
Sample Elicitation

Supplementary Materials

8 Auxiliary Results via Deep Neural Networks

8.1 Estimation via Deep Neural Networks

Since the most general estimator D\
f (q‖p) proposed in (4.2) requires solving an optimization problem over a

function space, which is usually intractable, we introduce an estimator of the f -divergence Df (q‖p) using the
family of deep neural networks in this section. We now define the family of deep neural networks as follows.

Definition 8.1. Given a vector k = (k0, . . . , kL+1) ∈ NL+2, where k0 = d and kL+1 = 1, the family of deep
neural networks is defined as

Φ(L, k) = {ϕ(x;W, v) = WL+1σvL · · ·W2σv1
W1x :

Wj ∈ Rkj×kj−1 , vj ∈ Rkj}.

where σv(x) = max{0, x− v} is the ReLU activation function.

To avoid overfitting, the sparsity of the deep neural networks is a typical assumption in deep learning literature.
In practice, such a sparsity property is achieved through certain techniques, e.g., dropout (Srivastava et al., 2014),
or certain network architecture, e.g., convolutional neural network (Krizhevsky et al., 2012). We now define the
family of sparse neural networks as follows,

ΦM (L, k, s) =
{
ϕ(x;W, v) ∈ Φ(L, d) : ‖ϕ‖∞ ≤M, ‖Wj‖∞ ≤ 1 for j ∈ [L+ 1],

‖vj‖∞ ≤ 1 for j ∈ [L],

L+1∑
j=1

‖Wj‖0 +

L∑
j=1

‖vj‖0 ≤ s
}
, (8.1)

where s is the sparsity. In contrast, another approach to avoid overfitting in deep learning literature is to control
the norm of parameters (Li et al., 2018). See Section §8.4 for details.

Consider the following estimators via deep neural networks,

t̂(·; p, q) = argmin
t∈ΦM (L,k,s)

Ex∼Pn [f†(t(x))]− Ex∼Qn [t(x)],

D̂f (q‖p) = Ex∼Qn [t̂(x; p, q)]− Ex∼Pn [f†(t̂(x; p, q))]. (8.2)

The following theorem characterizes the statistical rate of convergence of the estimator proposed in (8.2).

Theorem 8.2. Let L = O(log n), s = O(N log n), and k = (d, d,O(dN),O(dN), . . . ,O(dN), 1) in (8.1),
where N = nd/(2β+d). Under Assumptions 3.1, 3.3, and 3.4, if d < 2β, then with probability at least
1− exp{−nd/(2β+d) log5 n}, we have

|D̂f (q‖p)−Df (q‖p)| . n−β/(2β+d) log7/2 n.

We defer the proof of the theorem in Section §10.4. By Theorem 8.2, the estimators in (8.2) achieve the optimal
nonparametric rate of convergence (Stone, 1982) up to a logarithmic term. We can see that by setting γΦ = d/β
in Theorem 4.3, we recover the result in Theorem 8.2. By (3.2) and Theorem 8.2, we have

δ(n) = 1− exp{−nd/(2β+d) log5 n}, ε(n) = c · n−β/(2β+d) log7/2 n,

where c is a positive absolute constant.
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8.2 Reconstruction via Deep Neural Networks

To utilize the estimator D̂f (q‖p) proposed via deep neural networks in Section §8.1, we propose the following
estimator,

q̂ = argmin
q∈Q

D̂f (q‖p), (8.3)

where D̂f (q‖p) is given in (8.2).

We impose the following assumption on the covering number of the probability density function space Q.
Assumption 8.3. We have N2(δ,Q) = O(exp{δ−d/β}).

The following theorem characterizes the error bound of estimating q∗ by q̂.
Theorem 8.4. Under the same assumptions in Theorem 8.2, further if Assumption 8.3 holds, for sufficiently
large sample size n, with probability at least 1− 1/n, we have

Df (q̂‖p) . n−
β

2β+d · log7 n+ min
q̃∈Q

Df (q̃‖p).

The proof of Theorem 8.4 is deferred in Section §10.6. We can see that by setting γΦ = d/β in Theorem 8.4, we
recover the result in Theorem 5.2.

8.3 Auxiliary Results on Sparsity Control

In this section, we provide some auxiliary results on (8.2). We first state an oracle inequality showing the rate of
convergence of t̂(x; p, q).
Theorem 8.5. Given 0 < ε < 1, for any sample size n satisfies that n & [γ + γ−1 log(1/ε)]2, under Assumptions
3.1, 3.3, and 3.4, it holds that

‖t̂− t∗‖L2(P) . min
t̃∈ΦM (L,k,s)

‖t̃− t∗‖L2(P) + γn−1/2 log n+ n−1/2[
√

log(1/ε) + γ−1 log(1/ε)]

with probability at least 1− ε · exp(−γ2). Here γ = s1/2 log(V 2L) and V =
∏L+1
j=0 (kj + 1).

We defer the proof of to Section §10.7.

As a by-product, note that t∗(x; p, q) = f ′(θ∗(x; p, q)) = f ′(q(x)/p(x)), based on the error bound established in
Theorem 8.5, we obtain the following result.
Corollary 8.6. Given 0 < ε < 1, for the sample size n & [γ + γ−1 log(1/ε)]2, under Assumptions 3.1, 3.3, and
3.4, it holds with probability at least 1− ε · exp(−γ2) that

‖θ̂ − θ∗‖L2(P) . min
t̃∈ΦM (L,k,s)

‖t̃− t∗‖L2(P) + γn−1/2 log n+ n−1/2[
√

log(1/ε) + γ−1 log(1/ε)].

Here γ = s1/2 log(V 2L) and V =
∏L+1
j=0 (kj + 1).

Proof. Note that (f ′)−1 = (f†)′ and f† has Lipschitz continuous gradient with parameter 1/µ0 from Assumption
3.4 and Lemma 12.6, we obtain the result from Theorem 8.5.

8.4 Error Bound using Norm Control

In this section, we consider using norm of the parameters (specifically speaking, the norm of Wj and vj in (8.1))
to control the error bound, which is an alternative of the network model shown in (8.1). We consider the family
of L-layer neural networks with bounded spectral norm for weight matrices W = {Wj ∈ Rkj×kj−1}L+1

j=1 , where
k0 = d and kL+1 = 1, and vector v = {vj ∈ Rkj}Lj=1, which is denoted as

Φnorm = Φnorm(L, k,A,B) = {ϕ(x;W, v) ∈ Φ(L, k) : ‖vj‖2 ≤ Aj for all j ∈ [L], (8.4)
‖Wj‖2 ≤ Bj for all j ∈ [L+ 1]},
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where σvj (x) = max{0, x− vj} for any j ∈ [L]. We write the following optimization problem,

t̂(x; p, q) = argmin
t∈Φnorm

Ex∼Pn [f†(t(x))]− Ex∼Qn [t(x)],

D̂f (q‖p) = Ex∼Qn [t̂(x; p, q)]− Ex∼Pn [f†(t̂(x; p, q))]. (8.5)

Based on this formulation, we derive the error bound on the estimated f -divergence in the following theorem. We
only consider the generalization error in this setting. Therefore, we assume that the ground truth t∗(x; p, q) =
f ′(q(x)/p(x)) ∈ Φnorm. Before we state the theorem, we first define two parameters for the family of neural
networks Φnorm(L, k,A,B) as follows,

γ1 = B

L+1∏
j=1

Bj ·

√√√√L+1∑
j=0

k2
j , γ2 =

L · (
√∑L+1

j=1 k
2
jB

2
j +

∑L
j=1Aj)∑L+1

j=0 k
2
j ·minj B2

j

·
L∑
j=1

Aj . (8.6)

Now, we state the theorem.
Theorem 8.7. We assume that t∗(x; p, q) ∈ Φnorm. Then for any 0 < ε < 1, with probability at least 1− ε, it
holds that

|D̂f (q‖p)−Df (q‖p)| . γ1 · n−1/2 log(γ2n) +

L+1∏
j=1

Bj · n−1/2
√

log(1/ε),

where γ1 and γ2 are defined in (8.6).

We defer the proof to Section §10.8.

The next theorem characterizes the rate of convergence of q̂ = argminq∈Q D̂f (q‖p), where D̂f (q‖p) is proposed in
(8.5).
Theorem 8.8. For any 0 < ε < 1, with probability at least 1− ε, we have

Df (q̂‖p) . b2(n, γ1, γ2) +

L+1∏
j=1

Bj · n−1/2 ·
√

log(N2[b2(n, γ1, γ2),Q]/ε) + min
q̃∈Q

Df (q̃‖p),

where b2(n, γ1, γ2) = γ1n
−1/2 log(γ2n), and N2(δ,Q) is the covering number of Q.

We defer the proof to Section §10.9.

9 Exemplary t̂ and f †

As for experiments on MNIST and CIFAR-10, we choose to skip Step 1 in Algorithm 1 and 2 and instead adopt t̂
and f† as suggested by (Nowozin et al., 2016). Exemplary t̂ and f† are specified in Table 2.

