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Abstract
We study the role of depth in training randomly initialized overparameterized neural networks. We
give a general result showing that depth improves trainability of neural networks by improving the
conditioning of certain kernel matrices of the input data. This result holds for arbitrary non-linear
activation functions under a certain normalization. We provide versions of the result that hold for
training just the top layer of the neural network, as well as for training all layers, via the neural
tangent kernel. As applications of these general results, we provide a generalization of the results
of Das et al. (2019) showing that learnability of deep random neural networks with a large class of
non-linear activations degrades exponentially with depth. We also show how benign overfitting can
occur in deep neural networks via the results of Bartlett et al. (2019b). We also give experimental
evidence that normalized versions of ReLU are a viable alternative to more complex operations like
Batch Normalization in training deep neural networks.

1. Introduction

Deep neural networks have enjoyed tremendous empirical success, and it has become evident that
depth plays a crucial role in this success (Simonyan and Zisserman, 2014; Szegedy et al., 2015; He
et al., 2016a). However, vanilla deep networks are notoriously hard to train without some form of
intervention aimed to improve the optimization process, for example, Batch Normalization (Ioffe and
Szegedy, 2015), Layer Normalization (Ba et al., 2016), or skip connections in Resnets (He et al.,
2016b). Recent theory (Santurkar et al., 2018; Balduzzi et al., 2017) has shed some light into how
these interventions help train deep networks, especially for the widely popular Batch Normalization
operation. However the picture is far from clear in light of work such as (Yang et al., 2019) which
argues that Batch Normalization actually hinders training by causing gradient explosion.

In this paper, we investigate improved data conditioning as a possible factor in explaining
the benefits of the aforementioned interventions for training deep neural networks. While standard
optimization theory tells us that good data conditioning leads to faster training, empirical performance
on test data also seems to be correlated with good conditioning. Figure 1 presents examples of various
deep network architectures trained on the CIFAR-10 dataset using standard techniques such as batch
normalization, layer normalization, and a new normalized version of the ReLU activation that we
propose in this work. In each case, as the generalization performance increases with the number
of epochs, the average normalized dot products between test inputs decrease as well, indicating
improved conditioning. This begs the question of whether depth helps in improving conditioning of
the data, and as a result affecting optimization and generalization in deep neural networks.
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Figure 1: Test Accuracy and average normalized dot products vs. the number of epochs. The top three plots concern depth-
32 feed forward networks with 3000 hidden units per layer. The top left network is trained using batch normalization, the
middle network is trained using layer normalization, and the top right network is trained using a normalized version
of the ReLU activation. The bottom three plots concern convolutional networks with the ResNet-32 architecture (He
et al., 2016a). The bottom left network is trained using batch normalization, the middle network is trained using layer
normalization and the bottom right network is trained using the normalized ReLU activation.

We elucidate the role of depth and the non-linearity of activations in improving data conditioning
by considering a simple intervention: viz., we normalize the activations so that when fed standard
Gaussian inputs, the output has zero mean and unit variance. Any standard activation function like
ReLU, tanh, etc. can be normalized by centering and scaling it appropriately. Thus normalization of
activations is a rather benign requirement (see also Lemma 1), but has significant consequences for
improving data conditioning theoretically and trainability empirically, as explained next.

1.1. Our contributions.

1. Exponentially improving data conditioning. We show that for a randomly initialized neural
network with an arbitrary non-linear normalized activation function, the condition number of
the certain kernel matrices of the input data tend to the best possible value, 1, exponentially fast
in the depth of the network. The rate at which the condition number tends to 1 is determined by
a coefficient of non-linearity of the activation function, a concept that we define in this paper.
This result holds for either training just the top layer of the neural network, or all layers of the
network with a sufficiently small learning rate (the so-called lazy training regime (Chizat and
Bach, 2018)).

2. Fast training. Our main result implies that when training large width neural networks of sufficient
depth, gradient descent with square loss approaches ε training error at a log(1/ε) rate, regardless
of the initial conditioning of the data. This is in contrast to prior works (Arora et al., 2019c;
Allen-Zhu et al., 2018) and demonstrates the optimization benefits of using deeper networks.
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3. Hardness of learning random neural networks. Via our main result, we generalize the work
of Das et al. (2019) and show that learning a target function that is a sufficiently deep randomly
initialized neural network with a general class of activations, requires exponentially (in depth)
many queries in the statistical query model of learning. Furthermore, this result holds with
constant probability over the random initialization, a considerable strengthening of the prior result.
See Section 5 for the formal result and a detailed comparison.

4. Benign overfitting in deep neural networks. We extend the work of Bartlett et al. (2019b) on
interpolating classifiers and show that randomly initialized and sufficiently deep neural networks
can not only fit the training data, but in fact, the minimum norm (in the appropriate RKHS)
interpolating solution can achieve non-trivial excess risk guarantees as well.

5. Empirical benefits of normalized activations. Guided by our theoretical results, we propose
a new family of activation functions called NormReLU which are normalized versions of the
standard ReLU activation. Incorporating NormReLU into existing network architectures requires
no overhead. Furthermore, we show via experiments on the CIFAR-10 dataset that NormReLU
can serve as an effective replacement for techniques such as batch normalization and layer
normalization. This leads to an alternate method for training deep networks with no loss in
generalization performance and in some cases leads to significant gains in training time.

1.2. Related work

There are two very recent works with similar results to ours independently of our work. The
first is the work of Xiao et al. (2019), which uses the tools of mean-field theory of deep neural
network developed in a long line of work (Poole et al., 2016; Daniely, 2017a; Schoenholz et al.,
2017; Pennington et al., 2017). This work considers a broader spectrum of initialization schemes
and activation functions and studies the effect of depth on data conditioning. Specializing to the
setting of our paper, this work shows that if the inputs are already very well-conditioned, then they
converge to perfect conditioning exponentially fast in the depth of the network. In contrast, our
results show exponential convergence even if the inputs are very poorly conditioned: in fact, for
some activations like normalized ReLU, the initial condition number could even be infinite. The
second is the work of Panigrahi et al. (2020), whose main motivation is studying the effect of smooth
vs. non-smooth activation functions in shallow networks. However they do show a very similar
exponential convergence result like ours for a kernel matrix closely related to the top-layer kernel
matrix in this paper for a more restricted class of activation functions than considered in our paper.
Furthermore the results of Panigrahi et al. (2020) assume unit length inputs, whereas in this paper we
extend our results for some activations to non-unit length inputs as well. Neither paper considers the
applications to optimization, SQ learning of random neural networks, and benign overfitting as done
in this paper.

On the optimization side, a sequence of papers has recently shown the benefits of overparametriza-
tion via large width for training neural networks: see, for example, (Li and Liang, 2018; Du et al.,
2019; Allen-Zhu et al., 2019; Zou and Gu, 2019) and the references therein. These papers show that
with sufficiently large width, starting from a random initialization of the network weights, gradient
descent provably finds a global minimizer of the loss function on the training set. While several of
the aforementioned papers do analyze deep neural networks, to our knowledge, there is no prior
work that provably demonstrates the benefits of depth for training neural networks in general settings.
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Prevailing wisdom is that while depth enables the network to express more complicated functions
(see, for example, (Eldan and Shamir, 2016; Telgarsky, 2016; Raghu et al., 2017; Lee et al., 2017;
Daniely, 2017a) and the references therein), it hinders efficient training, which is the primary concern
in this paper. Indeed, the papers mentioned earlier showing convergence of gradient descent either
assume very shallow (one hidden layer) networks, or expend considerable effort to show that depth
doesn’t degrade training by more than a polynomial factor. In contrast, we show that after a certain
threshold depth (which depends logarithmically on δ, initial separation), increasing depth improves
the convergence rate exponentially.

To provide one such precise comparison, the work of Allen-Zhu et al. (2019) under the same
separation assumption as us, proves that overparametrized networks with ReLU activations converge
in time polynomial in depth, 1/δ and log(1/ε). Our results show that if depth is Ω(log(1/δ)), then
the convergence rate is only proportional to log(1/ε), independent of δ, if one uses normalized
activations.

A few exceptions to the above line of work are the papers (Arora et al., 2018b, 2019a) which do
show that depth helps in training neural networks, but are restricted to very specific problems with
linear activations.

See Appendix A for an in-depth discussion of these and other related works.

2. Notation and preliminaries

For two vectors x and x′ of like dimension, we denote their inner product by x ⋅ x′. Unless otherwise
specified, ∥ ⋅ ∥ denotes the Euclidean norm for vectors and the spectral norm for matrices. For a
symmetric positive definite matrixM , the condition number κ(M) is defined to be the ratio λmax(M)

λmin(M)
,

where λmax(M) and λmin(M) are the largest and smallest eigenvalues respectively of M . For a
positive integer n, define [n] = {1,2, . . . , n}.

We are given a training set of n examples: S = {(xi, yi) ∈ Rd × Y}ni=1, where Y is the output
space. For simplicity we begin by assuming, as is standard in related literature, that for all i we
have ∥xi∥ = 1. We provide extensions of our results to non-unit-length inputs in Section 3.5. Let
K ∈ Rn×n be the Gram matrix of the training data, i.e. Kij = xi ⋅ xj . We make the following (very
standard in the literature, see e.g. (Allen-Zhu et al., 2018; Zou and Gu, 2019)) assumption on the
input data:

Assumption A For all i, j ∈ [n] with i ≠ j, we have ∣xi ⋅ xj ∣ ≤ 1 − δ.

To keep the presentation as clean as possible, we assume a very simple architecture of the neural
network1: it has L hidden fully-connected layers, each of width m, and takes x ∈ Rd as input and
outputs y ∈ R, with activation function σ ∶ R→ R to Rm by entry-wise application. The network can
thus be defined as the following function2 fW⃗ ∶ Rd → R:

fW⃗ (x) = v ⋅ 1√
m
σ(WL

1√
m
σ(WL−1⋯ 1√

m
σ(W1x)⋯)), (1)

where W1 ∈ Rm×d, W2, . . . ,WL ∈ Rm×m denote the weight matrices for the hidden layers, v ∈ Rm
denotes the weight vector of the output layer, W⃗ ∈ Rdm+(L−1)m2+m denotes a vector obtained by

1. Extending our analysis to layers of different sizes and outputs of length greater than 1 poses no mathematical difficulty
and is omitted for the sake of clarity of notation.

2. Note that we’re using the so-called neural tangent kernel parameterization (Jacot et al., 2018) instead of the standard
parameterization here.
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concatenating vectorizations of the weight matrices. We use the notation N(µ,Σ) for the normal
distribution with mean µ and covariance Σ. All weights are initialized to independent, standard
normal variables (i.e. drawn i.i.d. from N(0,1)).

Our analysis hinges on the following key normalization assumption on σ:

E
X∼N(0,1)

[σ(X)] = 0 and Var
X∼N(0,1)

[σ(X)] = E
X∼N(0,1)

[σ2(X)] = 1. (2)

This normalization requirement is rather mild since any standard activation function can be easily
normalized by centering it by subtracting a constant and scaling the result by a constant. The only
somewhat non-standard part of the normalization is the requirement that the activation is centered so
that its expectation on standard normal inputs is 0. This requirement can be relaxed (see Section 3.4)
at the price of worse conditioning. Furthermore, the following lemma proved in Appendix B shows
that in the presence of other normalization techniques, normalized activations may be assumed
without loss of generality:

Lemma 1 If the neural network in (1) incorporates batch normalization in each layer, then the
network output is the same regardless of whether the activation σ is normalized or not. The same
holds if instead layer normalization is employed, but on the post-activation outputs rather than
pre-activation inputs.

Throughout the paper, statements of the type “If q = Θ(r) then [consequence].” should be taken
to mean that there exist universal constants c1, c2 such that if c1 ⋅ r ≤ q ≤ c2 ⋅ r then [consequence]
follows. We use O(⋅) and Ω(⋅) notation in a similar manner. Similarly, statements of the type “If
q = poly(⋅) then [consequence].” should be taken to mean that there exists a polynomial of bounded
degree in the arguments such that if q equals that polynomial then [consequence] follows.

3. Main results on conditioning of kernel matrices

3.1. Top layer kernel matrix.

The first kernel matrix we study is the one defined by (random) feature mapping generated at the
top layer by the lower layer weights, i.e.3 ΦW⃗ (x) ∶= 1√

m
σ(WL

1√
m
σ(WL−1⋯ 1√

m
σ(W1x)⋯)). The

feature mapping ΦW⃗ defines a kernel function k and the associated n × n kernel matrix K on a
training set S as Kij ∶= k(xi, xj) where k(x,x′) ∶= ΦW⃗ (x) ⋅ΦW⃗ (x′).

The main results on conditioning in this paper are cleanest to express in the limit of infinite width
neural networks, i.e. m → ∞. In this limit, the kernel function k and the kernel matrix K, tend
almost surely to deterministic limits (Daniely et al., 2016), denoted as k̄ and K̄ respectively. We
study the conditioning of K̄ next. The rate at which the condition number of K̄ improves with depth
depends on the following notion of degree of non-linearity of the activation function σ:

Definition 2 The coefficient of non-linearity of the activation function σ is defined to be µ ∶=
1 − (EX∼N(0,1)[Xσ(X)])2

.

The normalization (2) of the activation function implies via Lemma 20 (in Appendix C, where all
missing proofs of results in this section can be found) that for any non-linear activation function σ,
we have 0 < µ ≤ 1. To state our main result, it is convenient to define the following quantities: for

3. Note that ΦW⃗ does not depend on the v component of W⃗ ; this notation is chosen for simplicity.
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any ν ∈ (0,1], δ ∈ (0,1) and a positive integer L, let L0(δ) = max{⌈ log( 1
2δ

)

log(1+ ν
2
)
⌉ ,0} = O ( log(1/δ)

ν ),

and define

Bν(L, δ) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 − δ(1 + ν
2)
L if L ≤ L0(δ)

1
2(1 −

ν
2)
L−L0(δ) if L > L0(δ).

For clarity of notation, we will denote by B(L, δ) the quantity Bµ(L, δ). We are now ready to state
our main result on conditioning of the kernel matrix:

Theorem 3 Under Assumption A, we have ∣K̄ij ∣ ≤ B(L, δ) for all i, j ∈ [n] with i ≠ j.

The following corollary is immediate, showing that the condition number of the kernel matrix K̄
approaches the smallest possible value, 1, exponentially fast as depth increases.

Corollary 4 Under Assumption A, if L ≥ L1(δ) ∶= ⌈ log(n)
− log(1−µ

2
)
⌉ + L0(δ), then κ(K̄) ≤ 1 +

2n(1 − µ
2 )
L−L1(δ).

