Proceedings of Machine Learning Research 131:15-31, 2020 IWSSL

Continuous Learning of Action and State Spaces (CLASS)

Paul Robertson PAUL.ROBERTSON@DOLLABS.COM
Dynamic Object Langauge Labs Inc. Lexington, MA 02421, USA
Olivier L. Georgeon OGEORGEON@UNIV-CATHOLYON.FR

UR CONFLUENCE, Sciences et Humanits - UCLy, LIRIS CNRS UMR5205, Lyon, France

Editors: Minsky, H. and Robertson, P. and Georgeon, O. L. and Minsky, M. and Shaoul, C.

Abstract

We present a novel approach to state space discretization for constructivist and reinforce-
ment learning.

Constructivist and reinforcement learning approaches are often characterized by simple
grids. The manner in which the state space is discretized is the source of many problems
for both constructivist and reinforcement learning approaches. The problems can roughly
be divided into two categories: (1) wiring too much domain information into the solution,
and (2) requiring massive storage to represent the state space (such as Q-tables. The
problems relate to (1) the non generality arising from wiring domain information into
the solution, and (2) non scalability of the approach to useful domains involving high
dimensional state spaces. Another important limitation is that high dimensional state
spaces require a massive number of learning trials.

We present a new approach that builds upon ideas from place cells and cognitive maps.

Keywords: Cognitive maps, Place cells, Reinforcement learning, Constructivist learning,
Contexts

1. Introduction

There are many impressive examples of what various variants of reinforcement learning and
constructivist learning can do. Especially with the recent affordable massive parallelism
brought by GPU’s and the availability of robot or game simulators (see OpenAl.com;
gazebosim.org).

Without wishing to diminish the value of the recent triumphs with Deep Neural Networks
or Deep Reinforcement Learning, the impressiveness fades when we look closely at how the
results are obtained.

In a research blog about Alpha-Go , see Silver and Hassabis (2017), Silver and Hassabis
State: “Over the course of millions of AlphaGo vs AlphaGo games, the system progressively
learned the game of Go from scratch, accumulating thousands of years of human knowledge
during a period of just a few days. AlphaGo Zero also discovered new knowledge, developing
unconventional strategies and creative new moves that echoed and surpassed the novel
techniques it played in the games against Lee Sedol and Ke Jie.”

Whereas there is no denying that this is a landmark achievement worthy of the fanfare
that it has received, we note that no human player has ever played ’millions of games’
against any opponent, self or otherwise.

© 2020 P. Robertson & O.L. Georgeon.

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

We wish for our learning systems to learn rapidly, without baking the rules of the game
into the learner, where rapidly, is with respect to a normal physical lifetime. One author of
this article became a strong club chess player after playing against other strong club players
approximately once a week over a small number of years (hence a few hundred games). He
learned other feats like playing tennis over a short period of time and with very limited
number of trials. This kind of learning is the goal.

If we were to limit learning to being done in the real world, with real robots, in real-time
and before the robot breaks, we would constrain the goal so as to focus on achieving realistic
developmental learning. If an Al could learn to play GO well using no more training games
than Lee Sedol had played in his life, that would be something that could be learned in a
flash in simulation.

There is no doubt that Deep learning, that may require 10? training examples, or Deep
Reinforcement Learning, that may require millions of episodes, will find useful applications.
Carefully limiting the state-space size will yield specialized uses, but for developing a gen-
eralized non-parametric developmental learning capability, there remain many obstacles.

1.0.1. RESEARCH ASSUMPTIONS

Natural systems deal with very large state-spaces, learn effectively with a small number of
training episodes, and are self-motivated to learn. It is towards this, that this article is
motivated. Massive parallelism, such as is available in GPUs is in scope, massive memory
capacity is in scope. Massive annotated training corpora are not in scope, nor is baking the
solution into the learner, neither is a massive number of episodes that would be infeasible for
a physical living agent to perform. State space limitation is not out of scope, but it should
be learned rather than backed in to the problem description, the strategy of dimensionality
reduction should be learned, if it is necessary, on a problem by problem basis and not
determined by human Al experts. There will be parts of the state space that represents
things that are happening in the world unrelated to any actions taken by the robot and
which can safely be ignored, there will be parts of the state space that are not observable
(POMDP not an MDP). A generalized learner must deal with real-world issues in which
not all changes are the result of the robot’s action. Before these generalized learners can be
released into the real world, they must deal with notions like attention and attribution.