Table 2: Exemplary t̂, f†.

Name Df (P||Q) t̂(v) domf† f†(u)

Total Variation
∫ 1

2
|p(z)− q(z)|dz 1

2
tanh(v) u ∈ [−1

2
,
1

2
] u

Jenson-Shannon
∫
p(x) log

p(z)

q(z)
log

2

1 + e−v
u < log 2 − log (2− eu)

Squared Hellinger
∫
(
√
p(z)−

√
q(z))2dz 1− ev u < 1

u

1− u
Pearson x

∫ (q(z)− p(z))2

p(z)
dz v R 1

4
u2 + u

Neyman x
∫ (p(z)− q(z))2

p(z)
dz 1− ev u < 1 2− 2

√
1− u

KL
∫
p(z) log

p(z)

q(z)
dx v R eu−1

Reverse KL
∫
q(z) log

q(z)

p(z)
dz −ev R− −1− log (−u)

Jeffrey
∫
(q(z)− p(z)) log p(z)

q(z)
dz v R W (e1−u) +

1

W (e1−u)
+ u− 2
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10 Proofs of Theorems

10.1 Proof of Theorem 3.5

If the player truthfully reports, she will receive the following expected payment per sample i: with probability at
least 1− δ(n),

E[S(ri, ·)] := a− b(Ex∼Qn [t̂(x)]− Exi∼Pn [f†(t̂(xi))])

= a− b · D̂f (q‖p)
≥ a− b · (Df (q‖p) + ε(n)) (sample complexity guarantee)
≥ a− b · (Df (p‖p) + ε(n)) (agent believes p = q)
= a− bε(n)

Similarly, any misreporting according to a distribution p̃ with distribution P̃ will lead to the following derivation
with probability at least 1− δ

E[S(ri, ·)] := a− b(Ex∼Qn [t̂(x)]− Exi∼P̃n [f†(t̂(xi))])

= a− b · D̂f (q‖p̃)
≤ a− b · (Df (p‖p̃)− ε(n))

≤ a+ bε(n) (non-negativity of Df )

Combining above, and using union bound, leads to (2δ(n), 2bε(n))-properness.

10.2 Proof of Theorem 3.7

Consider an arbitrary agent i. Suppose every other agent truthfully reports.

E[S(ri, {rj}j 6=i)] = a+ b(Ex∼Pn⊕Qn|ri [t̂(x)]− Ex∼Pn×Qn|ri{f
†(t̂(x))})

= a+ bE[Ex∼Pn⊕Qn|ri [t̂(x)]− Ex∼Pn×Qn|ri{f
†(t̂(x))}]

Consider the divergence term E[Ex∼Pn⊕Qn|ri [t̂(x)]− Ex∼Pn×Qn|ri{f†(t̂(x))}]. Reporting a ri ∼ P̃ 6= P (denote its
distribution as p̃) leads to the following score

Eri∼P̃n [Ex∼P̃n⊕Qn|ri [t̂(x)]− Ex∼P̃n×Qn|ri{f
†(t̂(x))}]

= Ex∼P̃n⊕Qn [t̂(x)]− Ex∼P̃n×Qn{f
†(t̂(x))} (tower property)

≤ max
t

Ex∼P̃n⊕Qn [t(x)]− Ex∼P̃n×Qn{f
†(t(x))} (max)

= D̂f (p̃⊕ q‖p̃× q)
≤ Df (p̃⊕ q‖p̃× q) + ε(n)

= If (p̃; q) + ε(n) (definition)
≤ If (p; q) + ε(n) (data processing inequality (Kong and Schoenebeck, 2019))

with probability at least 1− δ(n) (the other δ(n) probability with maximum score S̄).

Now we prove that truthful reporting leads at least

If (p; q)− ε(n)

of the divergence term:

Exi∼Pn [Ex∼Pn⊕Qn|xi [t̂(x)]− Ex∼Pn×Qn|xi{f
†(t̂(x))}]

= Ex∼Pn⊕Qn [t̂(x)]− Ex∼Pn×Qn{f†(t̂(x))} (tower property)

= D̂f (p⊕ q‖p× q)
≥ Df (p⊕ q‖p× q)− ε(n)

= If (p; q)− ε(n) (definition)
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with probability at least 1 − δ(n) (the other δ(n) probability with score at least 0). Therefore the expected
divergence terms differ at most by 2ε(n) with probability at least 1 − 2δ(n) (via union bound). The above
combines to establish a (2δ(n), 2bε(n))-BNE.

10.3 Proof of Theorem 4.3

We first show the convergence of t\, and then the convergence of D\
f (q‖p). For any real-valued function %, we

write EP(%) = Ex∼P[%(x)], EQ(%) = Ex∼Q[%(x)], EPn(%) = Ex∼Pn [%(x)], and EQn(%) = Ex∼Qn [%(x)] for notational
convenience.

For any t̃ ∈ Φ, we establish the following lemma.
Lemma 10.1. Under the assumptions stated in Theorem 4.3, it holds that

1/(4L0) · ‖t\ − t∗‖2L2(P) ≤ {EQn [(t\ − t∗)/2]− EQ[(t\ − t∗)/2]}

− {EPn [f†((t\ + t∗)/2)− f†(t∗)]− EP[f†((t\ + t∗)/2)− f†(t∗)]}.

Here µ0 and L0 are specified in Assumption 3.4.

We defer the proof to Section §11.1.

Note that by Lemma 10.1 and the fact that f† is Lipschitz continuous, we have

‖t\ − t∗‖2L2(P) . {EQn [(t\ − t∗)/2]− EQ[(t\ − t∗)/2]}

− {EPn [f†((t\ + t∗)/2)− f†(t∗)]− EP[f†((t\ + t∗)/2)− f†(t∗)]}. (10.1)

Further, to upper bound the RHS of (10.15), we establish the following lemma.
Lemma 10.2. We assume that the function ψ : R→ R is Lipschitz continuous and bounded such that |ψ(x)| ≤M0

for any |x| ≤M . Then under the assumptions stated in Theorem 8.5, we have

P
{

sup
t : ψ(t)∈Ψ

|EPn [ψ(t)− ψ(t∗)]− EP[ψ(t)− ψ(t∗)]|
n−2/(γΦ+2)

≥ c2
}
≤ c1 exp(−nγΦ/(2+γΦ)/c21),

where c1 and c2 are positive absolute constants.

We defer the proof to Section §11.2.

Note that the results in Lemma 10.2 also apply to the distribution Q, and by using the fact that the true density
ratio θ∗(x; p, q) = q(x)/p(x) is bounded below and above, we know that L2(Q) is indeed equivalent to L2(P). We
thus focus on L2(P) here. By (10.1), Lemma 10.2, and the Lipschitz property of f† according to Lemma 12.6,
with probability at least 1− c1 exp(−nγΦ/(2+γΦ)/c21), we have

‖t\ − t∗‖L2(P) . n−1/(γΦ+2). (10.2)

Note that we have

|D\
f (q‖p)−Df (q‖p)|

≤ |EQn [t\ − t∗]− EQ[t\ − t∗]|+ |EPn [f†(t\)− f†(t∗)]− EP[f†(t\)− f†(t∗)]|
+ |EQ[t\ − t∗]− EP[f†(t\)− f†(t∗)]|+ |EQn [t∗]− EQ[t∗]|+ |EPn [f†(t∗)]− EP[f†(t∗)]|

= B1 +B2 +B3 +B4 +B5. (10.3)

We upper bound B1, B2, B3, B4, and B5 in the sequel. First, by Lemma 10.2, with probability at least
1− c1 exp(−nγΦ/(2+γΦ)/c21), we have

B1 . n−2/(γΦ+2). (10.4)

Similar upper bound also holds for B2. Also, following from (10.2), with probability at least 1 −
c1 exp(−nγΦ/(2+γΦ)/c21), we have

B3 . n−1/(γΦ+2). (10.5)
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Meanwhile, by Hoeffding’s inequality, with probability at least 1− c1 exp(−nγΦ/(2+γΦ)/c21), we have

B4 . n−1/(γΦ+2). (10.6)

Similar upper bound also holds for B5. Now, combining (10.3), (10.4), (10.5), and (10.6), with probability at
least 1− c1 exp(−nγΦ/(2+γΦ)/c21), we have

|D\
f (q‖p)−Df (q‖p)| . n−1/(γΦ+2).

We conclude the proof of Theorem 4.3.

10.4 Proof of Theorem 8.2

Step 1. We upper bound ‖t∗ − t̂‖L2(P) in the sequel. Note that t∗ ∈ Ω ⊂ [a, b]d. To invoke Theorem 12.5, we
denote by t′(y) = t∗((b − a)y + a1d), where 1d = (1, 1, . . . , 1)> ∈ Rd. Then the support of t′ lies in the unit
cube [0, 1]d. We choose L′ = O(log n), s′ = O(N log n), k′ = (d,O(dN),O(dN), . . . ,O(dN), 1), and m′ = log n,
we then utilize Theorem 12.5 to construct some t̃′ ∈ ΦM (L′, k′, s′) such that

‖t̃′ − t′‖L∞([0,1]d) . N−β/d.