3.2. Neural tangent kernel matrix.

The second kernel matrix we study arises from the neural tangent kernel, which was introduced by
Jacot et al. (2018). This kernel matrix naturally arises when all the layers of the neural network are
trained via gradient gradient. For a given set of network weights W⃗ , the neural tangent kernel matrix
K ∈ Rn×n is defined as Kij = (∂W⃗ fW⃗ (xi)) ⋅ (∂W⃗ fW⃗ (xj)). As in the previous section, as the width
m of the hidden layers tends to infinity, the random K tends to a deterministic limit, K̄. For this
infinite width limit, we have the following theorem analogous to part 1 of Theorem 3:

Theorem 5 The diagonal entries of K̄ are all equal. Assume that L ≥ 2L0(δ). Under Assumption A,
we have ∣K̄ij ∣ ≤ 2B(L/2, δ) ⋅ K̄11 for all i, j ∈ [n] with i ≠ j.

The following corollary, analogous to Corollary 4, is immediate:

Corollary 6 Under Assumption A, if L ≥ L2(δ) ∶= ⌈ 2 log(2n)
− log(1−µ

2
)
⌉ + 2L0(δ), then κ(K̄) ≤ 1 +

4n(1 − µ
2 )

L/2−L2(δ).

3.3. Better conditioning under stronger assumption

The following somewhat stronger assumption than Assumption A leads to a better conditioning
result:

Assumption B λmin(K) ≥ δ.

While Assumption B implies Assumption A, it is still quite benign, and is easily satisfied if n ≥ d
and there is even a tiny amount of inherent white noise in the data. Furthermore, as discussed in
Appendix H, for certain activations like ReLU, the representations derived after passing a dataset
satisfying Assumption A through one layer satisfy Assumption B.

We have the following stronger versions of Theorem 3 and Corollary 4 under Assumption B (all
proofs appear in Appendix C):

Theorem 7 Under Assumption B, we have λmin(K̄) ≥ 1 −B(L, δ).
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Corollary 8 Under Assumption B, we have κ(K̄) ≤ 1 + n
δ (1 +

µ
2 )

−L.

Similarly, we have the following stronger versions of Theorem 5 and Corollary 6 under Assumption B:

Theorem 9 Under Assumption B, we have λmin(K) ≥ (1 − 2B(L/2, δ)) K̄11.

Corollary 10 Under Assumption B, if L ≥ 4L0(δ), then κ(K̄) ≤ 1 + 2n
δ (1 + µ

2 )
−L/2.

3.4. Extension to uncentered activations

The analysis techniques of the previous sections also extend to activations that need not be normalized
(2). Specifically, we only assume that the activation σ satisfies EX∼N(0,1)[σ2(X)] = 1. I.e., we
allow EX∼N(0,1)[σ(X)] to be non-zero. We call σ non-affine if it cannot be written as u↦ a + bu
for constants a, b. For non-affine activations, we can show that dot products of input representations
at the top layer converge to a fixed point ρ̄ ∈ [0,1] as the depth increases. The rate of convergence
depends on two quantities. The first is a coefficient of non-affinity which generalizes the coefficient
of non-linearity:

Definition 11 The coefficient of non-affinity of the activation function σ is defined to be µ̃ ∶=
1 − (EX∼N(0,1)[σ(X)])2 − (EX∼N(0,1)[Xσ(X)])2

.

Clearly, for normalized activations, the two coefficients coincide, i.e. µ = µ̃. For non-affine σ,
it can be shown that µ̃ ∈ (0,1]. The second quantity is the derivative of the dual activation (see
Definition 19) at ρ̄, denoted by ˙̂σ(ρ̄). We have ˙̂σ(ρ̄) ≤ 1 with strict inequality when ρ̄ < 1. The
following theorem generalizes Theorem 3 to non-affine activations (proof in Appendix C.3):

Theorem 12 Suppose σ is non-affine. Then, there is a ρ̄ ∈ [0,1] such that limL→∞ K̄ij = ρ̄. If ρ̄ < 1,
or ρ̄ = 1 and ˙̂σ(1) < 1, then supposing Assumption A holds, there is a constant L0 = Oσ(log(1

δ ))
such that if L ≥ L0, then

∣K̄ij − ρ̄∣ ≤ max{1 − µ̃(1−ρ̄)
2 , ˙̂σ(ρ̄)}

L−L0 (1+ρ̄
2

)

for all i, j ∈ [n] with i ≠ j.
If ρ̄ = 1 and ˙̂σ(1) = 1, then there is a constant L′0 depending on σ, such that if L > L′0, then

∣K̄ij − 1∣ ≤ log(2eµ̃(L−L′0))
2µ̃(L−L′0)

for all i, j ∈ [n] with i ≠ j.

3.5. Extension to non-unit length inputs

In this section we extend the result of Section 3.1 to the case when the inputs are do not have to
be exactly unit length. To establish these results we require further assumptions on the activation
function, which we highlight in the theorem. For a discussion of these assumptions see Appendix D.4.

Theorem 13 Let σ be a twice-differentiable monotonically increasing odd function which is concave
on R+. There exists a constant ασ (depending on σ) such that for any two inputs x, y such that
∥x∥2, ∥y∥2 ≥ 0.5,

∣x⊺y∣
∥x∥∥y∥ ≤ (1 − δ), when L ≥ L̂ ∶= ασ log(max(∣∥x∥2 − 1∣, ∣∥y∥2 − 1∣, µ/4) ⋅ 4/µ), we

have k̄(x,y)
√
k̄(x,x)⋅k̄(y,y)

≤ Bµ/2 (L − L̂, δ).
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The proof of the above theorem as well as a precise description of the constant ασ can be found
in Appendix D in the supplementary material. Our analysis proceeds by first proving the theorem for
the norms of the representations induced by the input. The above theorem formalizes a sufficient
condition on the activation function for global convergence to the fixed point (i.e. 1) of the length map
defined in Poole et al. (2016). In fact, for this part we establish a weaker sufficient condition on the
activation than Theorem 13, see Appendix D for details. Poole et al. (2016) informally mention that
monotonicity of activations suffices, although counterexamples exist, see Appendix D.4. Furthermore,
the theorem generalizes the work of Xiao et al. (2019) which only provides the asymptotics close to
the fixed point. Next, we show the monotonicity of the normalized dot-product for the representations.
This allows us to leverage our previous analysis for the norm 1 case once the norms have converged.

A similar analysis and theorem can be obtained for the NormReLU activation we propose in this
paper (details in Section 7). For the precise theorem statement and proof, see Appendix I.1.

4. Implications for optimization

Suppose we train the network using gradient descent on a loss function ` ∶ R × Y → R, which
defines the empirical loss function L(W⃗ ) ∶= 1

n ∑
n
i=1 `(fW⃗ (xi), yi). For the rest of this section we

will assume that the loss function ` is the square loss, i.e. `(ŷ, y) = (ŷ − y)2. The results presented
can appropriately be extended to the setting where the loss function is smooth and strongly convex.
Training a finite-width neural network necessitates the study of the conditioning of the finite-width
kernel matrices K and K, rather than their infinite-width counterparts. In such settings optimization
results typically follow from a simple 2-step modular analysis, where in the first step we show via
concentration inequalities that conditioning in the infinite-width case transfers to the finite-width
case, and in the second step we show that conditioning is not hurt much in the training process. We
now provide a couple of representative optimization results that follow from this type of analysis.

4.1. Training only the top layer

We consider a mode of training where only the top layer weight vector, v, is updated, while keeping
W1,W2, . . . ,WL frozen at their randomly initialized values. To highlight this we introduce the
notation W⃗1∶L = {W1 . . .WL}. Let η > 0 be a step size, the update rule at iteration t is given by
vt+1 = vt−η ⋅∂vL({vt, W⃗1∶L}) = vt−η ⋅ 1

n ∑
n
i=1 2(vt ⋅ΦW⃗ (xi)−yi)ΦW⃗ (xi). Note that in this mode of

training, the optimization problem is convex in v. We assume that σ satisfies a regularity conditioning,
C-boundedness, introduced by Daniely et al. (2016), which allows us to apply their concentration
bounds. Then, standard convex optimization theory (Nesterov, 2014) gives the following result
(precise statements and proof are in Appendix E):

Theorem 14 Suppose L = Θ ( log(n/δ)
µ ), σ is C-bounded and the width m = poly(n, 1

δ ). Then for
an appropriate choice of η, with high probability over the initialization, gradient descent finds an ε
sub-optimal point in O(log(1

ε )) steps. The same result holds for stochastic gradient descent as well.

4.2. Training All The Layers Together

In this section we provide a representative result for the training dynamics when all the layers
are trained together with a fixed common learning rate. The dynamics are given by W⃗ (t + 1) =
W⃗ (t) − η∂W⃗L(W⃗ (t)). The analysis in this setting follows from carefully establishing that the NTK
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does not change too much during the training procedure allowing for the rest of the analysis to go
through. We have the following theorem, using the concentration bounds of Lee et al. (2019) (precise
theorem statement and proof are in Appendix E):

Theorem 15 Suppose σ is smooth, bounded and has bounded derivatives. If the width is a large
enough constant (depending on L,n, δ) and L = Θ( log(n/δ)

µ ), then gradient descent with high
probability finds an ε suboptimal point in O(log(1/ε)) iterations.

5. SQ Learnability of Random Deep Neural Nets

In this section we give a generalization of the recent result of Das et al. (2019) regarding learnability
of random neural networks. This work studied randomly initialized deep neural networks with sign
activations at hidden units. Motivated from the perspective of complexity of learning, they studied
learnability of random neural networks in the popular statistical query learning (SQ) framework
(Kearns, 1998). Their main result establishes that any algorithm for learning a function that is
a randomly initialized deep network with sign activations, requires exponential (in depth) many
statistical queries in the worst case.

Here we generalize their result in two ways: (a) our result applies to arbitrary activations (as
opposed to just sign activations in Das et al. (2019)) satisfying a subgaussianity assumption for
standard Gaussian inputs, and (b) our lower bound shows that a randomly initialized network is hard
to learn in the SQ model with constant probability, as opposed to just positive probability, in Das
et al. (2019). We achieve the stronger lower bound by carefully adapting the lower bound technique
of Bshouty and Feldman (2002). The subgaussianity assumption is there exists a constant α > 0 such
that for all λ, we have EX∼N(0,1)[eλσ(X)] ≤ eλ2α2/2 for all λ. All standard activations (such as the
sign, ReLU and tanh), when normalized, satisfy this assumption.

For technical reasons, we will work with networks that normalize the output of each layer to unit
length via the operation Π ∶ Rm → Rm, and thus the neural network function is of the form

fW⃗ (x) = (v ⋅ 1√
m

Π(σ(WL
1√
m

Π(σ(WL−1⋯ 1√
m

Π(σ(W1x)⋯)))). (3)

We will consider learning sgn(fW⃗ (x)) in the SQ model (Kearns, 1998) where the learning algorithm
does not have access to a labeled training set. Instead, for a given target function f and a distribution
D over Rd, the algorithm has access to a query oracle SQf,D(ψ, τ). The oracle takes as input a query
function ψ and a tolerance parameter τ ≥ 0, and outputs a value v such that ∣ED[ψ(x, f(x))]−v∣ ≤ τ .
The goal of the algorithm is to use the query algorithm to output a function g that is ε-correlated with
f , i.e., PrD[g(x)f(x)] ≥ ε, for a given ε > 0. Our main result is the following (proofs can be found
in Appendix F):

Theorem 16 Fix any nonlinear activation σ with the coefficient of non-linearity µ that satisfies the
subgaussianity assumption. Let fW⃗ be an L-layer neural network with width m = Ω(Lµ

2

δ2 ) taking
inputs of dimension d with weights randomly initialized to standard Gaussians. Any algorithm that
makes at most p(d,L) statistical queries with tolerance 1/poly(d,L) and outputs a function that is
1/poly(d,L)-correlated with sgn(fW⃗ ) must satisfy p(d,L) ≥ eΩ(L).

A key component in establishing the above SQ hardness of learning is to show that given two non-
collinear unit length vectors, a randomly initialized network of depth h and sufficiently large width
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makes, in expectation, the pair nearly orthogonal. In other words, the magnitude of the expected dot
product between any pair decreases exponentially with depth. While Das et al. (2019) proved the
result for sign activations, we prove the statement for more general activations and then use it to
establish hardness of learning in the SQ model.

6. Benign Overfitting in Deep Neural Networks

In this section, we give an application of our conditioning results showing how interpolating classifiers
(i.e. classifiers achieving perfect training accuracy) can generalize well in the context of deep neural
networks. Specifically, we consider the problem of linear regression with square loss where the
feature representation is obtained via a randomly initialized deep network, and an interpolating linear
predictor is obtained by training only the top layer (i.e. the v vector). Since there are infinitely
many interpolating linear predictors in our overparameterized setting, we focus our attention on the
minimum norm predictor.

Our result builds on the prior work of Bartlett et al. (2019b), which studies benign overfitting
in kernel least-squares regression, where the kernel is externally provided. They prove a benign
overfitting result (i.e. generalization error going to 0 with increasing sample size) assuming that the
spectrum of the kernel matrix decays at a certain slow rate. In this work, we construct the kernel via
a randomly initialized deep neural network, and show, via our conditioning results, that the spectrum
of the kernel matrix decays slowly enough for a benign overfitting result to hold. While the results of
Bartlett et al. (2019b) assume a certain well-specified setting for the data to prove their generalization
bound, we prove our result in the misspecified (or agnostic) setting and give an excess risk bound.

In our setting, the input space is the d dimensional unit sphere Sd−1, the output space Y = [−1,1],
and samples (x, y) ∈ Sd−1 × [−1,1] are drawn from an unknown distribution D. The training set
is S = {(xi, yi) ∈ Sd−1 × [−1,1]}ni=1. To simplify the presentation, we work in the infinite width
setting, i.e. we learn the minimum norm linear predictor in the RKHSH corresponding to the kernel
function k̄ (see Section 3.1). Let Φ ∶ Sd−1 →H be the feature map corresponding to k̄. The loss of
a linear predictor parameterized by v ∈ H on an example (x, y) is (y − v⊺Φ(x))2. We denote by
v∗ the optimal linear predictor, i.e. a vector in arg minv∈HE(x,y)[(y − v⊺Φ(x))2], and by vS the
minimum norm interpolating linear predictor, if one exists. A key quantity of interest is the function
∆ ∶ N × [0,1] → [0,1] defined as follows: if T = {x′1, x′2, . . . , x′m} denotes a sample set of size m
drawn i.i.d. from the marginal distribution of D over the x-coordinate, then

∆(m,γ) ∶= sup{δ ∶ Pr
T

[ max
i,j∈[m]∶ i≠j

∣x′i ⋅ x′j ∣ ≤ 1 − δ] ≥ 1 − γ} .

