x_;) at the cost of only a
constant factor increase in the number of models fit and
evaluated. This makes CONTRA a compelling method
in practice.
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4 EXPERIMENTS

We analyze the performance of CONTRA on several
synthetic and real datasets and compare it to several
well-studied cvs baselines.

Baselines. We compare CONTRA to popular CRT-
based cvs methods. Recall that the §ode1-based CRT
statistic discussed by Liu and Janson (2020) requires
O(M) models to be fit for every covariate (Tansey et al.,
2018a). This makes it highly impractical to use with
model-based test statistics as discussed in this paper.
As a result, we use CRTs with the computationally
efficient marginal correlation statistic, which involves
a p-value computation (2) using

Ntest
LXY) =37 (%) (v ),
i=1
where X; and y are the sample averages of x; and y
respectively computed from the training set (X,Y).
We term this the CORR-CRT. For HRTs, we use two
different model-based statistics:

Ntest

Ly(XY) =) —loghmoda (y =y | x =xD)

i=1
1 Ntest ) o
Lo(X'Y) = o — > 1{y® #£3@)y
oS i=1
}A’(l) ~ ijodel(y | X = X(Z))

The statistic £1, termed the LL-HRT, is the negative
log-likelihood of the test set using Gmoder- The statistic
Lo, termed the 01-HRT, measures the misclassification
rate of §model On the test set when y is a discrete ran-
dom variable. We exclude comparisons to calibrated
HRTs, as they take many times as long to run. Fitting
at least 100 ¢.. models for every covariate, as sug-
gested by code from Tansey et al. (2018b), proved to
be significantly slower than other cvs methods for the
synthetic experiments, and computationally infeasible
for a high-dimensional genomics task.

4.1 Synthetic data experiments

Each experiment involving a synthetic dataset uses
the following setup. First, we generate the training
dataset (X,Y) of nrain samples and a held-out test set
(X')Y') of ngest samples from data distribution ¢(x,y).
Each sample of covariates x(¥ € R?, and the responses
y® € {0,1}.

Next, we create d conditional models: one qéf;) (x5 | x—j)
for each j € {1,...,d}. Since we need to be able to sam-

ple from each §ci’, we implement neural histogram
estimators (Miscouridou et al., 2018), which are flexi-

ble approximations to conditional densities. Each (jéf;)

is a two-layer fully connected networks with 32 units in
each layer, and a softmax output with K classes. To fit
G89) we first bin the jth column of X by value into K
bins, then fit the neural network to predict the bin of
Xg-i) given x(f; Each neural network is trained with the
cross-entropy loss using SGD. In our experiments, we
use K = 20. 18 of the bins in ng) are uniformly spaced
between the 5th and 95th quantiles of each x;. The
remaining two bins represent any samples below the
5th quantile, or above the 95th quantile. To generate
samples from (jéz), we use the median value of training
samples in the bin that corresponds to the network’s
prediction given Xg These models are used to gen-
erate M+1 null datasets X and {X’(m)}%zl, where
X is generated conditional on X, and each X/(m) s
generated conditional on X’. In each of our synthetic
experiments, we set M to 100, unless otherwise speci-
fied.

For each of §model and Gnui, we use random forests with
100 trees fit to the training set. In general, we suggest
using the model, parametric or nonparametric, that
performs best on a validation split of (X,Y) for high
power.

Finally, we compute p-values for each of CONTRA,
CORR-CRT, LL-HRT, and 01-HRT. A p-value threshold is
obtained using the Benjamini and Hochberg (1995) pro-
cedure to select important covariates at a pre-specified
FDR. We run each experiment on a 16-core CPU with
64GB of memory.

Benchmark datasets. Our tests on four different
synthetic datasets highlight differences between each
cvs approach. Datasets in this section consists of N =
2000 samples, and d = 20 covariates, unless otherwise
specified. We use 70% of the data as a training set to
fit each géi), Gmodel, and dr(i)u- We use the remaining
30% to compute p-values.

[orng, orng-c|: As a first example, we test the case
where y is a nonlinear function of x, we use the orng
and orng-c datasets (Chen et al., 2018). The data is
generated in the following manner:

x ~ N(0,X)
. 14 2
y = {1 if eXp(ijlxj €> > 0.5

0 otherwise

where ¥ is the 20-dimensional identity in the case of
orng. For orng-c, we set all off-diagonals to 0.2, and
set diagonal values to 1. The variable £ controls the
number of important covariates, which we set to 4 for
both of these experiments.

