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Abstract

Modern machine learning research has explored numerous approaches to solving reinforce-
ment learning with multiple goals and sparse rewards as well as learning correct actions
from a small number of exploratory samples. We explore the ability of a self-supervised
system which automatically creates and tests symbolic hypotheses about the world to ad-
dress these same issues. Leela is a system which builds an understanding of the world
using constructivist artificial intelligence. For our study, we create an N x N grid world
with goals related to proprioceptive or visual positions for exploration. We compare Leela
to a DQN which includes hindsight for improving multigoal learning with sparse rewards.
Our results show that Leela is able to learn to solve multigoal problems in an N x N world
with approximately 160NN? exploratory steps compared to 360N27 steps required by the
DQN.

Keywords: Multi-goal, constructivist, deep Q network, machine learning, artificial intel-
ligence

1. Introduction

One goal of artificial intelligence research is to build systems which can integrate concepts
of the world and takes actions to reach goals within that world. In February 2020 at the
Turing Award Winners event for AAAI-20, Yann LeCun identified 3 key challenges for Al
today: learning with fewer labeled examples and/or fewer trials; learning to reason (that is,
rational and logical thinking); and learning to plan complex actions Bengio et al. (2020).
Hence, the challenge of integrating data about the world from a small amount of training
information is recognized as crucial to improving Al in the future.

We introduce Leela, which is a symbolic learning system capable of forming hypotheses
about the world and testing them as actions are performed. As it grows its knowledge
using self-supervised exploratory actions, it can be given goals which it can achieve using
its learned knowledge. The foundations for Leela were initially laid out decades ago by the
child development theories of Jean Piaget Piaget (1964) and the computational models of
Gary Drescher Drescher (1991). Leela builds models of the world using ’schemas’, which
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allow it to reason about which actions are possible in the current world state, and what
aspects of the world change when an action is performed.

We evaluate Leela by comparing its ability to learn about an N % N grid world with
3 different goal categories (hand position, eye position, and visual field). Each category
allows for N x N possible subgoals, providing for a total of 3 x N x IN possible goals to be
specified to the learning system. We show that the self-supervised approach used by Leela
is able to learn to solve goals with fewer steps, even as the problem size scales, and to learn
with less wall clock time as the number of goals scales.

Our key contributions are:

1. We introduce Leela in detail including the schema mechanism and goal solution meth-
ods.

2. We demonstrate that Leela can learn more efficiently from exploratory actions than a
modern Deep Q Network even when improvement to the network is made to handle
the problem of sparse rewords and enhance its learning per action step.

3. We demonstrate that Leela trains to solve multiple goals in parallel in less time than
a Deep Q Network.

4. We demonstrate that a self-supervised system which explores and finds patterns can
learn efficient and actionable information about the world in which it acts.

2. Background

Jean Piaget proposed a theory of childhood cognitive development in which a child learns
about objects in the world through sensorimotor experience related to moving its hands
and visually perceiving the world Piaget (1964). As the child grows it learns more complex
concepts such as object permanence. His ideas included the concept of schemas to organize
when an action (like picking up an object) is applicable and what the result of the action is
on the world. Piaget organized a child’s learning process into 4 main stages which exemplify
how knowledge gained in previous stages is used to build more complex concepts in later
stages.

e Sensorimotor stage: 0-2 years

Simple reflexes (moving hands, eyes, etc)

Primary circular reactions: coordination of 2 types of schema: i.e. passing hand
before face

— Secondary circular reactions: actions involving external objects begin

— Coordination of 2nd circular reactions: first proper intelligence; means and ends;
goals; object permanence

Tertiary circular reactions: curiosity about object properties

Internalization of schemas: insight, creativity, use primitive symbols

e Pre-operational stage: 2-7 years
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— Child can form stable concepts and magical beliefs; cannot yet mentally manip-
ulate information; increased play

e Concrete operational stage: 7-11 years

— Child can think logically; understand reversibility; can see viewpoints of others;
improved classification skills

e Formal operational stage: 11-16+ years

— Development of abstract reasoning; utilize metacognition; multistep problem
solving