With this definition, we have the following excess risk bound (proof in Appendix G):

Theorem 17 For any γ ∈ (0, 1/2), let L = ⌈ log(n2)

− log(1−µ
2
)
⌉ + L0(∆(n2, γ)). Then, with probability at

least 1 − γ over the choice of S, there exists an interpolating linear predictor, and we have

E
(x,y)

[(y − v⊺SΦ(x))2] − E
(x,y)

[(y − v∗⊺Φ(x))2] ≤ O ( log(n/γ)
n

∥v∗∥2) .

A few caveats about the theorem are in order. Note that the number of layers, L, and thereforeH and
the optimal linear predictor v∗ depends on the sample size n. Thus, the excess risk goes to 0 when n
increases if ∥v∗∥ = o(√n).
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7. Experiments

In this section we present empirical results supporting our theoretical findings, and evaluate the
effectiveness of using normalized activations as a replacement for standard operations such as batch
normalization and layer normalization in training deep networks.

Normalized ReLU. Motivated by the practical success of ReLU, we propose a family of normal-
ized ReLU-like functions, parameterized by a scalar c, the location of the kink:

NormReLUc(x) = λ(c) ⋅ [max{x − c,0} + b(c)], (4)

where the constants λ(c) and b(c) are chosen to normalize the function (i.e. (2) holds). In Appendix I,
we derive the following closed form expressions for b(c) and λ(c): if ϕ(x) and Φ(x) are the
Gaussian density and cumulative distribution functions respectively, then b(c) = (1 −Φ(c))c − ϕ(c)
and λ(c) = [(1 −Φ(c))Φ(c)c2 + (1 − 2Φ(c))ϕ(c)c + (1 −Φ(c) − ϕ(c)2)]−1/2.

Figure 2: NormReLU vs SeLU.

In our experimental setup we choose c = −1.5975 since this
gives λ(c) ≈ 1.05, which is the same scaling factor in the SeLU ac-
tivation Klambauer et al. (2017). For this value of c, we have b(c) ≈
−1.6209. In the following, we refer to NormReLU−1.5975 simply
as NormReLU for convenience. Figure 2 shows this NormReLU
activation compared to SeLU. Appendix I has a comparison of the
two activations in terms of training and generalization behavior. Ap-
pendix I also contains additional experimental details for this section
including the choice of hyperparameters and the number of training
and evaluation runs.

Effectiveness of NormReLU for training deep neural networks. We first train fully connected
feedforward networks of depth 32 and 64 on the CIFAR-10 dataset using either batch normalization,
layer normalization or NormReLU. For each method, the best learning rate is chosen via cross
validation. Figure 3 below shows how the training and the test accuracy increases with the number
of epochs. As predicted by our theory, using NormReLU results in significantly faster optimization.
Furthermore, the model trained via NormReLU also generalizes significantly better than using either
batch or layer normalization. However, when using NormReLU we observed that we had to use
small learning rates, of the order of 10−5 to stabilize training. Batch or Layer normalizations on the
other hand are less sensitive and can be applied in conjunction with large learning rates.

Figure 3: Train and test accuracy vs. the number of epochs. The left plots shows the optimization performance of
the NormReLU as compared to standard methods such as batch normalization and layer normalization. The plots are
obtained by training depth 32 fully connected networks with 3000 hidden units in each layer. Similarly, the right plot
compares the test accuracy of the three methods.

11



A DEEP CONDITIONING TREATMENT OF NEURAL NETWORKS

NormReLU as a replacement of batch normalization for other architectures. We train deep
convolutional networks with the ResNet architecture He et al. (2016a) using the standard practice
of using batch normalization with skip connections and also by replacing batch normalization with
NormReLU. We do not use layer normalization since that is not the standard way to train CNNs.
Figure 4 shows the train and test accuracies obtained on both network architectures. As can be
seen, the use of NormReLU is indeed competitive with batch normalization achieving similar test
accuracies and slightly outperforming batch normalization at depth 110.

Figure 4: Train and test accuracy vs. the number of epochs. The plots are obtained by training a depth 32 and a depth 110
ResNet architecture.

Figure 5: NormReLU vs Fixup on
CIFAR-10 with a ResNet 110 archi-
tecture.

Comparison with Fixup initialization. We show that on the
CIFAR-10 dataset, using NormReLU with standard initialization
we can achieve comparable results to those obtained using stan-
dard ReLU with the Fixup initialization method of Zhang et al.
(2019). We turn on data augmentation and train the same 110
depth architecture as in Zhang et al. (2019). We replace Fixup
initialization with standard Gaussian initialization where the ker-
nel weights are initialized with a mean zero Gaussian and a vari-
ance of 1/(kernel_size2 ⋅ num_out_channels), and replace the stan-
dard ReLU activation with NormReLU. Figure 5 shows the test
accuracies achieved by both the methods. Note that training with
NormReLU achieves a similar accuracy as with Fixup initialization.

8. Conclusions and Future Directions

In this work we further elaborated the role of depth in training of modern neural networks by showing
that the conditioning of the input data improves exponentially with depth at random initialization.
It would be interesting to further rigorously understand how the conditioning behaves during the
course of training. An excellent open question is to analyze more realistic parameter regimes (low
width in particular). While it is reasonably straightforward to extend our analysis to architectures
such as Convolutional Neural Networks and ResNets, extending it to architectures such as Recurrent
Networks and Transformers would be quite interesting. Finally, we believe that our main result
is quite general and it would be interesting to explore other applications in addition to the ones
presented in the current work.
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Appendix A. Related Work

Representational Benefits of Depth. Analogous to depth hierarchy theorems in circuit complexity,
many recent works have aimed to characterize the representational power of deep neural networks
when compared to their shallow counterparts. The work of Delalleau and Bengio (2011) studies
sum-product networks and constructs examples of functions that can be efficiently represented by
depth 4 or higher networks and require exponentially many neurons for representation with depth
one networks. The works of Martens and Medabalimi (2014) and Kane and Williams (2016) study
networks of linear threshold gates and provide similar separation results. Eldan and Shamir (2016)
show that for many popular activations such as sigmoid, ReLU etc. there are simple functions that can
be computed by depth 3 feed forward networks but require exponentially (in the input dimensionality)
many neurons to represent using two layer feed forward networks. Telgarsky (2016) generalizes this
to construct, for any integer k, a family of functions that can be approximated by Θ(k3) layers and
Θ(k3) size and require exponential in k neurons to represent with O(k) depth.

Optimization Benefits of Depth. While the benefits of depth are well understood in terms of the
representation power using a small number of neurons, the question of whether increasing depth
helps with optimization is currently poorly understood. The recent work of Arora et al. (2018b)
aims to understand this question for the special case of linear neural networks. For the case of
`p regression, they show that gradient descent updates on a depth 2 linear network correspond to
accelerated gradient descent type updates on the original weight vector. Similarly, they derive the
form of the weight updates for a general over parameterized deep linear neural network and show
that these updates can be viewed as performing gradient descent on the original network but with
a preconditioning operation applied to the gradient at each step. Empirically this leads to faster
convergence. The works of Bartlett et al. (2019a) and Arora et al. (2018a) study the convergence of
gradient descent on linear regression problems when solved via an over parameterized deep linear
network. These works establish that under suitable assumptions on the initialization, gradient descent
on the over parameterized deep linear networks enjoys the same rate of convergence as performing
linear regression in the original parameter space which is a smooth and strongly convex problem.

In a similar vein, the recent work of Arora et al. (2019b) analyzes over parameterized deep linear
networks for solving matrix factorization, and shows that the solution to the gradient flow equations
approaches the minimum nuclear norm solution at a rate that increases with the depth of the network.
The recent work of Malach and Shalev-Shwartz (2019) studies depth separation between shallow
and deeper networks over distributions that have a certain fractal structure. In certain regimes of the
parameters of the distribution the authors show that, surprisingly, the stronger the depth separation is,
the harder it becomes to learn the distribution via a deep network using gradient based algorithms.

Optimization of Neural Networks via Gradient Descent In recent years there has been a large
body of work in analyzing the convergence of gradient descent and stochastic gradient descent (SGD)
on over parameterized neural networks. The work of Andoni et al. (2014) shows that depth one neural
networks with quadratic activations can efficiently represent low degree polynomials and performing
gradient descent on the network starting with random initialization can efficiently learn such classes.
The work of Li and Yuan (2017) shows convergence of gradient descent on the population loss and
under Gaussian input distribution, of a two layer feed forward network with relu activations and
the identity mapping mimicking the ResNet architecture. Under similar assumptions the work of
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Soltanolkotabi et al. (2018) analyzes SGD for two layer neural networks with quadratic activations.
The work of Li and Liang (2018) extends these results to more realistic data distributions.

Building upon the work of Daniely et al. (2016), Daniely (2017b) shows that SGD when run on
over parameterized neural networks achieves at most ε excess loss (on the training set) over the best
predictor in the conjugate kernel class at the rate that depends on 1/ε2 and M , the norm of the best
predictor. This result is extended in the work of Du et al. (2019) showing that by running SGD on
a randomly initialized two layer over parameterized networks with relu activations, one can get ε
loss on the training data at the rate that depends on log(1/ε) and the smallest eigenvalue of a certain
kernel matrix. While the authors show that this eigenvalue is positive, no explicit bound is provided.
These results are extended to higher depth in (Du et al., 2018) at the expense of an exponential
dependence on the depth on the amount of over parameterization needed. In (Allen-Zhu et al., 2018)
the authors provide an alternate analysis under the weaker Assumption A and at the same time obtain
convergence rates that depend on log(1/ε) and only polynomially in the depth of the network. A few
recent papers (Oymak and Soltanolkotabi, 2019; Zou and Gu, 2019; Su and Yang, 2019) provide
an improved analysis with better dependence on the parameters. We would like to point out that all
the above works fail to explain the optimization benefits of depth, and in fact the resulting bounds
degrade as the network gets deeper.

The work of Jacot et al. (2018) proposed the Neural Tangent Kernel (NTK) that is associated
with a randomly initialized neural network in the infinite width regime. The authors show that in
this regime performing gradient descent on the parameters of the network is equivalent to kernel
regression using the NTK. The work of Lee et al. (2019) and Yang (2019) generalizes this result
and the recent work of Arora et al. (2019c) provides a non-asymptotic analysis and an algorithm
for exact computation of the NTK for feed forward and convolutional neural networks. There have
also been works analyzing the mean field dynamics of SGD on infinite width neural networks (Mei
et al., 2018; Chizat and Bach, 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos,
2018) as well as works designing provable learning algorithms for shallow neural networks under
certain assumptions (Arora et al., 2016; Ge et al., 2017; Goel and Klivans, 2017; Ge et al., 2018;
Goel et al., 2018; Bakshi et al., 2018; Vempala and Wilmes, 2018). Recent works have also explored
the question of providing sample complexity based separation between training via the NTK vs.
training all the layers (Wei et al., 2019; Allen-Zhu and Li, 2020).

SQ Learnability of Neural Networks. Several recent works have studied the statistical query (SQ)
framework of Kearns (1998) to provide lower bounds on the number of queries needed to learn neural
networks with a certain structure (Song et al., 2017; Vempala and Wilmes, 2018; Das et al., 2019).
The closest to us is the recent work of Das et al. (2019) that shows that learning a function that is a
randomly initialized deep neural network with sign activations requires exponential in depth many
statistical queries. A crucial part of their analysis requires showing that for randomly initialized
neural networks with sign activations, the pairwise (normalized) dot products decrease exponentially
fast with depth. Our main result in Theorem 3 strictly generalizes this result for arbitrary non-linear
activations (under mild assumptions) thereby implying exponential SQ lower bounds for networks
with arbitrary non linear activations. In particular, we show any algorithm that works in the statistical
query framework, and learns (with high probability) a sufficiently deep randomly initialized network
with an arbitrary non-linear activation, must necessarily use exponentially (in depth) many queries in
the worst case. The only requirement we impose on the non-linear activations is that they satisfy
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subgaussianity (see Section F), a condition satisfied by popular activations such as relu, sign, and
tanh.

Generalization in Neural Networks. It has been observed repeatedly that modern deep neural
networks have sufficient capacity to perfectly memorize the training data, yet generalize to test data
very well (see, e.g., (Zhang et al., 2017)). This observation flies in the face of conventional statistical
learning theory which indicates that such overfitting should lead to poor generalization. Since then
there has been a line of work providing generalization bounds for neural networks that depend on
compressibility of the network (Arora et al., 2018c), norm based bounds (Neyshabur et al., 2015;
Bartlett et al., 2017), bounds via PAC-bayes analysis (Neyshabur et al., 2017; Dziugaite and Roy,
2017; Nagarajan and Kolter, 2019) and bounds that depend on the distance to initialization (Long
and Sedghi, 2019). Since randomly initialized neural networks are interpolating classifiers, i.e., they
achieve zero error on the training set, there have also been recent works (e.g. (Belkin et al., 2018,
2019b; Liang and Rakhlin, 2018; Liang et al., 2019; Bartlett et al., 2019b; Belkin et al., 2019a; Hastie
et al., 2019; Mei and Montanari, 2019)) that study the generalization phenomenon in the context of
specific interpolating methods (i.e. methods which perfectly fit the training data) and show how the
obtained predictors can generalize well.

Appendix B. Proof of Lemma 1

In this section, we prove Lemma 1, restated here for convenience:

Lemma 18 If the neural network in (1) incorporates batch normalization in each layer, then the
network output is the same regardless of whether the activation σ is normalized or not. The same
holds if instead layer normalization is employed, but on the post-activation outputs rather than
pre-activation inputs.

Proof Let σ be an arbitrary activation function, and σ̃ be its normalized version. Thus σ̃(u) = σ(u)−c
s

for some constants c and s.

Invariance with Batch Normalization. For a batch size b, the vanilla Batch Normalization opera-
tion BN ∶ Rb → Rb is defined as follows:

BN(v) = 1

ν
(v − µ1⃗),

where 1⃗ is the d-dimensional all ones vector, µ = 1
bv ⋅ 1⃗, and ν =

√
1
b ∥v − µ1⃗∥2

2.
Now, fix a particular layer in the neural network, and a particular hidden unit in that layer. Let w

be the weight vector corresponding to that hidden unit. Thus if x is the pre-activation input to the
previous layer, then w ⋅ 1√

m
σ(x) is the pre-activation value4 for the hidden unit in question. Suppose

the batch size is b, and let x1, x2, . . . , xb be the pre-activation inputs to the previous layer. Define
X = [x1, x2, . . . , xb], and σ(X) = [σ(x1), σ(x2), . . . , σ(xb)]. Then v = w⊺ 1√

m
σ(X) is the vector

of pre-activation inputs to the hidden unit for the batch. Now, we claim that

BN(w⊺ 1√
m
σ(X)) = BN(w⊺ 1√

m
σ̃(X)), (5)

4. We can handle the input layer of the network by simply setting σ to be the identity multiplied by
√
m.
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which establishes the desired invariance. Let ṽ = w⊺ 1√
m
σ̃(X). Define µ = 1

bv ⋅ 1⃗, ν =
√

1
b ∥v − µ1⃗∥2

2,

µ̃ = 1
b ṽ ⋅ 1⃗ and ν̃ =

√
1
b ∥ṽ − µ̃1⃗∥2

2. Then by direct calculation we have µ̃ = µ−c
s , and ν̃ = ν

s . These
facts imply the claimed equality (5).