1.0.2. PrRIOR WORK

Generally, the number of actions is limited, they tend to be discrete, and the state space
is limited Q-learning [Watkins (1989)] and constructivist schema type learning [Drescher
(1991)] both depend upon representing the state space and the action space. This usually
involves discretizing the state space and the action space too. Fine discretization leads to
massive data structures and the need for an unreasonably large number of learning trials,
whereas a rough discretization lacks the precision to capture important differences between
places in the state space that map to a single entry whereas it would be better if it were
finer.

Being too rough, has a negative impact on the learning because it groups parts of the
state space that should naturally be separate. This adds stochasticity of the problem demain
in a bad way. If in state x the action a can lead to two outcomes 1y or r1 it can be because

16

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

the action is stochastic in its nature or because two distinct states have been captured as a
single state and the if the state had been encoded as two separate states, the actions would
be deterministic, or at least less stochastic. If rg 1% of the time leads to success whereas
r1 leads to disaster 99% of the time, the Bellman equation | Bellman (1952)] will learn to
avoid this action. While Deep Q-learning [Mnih and Silver (2015)] somewhat alleviates the
problem by using deep-learning to estimate () values, it brings other weaknesses that we
discus later. Various approaches to representing continuous continuous state-space models
[Raghu (2017)] have been proposed that use dueling double-deep Q-Networks (DDQN’s)
to represent continuous state spaces.

For a general learning approach, we do not want to encode the details of the learning task
into the learning mechanism. We would like to be able to learn both from free exploration
(constructivist) and learn given a reward (reinforcement learning).

Reinforcement Learning converges on an optimal policy for an MDP. An MDP policy
can be represented as a table. A table lookup will give for every position in the state space
the optimal action to perform.

The size of this table grows as the product of the number of discretized values of each
dimension and the action dimension (how many actions can be taken at any point?) It would
be infinite for continuous dimensions, but this can be discretized to avoid that problem while
introducing others. Learning the optimal policy is achieved as a dynamic programming
problem driven by the Bellman Equation.

1.0.3. HippocAMPAL PLACE CELLS

The Hippocampus has long been known to play an important role in learning and episodic
memory. More recently, the discovery of place cells has suggested that the primary function
of the Hippocampus is to provide a cognitive map. More recently, work described by David
Smith and Sheri Mizumori (see Smith and Mizumori (2006)) appears to show a more
generalized role of place cells in general context processing. Even if the role was limited
to cognitive map functions, the manner in which places are mapped to the Hippocampus
remains unknown. How does Hippocampal area get allocated to physical spaces?

Too little is known about the Hippocampus to attempt a simulation of its function, but
its role in providing a cognitive map function suggests a very necessary function for learning
to navigate in spaces. Furthermore the more generalized function that the hippocampus
serves as a generalized context function may be the key to solving one of reinforcement
learning and other constructivist learning approaches most serious problems, that of scaling
up to interesting sized problems.

The approach described below, for which we have an early prototype, appears to provide
not only support for cognitive mapping but also for learning to discretize the state space as
is required by what is learned. As the space is navigated, the cognitive map of that space
is expanded to accommodate the newly learned structures. The same mechanism provides
state-space discretization even without any physical world correspondance. Because the
state space grows only as it is needed, a learning system can represent the context space
compactly which grows linearly with the number of contexts. High dimensional state spaces,
which are normal in animal brains, and which cause state spaces to explode, no longer pose
a scaling problem since each visited state is represented as a point in N-Dimensional space,

17

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

which clusters with other points to form clusters representing contexts of which are only
sufficient in number to support the fidelity required to represent the learning.

1.1. Overview of the approach

Rather than representing the immense table (Q-table) directly we frame the problem as
contexts which are learned from values in the state.