[xor, xor-c]: The choice of test statistic can impact
power when covariates on their own are not informative
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Dataset orng orng-c xor xor-c
CONTRA 0.95 1.00 0.97 0.95
01-HrRT 0.94 0.94 0.95 0.92
LL-HRT 0.95 0.95 0.95 0.93
CORR-CRT  0.22 0.35 0.45 0.38
Table 1: CoNTRA achieves highest FCcAUC ratios

on synthetic data benchmarks. (Scores closer to 1 are
better). While both CONTRA and the HRTs achieve similar
power, the HRTs achieve worse FDP, yielding lower FCAUC
ratios.

but together provide information. To explore this, we
design the xor and xor-c datasets. For xor and xor-c,
we first sample x in the same way as orng and orng-c
respectively. An affine transformation is then applied
to each sample, and y is generated in the following
manner:

s1,82 ~ 4-Rademacher(0.5)

(x1,X2) < (x1+51,%2+52)

o
Y11

Only the first two covariates x; and xo are in the
Markov blanket of y.

if s189 <0
if 5189 > 0

Selection results. For
each synthetic benchmark
and cvs method, we run
100 experiments as de-
scribed earlier to obtain p-
values for each covariate.
In order to concisely sum-
marize the performance
of each cvs method, we
compute the FCAuC (Yu,
2012), which compute the
area under a receiver oper-
ating characteristic (ROC)
curve, but only up to a re-
alistic nominal ¥DR. For
example, practitioners are unlikely to be interested in
controlling FDR at rates greater than 50%. To compute
an FCAUC score, we first measure the true positive rate
(TPR) (also known as power) and false positive rate
(FPR) at every p-value threshold to compute a ROC
curve. We then identify a nominal p-value threshold 7
that corresponds to an FDR of 10% using the Benjamini
and Hochberg (1995) procedure. Using the ROC curve,
we compute two quantities: (A) the area under this
curve from 0 to FPR(7) (the FcAUC), and (B) the area
of the rectangle defined by (0,0) and (FPR(7),1), where
FPR(7) is the FPR corresponding to threshold 7 (see
fig. 1 for illustration). The score we assign to each

T=0.
TAAUROC -+

True positive rate

False positive rate

Figure 1: FDRr-controlled
area under the ROC curve
(Fcauc) ratio: ratio of dark
blue area to all blue areas.

cvs method is the ratio of (A) to (B): the FCAUC ra-
tio. Intuitively, the closer this score is to 1, the higher
the performance of a cvs method. Table 1 shows
the average of this score for every cvs method and
dataset across each of the 100 runs. Standard errors
are omitted from table 1 as they are each fewer than
four decimal places.

CONTRA achieves a higher FCAUC ratio than competing
baselines. At a nominal FDR rate of 10%, the HRT
methods tend to exhibit false discovery proportions
(FDPs)! of 15% or more, while CONTRA maintains the
FDP at or below 10%. It is worth noting that this
difference in FDP is the main driver of CONTRA’s higher
performance in table 1. Both the HRT methods achieve
power equal to that of CONTRA.

We further observe that the CORR-CRT performs no-
ticeably worse than the other methods. This is likely
due to its inability to model interactions between co-
variates when computing the test statistic, resulting in
low power.

Table 1 shows promising results, as it suggests that
despite using contrarian model q}&i?w CONTRA suffers
no loss in power compared to the baselines on these
four benchmarks. To understand the power lost due
to contrarian models, we repeat the orng experiment
at different sample sizes. These results are reported in
appendix C. Having observed that the main difference
between CONTRA and the baselines is primarily the con-
trol of FDR, we next explore questions that help further
understand the useful FDR properties of CONTRA.

How does the choice

10 CONTRA of cvs method affect
” 01-HRT p-value calibration?
@08 LL-HRT .
= CORR-CRT The effectiveness of Ccvs
o6 & methods to control the
§0.4 : FDR is greatly reduced
3 / when null p-values are
5oz .

£ not super-uniform Ben-
0 f jamini and Hochberg

0 02 04 06 08 1.0 Q0K - 1€ 1mMi <
Thoorstical quantiss (lJJo)., .B(,n,](umm and
Yekutieli (2001). For FDR
Figure 2: CONTRA ex- to be controlled effec-

hibits null p-values that

! tively, null p-values must
are well calibrated.

stochastically dominate a
Uniform(0,1) random variable. In this experiment, we
specifically look at how well p-values produced by each
cvs method satisfy this requirement for FDR control.
We again use orng-c, but with one modification: we
increase the number of null covariates from 16 to 100.
We then perform a Kolmogorov-Smirnov hypothesis
test using the set of null p-values from each cvs

! Another term for empirical FDR.
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method. This quantifies how uniform the null p-values
are.