Finally, the standard Batch Normalization operation also includes constants γ and β so that the
final output is γBN(⋅) + β. The above analysis immediately implies that

γBN(w⊺ 1√
m
σ(X)) + β = γBN(w⊺ 1√

m
σ̃(X)) + β,

establishing invariance for the standard Batch Normalization operation as well.

Invariance with post-activation Layer Normalization. For a layer with m hidden units, the
Layer Normalization operation LN ∶ Rm → Rm is defined as follows:

LN(v) = 1

ν
(v − µ1⃗),

where 1⃗ is the m-dimensional all ones vector, µ = 1
mv ⋅ 1⃗, and ν =

√
1
m∥v − µ1⃗∥2

2.
Now suppose we apply Layer Normalization to the post-activation outputs (i.e. on v = 1√

m
σ̃(x),

for a pre-activation input x ∈ Rm) the rather than pre-activation inputs. Then, we claim that

LN( 1√
m
σ(x)) = LN( 1√

m
σ̃(x)), (6)

which establishes the desired invariance. Let ṽ = 1√
m
σ̃(x). Define µ = 1

mv ⋅ 1⃗, ν =
√

1
m∥v − µ1⃗∥2

2,

µ̃ = 1
m ṽ ⋅ 1⃗ and ν̃ =

√
1
m∥ṽ − µ̃1⃗∥2

2. Then by direct calculation we have µ̃ = µ−c
s , and ν̃ = ν

s . These
facts imply the claimed equality (6).

Appendix C. Conditioning Analysis

Recall the notion of the dual activation σ̂ for the activation σ:

Definition 19 For ρ ∈ [−1,1], define matrix Σρ = [1 ρ
ρ 1

]. Define the conjugate activation function

σ̂ ∶ [−1,1] → [−1,1] as follows:

σ̂(ρ) ∶= E
(X,X′)∼N(0,Σρ)

[σ(X)σ(X ′)].

The following facts can be found in Daniely et al. (2016):

1. Let x,x′ ∈ Rd such that ∥x∥ = ∥x′∥ = 1. Then

E
w∼N(0,Id)

[σ(w ⋅ x)σ(w ⋅ x′)] = σ̂(x ⋅ x′).

2. Since EX∼N(0,1)[σ2(X)] = 1, σ is square integrable w.r.t. the Gaussian measure. The
(probabilitist’s) Hermite polynomials h0, h1, . . . form an orthogonal basis for the Hilbert space
of square integrable functions w.r.t. the Gaussian measure, and hence σ can be written as
σ(u) = ∑∞i=0 aihi(u), where ai = EX∼N(0,1)[σ(X)hi(X)]. This expansion is known as the
Hermite expansion for σ.

22



A DEEP CONDITIONING TREATMENT OF NEURAL NETWORKS

3. We have σ̂(ρ) = ∑∞i=0 a
2
i ρ
i.

4. The normalization (2) has the following consequences. Since EX∼N(0,1)[σ(X)] = 0, we have
a0 = 0, and since EX∼N(0,1)[σ2(X)] = 1 we have ∑∞i=1 a

2
i = 1.

5. If σ̇ denotes the derivative of σ, then ˆ̇σ = ˙̂σ.

The above facts imply the following simple bound on the coefficient of non-linearity µ:

Lemma 20 For any normalized non-linear activation function σ, we have 0 < µ ≤ 1.

Proof The degree 1 Hermite polynomial is h1(u) = u, so a1 = EX∼N(0,1)[σ(X)X]. Since σ is
non-linear, for at least one i ≠ 1, we have ai ≠ 0. This, coupled with the fact that ∑∞i=1 a

2
i = 1 implies

that a1 ∈ (−1,1), which implies that µ = 1 − a2
1 ∈ (0,1].

The random initialization of the neural network induces a feature representation of the input
vectors at every depth l in the neural network: Φ

(l)

W⃗
(x) ∶= 1√

m
σ(Wl

1√
m
σ(Wl−1⋯ 1√

m
σ(W1x)⋯)).

This feature representation naturally yields a kernel function k(l)(x,x′) ∶= Φ
(l)

W⃗
(x) ⋅ Φ(l)

W⃗
(x′). In

particular, after the first layer, the kernel function k(1)(x,x′) = 1
mσ(W1x) ⋅ σ(W1x

′). The central
limit theorem implies that as the width m goes to infinity, this kernel function tends to a deterministic
value, viz. its expectation, which is Ew∼N(0,Id)[σ(w ⋅ x)σ(w ⋅ x′)], which equals σ̂(x ⋅ x′) if x
and x′ are unit vectors. Furthermore, the normalization EX∼N(0,1)[σ2(X)] = 1 implies that the
feature representation is itself normalized in the sense for any unit vector x, that as m→∞, we have
∥Φ(1)

W⃗
(x)∥2

2 = k(1)(x,x) → 1. Applying these observations recursively, we get Lemma 21, which
was also proved by Daniely et al. (2016).

Lemma 21 Suppose ∥x∥2 = ∥x′∥2 = 1. Then for any depth l, as m→∞

k(l)(x,x′) a.s.Ð→ σ̂(l)(x ⋅ x′),

where σ̂(l) denotes the l-fold composition of σ̂ with itself.

The following technical lemma shows how one application of σ̂ behaves:

Lemma 22 Let δ ∈ [0,1]. Then

∣σ̂(−(1 − δ))∣ ≤ σ̂(1 − δ) ≤
⎧⎪⎪⎨⎪⎪⎩

1 − (1 + µ
2 )δ if δ ≤ 1

2

(1 − µ
2 )(1 − δ) if δ > 1

2 .

Proof The fact that ∣σ̂(−(1 − δ))∣ ≤ σ̂(1 − δ) follows from the fact that the power series σ̂(ρ) =
∑∞i=1 a

2
i ρ
i has only non-negative coefficients. Next, we have

σ̂(1−δ) =
∞

∑
i=1

a2
i (1−δ)i ≤ a2

1(1−δ)+
∞

∑
i=2

a2
i (1−δ)2 = a2

1(1−δ)+(1−a2
1)(1−δ)2 = (1−δ)(1−µδ).

Now if δ > 1
2 , we have (1 − δ)(1 − µδ) ≤ (1 − µ

2 )(1 − δ). If δ ≤ 1
2 , we have (1 − δ)(1 − µδ) =

1 − (1 + µ)δ + µδ2 ≤ 1 − (1 + µ
2 )δ.
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Recall the definition of Bν(L, δ): for any ν ∈ (0,1], δ ∈ (0,1) and a positive integer L, let

L0(δ) = max{⌈ log( 1
2δ

)

log(1+ ν
2
)
⌉ ,0} = O ( log(1/δ)

ν ), and define

Bν(L, δ) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 − δ(1 + ν
2)
L if L ≤ L0(δ)

1
2(1 −

ν
2)
L−L0(δ) if L > L0(δ).

Remember, we denote by B(L, δ), the quantity Bµ(L, δ).
The following lemma is an immediate consequnce via repeated application of Lemma 22:

Lemma 23 (Correlation decay lemma) Suppose ∣ρ∣ ≤ 1 − δ for some δ ∈ (0,1]. Then

∣σ̂(L)(ρ)∣ ≤ B(L, δ).

The final technical ingredient we need is the following linear-algebraic lemma which gives a
lower bound on the smallest eigenvalue of a matrix obtained by the application of a given function to
all entries of another positive definite matrix:

Lemma 24 (Eigenvalue lower bound lemma) Let f ∶ [−1,1] → R be an arbitrary function whose
power series f(ρ) = ∑∞i=0 aiρ

i converges everywhere in [−1,1] and has non-negative coefficients
ai ≥ 0. Let K ∈ Rn×n be a positive definite matrix with K ⪰ δIn for some δ > 0, and all diagonal
entries equal to 1. Let f[K] be matrix obtained by entrywise application of f . Then we have

f[K] ⪰ (f(1) − f(1 − δ))In.

Proof We have f[K] = ∑∞i=1 aiK
⊙i, where K⊙i denotes the i-fold Hadamard (i.e. entrywise)

product of K with itself. Since all diagonal entries of K equal 1, we can also write K⊙i as

K⊙i = (K − δIn)⊙i + (1 − (1 − δ)i)In.

By assumption, K − δIn ⪰ 0. Since the Hadamard product of positive semidefinite matrices is also
positive semidefinite, we have (K − δIn)⊙i ⪰ 0. Thus, K⊙i ⪰ (1 − (1 − δ)i)In. Thus, we have

f[K] =
∞

∑
i=0

aiK
⊙i ⪰

∞

∑
i=0

ai(1 − (1 − δ)i)In = (f(1) − f(1 − δ))In,

as required.

C.1. Top Layer Kernel Matrix

We can now prove Theorem 3 and Theorem 7: which we restate here in a combined form for
convenience:

Theorem 25 The following bounds hold:

1. Under Assumption A, we have ∣K̄ij ∣ ≤ B(L, δ) for all i, j ∈ [n] with i ≠ j.

2. Under Assumption B, we have λmin(K̄) ≥ 1 −B(L, δ).
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Proof Part 1 follows directly from Lemma 23.
As for part 2, Assumption B implies that K ⪰ δIn. Since the function σ̂(L) ∶ [−1,1] → R defines

a kernel on the unit sphere, by Schoenberg’s theorem (Schoenberg, 1942), its power series expansion
has only non-negative coefficients, so Lemma 24 applies to K̄ = σ̂(L)[K], and we have

K̄ ⪰ (σ̂(L)(1) − σ̂(L)(1 − δ))In ⪰ (1 −B(L, δ))In,

using Lemma 23 and the fact that σ̂(L)(1) = 1.

We can now prove Corollary 4 and Corollary 8, restated here in a combined form for convenience:

Corollary 26 The following bounds on κ(K̄) hold:

1. Under Assumption A, if L ≥ L1(δ) ∶= ⌈ log(n)
− log(1−µ

2
)
⌉+L0(δ), then κ(K̄) ≤ 1+2n(1− µ

2 )
L−L1(δ).

2. Under Assumption B, we have κ(K̄) ≤ 1 + n
δ (1 +

µ
2 )

−L.

Proof To prove part 1, note that the normalization (2) implies that K̄ii = 1 for all i ∈ [n]. This
fact, coupled with Theorem 3 (part 1) and the Gershgorin circle theorem implies the following
bounds on the largest and smallest eigenvalues of K̄: we have λmax(K̄) ≤ 1 + (n − 1)B(L, δ) and
λmin(K̄) ≥ 1 − (n − 1)B(L, δ), which implies that κ(K̄) ≤ 1+(n−1)B(L,δ)

1−(n−1)B(L,δ) . Since L ≥ L1(δ) =

⌈ log(n)
− log(1−µ

2
)
⌉ +L0(δ), we have (n − 1)B(L, δ) ≤ 1

2 , and then using the inequality 1+x
1−x ≤ 1 + 4x for

x ∈ [0, 1
2], the bound on the condition number follows.

As for part 2, using Theorem 3 (part 2) and the bound λmax(K̄) ≤ 1 + (n − 1)B(L, δ), we have
κ(K̄) ≤ 1+(n−1)B(L,δ)

1−B(L,δ) . Now if L ≤ L0(δ), using the definition of B(L, δ), we have

κ(K̄) − 1 ≤
n(1 − δ(1 + µ

2 )
L)

1 − (1 − δ(1 + µ
2 )L)

≤ n
δ (1 +

µ
2 )

−L.

If L > L0(δ), then we have

κ(K̄) − 1 ≤
n
2 (1 −

µ
2 )
L−L0(δ)

1 − 1
2(1 −

µ
2 )L−L0(δ)

≤ n(1 − µ
2 )
L−L0(δ) ≤ n(1 + µ

2 )
−L(1 + µ

2 )
L0(δ) ≤ n

δ (1 +
µ
2 )

−L,

as required.

C.2. Neural Tangent Kernel Matrix

The following formula for the NTK was given by Arora et al. (2019c): defining ρ ∶= xi ⋅ xj , we have

K̄ij =
L+1

∑
h=1

σ̂(h−1)(ρ)(
L

∏
h′=h

ˆ̇σ(σ̂(h′)(ρ))) . (7)

Using this formula, we have the following bound:

Lemma 27 For any ρ ∈ [−1,1], we have
ˆ̇σ(ρ)
ˆ̇σ(1)

≤ 1 − µ(1 − ∣ρ∣).
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Proof We have ˆ̇σ(ρ) = ˙̂σ(ρ) = ∑∞i=1 i ⋅ a2
i ⋅ ρi−1. This implies that ˆ̇σ(ρ) ≤ ˆ̇σ(∣ρ∣), so it suffices to

prove the bound for ρ ≥ 0. Also note that by definition ˆ̇σ(ρ) is non-negative for all ρ ≥ 0 as well as
an increasing function over ρ ≥ 0. Thus, using the fact that ∑∞i=2 a

2
i = 1 − a2

1 = µ, we have

ˆ̇σ(ρ)
ˆ̇σ(1)

= a
2
1 +∑∞i=2 i ⋅ a2

i ⋅ ρi
a2

1 +∑∞i=2 i ⋅ a2
i

≤ a
2
1 +∑∞i=2 i ⋅ a2

i ⋅ ρ
a2

1 +∑∞i=2 i ⋅ a2
i

= 1 − ( ∑∞i=2 i ⋅ a2
i

a2
1 +∑∞i=2 i ⋅ a2

i

)(1 − ρ) ≤ 1 − µ(1 − ρ),

as required.