Contexts are built from states that have occurred in the learning system. Initially, there
is nothing. As points in the state space are observed, they are added to a growing collection
of points that are continually being observed. When an action is taken, observations indicate
a state transition. < oldstate, action,newstate > Represent a point in a space that are
clustered. The clusters grow, divide, and coalesce as new points are found.

When the system observes a state, it maps to the cluster to which it belongs. From this
the actions and the new states are can be read, just as they are in a conventional Q-table.

With this approach continuous state spaces map naturally to clusters whose boundaries
represent where an action will have a different outcome. The precise boundaries of the
important points in a continuous state dimension can thus be learned in parallel with the
learning of the policy. A lot of clusters will be formed where necessary to capture the
important parts of the state space whereas almost no clusters are generated where nothing
interesting happens.

For any state, we can know where we are in a cluster and how close we are to a cluster
boundary.

This approach can be used equally well for goal-less exploration for schema learning and
reward driven learning for reinforcement learning. The key computational part of CLASS
is the incremental clustering algorithm which can be computed, using a GPU, to track a
large number of points.

Initially we kept all points, which at some point takes up a lot of memory and takes
longer, even for a GPU to compute. To solve this problem, when the number of saved
states grows beyond a fixed number, we replace two points that are close together with a
single point, set a position between the original two and which is given a count of 2. Later,
in general, the points can be collapsed to form higher order points. As such we can place
a parametric upper bound on the number of points stored. with some loss of maximum
attainable precision.

We are experimenting with this algorithm in the context of undirected skill learning as
well as rewarded learning on a Turtlebot3 in a labyrinth with colored walls. Results of these
experiments will be published in an upcoming article.

In the following sections, we describe the clustering algorithm and how that allows
non-convex inter-tangled clusters to be learned incrementally.

1.2. Contexts

Studies of human perception suggest that we always interpret images within a context
that defines our prior expectations about what we expect to see. Psychologists call this
“priming”. This reaches an extreme form in the case of model-based image analysis, in
which programs “hallucinate” (see Clowes (1971)) one of a small set of models onto images.

18

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

Typically, the human programmer defines the “context” by providing a-priori the (small)
set of models that can be matched.

The need for contexts to manage the diversity of the world is no less important outside of
image understanding. AI has long understood the importance of contexts. In 1975 Minsky
introduced the notion of frames (see Minsky (1975)) which was essentially an approach to
contexts. Frames have been used extensively in Al research, especially for natural language.
Riseman’s Schemas (see Draper et al. (1988)) was a similar idea specifically for Computer
Vision.

The algorithm described in this paper builds upon previous development of a system
called GRAVA (for Grounded Reflective Adaptive Vision Architecture), that segments and
labels aerial images in a way that attempts to mimic the competence of a human ex-
pert [Robertson (2000)].

2. Principle Component Decomposition

The states achieved by the learning system, such as a robot, provide multiple positive
examples of a structure that we wish to model. The structures in question have one or
more dimensions, and the available observations provide examples of the structure that
enable us to model the location within the appropriate multidimensional space. One way
of doing this is to model the structures as a probability distribution function (PDF). The
natures of the structures may be very different.

*
%%%MH#W

Figure 1: The Need for Decomposition

Consider two dimensional' space and the collection of positive examples shown in Figure
1. Given a set of data points it is possible to find a mean point and the principle and
secondary eigenvectors. Unfortunately the resulting model is unusably crude since most of

1. We provide two dimensional examples in this paper because they can be graphically illustrated on a two
dimensional medium. In practice the number of dimensions is far larger than two.

19

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

the points that it generates are not suggested by the data. The problem gets successively
worse for higher dimensional spaces.

We experimented with a number of standard clustering approaches such as K-means [R.O.Duda
et al. (2001)] and K-medoids but our use requires that the clustering be performed automat-
ically on dynamically collected data and we needed an algorithm that was non-parametric.
In particular we should not have to specify the number of clusters or to specify typical
values. We need to have the number of clusters and their composition be determined auto-
matically. Furthermore, since natural clusters are often non-convex we need an algorithm
that can separate intertwined non-convex clusters. The algorithm described below depends
solely on the notion of minimal description length and as such requires no parameters.