Figure 2 shows a quantile-quantile plot of the null p-
values of each method. The closer the points match the
dotted black diagonal, the closer the null p-values are
to Uniform(0, 1). We first notice that both CONTRA
and CORR-CRT are well calibrated with Kolmogorov-
Smirnov p-values of 0.183 and 0.526 respectively. How-
ever, LL-HRT and 01-HRT yield Kolmogorov-Smirnov
p-values of 0.009 and 0.005 respectively. At a type-1
error threshold of 1%, both HRTs appear to yield sig-
nificantly non-uniform p-values, suggesting that HRT
procedures may not control the FDR well using standard
multiple correction techniques. Upon closer inspection,
we observe this issue as ¢model tends to exhibit depen-
dence on null covariates, and each qﬂgﬂ) is not exactly
equal to the corresponding ¢(x; | x—;). As a result,
HRT test statistics tend to overestimate the importance
of the null covariates, and underestimate null p-values.
This is seen in fig. 2, as the observed quantiles are below
the theoretical quantiles, highlighting the deflationary
behavior of the null p-values. Using contrarian mod-
els protects against this behavior, as does not using a
model at all in the case of CORR-CRT.

What if I model (¢ in-

? i -
10 CONTRA correctly? In this sec
" 01-HRT tion, we investigate the ef-
208 LL-HRT .
= CORR-CRT fect of modeling the null
®© . .
306 variables incorrectly on
el
804 null p-values. To gen-
2 erate covariates, we use
So2 .
a mixture of autoregres-
0 sive Gaussians. This pro-
0 02 04 06 08 1.0 H 3
i more challengin
Theoretical quantiles vides a more challe g g
benchmark as each covari-
Figure 3: Despite null ate is multi-modal and
variable misspecifica- o]y correlated with sev-

tion, CONTRA maintains

eral others, encouragin
FDR control. ’ gimng

Gmodel to learn spurious de-
pendencies.

We sample x ~ ZkK:lﬂ'kN(Mk'l,Zk), where each ¥
is a 104-dimensional covariance matrix whose (7,7)th
entry is p‘,:_J ‘, and 1 is a 104-dimensional 1’s vector.
We set K = 3, and (p1,p2,p3) = (0.6,0.4,0.2). Cluster
centers are set to (pu1,pu2,u3) = (0,5,10), and mixture
proportions are set to (m1,m2,7m3) = (0.4,0.2,0.4). We
model all (jéf;) jointly with a multivariate normal (MVN)
distribution. For visualization, we show two adjacent
dimensions of the data and the maximum likelihood

estimation (MLE) solution for the MVN in fig. 4.

We sample y in the same way as orng, using only the
first four covariates as non-null. For this experiment,

Figure 4: Data distribution: mixture of correlated Gaus-
sians (left); Model distribution: MLE solution for multivari-
ate Gaussian fit to data (right). Covariates x; and x2 are
visualized.

we set the number of null resamples M to 200.

We run each ¢vs method on the data, and perform
Kolmogorov-Smirnov hypothesis tests on the null p-
values. We do not discuss the power of each method
in this section, as all cvS methods other than CORR-
CRT exhibit power 1 for any nominal FDR threshold
above 5%. Figure 3 visualizes the null p-values for
each cvs method. We observe that CONTRA and
CORR-CRT both produce null p-values that appear
uniform (Kolmogorov-Smirnov p-values of 0.684 and
0.399 respectively). The LL-HRT and 01-HRT produce
p-values that appear to be stochastically dominated by
a Uniform(0,1) random variable (Kolmogorov-Smirnov
p-values of 1.059x 1075 and 9.342x107° respectively).

We further notice that in the range [0,0.15] on the -
axis, the HRT methods yield several p-values of 1/201,
the minimum possible given our setup. Upon closer
investigation, we report the following observations that
explain why this p-value deflation occurs. First, ¢model
is found to exhibit spurious dependence on null covari-
ates that correlate highly with one of {x;}?_ ;. Second,
the mixture distribution has low support on covariates
in the neighborhood around (5,5), while the cjgﬁ) mod-
els place considerable mass around this point. As a
result, ¢model is evaluated on data out of its support,
and consistently exhibits higher losses on the null data
(Ugm) ,Y') than on the test set (X', Y’), even when com-
puting null p-values. Thus, the null p-values tend to
be stochastically dominated by a Uniform(0,1) random
variable and lead to the inflation of FDR.