We further define t̃(·) = t̃′ ◦ `(·), where `(·) is a linear mapping taking the following form,

`(x) =
x

b− a
− a

b− a
· 1d.

To this end, we know that t̃ ∈ ΦM (L, k, s), with parameters L, k, and s given in the statement of Theorem 8.2.
We fix this t̃ and invoke Theorem 8.5, then with probability at least 1− ε · exp(−γ2), we have

‖t̂− t∗‖L2(P) . ‖t̃− t∗‖L2(P) + γn−1/2 log n+ n−1/2[
√

log(1/ε) + γ−1 log(1/ε)]

. N−β/d + γn−1/2 log n+ n−1/2[
√

log(1/ε) + γ−1 log(1/ε)]. (10.7)

Note that γ takes the form γ = s1/2 log(V 2L), where V = O(dL ·NL) and L, s given in the statement of Theorem
8.2, it holds that γ = O(N1/2 log5/2 n). Moreover, by the choice N = nd/(2β+d), combining (10.7) and taking
ε = 1/n, we know that

‖t̂− t∗‖L2(P) . n−β/(2β+d) log7/2 n (10.8)

with probability at least 1− exp{−nd/(2β+d) log5 n}.

Step 2. Note that we have

|D̂f (q‖p)−Df (q‖p)|
≤ |EQn [t̂− t∗]− EQ[t̂− t∗]|+ |EPn [f†(t̂)− f†(t∗)]− EP[f†(t̂)− f†(t∗)]|

+ |EQ[t̂− t∗]− EP[f†(t̂)− f†(t∗)]|+ |EQn [t∗]− EQ[t∗]|+ |EPn [f†(t∗)]− EP[f†(t∗)]|
= B1 +B2 +B3 +B4 +B5. (10.9)

We upper bound B1, B2, B3, B4, and B5 in the sequel. First, by Lemma 10.6, with probability at least
1− exp{−nd/(2β+d) log5 n}, we have

B1 . n−2β/(2β+d) log7/2 n. (10.10)

Similar upper bound also holds for B2. Also, following from (10.8), with probability at least 1 −
exp{−nd/(2β+d) log5 n}, we have

B3 . n−β/(2β+d) log7/2 n. (10.11)

Meanwhile, by Hoeffding’s inequality, with probability at least 1− exp(−nd/(2β+d)), we have

B4 . n−β/(2β+d). (10.12)

Similar upper bound also holds for B5. Now, combining (10.9), (10.10), (10.11), and (10.12), with probability at
least 1− exp{−nd/(2β+d) log5 n}, we have

|D̂f (q‖p)−Df (q‖p)| . n−β/(2β+d) log7/2 n.

We conclude the proof of Theorem 8.2.
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10.5 Proof of Theorem 5.2

We first need to bound the max deviation of the estimated f -divergence D\
f (q‖p) among all q ∈ Q. The following

lemma provides such a bound.
Lemma 10.3. Under the assumptions stated in Theorem 8.4, for any fixed density p, if the sample size n is
sufficiently large, it holds that

sup
q∈Q
|Df (q‖p)−D\

f (q‖p)| . n−1/(γΦ+2) · log n

with probability at least 1− 1/n.

We defer the proof to Section §11.3.

Now we turn to the proof of the theorem. We denote by q̃′ = argminq̃∈QDf (q̃‖p), then with probability at least
1− 1/n, we have

Df (q\‖p) ≤ |Df (q\‖p)−D\
f (q\‖p)|+D\

f (q\‖p)

≤ sup
q∈Q
|Df (q‖p)−D\

f (q‖p)|+D\
f (q̃′‖p)

≤ sup
q∈Q
|Df (q‖p)−D\

f (q‖p)|+ |D\
f (q̃′‖p)−Df (q̃′‖p)|+Df (q̃′‖p)

. n−1/(γΦ+2) · log n+Df (q̃′‖p). (10.13)

Here in the second inequality we use the optimality of q\ over q̃′ ∈ Q to the problem (5.2), while the last inequality
uses Lemma 10.3 and Theorem 4.3. Moreover, note that Df (q̃′‖p) = minq̃∈QDf (q̃‖p), combining (10.13), it holds
that with probability at least 1− 1/n,

Df (q\‖p) . n−1/(γΦ+2) · log n+ min
q̃∈Q

Df (q̃‖p).

This concludes the proof of the theorem.

10.6 Proof of Theorem 8.4

We first need to bound the max deviation of the estimated f -divergence D̂f (q‖p) among all q ∈ Q. The following
lemma provides such a bound.
Lemma 10.4. Under the assumptions stated in Theorem 8.4, for any fixed density p, if the sample size n is
sufficiently large, it holds that

sup
q∈Q
|Df (q‖p)− D̂f (q‖p)| . n−β/(d+2β) · log7 n

with probability at least 1− 1/n.

We defer the proof to Section §11.4.

Now we turn to the proof of the theorem. We denote by q̃′ = argminq̃∈QDf (q̃‖p), then with probability at least
1− 1/n, we have

Df (q̂‖p) ≤ |Df (q̂‖p)− D̂f (q̂‖p)|+ D̂f (q̂‖p)

≤ sup
q∈Q
|Df (q‖p)− D̂f (q‖p)|+ D̂f (q̃′‖p)

≤ sup
q∈Q
|Df (q‖p)− D̂f (q‖p)|+ |D̂f (q̃′‖p)−Df (q̃′‖p)|+Df (q̃′‖p)

. n−β/(d+2β) · log7 n+Df (q̃′‖p). (10.14)

Here in the second inequality we use the optimality of q̂ over q̃′ ∈ Q to the problem (8.3), while the last inequality
uses Lemma 10.4 and Theorem 8.2. Moreover, note that Df (q̃′‖p) = minq̃∈QDf (q̃‖p), combining (10.14), it holds
that with probability at least 1− 1/n,

Df (q̂‖p) . n−β/(d+2β) · log7 n+ min
q̃∈Q

Df (q̃‖p).

This concludes the proof of the theorem.
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10.7 Proof of Theorem 8.5

For any real-valued function %, we write EP(%) = Ex∼P[%(x)], EQ(%) = Ex∼Q[%(x)], EPn(%) = Ex∼Pn [%(x)], and
EQn(%) = Ex∼Qn [%(x)] for notational convenience.

For any t̃ ∈ ΦM (L, k, s), we establish the following lemma.
Lemma 10.5. Under the assumptions stated in Theorem 8.5, it holds that

1/(4L0) · ‖t̂− t̃‖2L2(P) ≤ 1/µ0 · ‖t̂− t̃‖L2(P) · ‖t̃− t∗‖L2(P) + {EQn [(t̂− t̃)/2]− EQ[(t̂− t̃)/2]}

− {EPn [f†((t̂+ t̃)/2)− f†(t̃)]− EP[f†((t̂+ t̃)/2)− f†(t̃)]}

Here µ0 and L0 are specified in Assumption 3.4.

The proof of Lemma 10.5 is deferred to Section §11.5.

Note that by Lemma 10.5 and the fact that f† is Lipschitz continuous, we have

‖t̂− t̃‖2L2(P) . ‖t̂− t̃‖L2(P) · ‖t̃− t∗‖L2(P) + {EQn [(t̂− t̃)/2]− EQ[(t̂− t̃)/2]}

− {EPn [f†((t̂+ t̃)/2)− f†(t̃)]− EP[f†((t̂+ t̃)/2)− f†(t̃)]}. (10.15)

Furthermore, to bound the RHS of the above inequality, we establish the following lemma.
Lemma 10.6. We assume that the function ψ : R → R is Lipschitz continuous and bounded such that
|ψ(x)| ≤ M0 for any |x| ≤ M . Then under the assumptions stated in Theorem 8.5, for any fixed t̃(x) ∈ ΦM ,
n & [γ + γ−1 log(1/ε)]2 and 0 < ε < 1, we have the follows

P
{

sup
t(·)∈ΦM (L,k,s)

|EPn [ψ(t)− ψ(t̃)]− EP[ψ(t)− ψ(t̃)]|
max{η(n, γ, ε) · ‖ψ(t)− ψ(t̃)‖L2(P), λ(n, γ, ε)}

≤ 16M0

}
≥ 1− ε · exp(−γ2),

where η(n, γ, ε) = n−1/2[γ log n + γ−1 log(1/ε)] and λ(n, γ, ε) = n−1[γ2 + log(1/ε)]. Here γ takes the form
γ = s1/2 log(V 2L), where V =

∏L+1
j=0 (kj + 1).

We defer the proof to Section §11.6.