Principle component decomposition is the interpretation of a set of data points into the
component collections (five in this example) by analyzing the principle components of the
interpretation space.

The algorithm builds upon two earlier works. The first is a classification program
developed by Wallace. Wallace’s [Wallace (1990)] program (SNOB) worked by finding a
minimum message length (MML) description of a set of points. The second is the practice
of using principle component analysis (see Jackson (1991)) to reduce the dimensionality of
high dimensional problems so that the separate populations can be modeled.

Our algorithm applies principle component analysis recursively in order to separate the
collection into successively smaller clusters. At each point the criterion for separating a
population is that it reduces the global description length of the original population.

Below we present our algorithm for producing such principle component decompositions.

2.1. A Statistical Model for Clusters

Given an n-dimensional space S,, containing m points. we can interpret the points in this
space as being:

1. Unrelated points.
2. All members of a single cluster.

3. Grouped into a number of cluster.

A model has a shorter description length if it reduces the amount of uncertainty about
the values of features. The best interpretation of the data points that constitute the collected
state observations, therefore, is the interpretation that reduces the uncertainty about where
the data points appear in the multidimensional space.

The entropy of the collection data points in a data set is given by:

H=—" P(d)logaP(d) (1)
deSh

The lower bound MDL of a description that represents all of the points in the .S, is
given by:

DL =—)" logaP(d) (2)
deSn

20

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

In order to compute this theoretical description length, it is necessary to know the PDF
for points in S,,. A data set doesn’t specify every possible point in the space. It provides a
collection of representative points in the space. The job of interpreting the data set involves
modeling the PDF. There are many choices for modeling a PDF. One model that is simple,
predictive, and which often pertains to naturally occurring distributions is the Gaussian.

The description of a Gaussian model consists of a mean and variance of the distribution
< p,0% >. For a set of points the Gaussian model can be fitted simply by computing the
mean u and the variance 2. Given this characterization, for any point d we can compute
the probability P(d) as follows:

Pl = g (L=t 2]

—mf<@““”—ﬂn—dm>

On

3)

where pos(d) is the position of the point d, € is the position resolution, p, is the n-
dimensional mean, o2 is the n-dimensional variance, and erf() is the error function.

The choice of whether to consider the points in the data set as (1) unrelated individual
points, (2) all members of the same model, or (3) divided into groups each of which is
modeled, is to select the choice that yields the minimum description length.

The interpretation task can therefore be characterized as dividing the data points in S,
into n proper subsets Cj ,, such that:

So=J G (4)
i=1
The MDL is
arg IC?ElllHZZ{ <Z —logaP(d|C;) — loga P(d € CZ)>

™ i=1 deC; (5)

mm@}

where ddl(C;) is the description length of the distribution used to model C;. The
description of a point is divided into two parts. The first part identifies its position in
the space (—logaP(d|C;)) and the second part identifies to which collection it belongs
(—logaP(d € Cy)).

The statistical models chosen for C; determine the size of the point descriptions. In
order to specify the position of a point we choose a resolution € to be used uniformly since
otherwise a point can have an arbitrary precision and its representation would be arbitrarily
large.

If the representation of a collection includes its mean position u, the positions of the
points in the collection can be described as distances § from the mean. Figure 2 shows the
representation of a point within a collection C; as an n-dimensional mean (n = 2 in this
example) and a n-dimensional displacement. So any point d can be described as:

21

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

v

Figure 2: Representation of a Point in a Collection

u+6—§§d§u+6+§ (6)

Given the original set of points it is possible to reconstruct the statistical model that
was used to represent it. So to communicate the collections, all that is required is the mean
position represented to an accuracy of €. The points are represented as a description of
which collection they belong to and the offset from the mean: < Cj,§ >.

If all points are considered to be separate collections, each of a single point, the size
of their offset will be 0 since all points reside at the collections mean. Since clusters and
points have a one to one relationship, and the point description contains no information
other than the collection assignment, the representation only requires the positions of the
individual points in the collection. Collections that are represented as individual points in
this way have no predictive value.

If all points are considered to be members of a single collection the representation of
a point doesn’t need to identify to which collection it belongs because there is only one
collection.