We can now prove Theorem 5 and Theorem 9, which we restate here in a combined form for
convenience:

Theorem 28 The diagonal entries of K̄ are all equal. Furthermore, the following bounds hold if
L ≥ 2L0(δ):

1. Under Assumption A, we have ∣K̄ij ∣ ≤ 2B(L/2, δ) ⋅ K̄11 for all i, j ∈ [n] with i ≠ j.

2. Under Assumption B, we have λmin(K) ≥ (1 − 2B(L/2, δ)) K̄11.

Proof First, we show that all diagonal values of K̄ are equal. For every i, we have xi ⋅ xi = 1, and
since σ̂(h)(1) = 1 for any h, we have from (7),

K̄ii =
L+1

∑
h=1

σ̂(h−1)(1)(
L

∏
h′=h

ˆ̇σ(σ̂(h′)(1))) =
L+1

∑
h=1

(
L

∏
h′=h

ˆ̇σ(1)) =
ˆ̇σ(1)L+1 − 1

ˆ̇σ(1) − 1
,

which is a fixed constant.
To prove part 1, let ρ ∶= xi ⋅ xj . It is easy to show (say, via the Hermite expansion of σ) that

ˆ̇σ(1) > 0. Thus, we have

K̄ij
K̄11

= ∑
L+1
h=1 σ̂

(h−1)(ρ) (∏Lh′=h ˆ̇σ(σ̂(h′)(ρ)))
∑L+1
h=1 (∏Lh′=h ˆ̇σ(1))

≤ max
h∈[L+1]

σ̂(h−1)(ρ) ⋅
L

∏
h′=h

ˆ̇σ(σ̂(h′)(ρ))
ˆ̇σ(1)

≤ max
h∈[L+1]

∣σ̂(h−1)(ρ)∣ ⋅
L

∏
h′=h

(1 − µ(1 − ∣σ̂(h′)(ρ)∣)) ≤ max
h∈[L+1]

B(h − 1, δ) ⋅
L

∏
h′=h

(1 − µ(1 −B(h′, δ))),

where the penultimate inequality follows Lemma 27 and the final one from Lemma 23. We now
show that since L ≥ 2L0(δ), for any any h ∈ [L + 1], we have

B(h − 1, δ) ⋅
L

∏
h′=h

(1 − µ(1 −B(h′, δ))) ≤ 2B(L/2, δ),

which gives the bound of part 1. We do this in two cases: if h− 1 ≥ L/2, then B(h− 1, δ) ≤ B(L/2, δ),
which gives the required bound since all terms in the product are at most 1. Otherwise, if h − 1 < L/2,
then there are at least L/2−L0(δ) values of h′ in {h,h+ 1, . . . , L} which are larger than L0(δ), and
for these values of h′, we have B(h′, δ) ≤ 1

2 , so 1 − µ(1 −B(h′, δ))) ≤ 1 − µ
2 . The product of these

terms is therefore at most (1 − µ
2 )

L/2−L0(δ) = 2B(L/2, δ), which gives the required bound in this case.
To prove part 2, define f ∶ [−1,1] → R as f(ρ) = ∑L+1

h=1 σ̂
(h−1)(ρ) (∏Lh′=h ˆ̇σ(σ̂(h′)(ρ))). Equa-

tion (7) shows that this defines a kernel on the unit sphere, and so by Schoenberg’s theorem
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(Schoenberg, 1942), its power series expansion has only non-negative coefficients. Thus, applying
Lemma 24 to K̄ = f[K], we conclude that

K̄ ⪰ (f(1) − f(1 − δ))In ⪰ (1 − 2B(L/2, δ))f(1)In,

using the calculations in part 1. Since f(1) = K̄11, the bound of part 2 follows.

Finally, we prove Corollary 6 and Corollary 10, restated here in a combined form:

Corollary 29 The following bounds on the condition number κ(K̄) hold:

1. Under Assumption A, ifL ≥ L2(δ) ∶= ⌈ 2 log(2n)
− log(1−µ

2
)
⌉+2L0(δ), then κ(K̄) ≤ 1+4n(1 − µ

2 )
L/2−L2(δ).

2. Under Assumption B, if L ≥ 4L0(δ), then κ(K̄) ≤ 1 + 2n
δ (1 + µ

2 )
−L/2.

Proof To prove part 1, note that Theorem 5 (part 1) and the Gershgorin circle theorem implies
the following bounds on the largest and smallest eigenvalues of K̄: we have λmax(K̄) ≤ (1 +
2(n − 1)B(L/2, δ))K̄11 and λmin(K̄) ≥ (1 − 2(n − 1)B(L/2, δ))K̄11, which implies that κ(K̄) ≤
1+2(n−1)B(L/2,δ)
1−2(n−1)B(L/2,δ) . Since L ≥ L2(δ) = ⌈ 2 log(2n)

− log(1−µ
2
)
⌉ + 2L0(δ), we have 2(n − 1)B(L/2, δ) ≤ 1

2 , and

then using the inequality 1+x
1−x ≤ 1 + 4x for x ∈ [0, 1

2], the bound on the condition number follows.
As for part 2, using Theorem 5 (part 2) and the bound λmax(K̄) ≤ (1 + 2(n − 1)B(L/2, δ))K̄11,

we have κ(K̄) ≤ 1+2(n−1)B(L/2,δ)
1−2B(L/2,δ) . Thus,

κ(K̄)−1 ≤
n(1 − µ

2 )
L/2−L0(δ)

1 − (1 − µ
2 )

L/2−L0(δ)
≤ 2n(1− µ

2 )
L/2−L0(δ) ≤ 2n(1+ µ

2 )
−L/2(1+ µ

2 )
L0(δ) ≤ 2n

δ (1+ µ
2 )

−L/2,

the second inequality follows since L/2−L0(δ) ≥ L0(δ), and so (1− µ
2 )

L/2−L0(δ) ≤ (1− µ
2 )
L0(δ) ≤ 1

2 .

C.3. Evolution of dot products for uncentered activations

In this section, we generalize the analysis in the beginning of Appendix C to activations that need not
be normalized (2). Specifically, we only assume the following condition on the activation σ:

E
X∼N(0,1)

[σ2(X)] = 1, (8)

i.e., we allow EX∼N(0,1)[σ(X)] to be non-zero. In this case, we will show that there is a certain
value ρ̄ ∈ [0,1] such that dot products of input representations at the top layer converge to ρ̄ as the
depth increases. Furthermore, when ρ̄ < 1, this convergence is at an exponential rate governed by the
following notion of the coefficient of non-affinity which accounts for the non-zero expectation of σ
under standard Gaussian inputs:

Definition 30 The coefficient of non-affinity of the activation function σ is defined to be µ̃ ∶=
1 − (EX∼N(0,1)[σ(X)])2 − (EX∼N(0,1)[Xσ(X)])2

.
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Clearly, for normalized activations, the two coefficients coincide, i.e. µ = µ̃. Let σ(u) = ∑∞i=0 aihi(u)
as usual, and then the dual activation is σ̂(ρ) = ∑∞i=0 a

2
i ρ
i. The normalization (8) implies that

∑∞i=0 a
2
i = 1. Furthermore, since h0(u) ≡ 1 and h1(u) = u, we have

a0 = E
X∼N(0,1)

[σ(X)] and a1 = E
X∼N(0,1)

[Xσ(X)],

and so µ̃ = 1 − a2
0 − a2

1. We call an activation function σ “non-affine” if it cannot be written as
u ↦ a + bu for constants a and b. It is easy to see from the Hermite expansion of σ that this is
equivalent to saying that for some i > 1, ai ≠ 0. We then have the following analogue of Lemma 20:

Lemma 31 For any non-affine activation function σ, we have 0 < µ̃ ≤ 1.

Proof Since σ is non-affine, for at least one i > 1, we have ai ≠ 0. This, coupled with the fact that
∑∞i=0 a

2
i = 1 implies that µ̃ = 1 − a2

0 − a2
1 ∈ (0,1].

The following property of σ̂ immediately follows from the formula σ̂(ρ) = ∑∞i=0 a
2
i ρ
i:

Lemma 32 The dual activation σ̂ is non-decreasing and convex on [0,1].

Note that we always have σ̂(1) = 1. We now have the following important property regarding the
other fixed points of σ̂:

Lemma 33 Let ρ̄ ∈ [0,1] such that σ̂(ρ̄) = ρ̄. Then for any λ ∈ [0,1], if ρλ ∶= λ + (1 − λ)ρ̄, then

ρλ − σ̂(ρλ) ≥ µ̃λ(1 − λ)(1 − ρ̄)2.

Thus, if σ is non-affine, then there can be at most one fixed point of σ̂ in [0,1), i.e. a point ρ̄ ∈ [0,1)
such that σ̂(ρ̄) = ρ̄.

Proof First, since ρ̄ and 1 are both fixed points of σ̂, we have

ρλ = λ + (1 − λ)ρ̄ = λσ̂(1) + (1 − λ)σ̂(ρ̄) =
∞

∑
i=0

a2
i (λ + (1 − λ)ρ̄i), (9)

whereas

σ̂(ρλ) =
∞

∑
i=0

a2
i (λ + (1 − λ)ρ̄)i. (10)

Now, we show that the sequence (λ+(1−λ)ρ̄i)−(λ+(1−λ)ρ̄)i for i = 0,1,2, . . . is non-decreasing.
This is because by direct calculation,

[(λ + (1 − λ)ρ̄i+1) − (λ + (1 − λ)ρ̄)i+1] − [(λ + (1 − λ)ρ̄i) − (λ + (1 − λ)ρ̄)i]
= (1 − λ)(1 − ρ̄)((λ + (1 − λ)ρ̄)i − ρ̄i)
≥ 0,

since ρ̄ ≤ λ + (1 − λ)ρ̄. Thus, for all i ≥ 2, we have

(λ + (1 − λ)ρ̄i) − (λ + (1 − λ)ρ̄)i ≥ (λ + (1 − λ)ρ̄2) − (λ + (1 − λ)ρ̄)2 = λ(1 − λ)(1 − ρ̄)2. (11)
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Hence, using (9) and (10), we have

ρλ − σ̂(ρλ) =
∞

∑
i=0

a2
i [(λ + (1 − λ)ρ̄i) − (λ + (1 − λ)ρ̄)i]

=
∞

∑
i=2

a2
i [(λ + (1 − λ)ρ̄i) − (λ + (1 − λ)ρ̄)i]

≥
∞

∑
i=2

a2
iλ(1 − λ)(1 − ρ̄)2 (Using (11))

= µ̃λ(1 − λ)(1 − ρ̄)2,

as required.

Since σ̂(1) = 1, 1 is a fixed point of σ̂. The above lemma shows that for non-affine σ, σ̂ can have at
most one more fixed point in [0,1]. This fact also gives us the following useful consequence:

Lemma 34 Let σ be a non-affine activation, and let ρ̄ ∈ [0,1] be the smallest fixed point of σ̂. Then,
if ρ̄ < 1, then ˙̂σ(ρ̄) < 1. If ρ̄ = 1, then ˙̂σ(1) ≤ 1.

Proof Suppose ρ̄ < 1. If ˙̂σ(ρ̄) ≥ 1, then since σ̂(1) = 1, the mean value theorem and the convexity of
σ̂ imply that ˙̂σ(ρ̄) = 1, which implies that all ρ ∈ [ρ̄,1] are fixed points of σ̂, which is a contradiction
by Lemma 32.

Next, if ρ̄ = 1, then there is no fixed point of σ̂ in [0,1). If ˙̂σ(1) > 1, then there exists a value
ρ < 1 such that σ̂(ρ) < ρ. Since σ̂(0) = a2

0 ≥ 0, and σ̂ is continuous, we conclude that there exists a
value ρ′ ∈ [0, ρ) such that σ̂(ρ′) = ρ′, a contradiction.

We can now prove an analogue of Lemma 22:

Lemma 35 Suppose σ is a non-affine activation. Let ρ̄ be the smallest fixed point of σ̂ in [0,1], and
δ ∈ (0,1]. Then, the following bounds hold:

• If ρ ∈ [1+ρ̄
2 ,1], then

σ̂(ρ) ≤ ρ − µ̃
2
(1 − ρ̄)(1 − ρ).

• If ρ ∈ [ρ̄, 1+ρ̄
2 ), then

∣σ̂(ρ) − ρ̄∣ ≤ (1 − µ̃
2 (1 − ρ̄))∣ρ − ρ̄∣.

• If ρ ∈ [0, ρ̄), then
∣σ̂(ρ) − ρ̄∣ ≤ ˙̂σ(ρ̄)∣ρ − ρ̄∣.

• If ρ ∈ [−1,0), then ∣σ̂(ρ)∣ ≤ σ̂(−ρ), and

σ̂(ρ) ≥ ρ + σ̂(0).

Proof We analyze the four cases separately:
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Case 1: ρ ∈ [1+ρ̄
2 ,1]. In this case, writing ρ as a convex combination of 1+ρ̄

2 and 1 and using the
convexity of σ̂ in [0,1], we have

σ̂(ρ) ≤ 2−2ρ
1−ρ̄ σ̂(

1+ρ̄
2 ) + 2ρ−1−ρ̄

1−ρ̄ σ̂(1) ≤ 2−2ρ
1−ρ̄ (1+ρ̄

2 − µ̃
4 (1 − ρ̄)

2) + 2ρ−1−ρ̄
1−ρ̄ = ρ − µ̃

2 (1 − ρ̄)(1 − ρ).

The second inequality above follows from Lemma 33.

Case 2: ρ ∈ [ρ̄, 1+ρ̄
2 ). Again, writing ρ as a convex combination of ρ̄ and 1+ρ̄

2 and using the
convexity of σ̂ in [0,1], we have

σ̂(ρ) ≤ 1+ρ̄−2ρ
1−ρ̄ σ̂(ρ̄) + 2ρ−2ρ̄

1−ρ̄ σ̂(
1+ρ̄
2 ) ≤ 1+ρ̄−2ρ

1−ρ̄ ⋅ ρ̄ + 2ρ−2ρ̄
1−ρ̄ (1+ρ̄

2 − µ̃
4 (1 − ρ̄)

2) = ρ − µ̃
2 (1 − ρ̄)(ρ − ρ̄).

The second inequality above follows from Lemma 33. Finally, since σ̂ is non-decreasing, and ρ ≥ ρ̄,
we must have σ̂(ρ) ≥ σ̂(ρ̄) = ρ̄. Hence, we have

∣σ̂(ρ) − ρ̄∣ = σ̂(ρ) − ρ̄ ≤ ρ − µ̃
2 (1 − ρ̄)(ρ − ρ̄) − ρ̄ = (1 − µ̃

2 (1 − ρ̄))∣ρ − ρ̄∣,

as required.

Case 3: ρ ∈ [0, ρ̄). In this case, the convexity of σ̂ in [0,1] implies that

σ̂(ρ) ≥ σ̂(ρ̄) + ˙̂σ(ρ̄)(ρ − ρ̄) = ρ̄ + ˙̂σ(ρ̄)(ρ − ρ̄),

or in other words,
ρ̄ − σ̂(ρ) ≤ ˙̂σ(ρ̄)(ρ̄ − ρ).

Since σ̂ is non-decreasing, and ρ < ρ̄, we must have σ̂(ρ) ≤ σ̂(ρ̄) = ρ̄. Hence, we have

∣σ̂(ρ) − ρ̄∣ = ρ̄ − σ̂(ρ) ≤ ˙̂σ(ρ̄)(ρ̄ − ρ) = ˙̂σ(ρ̄)∣ρ − ρ̄∣,

as required.

Case 4: ρ ∈ [−1,0). The bound ∣σ̂(ρ)∣ ≤ σ̂(−ρ) is obvious from the fact that σ̂(ρ) = ∑∞i=0 a
2
i ρ
i.