Note that the results in Lemma 10.6 also apply to the distribution Q, and by using the fact that the true density
ratio θ∗(x; p, q) = q(x)/p(x) is bounded below and above, we know that L2(Q) is indeed equivalent to L2(P). We
thus focus on L2(P) here. By (10.15), Lemma 10.6, and the Lipschitz property of f† according to Lemma 12.6,
with probability at least 1− ε · exp(−γ2), we have the following bound

‖t̂− t̃‖2L2(P) . ‖t̂− t̃‖L2(P) · ‖t̃− t∗‖L2(P)

+O(n−1/2[γ log n+ γ−1 log(1/ε)] · ‖t̂− t̃‖L2(P) ∨ n−1[γ2 + log(1/ε)]), (10.16)

where we recall that the notation γ = s1/2 log(V 2L) is a parameter related with the family of neural networks
ΦM . We proceed to analyze the dominant part on the RHS of (10.16).

Case 1. If the term ‖t̂− t̃‖L2(P) · ‖t̃− t∗‖L2(P) dominates, then with probability at least 1− ε · exp(−γ2)

‖t̂− t̃‖L2(P) . ‖t̃− t∗‖L2(P).

Case 2. If the term O(n−1/2[γ log n + γ−1 log(1/ε)] · ‖t̂ − t̃‖L2(P)) dominates, then with probability at least
1− ε · exp(−γ2)

‖t̂− t̃‖L2(P) . n−1/2[γ log n+ γ−1 log(1/ε)].

Case 3. If the term O(n−1[γ2 + log(1/ε)]) dominates, then with probability at least 1− ε · exp(−γ2)

‖t̂− t̃‖L2(P) . n−1/2[γ +
√

log(1/ε)].
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Therefore, by combining the above three cases, we have

‖t̂− t̃‖L2(P) . ‖t̃− t∗‖L2(P) + γn−1/2 log n+ n−1/2[
√

log(1/ε) + γ−1 log(1/ε)].

Further combining the triangle inequality, we have

‖t̂− t∗‖L2(P) . ‖t̃− t∗‖L2(P) + γn−1/2 log n+ n−1/2[
√

log(1/ε) + γ−1 log(1/ε)] (10.17)

with probability at least 1 − ε · exp(−γ2). Note that (10.17) holds for any t̃ ∈ ΦM (L, k, s), especially for the
choice t̃ which minimizes ‖t̃− t∗‖L2(P). Therefore, we have

‖t̂− t∗‖L2(P) . min
t̃∈ΦM (L,k,s)

‖t̃− t∗‖L2(P) + γn−1/2 log n+ n−1/2[
√

log(1/ε) + γ−1 log(1/ε)]

with probability at least 1− ε · exp(−γ2). This concludes the proof of the theorem.

10.8 Proof of Theorem 8.7

We follow the proof in Li et al. (2018). We denote by the loss function in (8.5) as L[t(x)] = f†(t(xI))− t(xII),
where xI follows the distribution P and xII follows Q. To prove the theorem, we first link the generalization error
in our theorem to the empirical Rademacher complexity (ERC). Given the data {xi}ni=1, the ERC related with
the class L(Φnorm) is defined as

Rn[L(Φnorm)] = Eε
[

sup
ϕ∈Φnorm

∣∣∣ 1
n

n∑
i=1

εi · L[ϕ(xi;W, v)]
∣∣∣ ∣∣∣∣ {xi}ni=1

]
, (10.18)

where εi’s are i.i.d. Rademacher random variables, i.e., P(εi = 1) = P(εi = −1) = 1/2. Here the expectation Eε(·)
is taken over the Rademacher random variables {εi}i∈[n].

We introduce the following lemma, which links the ERC to the generalization error bound.

Lemma 10.7 ((Mohri et al., 2018)). Assume that supϕ∈Φnorm
|L(ϕ)| ≤M1, then for any ε > 0, with probability

at least 1− ε, we have

sup
ϕ∈Φnorm

{
Ex{L[ϕ(x;W, v)]} − 1

n

n∑
i=1

L[ϕ(xi;W, v)]

}
. Rn[L(Φnorm)] +M1 · n−1/2

√
log(1/ε),

where the expectation Ex{·} is taken over xI ∼ P and xII ∼ Q.

Equipped with Lemma 10.7, we only need to bound the ERC defined in (10.18).

Lemma 10.8. Let L be a Lipschitz continuous loss function and Φnorm be the family of networks defined in
(8.4). We assume that the input x ∈ Rd is bounded such that ‖x‖2 ≤ B. Then it holds that

Rn[L(Φnorm)] . γ1 · n−1/2 log(γ2n),

where γ1 and γ2 are given in (8.6).

We defer the proof to Section §11.7.

Now we proceed to prove the theorem. Recall that we assume that t∗ ∈ Φnorm. For notational convenience, we
denote by

Ĥ(t) = Ex∼Pn [f†(t(x))]− Ex∼Qn [t(x)], H(t) = Ex∼P[f†(t(x))]− Ex∼Q[t(x)].

Then E[Ĥ(t)] = H(t). We proceed to bound |D̂f (q‖p)−Df (q‖p)| = |Ĥ(t̂)−H(t∗)|. Note that if Ĥ(t̂) ≥ H(t∗),
then we have

0 ≤ Ĥ(t̂)−H(t∗) ≤ Ĥ(t∗)−H(t∗), (10.19)
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where the second inequality follows from the fact that t̂ is the minimizer of Ĥ(·). On the other hand, if
Ĥ(t̂) ≤ H(t∗), we have

0 ≥ Ĥ(t̂)−H(t∗) ≥ Ĥ(t̂)−H(t̂), (10.20)

where the second inequality follows that fact that t∗ is the minimizer of H(·). Therefore, by (10.19), (10.20), and
the fact that L(ϕ) .

∏L+1
j=1 Bj for any ϕ ∈ Φnorm, we deduce that

|Ĥ(t̂)−H(t∗)| ≤ sup
t∈Φnorm

|Ĥ(t)−H(t)| . Rn[L(Φnorm)] +

L+1∏
j=1

Bj · n−1/2
√

log(1/ε) (10.21)

with probability at least 1− ε. Here the second inequality follows from Lemma 10.7. By plugging the result from
Lemma 10.8 into (10.21), we deduce that with probability at least 1− ε, it holds that

|D̂f (q‖p)−Df (q‖p)| = |Ĥ(t̂)−H(t∗)| . γ1 · n−1/2 log(γ2n) +

L+1∏
j=1

Bj · n−1/2
√

log(1/ε).

This concludes the proof of the theorem.

10.9 Proof of Theorem 8.8

We first need to bound the max deviation of the estimated f -divergence D̂f (q‖p) among all q ∈ Q. We utilize the
following lemma to provide such a bound.
Lemma 10.9. Assume that the distribution q is in the set Q, and we denote its L2 covering number as N2(δ,Q).
Then for any target distribution p, we have

max
q∈Q
|Df (q‖p)− D̂f (q‖p)| . b2(n, γ1, γ2) +

L+1∏
j=1

Bj · n−1/2 ·
√

log(N2[b2(n, γ1, γ2),Q]/ε)

with probability at least 1− ε. Here b2(n, γ1, γ2) = γ1n
−1/2 log(γ2n) and c is a positive absolute constant.

We defer the proof to Section §11.8.

Now we turn to the proof of the theorem. We denote by q̃′ = argminq̃∈QDf (q̃‖p). Then with probability at least
1− ε, we have

Df (q̂‖p) ≤ |Df (q̂‖p)− D̂f (q̂‖p)|+ D̂f (q̂‖p)

≤ max
q∈Q
|Df (q‖p)− D̂f (q‖p)|+ D̂f (q̃′‖p)

. b2(n, γ1, γ2) +

L+1∏
j=1

Bj · n−1/2 ·
√

log(N2[b2(n, γ1, γ2),Q]/ε) +Df (q̃′‖p),

where we use the optimality of q̂ among all q̃ ∈ Q to the problem (8.3) in the second inequality, and we uses
Lemma 10.9 and Theorem 8.2 in the last line. Moreover, note that Df (q̃′‖p) = minq̃∈QDf (q̃‖p), we obtain that

Df (q̂‖p) . b2(n, γ1, γ2) +

L+1∏
j=1

Bj · n−1/2
√

log(N2[b2(n, γ1, γ2),Q]/ε) + min
q̃∈Q

Df (q̃‖p).

This concludes the proof of the theorem.

11 Lemmas and Proofs

11.1 Proof of Lemma 10.1

For any real-valued function %, we write EP(%) = Ex∼P[%(x)], EQ(%) = Ex∼Q[%(x)], EPn(%) = Ex∼Pn [%(x)], and
EQn(%) = Ex∼Qn [%(x)] for notational convenience.
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By the definition of t\ in (4.2), we have

EPn [f†(t\)]− EQn(t\) ≤ EPn [f†(t∗)]− EQn(t∗).

Note that the functional G(t) = EPn [f†(t)]− EQn(t) is convex in t since f† is convex, we then have

G(
t\ + t∗

2
)−G(t∗) ≤ G(t\)−G(t∗)

2
≤ 0.