As the data points in a data set are divided up into smaller collections the description
length of the individual points is reduced if the distribution that characterizes the collection
is more predictive about the position of its component points than the distribution for the
entire data set was. Any suitable statistical distribution can be chosen for a collection.

2.2. Algorithm for Decomposition

Having defined the criteria for an optimal division of the data points into separate models
we are left with the task of defining an effective procedure for achieving such a division.
To accomplish this we developed an efficient algorithm that approximates a solution to
Equation 4.

22

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

Our algorithm, which we call “principle component decomposition” (PCD), attempts
to divide the data by searching for dividing hyper planes tangental to the eigenvectors of
the data. The idea behind the algorithm is that the principle eigenvectors represent the
dimensions with the greatest spread. The spread can be caused by a single phenomenon with
a large variance, or it can be caused by more than one phenomenon distributed throughout
the space. To distinguish these two cases we compute the entropy of the data points
as a whole and then we compute the sum of the entropies of the two collections formed
by dividing the data points into two collections with a hyper plane perpendicular to the
eigenvector?. We do this for all possible cut points along the eigenvector. If all sums of
divided collections yield a higher description length than the original combined collection
the collection is not divided, otherwise the collection is divided at the place that yields the
minimum description length.

2D test data - iteration 0

e + Data
Principal Eigenvector
— Secondary Eigenvector

f
or F — Division Line
5

/#

0 W% e A

s -10 5 0 5 10 15

Change in description length s cluster division point

— Change in entropy
< Minimum entropy cut point

50 100 150 200 250 300
Points in order along normal to the hyperplane

Figure 3: Dividing the Data Points to Reduce Description Length

Figure 3 shows the 2-dimensional data introduced earlier. There are two eigenvectors.
The lengths of the principal and secondary lines are the square root of the corresponding
eigenvalues?.

The hyper plane that is used for cutting the data is perpendicular to the principal
eigenvector?. The graph below shows the change in the total description lengths resulting
from cutting the collection at any point along the eigenvector.

When the change is greater than zero, cutting makes the description length larger. In
this case the total description length is significantly reduced by cutting the collection at the
point where the “division” line is drawn. This point can be seen as the minimum point in
the entropy curve.

This procedure is repeated for each eigenvector of the collection starting from the eigen-
vector that corresponds to the largest eigenvalue until either a division occurs or until all
eigenvectors have been tried. Once a collection has been split the algorithm is applied to

2. A 2-dimensional hyper plane is a line.

3. The eigenvectors are computed from a co-variance matrix so the eigenvalues are variances and the square
root of the eigenvalues are standard deviations.

4. A 2-dimensional hyper plane is a line.

23

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

each of the newly divided collections. Eventually there are no collections of points that
split. The algorithm consists of two parts CHOP and MERGE.

CHOP looks for places to divide a collection of data points into two collections by finding
a dividing hyper plane. CHOP thus produces two collections that have the property that if
collection Cj is divided into C; and Cq, Cy = U{C1Cs}, and DL(Cy) > DL(C1) + DL(C3).
MERGE finds two collections of data points (say C; and C2) that have the property that
DL(U{C1C3}) < DL(Cy) + DL(C3). If the collection of data points is non-convex CHOP
can cause some points to become separated from the collection to which they naturally
belong. MERGE re-associates points severed in this way with their natural collection. The
advantage of this approach is that it is possible to construct non-convex collections of data
points.

First we describe the algorithm for CHOP(S) that chops the collection into separate
collections.

CHOP(S):

1. S is a set of n-dimensional data points. Let m be the mean and C' be the co-variance
matrix.

2. Let v1...v, and A;1...\, be the eigenvectors and corresponding eigenvalues, respec-
tively, sorted into decreasing order of eigenvalue.

3. For each eigenvector v; starting with v; (the one with the largest eigenvalue—the prin-
ciple eigenvector), search for the best place to cut the data points into two collections
as follows:

a) Establis e cutting hyper plane. e cutting hyper plane is the plane that is

Establish the cutting h; 1 The cutting h; 1 is the pl that i
perpendicular to the eigenvector v;. We arbitrarily choose the hyper plane that
passes through the mean m.

n :mTUZ-

(7)

TU; =N

where 7 is a point specified as a row matrix.