Gary Drescher proposed a system to bring Piaget’s concepts into the field of computing
and artificial intelligence Drescher (1991). The basis for Drescher’s approach is a software
model for the schema concept introduced by Piaget, shown in Figure 1. The model used
for learning is that of a robot with a hand and eye which can act on and observe the world.
Initially, the learning system has no understanding of how actions affect its sensory input.
For example, a schema might be learned that when the world context includes the hand
on the left side of the visual field, then the action of moving the hand to the right has the
result that the hand is seen in the middle of the visual field. Leela has been trained in
environments with obstacles and blocks which can be grasped and moved, but in order to
more directly study the learning capabilities relative to a Deep Q Network, the environment
studied in this paper only involves hand-eye coordination learning. Readers interested in
details of the schema proposal and learning mechanism are encouraged to read Drescher’s
book: Made Up Minds Drescher (1991), but we will provide a brief summary here.

P(>xyz|pq\w)

ContexResult
w

Action
Figure 1: A schema.
Figure 1 shows a schema with items p and q in its context, action w, and items x,y, z in its result. A
schema also maintains some auxiliary data, such as the schema’s reliability— that is, the reliability with

which the predicted result will actually follow the schema’s action (provided that the context is satisfied).
Reliability is measured by recording:

e P(bR|CA), the conditional probability of a transition to the result state (R) given context conditions
(C) and action (A).

e P(bR|C-A), the conditional probability of a transition to the result under the same conditions except
without the action.

Figure 1: Schema diagram showing context, action, and result Drescher (1986).

As Leela builds schemas that represent knowledge about the world, goals can be achieved
by a planner which chains actions together from actions which are possible in the current
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world context to a final action which has a result that meets the goal. This is done by
finding a series of actions whose results are in the context of a following action until the
results match the goal.

Figure 2: Schemas can be chained together to reach a goal during planning Drescher (1986).

Like neural networks, the foundational model for the Leela approach to learning was
initially proposed decades ago; and like neural networks, the software ideas proposed benefit
from the faster hardware available today. As we will demonstrate, Leela’s learning models
based on schemas can help address some of the key challenges facing Al today.

3. Methodology

Our experiments compare Leela to a DQN model in an N x N grid world. Both Leela and
the DQN receive as inputs the proprioceptive hand and eye positions, as well as the image
of the visual field, as shown in Figure 3. Proprioception is the term for the body’s sense for
where body parts are. For these experiments, there are no objects in the world besides the
hand and eye, but this still allows for exploring the ability to learn hand-eye coordination.
For both Leela and the DQN, there are 3 goal categories available to the model: move the
hand to proprioceptive position x,y; move the eye to proprioceptive position x,y; or move
the hand and/or eye such that the hand is seen at position x,y in the visual field. Given
an N x N grid, there are 3 x N x IN possible goals which can be presented to the model for
solution. There are 8 possible actions that can be taken in pursuit of the goal: move hand
forward, backward, left, right, and move eye forward, backward, left, or right.

3.1. Leela model

Leela learns about the world by taking actions (which can be random, biased to explore
unknown areas, or in pursuit of a given goal). Leela gathers statistics on the effects of an
action given the world state when the action was taken and spawns of schemas representing
what was learned. To achieve a goal, Leela tries to chain schemas together to reach a goal
state from the current state. In a richer environment, Leela is able to learn actions in a grid
world which includes objects in it, and inputs may include vision details (such as color and
shape) and a sense of touch. For this comparison with DQN, objects, vision details, and
the sense of touch are not a part of the world. To explore environment scaling, we scale the
size of the grid world from 5x5 to 15x15. To explore multi-goal behavior, we train models
to solve 1, 2, or 3 goal categories simultaneously.

Leela learns from actions by forming schemas which can be thought of as hypotheses
about the world. For example, Leela might take the 'move hand left’ action and notice
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Figure 3: Inputs to Leela and DQN include the hand and eye proprioceptive position, and
the visual field. The position of the eye determines the center of the visual field,
hence the location of the hand in the visual field is based on the relative position
of the hand and eye.

that a result was ’the hand is now visible in the center of the visual field’. It might form
a schema theorizing that moving the hand left has this result, but later takes the action
and the same result does not occur. Given the new observation, Leela can add context to
the schema so that it ultimately learns that moving the hand left only results in seeing the
hand in the center of the visual field if the hand was originally just to the right of the center
of the field.