Next, we have

σ̂(ρ) − ρ =
∞

∑
i=0

a2
i ρ
i −

∞

∑
i=0

a2
i ρ = a2

0(1 − ρ) +
∞

∑
i=1

a2
i (ρi − ρ) ≥ a2

0 = σ̂(0).

The last inequality follows because 1 − ρ ≥ 0 and ρi − ρ ≥ 0.

Finally, we now have the following generalization of Lemma 23 showing exponentially fast conver-
gence of dot products to the smallest fixed point of σ̂ in [0,1]. We focus on the case when σ̂(0) > 0,
since the case when σ̂(0) = 0 exactly corresponds to normalized activations, which we have already
analyzed.

Lemma 36 (Correlation convergence lemma) Suppose σ is a non-affine activation with σ̂(0) > 0.
Let ρ̄ be the smallest fixed point of σ̂ in [0,1], and δ ∈ (0,1]. If ρ̄ = 1, then assume further that
˙̂σ(1) < 1. Then, after L ≥ L0 ∶= max{⌈ log( 1−ρ̄

2δ
)

log(1+
µ̃(1−ρ̄)

2
)
⌉ , ⌈ 1

σ̂(0)⌉} layers, for any ρ such that ∣ρ∣ ≤ 1− δ,

we have
∣σ̂(L)(ρ) − ρ̄∣ ≤ max{1 − µ̃(1−ρ̄)

2 , ˙̂σ(ρ̄)}
L−L0 (1+ρ̄

2 ).

Finally, if ρ̄ = 1 and ˙̂σ(1) = 1, then
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Proof If ρ ∈ (1+ρ̄
2 ,1−δ], then using case 1 of Lemma 35, after L1 ∶=

⎡⎢⎢⎢⎢⎢

log( 1−ρ̄
2δ

)

log(1+
µ̃(1−ρ̄)

2 )

⎤⎥⎥⎥⎥⎥
layers, we have

σ̂(L1)(ρ) ≤ 1+ρ̄
2 . Similarly, if ρ < 0, then using case 4 of Lemma 35, after L2 ∶= ⌈ 1

σ̂(0)⌉ layers, we

have σ̂(L2)(ρ) ≥ 0. Finally, when ρ ∈ [0, 1+ρ̄
2 ], then using cases 2 and 3 of Lemma 35, we conclude

that
∣σ̂(ρ) − ρ̄∣ ≤ max{1 − µ̃(1−ρ̄)

2 , ˙̂σ(ρ̄)} ∣ρ − ρ̄∣.

The statement of the lemma follows from these observations.

The only setting not covered by Lemma 36 is when ρ̄ = 1 and ˙̂σ(1) = 1. This case is handled
separately in the lemma below:

Lemma 37 Suppose σ is a non-affine activation with σ̂(0) > 0. Suppose 1 is the unique fixed point
of σ̂ in [0,1] and also ˙̂σ(1) = 1. Then, after L ≥ L′0 ∶= ⌈ 1

σ̂(0)⌉ layers, for any ρ ∈ [−1,1], we have

1 − σ̂(L)(ρ) ≤ log(2eµ̃(L−L′0))
2µ̃(L−L′0)

.

Proof First, we note that since 1 is the unique fixed point of σ̂ in [0,1], we must have σ̂(ρ) > ρ for
all ρ ∈ [0,1). Also, for any ρ < 0, as in case 4 of Lemma 35, we have σ̂(ρ) ≥ ρ + σ̂(0). So for any ρ,
an application of σ̂ never decreases its value.

Since ˙̂σ(1) = 1, we have ∑∞i=1 ia
2
i = 1. Hence, for any α ∈ [0,1], we have

1 − ˙̂σ(1 − α) =
∞

∑
i=1

ia2
i (1 − (1 − α)i−1) =

∞

∑
i=2

ia2
i (1 − (1 − α)i−1) ≥

∞

∑
i=2

2a2
i (1 − (1 − α)) = 2αµ̃.

Next, since σ̂ is convex in [0,1] and ˙̂σ(1) = 1, for any ρ ∈ [0,1], we have ˙̂σ(ρ) ≤ 1. Thus,
σ̂(1−α) ≥ σ̂(1)−α = 1−α. Again using the convexity of σ̂ in [0,1], for any ρ ∈ [0,1−α], we have

σ̂(ρ) ≥ σ̂(1 − α) + ˙̂σ(1 − α) ⋅ (ρ − (1 − α)) ≥ 1 − α + (1 − 2αµ̃)(ρ − (1 − α)).

The second inequality above uses the facts that σ̂(1−α) ≥ 1−α, ˙̂σ(1−α) ≤ 1−2αµ̃, and ρ−(1−α) ≤ 0.
Simplifying and rearranging, we have

1 − σ̂(ρ) ≤ 2α2µ̃ + (1 − 2αµ̃)(1 − ρ).

Via a simple induction on the number of layers L, if ρ ∈ [0,1], the above bound implies that

1 − σ̂(L)(ρ) ≤ α + (1 − 2αµ̃)L(1 − ρ) ≤ α + e−2αµ̃L.

The RHS above is minimized for α = log(2µ̃L)
2µ̃L , which yields the bound

1 − σ̂(L)(ρ) ≤ log(2eµ̃L)
2µ̃L .

Finally, if ρ < 0, then after L′0 ∶= ⌈ 1
σ̂(0)⌉ layers, we reach a non-negative value, at which point the

above analysis applies. The lemma follows by accounting for these L′0 layers.

Theorem 12 now follows immediately from Lemma 36 and Lemma 37.
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C.4. Calculations of the coefficient of non-linearity

For standard activation functions such as ReLU, it is easy to compute the coefficient of non-linearity
of their normalized versions from their Hermite expansion. Specifically, if σ(u) = ∑∞i=0 aihi(u) is
the Hermite expansion of an activation function σ, then the normalized version of σ, denoted σ̄, is
given by

σ̄(u) = ∑
∞
i=1 aihi(u)√
∑∞i=1 a

2
i

.

Thus, the coefficient of non-linearity of σ̄ is given by (see the proof of Lemma 20):

µ = 1 − a2
1

∑∞i=1 a
2
i

.

Since the dual activation of σ, σ̂(ρ) = ∑∞i=0 a
2
i ρ
i, can be written as σ̂(ρ) = ∑∞i=0 a

2
i ρ
i, we can also

write the above formula for the coefficient of non-linearity as:

µ = 1 − σ̂′(0)
σ̂(1) − σ̂(0) .

This latter formula easily allows us to compute the coefficient of non-linearity for various activations.
For example, using Table 1 from (Daniely et al., 2016), we get the following calculations of µ:

Activation σ(u) σ̂(ρ) µ

Identity u ρ 0

2nd Hermite u2−1√
2

ρ2 1

ReLU max{u,0} 1
2π +

ρ
4 +

ρ2

2π +
ρ4

48π +⋯ =
√

1−ρ2+(π−cos−1(ρ))ρ
2π

π−2
2π−2

Step 1[u ≥ 0] 1
4 +

ρ
2π +

ρ3

12π +
3ρ5

80π +⋯ = π−cos−1(ρ)
2π

π−2
π

Exponential eu e3(1 + ρ + ρ2

2 + ρ3

6 +⋯) = eρ+3 e−2
e−1

For the activation function NormReLUc (defined in Section 7), it is easier to directly compute
the coefficient of non-linearity as follows. First, note that NormReLUc is already normalized, so it
suffices to compute the coefficient a1 in its Hermite expansion. We have

a1 = E
X∼N(0,1)

[XNormReLUc(X)]

= E
X∼N(0,1)

[X ⋅ λ(c) ⋅ [max{X − c,0} + b(c)]]

= E
X∼N(0,1)

[λ(c) ⋅ 1[X ≥ c]]

= λ(c)(1 −Φ(c)),

where the third step uses Stein’s lemma, and in the fourth step, Φ(⋅) is the Gaussian cumulative
distribution function. Thus, the coefficient of non-linearity for NormReLUc is

µ = 1 − λ(c)2(1 −Φ(c))2.

For the value of c used in our experiments, i.e. c = −1.5975, we have λ(c) ≈ 1.05, and Φ(c) ≈ 0.0551,
and thus µ ≈ 0.0156.
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Appendix D. Analysis for Non-Unit Length Inputs - Proof of Theorem 13

In this section we provide a proof for Theorem 13.

D.1. Analyis for Norms

As stated earlier our analysis begins first by analyzing and understanding the evolution of the norm
of the representations across the network. To this end we prove the following theorem.

Theorem 38 Let σ be a twice-differentiable non-decreasing activation function which satisfies the
following properties:

• σ(0) = 0

• σ is concave on R+ and σ is convex on R−

Furthermore define

ασ ∶= min(2 E
x∈N(0,1)

[σ2 (
√

0.5x)] − 1,1 − E
x∈N(0,1)

[σ (x)σ′(x)x]) .

We have that if ∥x∥2 ∈ [0.5,∞) then for any L ≥ 0

∣∥k̄(x,x)∥2 − 1∣ ≤ (1 − ασ)L ⋅ ∣∥x∥2 − 1∣2

Remark 39 From the proof of the theorem it will be evident under our assumptions on σ that
ασ ∈ [0,1]. Furthermore it will also be evident that the choice of 0.5 is arbitrary and can be replaced
by any constant > 0, and the definition of ασ changes appropriately.

In the rest of the section we prove Theorem 38. Firstly note that it is sufficient to prove the
theorem for L = 1. The general case follows inductively easily. To prove the base case consider the
following function σ̂l ∶ R+ → R+

σ̂l(γ) ∶= E
z∼N(0,γ)

[σ2(z)] = E
z∼N(0,1)

[σ2(√γz)]

A simple application of successive central limit theorems across layers gives us that for any l

k̄(l)(x,x) = σ̂ll(∥x∥2)

Therefore all we are required to show is that for all γ ≥ 0.5 we have that

∣σ̂l(γ) − 1∣ ≤ (1 − ασ)∣γ − 1∣ (12)

As a reminder note that our assumption on σ implies that σ̂l(1) = 1. To establish (12) we begin with
the following lemma characterizing the behaviour of the map σ̂l.

Lemma 40 Let σ be a twice-differentiable monotonically increasing activation function which
satisfies the following properties:

• σ(0) = 0
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• σ is concave on R+ and σ is convex on R−

Then σ̂l(γ) is a twice-differentiable non-decreasing concave function on R+.

We now prove (12) using Lemma 40. We divide the analysis in two cases. Suppose γ ∈ [0.5,1]. Note
that since σ̂l(1) = 1 and σ is monotonic we have that σ̂l(γ) ≤ 1. Furthermore, since σ̂l is a concave
function and σ̂l(1) = 1, we have that

σ̂l(γ) ≥ 2(1 − γ)σ̂l(0.5) + 2(γ − 0.5)

It now follows that

1 − σ̂l(γ) ≤ (1 − (2σ̂l(0.5) − 1))(1 − γ) ≤ (1 − ασ)(1 − γ). (13)

Note that the concavity and monotonicity of σ̂l also establish that 2σ̂l(0.5) − 1 ∈ [0,1].
For the case of γ ≥ 1. Note that since σ̂l is concave and it is easy to see that

σ̂l(γ) ≤ σ̂l(1) + σ̂′l(1)(γ − 1),

which by noting that σ̂l(1) = 1 implies that

σ̂l(γ) − 1 ≤ σ̂′l(1)(γ − 1) ≤ (1 − ασ)(γ − 1).

The last inequality follows by noting that σ̂′l(1) = Ex∈N(0,1) [σ (x)σ′(x)x]. Again by concavity of
σ̂ and the conditions that σ̂(0) = 0 and σ̂(1) = 1, it can be readily seen that σ̂′(1) ≤ 1.

This finishes the proof of Theorem 38. We finish this section by provide the proof of Lemma 40
Proof [Proof of Lemma 40] In the rest of the proof we assume γ > 0. The calculation for γ = 0 case
can be done analogously. The twice differentiability of σ̂l can be seen easily from the definition.

Further note that
∂σ̂(γ)
∂γ

= E
z∼N(0,1)

[σ(√γz)σ′(√γz) z
√
γ
] ≥ 0

The inequality follows since σ(0) = 0 and σ is non-decreasing (and hence σ(x) ⋅x ≥ 0). Furthermore
consider the computation for the second derivative

∂2σ̂(γ)
∂γ2

= Ez∼N(0,1) [(σ′(
√
γz))2z2]

2γ
+Ez∼N(0,1) [σ(

√
γz)σ′′(√γz)z2]

2γ
−Ez∼N(0,1) [σ(

√
γz)σ′(√γz)z]

2γ3/2

We can now analyze by considering every term. Notice that the second term

Ez∼N(0,1) [σ(
√
γz)σ′′(√γz)z2]

2γ
≤ 0

because under the assumptions σ(x) and σ′′(x) always have opposite signs. We will now analyze
the sum of the first and third terms.

Ez∼N(0,1) [(σ′(
√
γz))2z2]

2γ
− Ez∼N(0,1) [σ(

√
γz)σ′(√γz)z]

2γ3/2

= Ez∼N(0,1) [(σ′(
√
γz))2z2γ − σ(√γz)σ′(√γz)z√γ]

2γ2

= Ez∼N(0,γ) [(σ′(z))2z2 − σ(z)σ′(z)z]
2γ2
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We now show that ∀z, (σ′(z))2z2 − σ(z)σ′(z)z ≥ 0. To this end note that ∀z ≥ 0

(σ′(z))2z2 − σ(z)σ′(z)z = zσ′(z)(σ′(z)z − σ(z)) ≤ 0

The inequality follows by noting monotonicity and concavity of σ for z ≥ 0. Similarly for z ≤ 0,

(σ′(z))2z2 − σ(z)σ′(z)z = zσ′(z)(σ′(z)z − σ(z)) ≤ 0

which follows by noting monotonicity and convexity of σ for z ≤ 0.

D.2. Analysis for Dot-Products - Preliminaries

Having established that the norms converge to 1 we focus on the normalized dot-product between the
representations and show that for odd functions it never increases and once the norms have converged
close to 1 it decreases rapidly. To this end we will first need to define the following function which is
a generalization of the σ̂ function defined in Appendix C. For any two vectors x, y define σ̂c(⋅, ⋅) as

σ̂c(x, y) ∶= E
w∼N(0,I)

[σ(w⊺x)σ(w⊺y)]

A simple parametrization shows that this is equivalent to the following quantity

σ̂c(x, y) = E
z∼N(0,Σ(x,y))

[σ(z1)σ(z2)] where Σ(x, y) = [∥x∥
2 x ⋅ y

x ⋅ y ∥y∥2]

To analyze the above quantity we use a general notion of (probabilist’s) Hermite polynomi-
als h{γ}

j (x) defined for any γ, defined to be the Hermite polynomials corresponding to the base
distribution being N(0, γ). We use the following specific definition derived from O’Donnell (2014).