This is the perpendicular form of the equation of a hyper plane. This represen-
tation is convenient because it permits fast calculation of the distance of a point
from the hyper plane. For any point d the distance from the plane in equation 7
is given by n — dv;.

(b) Sort the points in S in order of distance from the cutting hyper plane. Since
the hyper plane cuts through the mean, approximately half of the points will be
on one side of the hyper plane, with the rest on the other side. Approximately
half of the points, therefore, will have a negative distance from the plane. The
distance is not the absolute distance from the plane, it is how far to move along
the normal to the hyperplane to reach the plane in the direction of v;.

(c) Let A be the sorted list of data points.
(d) Let B be an empty list.

24

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

(e) Let the cutPoint = 0 and position =0
(f) Let minDL = DL(A) the description length of the entire set of data points.

(g) Now we simulate sliding the cutting hyperplane along the eigenvector from one
end of the set of data points to the other, by taking points one at a time from A,
putting them into B, and computing the description length of the two collections
as follows:

For each point d; in A do:

i. Remove d; from A.
ii. Add d; to B.
iii. Increment the position (position = position + 1).
iv. Compute the new description length as newDL = DL(A) + DL(B).
v. f newDL < minDL set minDL = newDL and cutPoint = position.

(h) If cutPoint > 0 divide the data points S into two collections S, and S at the
position indicated by cutPoint. Then recursively apply CHOP to both of the
sub-collections to see if further chopping can be performed. Finally return the
complete list of chopped collections:

return append(CHOP(Sy), CHOP(S3))

4. At this point, all of the eigenvectors of .S have been searched for chop points, and none
have been found. The data points cannot be represented with a smaller description
length by chopping along an eigenvector so return the list of collections as the single
collection S:

return list(S)

The nature of the way the collections are divided up results in some groups of data
points being divided unnecessarily. This can be seen in the second and third iteration for
this example data.

In the second iteration (Figure 4 top) one point is chopped off the right most collection.
In the third iteration (Figure 4 top) two points are chopped off.

Later, in the fifth and sixth iteration (Figure 5), the one point on the left, and the two
points on the right, are completely severed so as to be small disembodied collections of
points (one point and two points respectively in this example). These accidentally severed
fragments are corrected in phase two of the algorithm—the merge phase.

In phase two of the algorithm (MERGE) pairs of collections of points are checked to
see if the description length would be reduced if they were to be merged. If the description
length would be reduced by merging them they are merged. This is repeated until no more
useful merges can be found.

MERGE(C):

If C is a collection of clusters resulting from the application of CHOP to the original
data, the merge phase proceeds as follows:

1. For each pair of clusters C; € C and C; € C check to see if the description length can
be reduced by merging them (DL(C;) + DL(C;) > DL(C; U Cy)).

25

Relative Entropy

Relative Entropy

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

2D test data - iteration 1
4 + Data
Principal Eigenvector
—— Secondary Eigenvector
2 — Division Line

L ol
¥
O ik % e e g+
+
2

-2 0 4 6 8 10 12

Change in description length vs cluster division point

100 i
— Change in entropy
4 Minimum entropy cut point

0 50 100 150 200 250

Points in order along normal to the hyperplane

2D test data - iteration 2

HEF

+ Data
Principal Eigenvector
— Secondary Eigenvector
—— Division Line

Change in description length vs cluster division point

40 —— Change in entropy
1 & Minimum entropy cut point

0 20 40 60 80 100 120 140 160
Points in order along normal to the hyperplane

Figure 4: Accidentally Severed Points

2. If no merge candidates are identified in (1) the merge phase is complete.

3. Produce C’ by replacing each pair of mergeable clusters with their merged union.
4. Repeat steps 1, 2, and 3 on the new set of clusters.

After 16 iterations the division of the data points in to separate collections is complete.

Figure 6 shows the final result of decomposition.
The PCD algorithm described above has a number of interesting characteristics:

1. PCD produces a structural description of the data points that is an approximation to
a global MDL description of the points.