3.2. DQN model

We compare Leela with a modern reinforcement learning algorithm. We based our model
on the Deep Q Network (DQN) tutorial for PyTorch Paszke et al. (2019), which includes a
replay buffer Lin (1992); Lillicrap et al. (2015), and a target network Mnih et al. (2015) to
help with stability. As we will show, the base network performs poorly on the multi-goal
learning problem due in part to a sparse reward, so we added hindsight experience replay
Andrychowicz et al. (2017) to create a system which can be fruitfully compared to the
current Leela performance.

Model inputs For the DQN model, the input is the current world state, including the
desired goal, and the output is the action the model recommends taking. Figure 4 shows the
full set of inputs. Just as with the Leela model, the DQN receives data about the current
world state through hand and eye proprioception (a sense of where the hand and eye are
in space) as well as a visual field which is the same dimension as the grid world. These 3
input forms are provided as 3 NxN input values. A fourth NxN matrix encodes the goal
state:

IN[3] [0] [x] specifies the X position of the goal
IN[3][1] [y] specifies the Y position of the goal
IN[3][2:N-1]1[0] set to 1 for goal to move hand to a given proprioceptive position
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IN[3][2:N-1]1[1] set to 1 for goal to move eye to a given proprioceptive position
IN[3][2:N-1]1[2] set to 1 for goal to see hand at a given position in visual field

IN[O][X][y] IN[1][x][y] IN[2][x][y] IN[3][x][y]
Hand Eye Vision Goal
Proprioceptive Proprioceptive Grid Encoding

4 Grid location| | 2| .| _

3| One-hot One-hot hish N B | E | omeet
2| position position tiadee EE

1 e L Goal Y position
0 imview Goal X position
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Figure 4: Input tensor has 4 2D grids. 3 grids representing sensory input, and one grid
representing the goal to achieve.

The network output is the 8 possible actions: move hand forward, backward, left, right,
and move eye forward, backward, left, or right.

Model training The model is trained by using back-propagation as the model optimizes
an action policy given the input state Andrychowicz et al. (2017). In typical reinforcement
learning, an action policy determines which action to apply in which state: 7(s) : S — A.
Reinforcement learning works by learning a Q-function Q(s, a) which represents the reward
from the environment achieved by taking action a in state s. For any given state s, the
action a with the highest Q(s, a) value is the recommended action to take, as it achieves the
highest reward. The optimal Q-function Q*(s,a) is given by the Bellman equation, shown
in Equation (1). In this equation, Q*(s, a) is the expected value over all possible next states
of the immediate reward r(s, a) achieved by taking action a in state s plus the best Q-value
of the possible future states discounted by a depreciation factor A.

Q"(5:0) = Farmp( s [r(5,@) + 7 max @ (', )] M

From the Bellman equation, we can see that having frequent non-zero rewards will help
a system learn the correct Q-function and, hence, the correct action to take in a given state.
But our goal in this paper is to model a system which is only rewarded when the goal is
achieved, which models situations in which a distance to goal metric for an incremental
reward may be difficult to evaluate. As we will show, sparse rewards can create training
convergence challenges to traditional reinforcement learning models. In order to learn with
sparse rewards, the model needs to get sufficiently lucky to take the correct action when
it happens to be right next to a goal, then the system can learn how to take actions that
get it closer to the goal, and so on. But with enough random actions occurring, the ability
to learn the Q function can become intractable. Andrychowicz et al. address the issue of

86



LEELA AND DQN

learning with sparse rewards in a multi-goal system by introducing hindsight learning. In
hindsight learning, the current state and goal state are given and the system chooses an
action given it’s currently poorly performing Q-function. This action is not likely to have a
reward, but the training can be adjusted to reward the state achieved. Hindsight works by
adding a training result as if the state reached was the goal. For example, if the model is
asked to achieve goal g from current state s and it takes action a resulting in state s’, then
a training datum is created which teaches the model that if the goal had been to reach s’
from s then the correct action was a. In this way, every step taken by the model provides
some teachable information.