By re-arranging terms, we have

{EPn [f†((t\ + t∗)/2)− f†(t∗)]− EP[f†((t\ + t∗)/2)− f†(t∗)]} − {EQn [(t\ − t∗)/2]− EQ[(t\ − t∗)/2]}
≤ EQ[(t\ − t∗)/2]− EP[f†((t\ + t∗)/2)− f†(t∗)]. (11.1)

We denote by

Bf (t∗, t) = EP[f†(t)− f†(t∗)]− EQ(t− t∗). (11.2)

then the RHS of (11.1) is exactly −Bf (t∗, (t\ + t∗)/2). We proceed to establish the lower bound of Bf (t∗, t) using
L2(P) norm. From t∗(x; p, q) = f ′(q(x)/p(x)) and (f†)′ ◦ (f ′)(x) = x, we know that q/p = ∂f†(t∗)/∂t. Then by
substituting the second term on the RHS of (11.2) using the above relationship, we have

Bf (t∗, t) = EP

[
f†(t)− f†(t∗)− ∂f†

∂t
(t∗) · (t− t∗)

]
Note that by Assumption 3.4 and Lemma 12.6, we know that the Fenchel duality f† is strongly convex with
parameter 1/L0. This gives that

f†(t(x))− f†(t∗(x))− ∂f†

∂t
(t∗(x)) · [t(x)− t∗(x)] ≥ 1/L0 · (t(x)− t∗(x))2

for any x. Consequently, it holds that

Bf (t∗, t) ≥ 1/L0 · ‖t− t∗‖2L2(P). (11.3)

By (11.3), we conclude that

1/(4L0) · ‖t\ − t∗‖2L2(P) ≤ {EQn [(t̂− t∗)/2]− EQ[(t̂− t∗)/2]}

− {EPn [f†((t̂+ t∗)/2)− f†(t∗)]− EP[f†((t̂+ t∗)/2)− f†(t∗)]}.

This concludes the proof of the lemma.

11.2 Proof of Lemma 10.2

For any real-valued function %, we write EP(%) = Ex∼P[%(x)], EQ(%) = Ex∼Q[%(x)], EPn(%) = Ex∼Pn [%(x)], and
EQn(%) = Ex∼Qn [%(x)] for notational convenience.

We first introduce the following concepts. For any K > 0, the Bernstein difference ρ2
K,P(t) of t(·) with respect to

the distribution P is defined to be

ρ2
K,P(t) = 2K2 · EP[exp(|t|/K)− 1− |t|/K].

Correspondingly, we denote by HK,B the generalized entropy with bracketing induced by the Bernstein difference
ρK,P. We denote by Hs,B the entropy with bracketing induced by Ls norm, Hs the entropy induced by Ls norm,
HLs(P),B the entropy with bracketing induced by Ls(P) norm, and HLs(P) the regular entropy induced by Ls(P)
norm.

We consider the space

Ψ = ψ(Φ) = {ψ(t) : t(x) ∈ Φ}.
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For any δ > 0, we denote the following space

Ψ(δ) = {ψ(t) ∈ Ψ : ‖ψ(t)− ψ(t∗)‖L2(P) ≤ δ},
Ψ′(δ) = {∆ψ(t) = ψ(t)− ψ(t∗) : ψ(t) ∈ Ψ(δ)}.

Note that sup∆ψ(t)∈Ψ′(δ) ‖∆ψ(t)‖∞ ≤ 2M0 and sup∆ψ(t)∈Ψ′(δ) ‖∆ψ(t)‖∞ ≤ δ, by Lemma 12.4 we have

sup
∆ψ(t)∈Ψ′(δ)

ρ8M0,P[∆ψ(t)] ≤
√

2δ.

To invoke Theorem 12.3 for G = Ψ′(δ), we pick K = 8M0. By the fact that sup∆ψ(t)∈Ψ′(δ) ‖∆ψ(t)‖∞ ≤ 2M0,
Lemma 12.1, Assumption 4.2, and the fact that ψ is Lipschitz continuous, we have

H8M0,B(u,Ψ′(δ),P) ≤ H2,B(
√

2u,Ψ′(δ),P) ≤ u−γΦ

for any u > 0. Then, by algebra, we have the follows∫ R

0

H1/2
8M0,B

(u,Ψ′(δ),P)du ≤ 2

2− γΦ
R−γΦ/2+1.

We take C = 1, and a,C1 and C0 in Theorem 12.3 to be

a = C1

√
nR2/K, C0 = 2C2C2 ∨ 2C, C1 = C0C2,

where C2 is a sufficiently large constant. Then it is straightforward to check that our choice above satisfies the
conditions in Theorem 12.3 for any δ such that δ ≥ n−1/(γΦ+2), when n is sufficiently large. With δn = n−1/(γΦ+2),
we have

P
{

sup
t : ψ(t)∈Ψ,ψ(t)/∈Ψ(δn)

|EPn [ψ(t)− ψ(t∗)]− EP[ψ(t)− ψ(t∗)]|
n−2/(γΦ+2)

≥ C1/K

}
≤ P

{
sup

t : ψ(t)∈Ψ,ψ(t)/∈Ψ(δn)

|EPn [ψ(t)− ψ(t∗)]− EP[ψ(t)− ψ(t∗)]|
‖ψ(t)− ψ(t∗)‖2L2(P)

≥ C1/K

}

≤
S∑
s=0

P
{

sup
t : ψ(t)∈Ψ,ψ(t)∈Ψ(2s+1δn)

|EPn [ψ(t)− ψ(t∗)]− EP[ψ(t)− ψ(t∗)]| ≥ C1/K · (2sδn)2

}

≤
S∑
s=0

C exp

(
−C

2
1/K

2 · 22s · nγΦ/(2+γΦ)

C2(C1 + 1)

)
≤ c1 exp(−nγΦ/(2+γΦ)/c21),

for some constant c1 > 0. Here in the last line, we invoke Theorem 12.3 with R = 2sδn. Therefore, we have

P
{

sup
t : ψ(t)∈Ψ

|EPn [ψ(t)− ψ(t∗)]− EP[ψ(t)− ψ(t∗)]|
n−2/(γΦ+2)

≥ C1/K

}
≤ c1 exp(−nγΦ/(2+γΦ)/c21).

We conclude the proof of Lemma 10.2.

11.3 Proof of Lemma 10.3

Recall that the covering number of Q is N2(δ,Q), we thus assume that there exists q1, . . . , qN2(δ,Q) ∈ Q such
that for any q ∈ Q, there exists some qk, where 1 ≤ k ≤ N2(δ,Q), so that ‖q − qk‖2 ≤ δ. Moreover, by taking
δ = δn = n−1/(γΦ+2) and union bound, we have

P[sup
q∈Q
|Df (q‖p)−D\

f (q‖p)| ≥ c1 · n−1/(γΦ+2) · log n]

≤
N2(δn,Q)∑
k=1

P[|Df (qk‖p)−D\
f (qk‖p)| ≥ c1 · n−1/(γΦ+2) · log n]

≤ N2(δn,Q) · exp(−nγΦ/(γΦ+2) · log n),

where the last line comes from Theorem 4.3. Combining Assumption 5.1, when n is sufficiently large, it holds that

P[sup
q∈Q
|Df (q‖p)−D\

f (q‖p)| ≥ c1 · n−1/(γΦ+2) · log n] ≤ 1/n,

which concludes the proof of the lemma.
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11.4 Proof of Lemma 10.4

Recall that the covering number of Q is N2(δ,Q), we thus assume that there exists q1, . . . , qN2(δ,Q) ∈ Q such
that for any q ∈ Q, there exists some qk, where 1 ≤ k ≤ N2(δ,Q), so that ‖q − qk‖2 ≤ δ. Moreover, by taking
δ = δn = n−β/(d+2β) and union bound, we have

P[sup
q∈Q
|Df (q‖p)− D̂f (q‖p)| ≥ c1 · n−β/(d+2β) · log7 n]

≤
N2(δn,Q)∑
k=1

P[|Df (qk‖p)− D̂f (qk‖p)| ≥ c1 · n−β/(d+2β) · log7 n]

≤ N2(δn,Q) · exp(−n−d/(d+2β) · log n),

where the last line comes from Theorem 8.2. Combining Assumption 8.3, when n is sufficiently large, it holds that

P[sup
q∈Q
|Df (q‖p)− D̂f (q‖p)| ≥ c1 · n−β/(d+2β) · log7 n] ≤ 1/n,

which concludes the proof of the lemma.

11.5 Proof of Lemma 10.5

For any real-valued function %, we write EP(%) = Ex∼P[%(x)], EQ(%) = Ex∼Q[%(x)], EPn(%) = Ex∼Pn [%(x)], and
EQn(%) = Ex∼Qn [%(x)] for notational convenience.

By the definition of t̂ in (8.2), we have

EPn [f†(t̂)]− EQn(t̂) ≤ EPn [f†(t̃)]− EQn(t̃).

Note that the functional G(t) = EPn [f†(t)]− EQn(t) is convex in t since f† is convex, we then have

G(
t̂+ t̃

2
)−G(t̃) ≤ G(t̂)−G(t̃)

2
≤ 0.