2. Each remaining collection of points can be represented efficiently by the statistical
model chosen for it since if the collection could not be represented well it would have

been divided.

3. Each collection is a good candidate for PCA modeling because of (2).

26

Relative Entropy

Relative Entropy

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

2D test data - iteration 4

2 + Data
|] Principal Eigenvector
— Secondary Eigenvector
—— Division Line
0 PN + 1
+
w0 *
Sf, e
s + +
¥
2 #
I
-3 ot o+
-4
12 1.4 1.6 18 2 22 24 26 28 3
Change in description length vs cluster division point
50 T T T T T -
—— Change in entropy
40 % Minimum entropy cut point
30
20
10
0
-10
0 10 20 30 40 50 60
Points in order along normal to the hyperplane
2D test data - iteration 5
2 + Data
Principal Eigenvector
I + — Secondary Eigenvector
15 s é};é;;Jr + I 1| — Division Line
ES e
+ +
O =
4
o
0.5
0
0.4 0.6 0.8 1 12 1.4 1.6 1.8 2
Change in description length vs cluster division point
40 -
—— Change in entropy
2 & Minimum entropy cut point
20
10
0
-10
-20

10 20 30 40 50
Points in order along normal to the hyperplane

60

Figure 5: Accidentally Severed Points

w BRed Ay

Figure 6: Example Result of Principal Component Decomposition

4. The algorithm can be implemented efficiently and can produce good decompositions
very quickly using a GPU implementation. The number of “chop” and “merge” op-

27

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

erations that are performed in producing a decomposition is very small compared to
the number of points.

5. The algorithm can produce non-convex collections.

The final point (5) is an interesting feature of the algorithm that is not obvious from the
example given above. Non-convex collections cannot be disentangled by using the “chop”
operation alone but inclusion of the “merge” operation allows two convex collections to be
joined so as to produce a non-convex merged collection.

2D test data - iteration 0

+ Data
Principal Eigenvector
—— Secondary Eigenvector
— Division Line

Change in description length vs cluster division point

60 —— Change in entropy
50 % Minimum entropy cut point

Relative Entropy

50 100 150 200 250 300
Points in order along normal to the hyperplane

Figure 7: Intertwined Non-Convex Shapes

To demonstrate this capability we generated a set of data points by picking points
randomly along two interlocking ’C’ shapes in a ying yang configuration. Even though the
data is quite dense and intertwined the algorithm manages to “chop” it apart and then
“merge” the severed parts back together. Figure 7 shows the first iteration on the data.

The second and third iterations chop the data down further as shown in Figure 8.

Later iterations merge the severed portions back into their rightful places as shown in
Figure 9.

The final decomposition of the data is shown in Figure 10.

It should be noted that separating clusters in a 2D space is harder than in a higher
dimensional space because higher dimensional spaces are naturally sparser. This is a sim-
ilar observation to that used to good effect in support vector machines. Sometimes, high
dimensionality is a benefit and not a problem.

3. Conclusion

We have developed an approach to dynamically constructing a “cognitive map” by decom-
posing complex models into collections of simpler models. This forms a backbone mecha-
nism for interpreting learning policies. If these cognitive maps resemble the Hippocampus
in function, it would suggest that learning depends upon a cognitive map, not only at for
navigation in physical space, but at all cognitive levels, however abstract, and even without
physical location aspects, a cognitive map for conceptual spaces.

28

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

2D test data - iteration 1

+ Data
Principal Eigenvector
— Secondary Eigenvector
4| — Division Line

Change in description length vs cluster division point

—— Change in entropy
“ % Minimum entropy cut point

Relative Entropy
N
5

20 40 60 80 100 120 140
Points in order along normal to the hyperplane

2D test data - iteration 2

+ Daa
12 L i Principal Eigenvector
o — Secondary Eigenvector
10 Fh 4| — Division Line
=
$+ iy T+
8 o e
R AT
+4 T -
L PR et
° + 4 + FF
o+
4 + +¢+++
2 AAR
+
0
5 0 5 10 15 20

Change in description length vs cluster division point

60 —— Ghange in entropy
& Minimum entropy cut point
40
g
£ 2
5
]
E 0
&
-20
0

20 40 60 80 100 120
Points in order along normal to the hyperplane

Figure 8: Curved example: CHOP

The algorithm has some important features:

1. The algorithm supports non-convex shapes.
2. The algorithm uses the MDL criteria for interpretation.

3. The algorithm doesn’t over fit. The algorithm doesn’t try to circumscribe a set of
data points. It simply tries to separate collections of points by finding the best place
to cut.