4. Experiments

The methodology we use to compare Leela with a DQN involves training a model to solve
hand, eye, and vision goals (hpxy, vpxy, or vixy), or a training a model to solve a subset
of 1 or 2 of these 3 goal categories. For evaluating goal learning, the goal target is chosen
randomly from among those goals on which the model was trained. For DQN testing, the
start position is chosen randomly; for Leela testing, the start position is wherever the hand
and eye currently are (which becomes random as Leela improves on meeting the previous
random goal). The average number of steps required by a well performing model for such
goals is less than one side of the N« N grid (i.e., for a 5x5 grid the average steps for random
start and end positions is 3.2). For both Leela and the DQN, we limit the model to take
4 % N steps in an attempt to reach a goal at which point a new goal can be specified. We
track and record the number of action steps required for the model to learn to reach the
goal in under 2 x N steps, and to reach the goal in under NN steps.

The test we created for Leela takes self-supervised actions in the world without a spec-
ified goal and then every 500 steps it checks to see how well Leela can solve goals. The
test will choose 10 random goals and track the average number of steps needed to reach
the goal. The test steps the world until a goal is reached or 4N steps have been taken.
Since the DQN network is reporting a result that is averaged over 200 attempts, the Leela
test will only claim success on averaging less than 2 x N steps after 2 sets of 10 goals have
been below that average. The test completes after 2 sets of 10 goals have averaged below
N steps.

Tests for both Leela and the Deep Q Network were run on the CPU on a system with
Intel Core i7-6700HQ @2.6GHz (4 cores, 8 threads, 3.5GHz max).

4.1. Leela study

Our Leela test case starts out with no schemas about the world and begins taking random
actions in pursuit of learning. Initially, when requested to reach a goal Leela will not reach
it within the 4N step limit. After learning more about the world, Leela will reach the goal
more and more consistently within the allotted limit. During early testing, Leela may be
asked to reach a goal for which it cannot form any path to attempt and in such cases Leela
will continue to explore and learn randomly.

87



LEELA AND DQN

4.1.1. LEELA ABLATION

Leela has a variety of parameters that affect how schemas are created during the learning
process. Like the hyperparameters of a deep neural network, adjusting these parameters
can significantly affect the network performance. Table 1 summarizes data gathered when
selected parameters were varied. Results are the average of 2 runs of a 9x9 grid solving all
3 goal categories (hand, eye, vision) to an average path length of less than 9 steps.

Table 1: Leela parameter variations tested on 9x9 grid with all 3 goal categories

Varied Parameter | Description Value | Steps
context Scaling of confidence intervals for context plon | 0.3 24,500
interval-scale versus p|off estimates. Larger values spin off 0.6 14,000
new schemas slower. 1.2 15,500
2.4 15,500
4.8 48,750
min-item- Number of transitions required before an item is | 2 15,500
transitions- considered for context spinoff. 4 14,000
context-spinoff 8 13,500
16 14,500
results Scaling of confidence intervals for result pjon 0.001 | 15,000
interval-scale versus ploff estimates. Larger values spin off 0.005 | 13,750
new schemas slower. 0.01 15,500
0.02 12,250
0.10 | 16,750

Further experiments with larger grid sizes guided the final Leela model to use 1.2 for
the context interval-scale, 2 for the min-item-transitions-context-spinoff, and 0.01 for the
results interval-scale. These parameters were used for the results in tables 3 and 4.

4.1.2. LEELA RESULT CHARTS

Figure 5 shows Leela performance during training. Training for Leela involves random
exploration of the world resulting in schema creation. When given a specific goal, for
example move hand to position 2,3, Leela will try to chain together schemas from the
current state of the world to produce the goal state. Partially complete understandings of
the world can still result in some successful paths when random goals are requested, and
this figure show this process. At first, Leela will not understand the world enough to chain
together schemas and the maximum step length of 4V steps will occur when trying to solve
goals. As Leela understands the world, the average number of steps taken to reach a random
goal drops below N in all experiments.