Consider for any γ the quantity exp(tz − γ2t2

2 ). Considering the power series we get that the
coefficient in front of tj is a polynomial in z (with coefficients depending on γ). Defining this
polnomial as H{γ}

j (z) we get that

exp(tz − γ
2t2

2
) = ∑

1

j!
H

{γ}
j (z) ⋅ tj (14)

We can now define the hermite polynomials for any γ ≥ 0 and j ∈ {0,1, . . .} formally as

h
{γ}
j (z) ∶=

H
{γ}
j (z)

√
γj ⋅ j!

We show the following simple lemma about these polynomials (which also establishes that these
polynomials form a basis under the distribution N(0, γ)).

Lemma 41 Given three numbers γ1 > 0, γ2 > 0, γ3 with γ2
3 ≤ γ1γ2, define

Σ ∶= [γ1 γ3

γ3 γ2
]

We have that the polynomial family {h{γ}
j } satisfies the following condition

E
z∼N(0,Σ)

[hγ1

i (z1)hγ2

j (z2)] =
⎧⎪⎪⎨⎪⎪⎩

( γ3√
γ1γ2

)
j

if i = j
0 otherwise
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Note that setting γ1 = γ2 = γ3 = γ also establishes that for any γ ≥ 0, {h{γ}
j } is an orthonormal

family of polynomials. Therefore we can decompose σ in the basis given by h{γ}
j as follows

σ(x) =
∞

∑
j=0

a
{γ}
j h

{γ}
j (x) where a

{γ}
j = Ez∼N(0,γ)[σ(z)h

{γ}
j (z)]

Using Lemma 41 the following statement follows by decomposing in the appropriate bases

σ̂c(x, y) =
∞

∑
j=0

a
{∥x∥2}

j a
{∥y∥2}

j ρ(x, y)i where ρ(x, y) ∶= x ⋅ y
∥x∥∥y∥ (15)

A special case of the above σ̂c is when x = y. In this case it is easy see that σ̂c(x,x) = σ̂l(∥x∥2)
(defined in the previous section). Accordingly

σ̂c(x,x) = σ̂l(∥x∥2) =
∞

∑
j=0

(a{∥x∥
2}

j )2 (16)

We now show the following lemma which is a generalization of Lemma 22.

Lemma 42 Given any number γ > 0 define the generalized coefficient of linearity as

µ{γ} ∶= 1 −
(a{γ}1 )

2

∑∞j=0 (a
{γ}
j )

2

Further let δ = 1 − ∣ρ(x, y)∣ ∶= 1 − ∣x⊺y∣
∥x∥∥y∥ ∈ [0,1], then for any odd function σ, we have that

∣σ̂c(x, y)∣√
σ̂c(x,x)σ̂c(y, y)

≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
√

1 − (1 + µ{∥x∥2}

2 )δ) ⋅ (
√

1 − (1 + µ{∥y∥2}

2 )δ) if δ ≤ 1
2√

(1 − µ{∥x∥2}

2 ) ⋅
√

(1 − µ{∥y∥2}

2 )(1 − δ) if δ > 1
2 .

A simple consequence of the above theorem which follows by noting that since µ{γ} ∈ [0,1]
for all γ, we have that for odd function σ, the normalized dot-products always decrease in absolute
value, i.e.

∣σ̂c(x, y)∣√
σ̂c(x,x)σ̂c(y, y)

≤ ∣ρ(x, y)∣.

We end this section with the proofs of Lemma 42 and Lemma 41.
Proof [Proof of Lemma 42] Firstly note that since σ is an odd function it is easy to check that
a
{γ}
0 = 0 for all γ. Therefore we have the following consequence,

σ̂c(x, y)√
σ̂c(x,x) ⋅ σ̂c(y, y)

=
∑∞j=1 a

{∥x∥2}

j a
{∥y∥2}

j ρ(x, y)j
√
∑∞j=1 (a

{∥x∥2}

j )
2
√
∑∞j=1 (a

{∥y∥2}

j )
2
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A simple application of Cauchy-Schwartz gives

∑∞j=1 ∣a
{∥x∥2}

j ∣∣a{∥y∥
2}

j ∣∣ρ(x, y)∣j
√
∑∞j=1 (a

{∥x∥2}

j )
2
√
∑∞j=1 (a

{∥y∥2}

j )
2
≤

¿
ÁÁÁÁÁÀ
∑∞j=1 (a

{∥x∥2}

j )
2
∣ρ(x, y)∣j

∑∞j=1 (a
{∥x∥2}

j )
2

¿
ÁÁÁÁÁÀ
∑∞j=1 (a

{∥y∥2}

j )
2
∣ρ(x, y)∣j

∑∞j=1 (a
{∥y∥2}

j )
2

We will now analyse the left term first

∑∞j=1 (a
{∥x∥2}

j )
2
∣ρ(x, y)∣j

∑∞j=1 (a
{∥x∥2}

j )
2

≤ (1 − µ{∥x∥2})∣ρ(x, y)∣ + µ{∥x∥2}ρ(x, y)2 (17)

= (1 − µ{∥x∥2})(1 − δ) + µ{∥x∥2}(1 − δ)2 (18)

= (1 − δ)(1 − µ{∥x∥2}δ) (19)

Now if δ > 1
2 , we have (1−δ)(1−µ{γ}δ) ≤ (1−µ

{γ}

2 )(1−δ). If δ ≤ 1
2 , we have (1−δ)(1−µ{γ}δ) =

1 − (1 + µ{γ})δ + µ{γ}δ2 ≤ 1 − (1 + µ{γ}

2 )δ. Therefore we have that

∑∞j=1 (a
{∥x∥2}

j )
2
∣ρ(x, y)∣j

∑∞j=1 (a
{∥x∥2}

j )
2

≤
⎧⎪⎪⎨⎪⎪⎩

1 − (1 + µ{γ}

2 )δ if δ ≤ 1
2

(1 − µ{γ}

2 )(1 − δ) if δ > 1
2 .

Repeating the same analysis for the second term and combining finishes the proof.

Proof [Proof of Lemma 41] Lets consider the moment generating function for a gaussian with
covariance Σ.

E
z∼N(0,Σ)

[exp(sz1 + tz2)]

We can reparametrize this distribution as follows - consider two vectors u, v such that ∥u∥ = γ1,
∥v∥ = γ2 and u ⋅ v = γ3. Now we see that

Ez∼N(0,Σ)[exp(sz1 + tz2)] = Eg∼N(0,I)[exp(s(u1g1 + u2g2) + t(v1g1 + v2g2))]
= Eg∼N(0,1)[exp((su1 + tv1)g)] ⋅Eg∼N(0,1)[exp((su2 + tv2)g)]
= exp(0.5(su1 + tv1)2) ⋅ exp(0.5(su2 + tv2)2)
= exp(0.5(s2∥u∥2 + t2∥v∥2) + st(u ⋅ v))

Rearranging the above and replacing relevant quantities we get that

Ez∼N(0,Σ)[exp(sz1 − 0.5γ2
1s

2) ⋅ exp(tz2 − 0.5γ2
2t

2)] = exp(stγ3) =
∞

∑
j=0

1

j!
sjtjγj3

Working with the expression derived for LHS in (14) we get that

∑
i,j

1

i!j!
Ez∼N(0,Σ)[Hγ1

i (z1)Hγ2

j (z2)]sitj =
∞

∑
j=0

1

j!
sjtjγj3
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Matching coefficient we get that

Ez∼N(0,Σ)[Hγ1

i (z1)Hγ2

j (z2)] =
⎧⎪⎪⎨⎪⎪⎩

j! ⋅ γj3 if i = j
0 otherwise

Using the definition

hγj (z) ∶=
H

(γ)
j (z)

√
γj ⋅ j!

now finishes the proof.

D.3. Proof of Theorem 13

In this section we prove Theorem 13. We re-state the theorem in a more precise way as follows.

Theorem 43 Let σ be a twice-differentiable monotonically increasing odd function which is concave
on R+. There exists a constant ασ (defined in Theorem 38) such that for any two inputs x, y such
that ∥x∥2, ∥y∥2 ≥ 0.5 with x⊺y

∥x∥∥y∥ ≤ 1 − δ for some δ > 0, after a number of layers

L ≥ L̂ ∶= 1

ασ
log(4 max(∣∥x∥2 − 1∣, ∣∥y∥2 − 1∣, µ/4)

µ
) ,

we have that
φW (x)⊺φW (y)

∥φW (x)∥∥φW (y)∥ ≤ Bµ/2 (L − L̂, δ)

Proof [Proof of Theorem 43] We begin the proof by first noting for any x such that ∥x∥2 ∈ [1 −
µ/4,1 + µ/4] we have that

µ{∥x∥2} ≥ µ/2 (20)

where µ{∥x∥2} is as defined in Lemma 42 and µ = µ{1} is as defined in Definition 2. To see this first
note that since µ ≤ 1, 1 − µ/4 ≥ 3/4 and hence an application of Theorem 38 gives us that

σ̂l(∥x∥2) = σ̂c(x,x) =
∞

∑
j=0

(a{∥x∥
2}

j )2 ∈ [1 − µ/4,1 + µ/4]

As a consequence since ∑∞j=0(a
{1}
j )2 = 1 we also get that a{∥x∥

2}

1 ≤ 1 − µ + µ/4. Therefore we have
that

µ{∥x∥2} ∶= 1 −
(a{∥x∥

2}

1 )
2

∑∞j=1 (a
{∥x∥2}

j )
2
≥ 1 − 1 − 3µ/4

1 − µ/4 ≥ µ/2

The proof now follows by first noting from Theorem 13 that after L̂ layers we have that the
representations have norms smaller than (1 − µ/4,1 + µ/4). Formally for l ≥ l̂

k̄l(x,x), k̄l(y, y) ∈ [1 − µ/4,1 + µ/4]

Now using the claim derived in (20), using Lemma 42 iteratively and using the definition ofBν(L, δ)
immediately implies the theorem.
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D.4. Discussion

To get the results for inputs with general norms we introduce extra assumptions on the activation
function. As noted earlier, the assumption of differentiability is only for convenience, the result will
hold for any function with finite non-smooth points. The most restrictive assumption we require on
the activation functions is the assumption of it being odd. This is a specification of our unbiased
normalization assumption. We note that many activations like tanh, arctan, soft sign etc satisfy this
assumption. Finding a more general condition for global convergence of inner products to 0 is an
intriguing open question.

Furthermore our results on the norm convergence holds more generally than odd functions (See
Theorem 38). It requires the activation to have a convex-concave structure and be 0 at 0. This
assumption is far weaker and in fact most of the activations used in practice satisfy this (for eg.
standard/leaky ReLU, SeLU, sigmoid, tanh, arctan etc.). Once again finding general conditions
for global convergence of norm to fixed points is an intriguing open question. Poole et al. (2016)
informally (but incorrectly) mention that just monotonicity of activation is a sufficient condition,
however the standard ReLU with a little shift, i.e. max(x,0) − 1, itself presents a simple counter-
example to the claim.

Appendix E. Optimization Proofs

Suppose we train the network using gradient descent on a loss function ` ∶ R ×Y → R, which defines
the empirical loss function

L(W⃗ ) ∶= 1

n

n

∑
i=1

`(fW⃗ (xi), yi).

For the rest of this section we will assume that the loss function ` is the square loss, i.e. `(ŷ, y) =
(ŷ − y)2. The results presented can appropriately be extended to the setting where the loss function
is smooth and strongly convex. Training a finite-width neural network necessitates the study of the
conditioning of the finite-width kernel matrices K andK, rather than their infinite-width counterparts.
In such settings optimization results typically follow from a simple 2-step modular analysis:

• Step 1. [Initial Stability] Standard concentration inequalities imply that if the width is
large enough, conditioning of the infinite-width kernel matrices transfers to their finite-width
counterparts at initialization.

• Step 2. [Training Stability] Standard optimization theory implies that conditioning in finite-
width kernel matrices leads to fast training. In the case of training only the top layer this is
sufficient. When training all layers, a much more careful analysis is needed to show that the
NTK stays "close" to initialization, leading to conditioning throughout the training process.

We now provide a couple of representative optimization results that follow from this type of
analysis. Our goal here is to merely provide representative examples of typical optimization scenarios
and highlight what benefits conditioning can lead to. Indeed, we believe extensions and improvements
can be derived with significantly better bounds.

E.1. Training only the top layer

We consider a mode of training where only the top layer weight vector, v, is updated, while keeping
W1,W2, . . . ,WL frozen at their randomly initialized values. To highlight this we introduce the
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notation W⃗1∶L = {W1 . . .WL}. Let η > 0 be a step size, the update rule at iteration t is given by

vt+1 = vt − η ⋅ ∂vL({vt, W⃗1∶L}) = vt − η ⋅
1

n

n

∑
i=1

2(vt ⋅ΦW⃗ (xi) − yi)ΦW⃗ (xi).

Note that in this mode of training, the associated optimization problem is convex in v. To implement
Step 1 of the modular analysis, we appeal to the results of Daniely et al. (2016). They show that
when the activations are suitably bounded (see Definition 6 in their paper for C-bounded activations)
and the width is large enough, then with high probability, each entry in the kernel matrix K is close
to the corresponding entry in K̄. Specifically, via Theorems 2 and 3 in their paper, we have the
following version of Theorem 3 for finite width neural networks:

Lemma 44 (Via Theorem 2 in Daniely et al. (2016)) For any γ > 0, suppose that the activation
σ is C-bounded and m = Ω ( (4C)L+1 log(n)

γ2 ), then with high probability, we have that for all i, j,
∣Kij − K̄ij ∣ ≤ γ.

Step 2 follows by using standard convex optimization theory (Nesterov, 2014), which tells us
that the convergence rate of gradient descent for this problem depends on the condition number of K.
Specifically, we have the following result:

Theorem 45 Suppose L = Θ ( log(n/δ)
µ ). If σ is C-bounded and the width m = poly(n, 1

δ ), then

setting η = Θ ( 1
λmax(K̄)

), we get that with high probability over the initialization,

L({vt, W⃗1∶L}) ≤ e−Ω(t) ⋅ L({v0, W⃗1∶L})

Alternatively, in order to find a point that is ε sub-optimal, gradient descent needs O(log(1
ε )) steps.

Similarly, one can also derive a linear convergence theorem for stochastic gradient descent:

Theorem 46 With the same choice of parameters as in Theorem 45, appropriate choice of η and with
high probability over the initialization, stochastic gradient descent finds a point that is ε-sub-optimal
in expectation in at most O (log(1

ε )) steps.

Remark 47 The rate in the exponent in the theorem above naturally depends upon the condition
number of the kernel matrix K. For simplicity, we choose to state the theorem for a depth at which
the condition number is O(1). Precise rates depending on L, can be derived from Corollary 4.