4.2 Celiac disease experiment

Abnormalities in the genome of an individual have been
found to associate with Celiac disease (Dubois et al.,
2010). To understand how well cvs methods are able
to replicate the results of biological studies in a purely
computational procedure, we study a large genetics
dataset. We apply each cvs method to a large (cases =
3.7K, controls = 8.2K) Celiac disease dataset (Dubois
et al., 2010).
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# Selected Precision Recall Time (s)
CONTRA 12 66.67% 20% 9207
01-HRT 15 53.33% 20% 8871
LL-HRT 14 57.14% 20% 8912
CORR-CRT 118 5.08% 15% 1512

Table 2: CoNTRA achieves power on par with state-
of-the-art cvs methods while achieving higher pre-
cision. Here we compare cvs methods on their ability to
identify biologically relevant snps for Celiac disease.

In our dataset, the covariates x; € {0,1,2} represent
single nucleotide polymorphisms (SNPs), which measure
the genetic variance for each individual with respect
to a reference genome. The response y is a binary
label indicating the presence of Celiac disease. We
preprocess the data as suggested by Bush and Moore
(2012). First, the set of SNPs is preprocessed using
linkage-disequilibrium pruning (Calus and Vandenplas,
2018), a commonly used procedure in genomics to filter
out redundant SNPs using pairwise correlation. The
total number of SNPs after filtering is 1759. Then, ge-
netic principal components are added as covariates? to
Gmodel (and gnun) to correct for population biases (Price
et al., 2006). To model §c., we use the same approach
as Candes et al. (2018), which uses ¢ models that
condition only on a subset of SNPs in a neighborhood
around x;, rather than all other SNPs. For exact imple-
mentation details, we refer the reader to section 7 of
Candes et al. (2018). Finally, we use Lq-penalized logis-
tic regression for ¢model and Guuy, and set the number
of null replicates M to 500.

Selection results. After running each Ccvs proce-
dure on the data, we select important SNPs using a 5%
FDR threshold. Using the list of SNPs returned by each
method, we compare each one to the genetics literature.
Specifically, we determine which SNPs have been shown
to map to immunological pathways responsible for the
development of Celiac disease Dubois et al. (2010); Sol-
lid (2002); Adamovic et al. (2008); Hunt et al. (2008).
If an identified SNP has been mentioned by one of these
studies, we deem it important.

Table 2 shows that while CONTRA and the HRTs achieve
the same recall, CONTRA achieves a higher precision
(which is 1 - FDR). CORR-CRT fails to account for
dependence between SNPs and tends to overestimate
the variance of a single covariate, which leads to many
false discoveries.

Finally, we time CONTRA and the HRTs and note that
despite the high dimensionality of the problem and
large M, CONTRA is only 5 minutes slower due to the
fitting of Gnuu models (shown in table 2).

2These covariates are not tested or modeled using Gec.-

5 DISCUSSION

Cvs procedures like the HRT are popular for their ability
to control the FDR. However, they can deflate p-values
when the covariate distribution is unknown, thus vi-
olating FDR control. CONTRA is designed specifically
for situations where the covariate distribution must be
estimated from data. CONTRA is able to control FDR in
finite samples, and remarkably, achieves power 1 in the
limit of data despite the use of contrarian models that
yield more conservative p-values than HRTs. CONTRA
exhibits state-of-the-art power on several synthetic and
real benchmarks, while maintaining FDR at levels closer
to the nominal rate than competing baselines.
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A PROOFS

A.1 Proof of prop. 1

We show that CONTRA preserves the finite-sample control of the FDR under the same conditions that an HRT would.
In this setting, qu) (x5 | x—j) = q(x;j | x_j). Let Gmode1(y | x) be fit using training dataset (X,Y). Let (X',Y")
be a test set. CONTRA generates M+1 null datasets: {X'™}M_ and X. The (i,j)th element of each X'(")

is drawn from §ec(X; | x; = x(i))7 where x() is the ith sample of X’. The dataset X is generated the same way,
but conditioning on samples from training set X instead. The null model for the jth covariate (jr(lju)n(y | X;,%—;)

is then fit using (X,Y), but with the jth column of X swapped out for the jth column of X. The distribution
~(7) (4)

G (y | x), is an equal mixture of Gmodel and ;-

Recall that the jth p-value for CONTRA is

M
1 ; .
= @G (x' v > p@)glm v
Dj T <1+ E_l]l{f (XYY >¢ (UJ Y )})

(NXY) = Y ~logdgh (y =y | x =x1),
i=1

and U;m) is a copy of X', but with the jth column swapped with that of X/(M) To show that CONTRA preserves
finite-sample control of the FDR, we want to show that its null p-values are uniformly distributed.