Figure 5(a) shows a run of Leela when being tested to solve only hand position goals
in an 11x11 grid world. Figure 5(b) shows a run when Leela was tested to solve a random
mix of hand, eye, and vision goals in a 15x15 grid world. The ‘DQN episode equivalent’
is computed to allow for comparison with DQN training charts. An episode in DQN is an
attempt to reach the goal and hence the episode equivalent for Leela is a number of steps
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related to the goal length (i.e., 4N steps at first are equal to one episode in both Leela and
DQN). The blue data represents individual path attempts, which max out at 4N and show
the typical variation during testing and training. Any blue dot at the top of the graph (4NV)
represents a failure of the model to find the path. The gold dots are the average of all 10
samples for a given test group.

Run 1 Hand goal only 11x11 Run 1 all 3 goals 15x15
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Figure 5: Leela training trends.

A key feature of Leela is that schemas when learned are not forgotten, so as Leela
advances in learning about the world, the model does not suffer the catastrophic forgetting
problem seen with DQN models Beaulieu et al. (2020).

4.2. DQN study

For the DQN analysis, we report the results during training as the model is continuously
provided with goals to reach on its input. Unlike Leela, which can mix periods of exploration
with goal searches, the DQN only learns by taking actions in quest of a goal which allows
for a reward function to guide learning by the model.

4.2.1. DQN ABLATION

There are many parameters which can affect deep neural network performance, Table 2
summarizes data gathered while varying certain parameters. Results are the average of 2
runs of a 7x7 grid solving all 3 goal categories (hand, eye, vision) to an average path length
of less than 7 steps.

Further experiments with larger grid sizes guided the final DQN model parameter values
used for the Leela to DQN comparison studies. These values are shown in Table 3.

4.2.2. DQN RESULT CHARTS

Figure 6 shows the importance of using hindsight to enhance the ability of the DQN network
to learn from sparse rewards. While Leela is able to use actions on the world to create and
extend hypotheses, the DQN needs a reward function to learn well. The blue lines in the
graphs are the path length to reach the goal each episode, the gold line is the average path
length over 200 episodes. For example, when there are no blue lines reaching to the max
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Table 2: DQN parameter variations tested on 7x7 grid with all 3 goal categories

Parameter | Description Value Steps
Layer Vary the neuron widths for a network with | 15N, 10N, 5N 71,113
width 3 hidden layers, 4xNxN inputs, and 30N, 20N, 10N 52,830
8 outputs. 60N, 40N, 20N 67,551
Network Number of hidden neural layers 2 (30N, 20N) 54,503
depth 3 (30N,20N,10N) | 52,830
4 (30N,20N,15N,10N) 58,184
e_decay e is the chance to take a random action to | 300N 45,562
explore instead of the predicted best action. | 400N 52,830
It decays using € = 0.05+0.9¢ —episode/e-decay | 50N 47,024
dropout Test having a random weight dropout layer | No dropout 52,830
inserted before output layer. 10% dropout 41,999
¥ Reward for future states decay in value by | 0.5 37,475
~ each step. 0.8 52,830
0.95 39,660
Ir The learning rate (Ir) is used to scale the | 0.10/N? 65,104
gradient when training with stochastic 0.25/N? 52,830
gradient decent (SGD). 0.45/N*? Unknown
memsize Size of replay memory used as fifo for 750N? 51,520
state/action/reward/next state learning. 10002 49,807
15002 42,004
20002 52,830
3000N2 45,740
4000N?2 41,474
Nonlin Type of non-linearity used between layers. | leaky_relu 52,830
relu Unknown
tanh 59,747
Reward Reward scoring can include 0 or 1 for +1 goal, —1/N step 52,830
achieving goal, and 0 or —1/N for each step | +1 goal, 0 step 52,700
taken that does not reach goal. 0 goal, —1/N step | 36,745
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Table 3: Final DQN parameter selection

Parameter Value

Neuron layers | 3 layers with 30N, 20N, and 10N neurons each.

e_decay 400N

dropout Dropout is not used (not valuable for larger grids)

¥ 0.8

Ir 0.25/N?

memsize 2000V 2

Nonlin leaky relu

Reward + 1 for achieving goal, and -1/N for each step taken that
does not reach goal (works well for larger grids)

path length (4 times the length of a grid side) then for that period the network solved all
the goal challenges presented. Hindsight learning, discussed in Section 3, learns 2 datum
per action step - it trains on the benefit of the action taken with respect to the actual goal
requested, and it trains on the benefit of the given action as if the next state reached was the
goal. The gold lines in Figure 6 show a model with hindsight learns to solve multiple goals
in a 7x7 grid learns faster than a model without hindsight. Without hindsight, learning the
multi-goal problem on a 9x9 grid did not converge with our model.