By re-arranging terms, we have

{EPn [f†((t̂+ t̃)/2)− f†(t̃)]− EP[f†((t̂+ t̃)/2)− f†(t̃)]} − {EQn [(t̂− t̃)/2]− EQ[(t̂− t̃)/2]}
≤ EQ[(t̂− t̃)/2]− EP[f†((t̂+ t̃)/2)− f†(t̃)]. (11.4)

We denote by

Bf (t̃, t) = EP[f†(t)− f†(t̃)]− EQ(t− t̃). (11.5)

then the RHS of (11.4) is exactly −Bf (t̃, (t̂+ t̃)/2). We proceed to establish the lower bound of Bf (t̃, t) using
L2(P) norm. From t∗(x; p, q) = f ′(q(x)/p(x)) and (f†)′ ◦ (f ′)(x) = x, we know that q/p = ∂f†(t∗)/∂t. Then by
substituting the second term on the RHS of (11.5) using the above relationship, we have

Bf (t̃, t) = EP

[
f†(t)− f†(t̃)− ∂f†

∂t
(t∗) · (t− t̃)

]
= EP

[
f†(t)− f†(t̃)− ∂f†

∂t
(t̃) · (t− t̃)

]
+ EP

{[
∂f†

∂t
(t̃)− ∂f†

∂t
(t∗)

]
· (t− t̃)

}
= A1 +A2. (11.6)

We lower bound A1 and A2 in the sequel.

Bound on A1. Note that by Assumption 3.4 and Lemma 12.6, we know that the Fenchel duality f† is strongly
convex with parameter 1/L0. This gives that

f†(t(x))− f†(t̃(x))− ∂f†

∂t
(t̃(x)) · [t(x)− t̃(x)] ≥ 1/L0 · (t(x)− t̃(x))2
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for any x. Consequently, it holds that

A1 ≥ 1/L0 · ‖t− t̃‖2L2(P). (11.7)

Bound on A2. By Cauchy-Schwarz inequality, it holds that

A2 ≥ −

√
EP

{[
∂f†

∂t
(t̃)− ∂f†

∂t
(t∗)

]2}
·
√

EP[(t− t̃)2].

Again, by Assumption 3.4 and Lemma 12.6, we know that the Fenchel duality f† has 1/µ0-Lipschitz gradient,
which gives that ∣∣∣∣∂f†∂t (t̃(x))− ∂f†

∂t
(t∗(x))

∣∣∣∣ ≤ 1/µ0 · |t̃(x)− t∗(x)|

for any x. By this, the term A2 is lower bounded:

A2 ≥ −1/µ0 · ‖t̃− t∗‖L2(P) · ‖t− t̃‖L2(P). (11.8)

Plugging (11.7) and (11.8) into (11.6), we have

Bf (t̃, t) ≥ 1/L0 · ‖t− t̃‖2L2(P) − 1/µ0 · ‖t̃− t∗‖L2(P) · ‖t− t̃‖L2(P).

By this, together with (11.4), we conclude that

1/(4L0) · ‖t̂− t̃‖2L2(P) ≤ 1/µ0 · ‖t̂− t̃‖L2(P) · ‖t̃− t∗‖L2(P) + {EQn [(t̂− t̃)/2]− EQ[(t̂− t̃)/2]}

− {EPn [f†((t̂+ t̃)/2)− f†(t̃)]− EP[f†((t̂+ t̃)/2)− f†(t̃)]}.

This concludes the proof of the lemma.

11.6 Proof of Lemma 10.6

For any real-valued function %, we write EP(%) = Ex∼P[%(x)], EQ(%) = Ex∼Q[%(x)], EPn(%) = Ex∼Pn [%(x)], and
EQn(%) = Ex∼Qn [%(x)] for notational convenience.

We first introduce the following concepts. For any K > 0, the Bernstein difference ρ2
K,P(t) of t(·) with respect to

the distribution P is defined to be

ρ2
K,P(t) = 2K2 · EP[exp(|t|/K)− 1− |t|/K].

Correspondingly, we denote by HK,B the generalized entropy with bracketing induced by the Bernstein difference
ρK,P. We denote by Hs,B the entropy with bracketing induced by Ls norm, Hs the entropy induced by Ls norm,
HLs(P),B the entropy with bracketing induced by Ls(P) norm, and HLs(P) the regular entropy induced by Ls(P)
norm.

Since we focus on fixed L, k, and s, we denote by ΦM = ΦM (L, k, s) for notational convenience. We consider the
space

ΨM = ψ(ΦM ) = {ψ(t) : t(x) ∈ ΦM}.

For any δ > 0, we denote the following space

ΨM (δ) = {ψ(t) ∈ ΨM : ‖ψ(t)− ψ(t̃)‖L2(P) ≤ δ},
Ψ′M (δ) = {∆ψ(t) = ψ(t)− ψ(t̃) : ψ(t) ∈ ΨM (δ)}.

Note that sup∆ψ(t)∈Ψ′M (δ) ‖∆ψ(t)‖∞ ≤ 2M0 and sup∆ψ(t)∈Ψ′M (δ) ‖∆ψ(t)‖∞ ≤ δ, by Lemma 12.4 we have

sup
∆ψ(t)∈Ψ′M (δ)

ρ8M0,P[∆ψ(t)] ≤
√

2δ.
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To invoke Theorem 12.3 for G = Ψ′M (δ), we pick K = 8M0 and R =
√

2δ. Note that from the fact that
sup∆ψ(t)∈Ψ′M (δ) ‖∆ψ(t)‖∞ ≤ 2M0, by Lemma 12.1, Lemma 12.2, and the fact that ψ is Lipschitz continuous, we
have

H8M0,B(u,Ψ′M (δ),P) ≤ H∞(u/(2
√

2),Ψ′M (δ)) ≤ 2(s+ 1) log(4
√

2u−1(L+ 1)V 2)

for any u > 0. Then, by algebra, we have the follows∫ R

0

H1/2
8M0,B

(u,Ψ′M (δ),P)du ≤ 3s1/2δ · log(8V 2L/δ).

For any 0 < ε < 1, we take C = 1, and a,C1 and C0 in Theorem 12.3 to be

a = 8M0 log(exp(γ2)/ε)γ−1 · δ,

C0 = 6M0γ
−1
√

log(exp(γ2)/ε),

C1 = 33M2
0 γ
−2 log(exp(γ2)/ε).

Here γ = s1/2 log(V 2L). Then it is straightforward to check that our choice above satisfies the conditions in
Theorem 12.3 for any δ such that δ ≥ γn−1/2, when n is sufficiently large such that n & [γ + γ−1 log(1/ε)]2.
Consequently, by Theorem 12.3, for δ ≥ γn−1/2, we have

P{ sup
t(x)∈ΦM (δ)

|EPn [ψ(t)− ψ(t̃)]− EP[ψ(t)− ψ(t̃)]| ≥ 8M0 log(exp(γ2)/ε)γ−1 · δ · n−1/2}

= P{ sup
∆ψ(t)∈Ψ′M (δ)

|EPn [∆ψ(t)]− EP[∆ψ(t)]| ≥ 8M0 log(exp(γ2)/ε)γ−1 · δ · n−1/2}

≤ ε · exp(−γ2).

By taking δ = δn = γn−1/2, we have

P
{

sup
t(x)∈ΦM (δ)

|EPn [ψ(t)− ψ(t̃)]− EP[ψ(t)− ψ(t̃)]|
n−1[γ2 + log(1/ε)]

≤ 8M0

}
≥ 1− ε · exp(−γ2). (11.9)

On the other hand, we denote that S = min{s > 1 : 2−s(2M0) < δn} = O(log(γ−1n1/2)). For notational
convenience, we denote the set

As = {ψ(t) ∈ ΨM : ψ(t) ∈ ΨM (2−s+2M0), ψ(t) /∈ ΨM (2−s+1M0)}. (11.10)

Then by the peeling device, we have the following

P
{

sup
ψ(t)∈ΨM ,ψ(t)/∈ΨM (δn)

|EPn [ψ(t)− ψ(t̃)]− EP[ψ(t)− ψ(t̃)]|
‖ψ(t)− ψ(t̃)‖L2(P) · T (n, γ, ε)

≥ 16M0

}

≤
S∑
s=1

P
{

sup
ψ(t)∈As

|EPn [ψ(t)− ψ(t̃)]− EP[ψ(t)− ψ(t̃)]|
2−s+1M0

≥ 16M0 · T (n, γ, ε)

}

≤
S∑
s=1

P{ sup
ψ(t)∈As

|EPn [ψ(t)− ψ(t̃)]− EP[ψ(t)− ψ(t̃)]| ≥ 8M0 · (2−s+2M0) · T (n, γ, ε)}

≤
S∑
s=1

P{ sup
ψ(t)∈ΨM (2−s+2M0)

|EPn [ψ(t)− ψ(t̃)]− EP[ψ(t)− ψ(t̃)]| ≥ 8M0 · (2−s+2M0) · T (n, γ, ε)}

≤ S · ε · exp(−γ2)/ log(γ−1n1/2) = c · ε · exp(−γ2),

where c is a positive absolute constant, and for notational convenience we denote by T (n, γ, ε) = γ−1 ·
n−1/2 log(log(γ−1n1/2) exp(γ2)/ε). Here in the second line, we use the fact that for any ψ(t) ∈ As, we have
‖ψ(t) − ψ(t̃)‖L2(Q) ≥ 2−s+1M0 by the definition of As in (11.10); in the forth line, we use the argument that
since As ⊆ ΨM (2−s+2M0), the probability of supremum taken over ΨM (2−s+2M0) is larger than the one over As;
in the last line we invoke Theorem 12.3. Consequently, this gives us