Proof. First, we will show that the datasets X’ and Ugm) are equal in distributions. Under the null, x; is
independent of y given x_;. Using (Candes et al., 2018), this means the swap property mentioned earlier in
eq. (3) is satisfied:

d ~
[xjx 5] = [x5.% ]
Since the samples in X’ and U;m) are iid, the datasets X’ and U§m> will also be equal in distribution.

Recall that the components of (jl(gi)x, Gmodel and (jfi)n are fit using the training set, and are therefore independent
of (X’,Y’). Therefore, the statistics £)(X’,Y") and E(j)(U;m),Y’) are also equal in distribution.

Next, we define F\/ 2st (t) to be the empirical CDF of £0) (X’ Y"’) where e is the number of samples in the test

set. Note that the equality in distribution between U§m> and X’ implies that E(j)(Uém),Y’ ) has the same CDF.
We also define F,,; 1 (t) =inf{u e R: P

Ntest test

(u) > t}: the generalized inverse CDF.

Using the empirical CDF, we can represent the null p-values in a more convenient form. In the limit of M, the
number of null datasets sampled, the jth CONTRA p-value is simply:

pj = ]}D{g(j)(xl7yl) > f(j)(Ugm),Y’)} = Fr(zjt)t (g(j)(U§M)7y/))'
With this representation of the p-value, we see that

P{p; < a} =P{FY) ((D(UM.Y")) < a}

Ntest

=P{O(UMY) < FL (a)}

Ntest
= FT(lzzbt (Fn_tist (0[)) = .
In the first line, we use the alternative representation of the null p-value. In the second line, we apply the
generalized inverse CDF to both sides. Finally, we use the definition of the ¢DF. Thus, the CDF of the null p-value
is equal to that of a uniform random variable. In finite samples, adding 1 to the sum of M indicator functions,
then dividing by (M+1) ensures that p; will stochastically dominate a Uniform(0,1) random variable since the
minimum p-value is then 1/(M~+1). O
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A.2 Proof of prop. 2

For the setup of the problem, see appendix A.1. Let the model distributions ¢noqe1 and qfi)n converge in probability
to distributions ¢(y | x) and ¢(y | x_;) respectively. We will show that the CONTRA p-values corresponding to
non-null covariates will converge in probability to 0 in the limit of ntes, the sample size of the test set. For
simplicity, we assume that all random variables are continuous, but the same reasoning holds for discrete random
variables.

Proof. Let (X,Y) be a training set consisting of nyaim samples (x(?),y(). Let X be a set of null data where the

jth coordinate of its ith sample, iy), is sampled from (jg)(xj | X_j = x(_zz) Let (U;,Y) be identical to (X,Y),

but with the jth coordinate swapped out for the jth coordinate of X. Now let ¢model(y | x) be fit using (X,Y),
and ¢Y) be fit using (U;,Y).

null

To formalize the assumptions in prop. 2, we use the average KL between each population distribution and its
respective model distribution:

. q(y | x)
lim E,xE;yxlog——"F—F— =0
Ttrain —> 00 9() Fa(ylx) ngodel(y | X)
. q(y | x—) ’
n l_lrgooEq(x—j)chc(xj‘x—j)Eq(y‘x_j)log NG — =0 Vi e {1,...,d}.
train qnull(y ‘ X]7X_])

(4)
null’

Recall that Q(j) is fit using (U;,Y), where the jth covariate is designed to have no dependence on y. So ¢

null
which has no dependence on x;, converges to ¢(y | x_;) in KL.

Now, we use a result from Tsybakov (2008) that helps bound the squared Hellinger distance between two
distributions using the KL between them:

J (Vi T3 Vimoaaly 1)) dy < KL(a(y | %) | oy | %)

2
/ <\/q(y %)~ iy | ij,x_n) dy < KL(g(y | %) | 49)(y | %5 %))

This means that the log densities of the model and population distributions must be equal almost surely when
(x,y) ~ q(x)q(y | x) and X; ~ q(x; | x—;):

lim log 201X g
Ntrain —> 00 QInodel(y | X)
i IOgM —0.

(7)

Merain =200 qnull(y | i.Y’X_])

Otherwise, the Hellinger distance will be positive, implying a positive KL between the model and population
distributions.