GridEny_7_hand, aye.visionpng GrdEny_7_hand.eye vision_hndsight prg

Solution path length and 200 ephode average Solution path kength and 200 eplsode average
5 a3
20 an
By |
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& H
2] L]
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L] ]
o F000 ADDO 000 HDIJD 10000 -] L4000 4000 000 BO00 10000
Epicde Cpeiade
(a) Multigoal sparse reward barely improv- (b) Multigoal learning converges to an av-
ing on 7x7 grid without hindsight erage solution below 7 steps in about

4,000 steps with hindsight on 7x7 grid

Figure 6: The benefit of hindsight. Average steps to reach a random goal shown in gold.

Figure 7 show training runs of the neural network for different goal groups. Figure 7(a)
shows the results for attempting to reach a random hand-position goal in an 11x11 grid
world as training progresses. As the system learns, the average path to reach the goal drops
from the limit of 44 steps (4N) to the ’success’ criterion of under 11 steps. IN[1][x][y] and
IN[2][x][y] (the eye position and vision field) are all 0 in this case to prevent noise into the
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hand position training. As shown by the per-episode data illustrated with blue lines in
Figure 7(a), from about episode 12,000 to about 19,000 there were no failures to reach a
random goal, but then a period of ’forgetting’ began where the model drifted into a less
successful configuration. Figure 7(b) shows results for a 15x15 environment which randomly
selects between a hand, eye, or vision goals.

GridEny_11_hand_hindsight.png GredEny_15_hand,eye vision_hindsight.png
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(a) Training for single goal in 11x11 grid (b) Training for 3 goal categories in 15x15
shows occasional failure to reach goal grid shows frequent failure to reach goal
after model learned after model learned

Figure 7: Charts showing DQN training and success rates.

4.3. Comparisons between Leela and DQN

Table 4 compares how quickly Leela and the DQN reach a given goal success metric as
measured in action steps. The columns denote the steps required to achieve an average
solution length less than 2N or less than N for both a single-goal problem as well as a
multi-goal problem. The final row is a rough estimate of the scaling equation for the
number of steps to reach the training goal based on the grid size. The equations are of the
form ¢ NP when N is the length of one side of the grid, p is computed using the number
of steps needed for a 5x5 world and a 15x15 world as: p = In(stepsisq15/stepssys)/In(3).
Then c is chosen such that: ¢ = stepsisg15/15P. As shown in the table, Leela learns faster
per step and is performing better and better per step relative to the DQN.

Table 5 and Table 6 show execution time metrics comparing Leela and DQN. Note that
the DQN is implemented in the well-optimized PyTorch environment for machine learning,
while the Leela code has not yet been tuned for performance. The data shows that for our
problem sizes Leela outperforms the DQN in training time. As the grid size grows, however,
Leela is showing a higher scale factor based on grid size. However, when goal categories are
considered, we see that Leela is better able to learn about the world through exploration
and scales better as new goals are added to the problem.

Figure 8 shows 4 training charts which demonstrate the ability of Leela to learn in-
formation useful for multiple goals in parallel as action are taken. Subfigures (a) and (c)
show that Leela does not take significantly longer to perform well on the multigoal problem.
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Table 4: Number of action steps until the system is trained to a given quality level (average

of 2 runs)

Grid Hand avg < 2N Hand avg < N All 3 avg < 2N All 3 avg < N
NN Leela DQN Leela DQN Leela DQN Leela DQN
5xH 2750 3238 3000 4108 3250 20122 4250 28214
<7 5000 4984 6500 7012 6250 40993 8250 58725
9x9 8250 11089 11500 13642 10250 90363 15500 155997
11x11 11250 15220 14500 19909 15000 150576 | 21500 255558
13x13 18250 24193 23750 33133 24250 250209 | 28750 445356
15x15 27500 45232 34000 57723 28250 350592 | 39500 555895
Approx

steps for | 94N21 | 68N24 | 86N2? | 86N2*4 | 137N20 | 306 N6 | 162N29 | 358 N2T
N« N