4. The algorithm is fast because it only searches for cut points along eigenvector dimen-
sions.

5. The algorithm is non-parametric which removes one more barrier to automation.

4. Acknowledgements

Effort sponsored in part by the Defense Advanced Research Projects Agency (DARPA)
and Air Force Research Laboratory, Air Force Material Command, USAF, under agreement

29

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

+ Merged Cluster 1
Merged Cluster 2
Principal Eigenvector

—— Secondary Eigenvector

8r ~ Merged Cluster 1
Merged Cluster 2
Principal Eigenvector

16 —— Secondary Eigenvector

14}

12r

Figure 9: Curved example: MERGE

Figure 10: Final Decomposition of Example Non-Convex Data

number F30602-98-0056. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation thereon.

30

CONTINUOUS LEARNING OF ACTION AND STATE SPACES

The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of the Defense Advanced Research Projects Agency (DARPA), the Air Force
Research Laboratory, or the U.S. Government.

References

Richard Bellman. On the theory of dynamic programming. Proc Natl Acad Sci USA, 38(8):716-719,
August 1952.

M. Clowes. On seeing things. Artificial Intelligence, 2:79-116, 1971.

B. Draper, R. Collins, J. Brolio, A. Hansen, and E. Riseman. The schema system. Technical Report
COINS TR88-76, Computer and Information Science, Univ. Massachusetts at Amherst, 1988.

Gary L. Drescher. Made-Up Minds A Constructivist Approach to Artificial Intelligence. MIT Press,
1991. ISBN 9780262041201.

gazebosim.org. Gazebo. URL http://gazebosim.org.
J.E. Jackson. A user’s guide to Principal Components. John Wiley and Sons, New York, 1991.

M. Minsky. A framework for representing knowledge. In P. H. Winston, editor, The Psychology of
Computer Vision. McGraw-Hill, New York, 1975.

V. Mnih and D. et. al. Silver. Human-level control through deep reinforcement learning. Nature,
518:529-533, 2015.

OpenAl.com. Gym. URL https://gym.openai.con/.

A. et.al. Raghu. Continuous state-space models for optimal sepsis treatment: a deep reinforcement
learning approach. In Proceedings of Machine Learning for Healthcare, 2017.

P. Robertson. An architecture for self-adaptation and its application to aerial image understand-
ing. In R. Laddaga P. Robertson and H. Shrobe, editors, Self-Adaptive Software, pages 199-223.
Springer-Verlag, 2000.

R.O.Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John Wiley and Sons, 2001.

D. Silver and D. Hassabis. Alphago zero: Starting from scratch. 2017. URL https://deepmind.
com/blog/article/alphago-zero-starting-scratch.

D.M. Smith and S.J.Y Mizumori. Hippocampal place cells, context, and episodic memory. Hip-
pocampus, 16(9):716-729, August 2006. URL https://doi.org/10.1002/hipo.20208.

C.S. Wallace. Classification by minimum-message-length inference. In G. Goos and J. Hartmanis,
editors, Advances in Computing and Information-ICCI’90, pages 72-81. Springer-Verlag, 1990.

C.J. Watkins. Learning From Delayed Rewards. PhD thesis, University of Cambridge, 1989.

31

http://gazebosim.org
https://gym.openai.com/
https://deepmind.com/blog/article/alphago-zero-starting-scratch
https://deepmind.com/blog/article/alphago-zero-starting-scratch
https://doi.org/10.1002/hipo.20208

	Introduction
	Research Assumptions
	Prior Work
	Hippocampal Place Cells

	Overview of the approach
	Contexts

	Principle Component Decomposition
	A Statistical Model for Clusters
	Algorithm for Decomposition

	Conclusion
	Acknowledgements