Now, let (X',Y’) be a test set of covariates consisting of nies; samples. Let X/(™) be a null set sampled in the
same way as X, but conditioned on samples from X', instead of X. Let Ugm) be constructed the same way as

Uj;, but using X’ and X'(m) instead. In the limit of Tirain,Ntest, W want to show that
i !~ ) (m) ~r7
ON(XY') < O (U™ Y.

If this inequality is true as (Nirain,Ntest) — (00,00), then the indicator inside the p-value computation is always 0,
leading to a p-value of 0.

Recall in the limit of ngest, ¢ (X/,Y’) is equal to Eyx y)10gdmix(y | X). A similar limit exists for E(j)(U§m),Y’).
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Using this fact, we can expand £U) (X’ Y"):

e ADXY) = <y l0g0.5(a(y | 0)+a(y | x-5)
= _]Eq(y,x,j)]Eq(xj-|y,x,j)1og0'5(q(y | X)"—Q(y | x—j))

q(y [ x—j)a(x; | x—;,y)
= —Eyyx ) Eqlx;lyx_; 10g0.5( +q(y | x—5)
a(y x—5) x5y, x—5) q(x; [ x_;) J

q(x; | x_4,y)
= —Eqty.x_ ) Eax;ly.x_;)1080.54(y | Xj)(J AR 1)

(x5 | x—5.y)
= —Eyyx \Eoxily.x_logg(y | x—; +log0.5(+1
a(yx—;)Fa(x;ly x—;) (¥ %) q(x; | x—5)
a(x; | x—5,y)
— _F N _)-E AEg(x. )log0.5| ——————-+1.
alyx-1084(Y | X—5) —Eq(y x_ ) Eq(x, y x_;)1080 5( q(x; | x—j) N

We now use the fact that the geometric mean is less than the arithmetic mean to upper bound £U) (X', Y"):

q(x5 | x_5,y)
q(x; [ x—j)
q(x5 | x—j,y)
q(x; | x—;)

= —Eyyx_nlogq(y | x—j)=0.5Eqy x_ ) KL(q(x; | x—5,¥) | g(x5 | x_5)).

(DX Y') < —Eyy e ploga(y | %) —Eory s Eqi, lyx_,) 108

= —Eqyx_,loga(y | x—;)=0.5Eqyx ;) Eqex;lyx_;)l08

Using similar arithmetic, we now expand ¢U )(U§m),Y’ ):

(ntrainfntest)—?(oo,oo)e(j) (U.gm)’Yl) = _EQ(yvx*j)EQ(x‘i‘x*j)10g0'5(q(y ‘ x)+q(y | Xi‘]))
q(x; [ x—;y)
= _EQ(nyfj)EQ(xj‘x—j)logq(y | Xj)+10g0~5<q(;(j|xij)+1)

0.5¢(x; | x—;,y)+0.5¢(x; | Xj)>

= —Eqyx_nEqex;x_ploga(y | X—j)+10g<

q(x; | x—5)
0.5¢(x; | x—;,¥)+0.5q(x; | x—;)
= —Eqiyvx_10ge(y | x—;)—Egixiix_ log<
a(y.x—j) (yx—j) q(x;]x—;) q(x; [ x;)

= —Eyyx_nloga(y | x—;)+KL(a(x; | x—;) [| 0.5¢(x; | x—;,y)+0.5¢(x; [ x—;)).
Putting it all together:

lim (DU YY)~ tD(XY) > By loga(y | X-)+0.5Eqyn KL(g(x; | x-5y) || a(x; [ x-;)

(ntrainantcst)*)(oovoo)
—(Eq(y x_loga(y | x—;)—KL(g(x; | x—;) || 0.5¢(x; | x—;,y)+0.5¢(x; | x_;)))
=0.5Eyyx_,)KL(a(x; | x—;,¥) | a(x; | x—))
+KL(q(x; | x—;) || 0.5¢(x; | x—,y)+0.5q(x; [ x—;))
> 0.

The key takeaway here is that the difference between Z(j)(U§-m)7Y’ ) and ¢U)(X’Y’) is lower bounded by the
sum of two Kullback—Leibler divergence (KL) terms, both of which are strictly positive in the case of a non-null
covariate. Thus, we have shown that in the limit of nest, p-values produced by CONTRA will be 0 in distribution.
This also implies the p-values converge to 0 in probability since 0 is a constant. O

B FDR AND BENJAMINI-HOCHBERG

In this section, we review multiple testing correction procedures, focusing specifically on the most popular one:
the Benjamini-Hochberg (Benjamini and Hochberg, 1995) procedure.
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Multiple testing motivation. For a single statistical hypothesis, if the p-value yielded by the test is below
some confidence level «, then the null hypothesis is rejected resulting in a “discovery.” The p-value being below «
does not guarantee that the null hypothesis is not true. If the null is true, then with probability at most «, the
null will be erroneously rejected.