Table 5: Time in seconds until the system is trained to a given quality level (average of 2

runs)

Grid Hand avg < 2N Hand avg < N All 3 avg < 2N All 3 avg < N
NxN Leela DQN Leela DQN Leela DQN Leela DQN
5x5 6 8 6 11 7 59 8 84
=7 20 17 25 26 24 151 33 222
9x9 63 54 91 68 81 441 130 779
11x11 155 115 209 150 211 1105 333 1914
13x13 482 200 666 275 696 2048 866 3707
15x15 1330 478 1712 611 1268 3654 1911 5840
Approx

time for | N49/455 N3-7/50 | N>1/659 N37/33 | N4+7/290 N38/7 | N5Y/381] N39/6
NN

Table 6: Time in seconds until the system is trained to a given quality level on 15x15 grid

(average of 2 runs)

Number of Number of average < 15 steps
goal categories possible goals Leela DQN

1 (hand or eye) 225 1712 611

2 (hand + eye) 450 1811 2071

3 (hand, eye, vision) 675 1911 5840
Approximate time for G goal categories 1611+100G | 620G?
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Subfigures (b) and (d) show that the DQN takes almost 10 times as many episodes to learn
3 goal categories instead of one, and, as discussed relative to Table 4, the DQN requires
more exploration of the world to learn even a single goal.

GridEnv_15_hand_hindsight.png
Solution path length and 200 episode average
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Figure 8: Leela easily transfers knowledge gained allowing efficient multigoal learning.

5. Related Work

In the field of neuroscience, research by Cisek and Kalaska Cisek and Kalaska (2010) explores
the mechanisms by which actions are chosen while interacting with the world. In their work,
they present neurophysiolagical data in support of the idea that based on a perception of
the world, various actions are presented by the frontoparietal sensory motor control system
and then selected by systems in the prefrontal cortex. This mechanism has more in common
with the Leela approach than the DQN approach we have presented. Leela will learn actions
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which can be activated by the current world context, and these are then selected based on a
goal planner when desired. The DQN combines the action generation with the goal planning
by having the current world state and goal be input to a network which predicts the best
action.

Survey Besold et al. (2017) introduces the general topic of combining symbolic AT with
neural network models. Indeed, using the demonstrated generalization capability of a neural
network with the ability of Leela to learn concepts about the world in an unsupervised way
could be a fruitful path for future work. The survey paper also discussed the ’binding
problem’ which is the challenge of learning how to build schemas which generalize based
on variables in the environment. The Leela approach could be enhanced in the future with
reference to ongoing research in this area.

Baker et al. use reinforcement learning to discover tool use Baker et al. (2019). Their
system is able to achieve fascinating results using machine learning. The system trains
agents to play ‘hide and seek’ in a world with movable obstacles (which the hiders learn
to use to build a room) and movable ramps (which the seekers learn to use to get over the
walls of the room). The system still uses rewards from the environment to guide learning
by the agents, and the number of episodes used by the system is in the hundreds of millions.
But such advances are of keen interest in relation to the learning approach taken by Leela.

Beaulieu et al. have introduced a meta-learning technique which aims to eliminate
the catastrophic forgetting problem seen in neural networks Beaulieu et al. (2020). Their
approach is tested on the problem of neural network classifiers, but they propose that the
technique could be extended to reinforcement learning networks learning to perform actions.
The meta-learning network presented learns to modulate the activations of a prediction
network which allows for selective plasticity when learning new data. Using Leela to interact
with a network in a similar way may allow Leela to guide learning in a DQN such that
benefits of both techniques could be combined.

6. Conclusion

In the next decade AI will need to begin learning with fewer labeled examples, reasoning
about the world, and planning complex actions. We’ve presented Leela, which uses the
schema mechanism for learning concepts about the world in a constructivist way which does
not require labeled examples or an explicit reward from the environment. We compared
Leela’s schema-based learning to a DQN enhanced with hindsight learning and found that
Leela was able to learn hand-eye coordination with fewer action steps on the world than the
DQN. Also, we showed that Leela forms concepts about goals naturally during exploration,
allowing learning which can be applied to multiple goal categories efficiently, while a DQN
model took significantly longer to train as more goals were added during training.
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