P
{

sup
ψ(t)∈ΨM

ψ(t)/∈ΨM (δn)

|EPn [ψ(t)− ψ(t̃)]− EP[ψ(t)− ψ(t̃)]|
‖ψ(t)− ψ(t̃)‖L2(P) · n−1/2[γ log n+ γ−1 log(1/ε)]

≤ 16M0

}
≥ 1− ε · exp(−γ2). (11.11)

Combining (11.9) and (11.11), we finish the proof of the lemma.
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11.7 Proof of Lemma 10.8

The proof of the theorem utilizes following two lemmas. The first lemma characterizes the Lipschitz property of
ϕ(x;W, v) in the input x.
Lemma 11.1. Given W and v, then for any ϕ(·;W, v) ∈ Φnorm and x1, x2 ∈ Rd, we have

‖ϕ(x1;W, v)− ϕ(x2;W, v)‖2 ≤ ‖x1 − x2‖2 ·
L+1∏
j=1

Bj .

We defer the proof to Section §11.9.

The following lemma characterizes the Lipschitz property of ϕ(x;W, v) in the network parameter pair (W, v).
Lemma 11.2. Given any bounded x ∈ Rd such that ‖x‖2 ≤ B, then for any weights W 1 = {W 1

j }
L+1
j=1 ,W

2 =

{W 2
j }

L+1
j=1 , v

1 = {v1
j }Lj=1, v

2 = {v2
j }Lj=1, and functions ϕ(·,W 1, v1), ϕ(·,W 2, v2) ∈ Φnorm, we have

‖ϕ(x,W 1, v1)− ϕ(x,W 2, v2)‖

≤
B
√

2L+ 1 ·
∏L+1
j=1 Bj

minj Bj
·
L∑
j=1

Aj ·

√√√√L+1∑
j=1

‖W 1
j −W 2

j ‖2F +

L∑
j=1

‖v1
j − v2

j ‖22.

We defer the proof to Section §11.10.

We now turn to the proof of Lemma 10.8. Note that by Lemma 11.2, we know that ϕ(x;W, v) is Lw-Lipschitz in
the parameter (W, v) ∈ Rb, where the dimension b takes the form

b =

L+1∑
j=1

kjkj−1 +

L∑
j=1

kj ≤
L+1∑
j=0

(kj + 1)2, (11.12)

and the Lipschitz constant Lw satisfies

Lw =
B
√

2L+ 1 ·
∏L+1
j=1 Bj

minj Bj
·
L∑
j=1

Aj . (11.13)

In addition, we know that the covering number of W = {(W, v) ∈ Rb :
∑L+1
j=1 ‖Wj‖F +

∑L
j=1 ‖vj‖2 ≤ K}, where

K =

√√√√L+1∑
j=1

k2
jB

2
j +

L∑
j=1

Aj , (11.14)

satisfies

N(W, δ) ≤ (3Kδ−1)b.

By the above facts, we deduce that the covering number of L(Φnorm) satisfies

N [L(Φnorm), δ] ≤ (c1KLwδ
−1)b,

for some positive absolute constant c1. Then by Dudley entropy integral bound on the ERC, we know that

Rn[L(Φnorm)] ≤ inf
τ>0

τ +
1√
n

∫ ϑ

τ

√
logN [L(Φnorm), δ]dδ, (11.15)

where ϑ = supg(·;W,v)∈L(Φnorm),x∈Rd |g(x;W, v)|. Moreover, from Lemma 11.1 and the fact that the loss function
is Lipschitz continuous, we have

ϑ ≤ c2 ·B ·
L+1∏
j=1

Bj (11.16)
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for some positive absolute constant c2. Therefore, by calculations, we derive from (11.15) that

Rn[L(Φnorm)] = O
(
ϑ√
n
·

√
b · log

KLw
√
n

ϑ
√
b

)
,

then we conclude the proof of the lemma by plugging in (11.12), (11.13), (11.14), and (11.16), and using the
definition of γ1 and γ2 in (8.6).

11.8 Proof of Lemma 10.9

Remember that the covering number of Q is N2(δ,Q), we assume that there exists q1, . . . , qN2(δ,Q) ∈ Q such
that for any q ∈ Q, there exists some qk, where 1 ≤ k ≤ N2(δ,Q), so that ‖q − qk‖2 ≤ δ. Moreover, by taking
δ = γ1n

−1/2 log(γ2n) = b2(n, γ1, γ2) and N2 = N2[b2(n, γ1, γ2),Q], we have

P{max
q∈Q
|Df (q‖p)− D̂f (q‖p)| ≥ c · [b2(n, γ1, γ2) +

L+1∏
j=1

Bj · n−1/2 ·
√

log(N2/ε)]}

≤
N2∑
k=1

P{|Df (q‖p)− D̂f (q‖p)| ≥ c · [b2(n, γ1, γ2) +

L+1∏
j=1

Bj · n−1/2 ·
√

log(N2/ε)]}

≤ N2 · ε/N2 = ε,

where the second line comes from union bound, and the last line comes from Theorem 8.7. By this, we conclude
the proof of the lemma.

11.9 Proof of Lemma 11.1

The proof follows by applying the Lipschitz property and bounded spectral norm of Wj recursively:

‖ϕ(x1;W, v)− ϕ(x2;W, v)‖2 = ‖WL+1(σvL · · ·W2σv1
W1x1 − σvL · · ·W2σv1

W1x2)‖2
≤ ‖WL+1‖2 · ‖σvL(WL · · ·W2σv1

W1x1 −WL · · ·W2σv1
W1x2)‖2

≤ BL+1 · ‖WL · · ·W2σv1
W1x1 −WL · · ·W2σv1

W1x2‖2

≤ · · · ≤
L+1∏
j=1

Bj · ‖x1 − x2‖2.

Here in the third line we uses the fact that ‖Wj‖2 ≤ Bj and the 1-Lipschitz property of σvj (·), and in the last
line we recursively apply the same argument as in the above lines. This concludes the proof of the lemma.

11.10 Proof of Lemma 11.2

Recall that ϕ(x;W, v) takes the form

ϕ(x;W, v) = WL+1σvLWL · · ·σv1W1x.

For notational convenience, we denote by ϕij(x) = σvij (W
i
jx) for i = 1, 2. By this, ϕ(x;W, v) has the form

ϕ(x;W i, vi) = W i
L+1ϕ

i
L ◦ · · · ◦ ϕi1(x). First, note that for any W 1,W 2, v1 and v2, by triangular inequality, we

have

‖ϕ(x,W 1, v1)− ϕ(x,W 2, v2)‖2 = ‖W 1
L+1ϕ

1
L ◦ · · · ◦ ϕ1

1(x)−W 2
L+1ϕ

2
L ◦ · · · ◦ ϕ2

1(x)‖2
≤ ‖W 1

L+1ϕ
1
L ◦ · · · ◦ ϕ1

1(x)−W 2
L+1ϕ

1
L ◦ · · · ◦ ϕ1

1(x)‖2
+ ‖W 2

L+1ϕ
1
L ◦ · · · ◦ ϕ1

1(x)−W 2
L+1ϕ

2
L ◦ · · · ◦ ϕ2

1(x)‖2
≤ ‖W 1

L+1 −W 2
L+1‖F · ‖ϕ1

L ◦ · · · ◦ ϕ1
1(x)‖2

+BL+1 · ‖ϕ1
L ◦ · · · ◦ ϕ1

1(x)− ϕ2
L ◦ · · · ◦ ϕ2

1(x)‖2. (11.17)
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Moreover, note that for any ` ∈ [L], we have the following bound on ‖ϕ1
L ◦ · · · ◦ ϕ1

1(x)‖2:

‖ϕi` ◦ · · · ◦ ϕi1(x)‖2 ≤ ‖W i
`ϕ

i
`−1 ◦ · · · ◦ ϕi1(x)‖2 + ‖vi`‖2

≤ B` · ‖ϕi`−1 ◦ · · · ◦ ϕi1(x)‖2 +A`

≤ ‖x‖2 ·
∏̀
j=1

Bj +
∑̀
j=1

Aj
∏̀
i=j+1

Bi, (11.18)

where the first inequality comes from the triangle inequality, and the second inequality comes from the bounded
spectral norm of W i

j , while the last inequality simply applies the previous arguments recursively. Therefore,
combining (11.17), we have