If there are d such hypotheses being tested with the same data, and the null is true for each one, then we should
expect to see d-a false discoveries. Thus, the family-wise error rate (FWER) — the probability of making one or
more false discoveries — increases with dimension. To control the FWER, one potential solution is to divide « by d,
but in high dimensions, an extremely small p-value is required to make a discovery, yielding low power.

For a less conservative notion of false discovery control, Benjamini and Hochberg (1995) introduced the FDR:
the ratio of false discoveries to total discoveries. Rather than seeking to bound the probability of making even a
single error, Benjamini and Hochberg (1995) suggest that practitioners should aim to control the rate of false
discoveries only in the set of rejected hypotheses.

Benjamini-Hochberg procedure. Given a set of d p-values {p; }?:1 and a nominal FDR rate 7, the Benjamini-
Hochberg procedure seeks to identify a threshold for p-values, g, such that the proportion of null hypotheses
rejected that have p-value less than ¢ will not exceed 7. The procedure is as follows. First, assign a rank
rj € {1,...,d} to each p-value in ascending order. Then, compute a critical value for each p;:

T‘j-T
d

Cj =

Next, identify the largest p; such that for all py < p;, pr < ¢ and reject their corresponding hypotheses.

This procedure controls the FDR for any set of p-values where the CDF of each p-value dominates the CDF of a
Uniform(0,1) random variable. We refer the reader to Benjamini and Hochberg (1995) for all proofs.

C ADDITIONAL FIGURES

To understand how much power is lost due to the use
of contrarian models, we repeat the orng experiment,
but vary the sample size. We only compare CONTRA to
each of the HRTs, as the power of CORR-CRT is much
lower even at large sample sizes, as discussed in the
experiments section. Figure 5 plots the average FCAUC
for each method over all 100 replicates as a function of
training sample size. The test set is equal to the training
set in size. Error bars are omitted due to very small

LL-HRT standard error.

0.6 1 We note there is a noticeable gap in FCAUC by CONTRA
01-HRT at low sample sizes (< 200), but minimal difference oth-
erwise. The loss in power due to contrarian models is
CONTRA minimized as sample size increases. At just 500 samples,
the power of CONTRA is almost equal to that of the HRTs.

FCAUC

0 500 1000

. D BOUNDING the FDR with KL
Sample size e rhRw

Background. We first provide a brief summary of
knockoffs for readers unfamiliar with the concept. For
a more in-depth discussion of the advantages and disad-
vantages of knockoffs, we refer the reader to Candes et al.
(2018).

Figure 5: The loss in power due to the use of
contarian models is reduced as sample size in-
creases. Apart from very low sample sizes, CONTRA
achieves power on par with both HRTs.

Knockoffs can be thought of as a method to compute 1-bit CRT p-values (Katsevich and Ramdas, 2020). Rather
than performing a full p-value computation as shown in eq. (2), they compute a single test statistic W; for each
covariate. Let Z; be any function of data (X,Y), X be a set of null variables sampled as in the case of a CRT,
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and Uj; be identical to X, but with the jth column swapped with that of X. The knockoff statistic W; can be
defined as:

W; =2;(X,Y)-Z;(U;,Y).

The knockoff filter selects important covariates at a nominal rate ¢ using their respective statistics W; by
constructing an estimate of the FDR:

Si{jwjzto}

(AL

tO:min{t>0: - <q
{7« W; >t}

Requirements for FDR. The knockoff filter requires that the null variables X are exact. That is, the jth
column of the ith sample igl) must be drawn from the population distribution ¢(x; | x_; = x(_l)-), where x(_l)- is
from the ith sample of X. This is required to ensure that under the null hypothesis, Z;(X,Y) and Z;(U;,Y) will
have the same distribution, meaning W; is symmetric around 0. This property of W; is termed the “flip-sign”
property. Candes et al. (2018) show that when W, satisfies the flip-sign property, the knockoff filter can control

the FDR.