‖ϕ(x,W 1, v1)− ϕ(x,W 2, v2)‖2 ≤
(
B ·

L∏
j=1

Bj +

L∑
j=1

Aj

L∏
i=j+1

Bi

)
· ‖W 1

L+1 −W 2
L+1‖F

+BL+1 · ‖ϕ1
L ◦ · · · ◦ ϕ1

1(x)− ϕ2
L ◦ · · · ◦ ϕ2

1(x)‖2. (11.19)

Similarly, by triangular inequality, we have

‖ϕ1
L ◦ · · · ◦ ϕ1

1(x)− ϕ2
L ◦ · · · ◦ ϕ2

1(x)‖2
≤ ‖ϕ1

L ◦ ϕ1
L−1 ◦ · · · ◦ ϕ1

1(x)− ϕ2
L ◦ ϕ1

L−1 ◦ · · · ◦ ϕ1
1(x)‖2

+ ‖ϕ2
L ◦ ϕ1

L−1 ◦ · · · ◦ ϕ1
1(x)− ϕ2

L ◦ ϕ2
L−1 ◦ · · · ◦ ϕ2

1(x)‖2
≤ ‖ϕ1

L ◦ ϕ1
L−1 ◦ · · · ◦ ϕ1

1(x)− ϕ2
L ◦ ϕ1

L−1 ◦ · · · ◦ ϕ1
1(x)‖2 (11.20)

+BL · ‖ϕ1
L−1 ◦ · · · ◦ ϕ1

1(x)− ϕ2
L−1 ◦ · · · ◦ ϕ2

1(x)‖2,

where the second inequality uses the bounded spectral norm of WL and 1-Lipschitz property of σvL(·). For
notational convenience, we further denote y = ϕ1

L−1 ◦ · · · ◦ ϕ1
1(x), then

‖ϕ1
L(y)− ϕ2

L(y)‖2 = ‖σ(W 1
Ly − v1

L)− σ(W 2
Ly − v2

L)}‖2
≤ ‖v1

L − v2
L‖2 + ‖W 1

L −W 2
L‖F · ‖y‖2,

where the inequality comes from the 1-Lipschitz property of σ(·). Moreover, combining (11.18), it holds that

‖ϕ1
L(y)− ϕ2

L(y)‖2 ≤ ‖v1
L − v2

L‖2 + ‖W 1
L −W 2

L‖F ·
(
B ·

L−1∏
j=1

Bj +

L−1∑
j=1

Aj

L−1∏
i=j+1

Bi

)
. (11.21)

By (11.20) and (11.21), we have

‖ϕ1
L ◦ · · · ◦ ϕ1

1(x)− ϕ2
L ◦ · · · ◦ ϕ2

1(x)‖2

≤ ‖v1
L − v2

L‖2 + ‖W 1
L −W 2

L‖F ·
(
B ·

L−1∏
j=1

Bj +

L−1∑
j=1

Aj

L−1∏
i=j+1

Bi

)
+BL · ‖ϕ1

L−1 ◦ · · · ◦ ϕ1
1(x)− ϕ2

L−1 ◦ · · · ◦ ϕ2
1(x)‖2

≤
L∑
j=1

L∏
i=j+1

Bi · ‖v1
j − v2

j ‖2 +
B ·
∏L+1
j=1 Bj

minj Bj
·
L∑
j=1

Aj ·
L∑
j=1

‖W 1
j −W 2

j ‖F

≤
B ·
∏L+1
j=1 Bj

minj Bj
·
L∑
j=1

Aj ·
L∑
j=1

(‖v1
j − v2

j ‖2 + ‖W 1
j −W 2

j ‖F).
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Here in the second inequality we recursively apply the previous arguments. Further combining (11.19), we obtain
that

‖ϕ(x,W 1, v1)− ϕ(x,W 2, v2)‖2

≤
B ·
∏L+1
j=1 Bj

minj Bj
·
L∑
j=1

Aj ·
(L+1∑
j=1

‖W 1
j −W 2

j ‖F +

L∑
j=1

‖v1
j − v2

j ‖2
)

≤
B
√

2L+ 1 ·
∏L+1
j=1 Bj

minj Bj
·
L∑
j=1

Aj ·

√√√√L+1∑
j=1

‖W 1
j −W 2

j ‖2F +

L∑
j=1

‖v1
j − v2

j ‖22,

where we use Cauchy-Schwarz inequality in the last line. This concludes the proof of the lemma.

12 Auxiliary Results

Lemma 12.1. The following statements for entropy hold.

1. Suppose that supg∈G ‖g‖∞ ≤M , then

H4M,B(
√

2δ,G,Q) ≤ H2,B(δ,G,Q)

for any δ > 0.

2. For 1 ≤ q <∞, and Q a distribution, we have

Hp,B(δ,G,Q) ≤ H∞(δ/2,G),

for any δ > 0. Here H∞ is the entropy induced by infinity norm.

3. Based on the above two statements, suppose that supg∈G ‖g‖∞ ≤M , we have

H4M,B(
√

2 · δ,G,Q) ≤ H∞(δ/2,G),

by taking p = 2.

Proof. See van de Geer and van de Geer (2000) for a detailed proof.

Lemma 12.2. The entropy of the neural network set defined in (8.1) satisfies

H∞[δ,ΦM (L, p, s)] ≤ (s+ 1) log(2δ−1(L+ 1)V 2),

where V =
∏L+1
l=0 (pl + 1).

Proof. See Schmidt-Hieber (2017) for a detailed proof.

Theorem 12.3. Assume that supg∈G ρK(g) ≤ R. Take a, C, C0, and C1 satisfying that a ≤ C1
√
nR2/K,

a ≤ 8
√
nR, a ≥ C0 · [

∫ R
0
H

1/2
K,B(u,G,P)du ∨R], and C2

0 ≥ C2(C1 + 1). It holds that

P[sup
g∈G
|EPn(g)− EP(g)| ≥ a · n−1/2] ≤ C exp

(
− a2

C2(C1 + 1)R2

)
.

Proof. See van de Geer and van de Geer (2000) for a detailed proof.

Lemma 12.4. Suppose that ‖g‖∞ ≤ K, and ‖g‖ ≤ R, then ρ2
2K,P(g) ≤ 2R2. Moreover, for any K ′ ≥ K, we

have ρ2
2K′,P(g) ≤ 2R2.

Proof. See van de Geer and van de Geer (2000) for a detailed proof.
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Theorem 12.5. For any function f in the Hölder ball Cβd ([0, 1]d,K) and any integers m ≥ 1 and N ≥ (β + 1)d ∨
(K+1), there exists a network f̃ ∈ Φ(L, (d, 12dN, . . . , 12dN, 1), s) with number of layers L = 8+(m+5)(1+dlog2 de)
and number of parameters s ≤ 94d2(β + 1)2dN(m+ 6)(1 + dlog2 de), such that

‖f̃ − f‖L∞([0,1]d) ≤ (2K + 1)3d+1N2−m +K2βN−β/d.

Proof. See Schmidt-Hieber (2017) for a detailed proof.

Lemma 12.6. If the function f is strongly convex with parameter µ0 > 0 and has Lipschitz continuous gradient
with parameter L0 > 0, then the Fenchel duality f† of f is 1/L0-strongly convex and has 1/µ0-Lipschitz continuous
gradient (therefore, f† itself is Lipschitz continuous).

Proof. See Zhou (2018) for a detailed proof.

13 Experiment details

To evaluate the performance of our mechanism on the MNIST and CIFAR-10 test dataset, we first observe that
for high-dimensional data, the optimization task in step 1 may fail to converge to the global (or a high-quality
local) optimum. Adopting a fixed form of t̂ can still guarantee incentive properties of our mechanism and also
consumes less time. Thus, we skip Step 1 in Algorithms 1, 2, and instead adopt t̂ from the existing literature.

13.1 Evaluation with ground-truth verification

To estimate distributions w.r.t. images, we borrow a practical trick as implemented in Nowozin et al. (2016):
let’s denote a public discriminator as D which has been pre-trained on corresponding training dataset. Given a
batch of clean (ground-truth) images {xi}ni=1, agent A’s corresponding untruthful reports {x̃i}ni=1, the score of
A’s reports is calculated by:

S({x̃i}ni=1, {xi}ni=1) = a− b

n
·
n∑
i=1

[
t̂(D(xi))− f†(t̂(D(x̃i)))

]

13.2 Evaluation without ground-truth verification

Suppose we have access to a batch of peer reported images {x̄i}ni=1, agent A’s corresponding untruthful reports
{x̃i}ni=1. For Pn = {x̃i}ni=1, Qn = {x̄i}ni=1, we use (D(x̃i) +D(x̄i))/2 to estimate the distribution x ∼ P⊕Q, and
D(x̃i) ·D(x̄i) is the estimation of x ∼ P×Q. The score of A’s reports is calculated by:

S({x̃i}ni=1, {x̄i}ni=1) = a+
b

n
·
n∑
i=1

[
t̂
(D(x̃i) +D(x̄i)

2

)
− f†(t̂(D(x̃i) ·D(x̄i)))

]

13.3 Computing infrastructure

In our experiments, we use a GPU cluster (8 TITAN V GPUs and 16 GeForce GTX 1080 GPUs) for training and
evaluation.