Issues with knockoffs in practice. Barber et al. (2020) acknowledge that practitioners seldom have access
to the population distribution ¢(x; | x_;), and must resort to estimators (j((:ﬂ)(xj | x_;). If the population and
estimated distributions are not the same, the knockoff filter may inflate the FDR beyond nominal levels. The
authors show that the level to which the knockoff filter inflates the FDR is bounded by the maximum empirical KL

between each q£Z>(xj | x_;) and ¢(x; | x—;). They do so by relating the empirical KL to the flip-sign property. Let

E; be the empirical KL between qéﬁ) (x; | x—;) and g(x; | x—;). Then for any covariate x; whose null hypothesis
is true,

P(W; > 0,E; <e||W;[,W_;)
P(W; <0 [ [W;|,W_;)

< exp(e) Ve > 0. (5)

We refer the reader to Barber et al. (2020) for a detailed derivation and discussion of this equation. The main
takeaway is that as F/; approaches 0, the probability that W; is positive is equal to the probability that it is
negative, thus satisfying the flip-sign property required to control the FDR.

D.1 Relation of flip-sign result to CRTs

We can show how the flip-sign result of Barber et al. (2020) relates to CRTs by using the fact that W; being
symmetric around 0 implies that Z;(X,Y) and Z;(U;,Y) have the same distribution. A p-value using Z;(X,Y)
(

and Z;(U;,Y) by performing the following computation. Letting each Ujm) be drawn independently the same

way as Uj,

1

M
Pi= 3 <1+ZH(ZJ(X»Y) > Zj(Ug'm)7Y))>'

Note that for the choice of Z; = £, the empirical risk of a model, this p-value computation is exactly the p-value
computation from eq. (2). Recall our proof of uniform null p-values for CONTRA from prop. 1. If Z;(X,Y) and
Z;(U;,Y) are equal in distribution, p; will be uniform under the null. Thus, the closer W; is to satisfying the
flip-sign property, the closer null p-values are to being uniformly distributed.

If the empirical KL terms E; are greater than 0, then the left hand side of eq. (5) will not be bounded, meaning
W; could have a positive or negative bias. As we discuss in the main text, when using the empirical risk of a
model as Z;, the bias of W; tends to be negative, as the models exhibit higher losses on out-of-distribution data.
A negative bias leads to deflated p-values, and ultimately inflated FDR.
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Support mismatch between ¢(x; | x_;) and ¢). When q(x; | x—;) and ¢ have mismatched supports,

E; used in the Barber et al. (2020) proof above can be oo if ¢4 7 puts no mass where g(x; | x_;) puts non-zero
mass. This means that the bound in eq. (5) can be vacuous and lead to highly non-uniform p—Values We will
illustrate an example where HRTs realize this bound and yield low p-values even in the case of null covariates.

Consider the case of HRTs that use the most powerful test statistic, as shown by Katsevich and Ramdas
(2020): the log-likelihood of Gmodel(y | X). Let x; be a null covariate. The model §moder is fit to the data
(X,Y) and its log-likelihood is well-defined; 10gGmodel(y = ¥y | x = x() will be in (—00,0] if x) ~ ¢(x) and
y(@ ~ q(y | x = X(i)). Assume that there is high dependence between xJ and some non-null Xg, 80 Gmodel €xhibits

spurious dependence on x;. If gmodel is evaluated on a sample ( ( ) y(l)) where ig) ~ QC(é) is not in the

@ )) then Gmodel(y = y (@ | x; = x( ) = X( )) can be arbitrarily small. This means
(@)

that £(U(-m Y) can be arbitrarily large if even a single sample (x; xW @ y(’)) € U( ™) contains coordinate X'

j
that is out of support for ¢(x; | x_; = x!! )) The more likely it is to draw a sample from ¢ that results in such

~(5)

support of g(x; | x_; =x

an E(U(m) ,Y), the more like the p-value will be 0. A realistic example of such cases is when §c¢
single mode of ¢(x; | x_;). This leads to null features being selected, inflating the FDR.

captures only a

~(5)

ix> Which consists of

Contrast this scenario with CONTRA instead of an HRT. Recall that the log-likelihood of ¢
+(7)

null

an equal mixture of ¢/, and ¢model, is always well-defined. Then £(X,Y) will be no greater than

Ntest

ZIOg Qmodel(y y( 2 ‘ X = X( ))

i=1

and L(U; (m) ,Y) will be no less than

Zlog L0y =y % == % = x).

This is because even if Gmodael(y =y | x; = iy)’xfj = (1))

will not be 0 as q(j ) s fit to samples from qéf;). This means that the log-probability of the mixture will be in

(—00,0] and is therefore well-defined.

— 0, the term ¢/ (y = y@ | x; = %7 x_; =x)

A consequence of the behavior of HRTs and CONTRA in these scenarios is that HRTs can arbitrarily deflate p-values.
CONTRA alleviates this issue as it restricts the amount p-values can be deflated. As we show in our experiments,
this leads to better FDR in practice.
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