E.2. Training All The Layers Together

In this section we provide a representative result for the training dynamics when all the layers are
trained together with a fixed common learning rate. The dynamics are given by

W⃗ (t + 1) = W⃗ (t) − η∂W⃗L(W⃗ (t))
Now since the bottom layers also move the kernel changes at every step. The standard analysis

in this setting follows from carefully establishing that the NTK does not change too much during the
training procedure allowing for the rest of the analysis to go through. The following theorem from
Lee et al. (2019) summarizes one such setting for smooth activation functions.
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Theorem 48 (Thereom G.4 in Lee et al. (2019)) Suppose that the activation σ and its derivative
σ′ further satisfies the properties that there exists a constant c, such that for all x,x′

∣σ(x)∣, ∣σ′(x)∣, ∣σ
′(x) − σ′(x′)∣

∣x − x′∣ ≤ c.

Then there exists a constant N (depending on L, n, δ) such that for width m > N and setting
the learning rate η = 2(λmin(K̄) + λmax(K̄))−1, with high probability over the initialization the
following is satisfied for gradient descent for all t,

L(W⃗ (t)) ≤ e−Ω( t
κ(K̄))L(W⃗ (0))

The following corollary is now a simple application of the above theorem and Corollary 6.

Corollary 49 Suppose the conditions in Theorem 48 are satisfied and the width is taken to be a
large enough constant (depending on L,n, δ) and further L = Θ( log(n/δ)

µ ), then gradient descent
with high probability finds an ε suboptimal point in total time O(log(1/ε)).

Remark 50 As stated in Theorem 48 the width required could be a very large constant. However,
note that we require the depth to be logarithmic in 1

δ for achieving constant condition number.
Therefore the exponential in L factors accrued in the analysis of Theorem 48 are actually polynomial
in 1

δ . Therefore, merging results from Arora et al. (2019c), we can derive a polynomial in 1
δ upper

bound on the width of the network. This matches the best known bounds on the overparameterization
while improving the optimization rates exponentially (in 1

δ ). Further we believe similar results can
also be derived for ReLU activations following techniques in Allen-Zhu et al. (2018).

The proofs for the theorems in this section follow easily from our established results and standard
arguments from optimization theory. We provide them next for completeness.

E.3. Proofs

We begin by proving simple well-known theorems regarding gradient descent and stochastic gradient
descent for linear regression. Consider the following problem

L(w) = 1

n

n

∑
i=1

∥a⊺iw − y∥2

Let A be the matrix whose rows are ai. We will assume that λmin(A⊺A) > 0, which in particular
implies that minw L(w) = 0. Lets first consider gradient descent, i.e.

wt+1 = wt − η∇L(wt)

We have the following well known guarantee (Nesterov, 2014).

Theorem 51 For gradient descent we have that

L(wt) ≤ e−
t

4κ(A⊺A)L(w0)
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Next we consider the stochastic gradient descent algorithm,

wt+1 = wt − η∇̃L(wt),

where ∇̃L(wt) is a gradient over a single ai, which is uniformly randomly sampled. Since we have
assumed that the loss is 0, even SGD is known to have linear convergence in this setting. Since we
did not find a concise proof of this fact anywhere we include it here for completeness.

Theorem 52 Let ∥ai∥2 ≤ β for all i, then stochastic gradient descent produces an ε−sub-optimal
point in expectation in total number steps bounded by

8nβ

λmin(A⊺A) ⋅ log(1/ε))

Proof

Et[∥wt+1 −w∗∥2] ≤ Et[∥wt −w∗∥2] − η(wt −w∗)⊺Et[∇̃L(wt)] + η2Et[∥∇̃L(wt)∥2]
≤ ∥wt −w∗∥2 − η(wt −w∗)⊺∇L(wt) + η2∥∇̃L(wt)∥2

≤ ∥wt −w∗∥2 − ηL(wt) + η2Ei[(a⊺iw − yi)2∥ai∥2]
≤ ∥wt −w∗∥2 − ηL(wt) + η2βL(wt)

where Et refers to expectation conditioned on all the randomness till step t. Rearranging the above
we get,

L(wt)(η − η2β) ≤ ∥wt −w∗∥2 −Et[∥wt+1 −w∗∥2]
Summing the above over time T gives us that

E [L( 1

T
⋅
T

∑
t=1

wt)] ≤ E [ 1

T
⋅
T

∑
t=1

L(wt)] ≤
E[∥w1 −w∗∥2]
T (η − η2β) ≤ n ⋅E[L(w1)]

λmin(A⊺A)T (η − η2β)

Setting η to 1/(2β) and T = 8nβ/λmin(A⊺A) we get that

E [L( 1

T
⋅
T

∑
t=1

wt)] ≤
E[L(w1)]

2

Repeating this process a total of log(1/ε) times gives us that after 8nβ
λmin(A⊺A)

log(1/ε) steps, SGD
produces a point which is ε-sub-optimal point in expectation.

Proof [Proof of Theorem 45] The statement follows by noticing that at that setting of depth, Corol-
lary 4 implies that the infinite-width kernel has constant condition number. Now invoking Lemma 44
implies that the finite-width kernel also has a constant condition number. The statement then follows
from Theorem 51.

Proof [Proof of Theorem 46] We wish to invoke Theorem 52. To this end note that, using Lemma 44
and the fact that the diagonal entries are 1 in K̄, we get that β ≤ 2 w.h.p. Similarly using Corollary 4,
we can derive that λmin = Ω(n) w.h.p. Therefore using Theorem 52 we get the required result.

Proof [Proof of Corollary 49] The theorem follows by noticing that Corollary 6 implies that at that
depth, the condition number of the infinite-width NTK is constant. The statement now follows from
Theorem 48.
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Appendix F. Proofs on SQ Learnability of Random Deep Neural Nets

In this section we prove Theorem 16 regarding SQ learnability of randomly initialized deep neural
networks. Specifically, we prove our result under the assumption that the (normalized) activation σ is
subgaussian with constant subgaussian norm. In particular we assume that

E
X∼N(0,1)

[eλσ(X)] ≤ eλ2α2/2, (21)

for a constant α > 0. Many activations such as the sign, ReLU and tanh satisfy this assumption.
A key component in establishing SQ hardness of learning is to show that given two non-collinear

unit length vectors, a randomly initialized network of depth h and sufficiently large width width
makes, in expectation, the pair nearly orthogonal. In other words, the magnitude of the expected dot
product between any pair decreases exponentially with depth. While Das et al. (2019) proved the
result for sign activations, we prove the statement for more general activations and then use it to
establish SQ hardness of learning. As mentioned in Section 5, we will work with networks that will
normalize the output of each layer to unit length via the operation Π ∶ Rm → Rm. Then we have the
following theorem:

Theorem 53 Let σ ∶ R → R be a non linear activation with µ being the coefficient of non-
linearity as in Definition 2 and satisfying (21). Let xi, xj ∈ Rd be unit length vectors such that
∣xi ⋅ xj ∣ ≤ 1 − δ. Define ΦW⃗ (x) ∶= 1√

m
Π(σ(WL

1√
m

Π(σ(WL−1⋯ 1√
m

Π(σ(W1x)⋯))), where each
column of W1 is sampled from N(0, Id×d) and each column of Wi is sampled from N(0, Im×m)
for i > 1. Furthermore, the operation Π normalizes the output of each layer to unit length. Let
m > c1

L
µ2δ2 for a universal constant c1 > 0 and for h ∈ [1, L] define ρh be the dot product obtained

by taking the representation of xi, xj at depth h of the network defined above. Then for any h > 1, it
holds that

∣E[ρL0(δ)+h]∣ ≤ e
−Ω(h) +Le−Ω(L).

where L0(δ) = c1
log( 1

δ
)

µ and c1 > 0 is a universal constant.

While the above theorem is not a black blox application of our main result (Theorem 3) since careful
concentration arguments are required due to finite width, the calculations are of a similar flavor.

We now show how the above theorem can be used to generalize the SQ lower bound of Das et al.
(2019). Before describing our results, we recall that in the SQ model (Kearns, 1998) the learning
algorithm does not have access to a labeled training set. Instead, for a given target function f and a
distribution D over Rd, the algorithm has access to a query oracle SQf,D(ψ, τ). The oracle takes
as input a query function ψ, and outputs a value v such that ∣ED[ψ(x, f(x))] − v∣ ≤ τ . The goal
of the algorithm is to use the query algorithm to output a function g that ε approximates f , i.e.,
PrD[g(x)f(x)] ≥ ε, for a given ε > 0.

(Das et al., 2019) established an SQ learnability lower bound for a subclass F of neural networks
with the property that a randomly initialized neural network falls in F with high probability. This
however only establishes that the class F is hard to SQ learn as opposed to showing that a randomly
initialized neural network is hard to learn. Furthermore, the lower bound only applies to networks
with sign activations. We now show how to generalize their result in two ways: (a) we allow arbitrary
activations satisfying (21), and (b) our lower bound shows that a randomly initialized network is hard
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to learn in the SQ model with constant probability. We achieve the stronger lower bound by carefully
adapting the lower bound technique of Bshouty and Feldman (2002).

In our context we will fix a non linear activation σ ∶ R → R and let the target be of the form
sgn(fW⃗ (x)) where,

fW⃗ (x) = (v ⋅ 1√
m

Π(σ(WL
1√
m

Π(σ(WL−1⋯ 1√
m

Π(σ(W1x)⋯))))

where each column ofW1 is sampled fromN(0, Id×d) and v and each column ofWi is sampled from
N(0, Im×m) for i > 1. Furthermore we will use the depth L and the dimensionality d to parameterize
the bit complexity of the network description. We say that an algorithm (p(d,L), r(d,L), q(d,L))-
SQ learns sgn(fW⃗ (x)) if with probability at least 1/2 over the randomness in W⃗ , the algorithm
makes at most p(d,L) queries to the SQ oracle for sgn(fW⃗ (x)), receives responses from the oracle
up to tolerance τ = 1/r(d,L) and outputs a g that ε = 1/q(d,L)-approximates f . Furthermore it is
the case that each query function ψ used by the algorithm can be evaluated in time q(d,L).

Then we have the following theorem, that is a more formal restatement of Theorem 16 and
extends the result of Das et al. (2019).

Theorem 54 Fix any non linear activation σ with the coefficient of non-linearity being µ that
satisfies (21). Any algorithm that (p(d,L), poly(d,L), poly(d,L))-SQ learns the random depth L
networks as defined above with width m = Ω(Lµ

2

δ2 ) must satisfy p(d,L) ≥ eΩ(L).

Proof [Proof of Theorem 53] We use the following notation in the proof. Given input xi, we denote
x
(h)
i to be the representation obtained at depth h of the network and x̂(h)i to be the corresponding

normalized input. Recall that we are normalizing the output of each layer to be unit length. Similarly,
given xi, xj , we denote by ρ̂h = x̂(h)i ⋅ x̂(h)j and ρh = x(h)i ⋅ x(h)j . Next we have that conditioned on

x
(h−1)
i and x(h−1)

j ,

∥x(h)i ∥2 = 1

m

m

∑
j=1

σ2(wj ⋅ x̂(h−1))

where wj ∼ N(0, I) and E[∥x(h)i ∥2] = 1. Furthermore, since σ(wj ⋅ x̂(h−1)) is a subgaussian random
variable with constant subgaussian norm, ∥x(h)i ∥2 is a sum of subexpoential random variables. By
Bernstein’s inequality for subexponential random variables (Vershynin, 2018) we have that for a
universal constant c > 0,

Pr(∣∥x(h)i ∥2 − 1∣ > t) ≤ 2e−cmin(mt2,mt). (22)

Similarly we have that

ρh =
1

m

m

∑
j=1

σ(wj ⋅ x̂i(h−1))σ(wj ⋅ x̂j(h−1))

with E[ρh] = σ̂(ρ̂h−1). Noting that product of subgaussian random variables is subexponential and
again applying Bernstein’s inequality for subexponential random variables we get that

Pr(∣ρh − σ̂(ρh−1)∣ > t) ≤ 2e−cmin(mt2,mt). (23)
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Next, we will use (22) and (23) to argue that with high probability ρ̂h remains close to σ̂(ρ̂h−1). For
suitable constant ε < 1 to be chosen later, we have that

Pr(∣ρ̂h − σ̂(ρ̂h−1)∣ > t) = Pr(∣
ρh

∥x(h)i ∥∥x(h)j ∥
− σ̂(ρ̂h−1)∣ > t)

≤ Pr(∣ρh − σ̂(ρ̂h−1)
∥x(h)i ∥∥x(h)j ∥

∣ > t) + Pr(∣σ̂(ρ̂h−1)(
1

∥x(h)i ∥∥x(h)j ∥
− 1)∣ > t)

≤ Pr(∥x(h)i ∥∥x(h)j ∥ > (1 + ε)2) + Pr(∣ρh − σ̂(ρ̂h−1)∣ > t(1 + ε)2)

+ Pr(∣∥x(h)i ∥∥x(h)j ∥ − 1∣ > 2t

σ̂(ρ̂h−1)
).

Noticing that σ̂(ρ̂h−1) ≤ 1 − (1 + µ
2 )δ, and using (22) and (23), we get that

Pr(∣ρ̂h − σ̂(ρ̂h−1)∣ > t) ≤ 2(e−cmε2 + e−cm(1+ε)4t2 + e−
mt

2(1−(1+µ/2)δ) ).

Setting t = δµ/4 and ε to be a small enough constant we get that

Pr(∣ρ̂h − σ̂(ρ̂h−1)∣ >
δµ

4
) ≤ 2(e−Ω(m) + e−Ω(mµ2δ2) + e−Ω(mδµ)).

Setting m ≥ c1
L

µ2δ2 and using a union bound over all layers we get that with probability at least

1 −Le−Ω(L), the updates of ρ̂h will approximately satisfy the ideal updates from Theorem 3 and as a
result, for a constant c1 > 0, after L0(δ) = c1

log(1/δ)
µ depth, with high probability, ρ̂h (and ρh) will fall

below 1/4 and will continue to be below 1/2 for all L. Define G to be the intersection of above good
event and that ρh ∈ [(1 − ε)ρ̂h, (1 + ε)ρ̂h] for all h ∈ [L]. Then we know that P (G) ≥ 1 − 2Le−Ω(L).
Conditioned on this good event and using Lemma 22 we have that for h > L0(δ),

∣E[ρh∣G,ρh−1]∣ = ∣σ̂(ρ̂h−1)∣

≤ (1 − µ
2
)∣ρ̂h−1∣

≤ (1 + ε)(1 − µ
2
)∣ρh−1∣

≤ (1 − µ
4
)∣ρh−1∣

for a small enough constant ε. Hence we get that for h > L0(δ), ∣E[ρh∣G]∣ ≤ e−Ω(h). Finally notice
that

E[ρh] = P (G)E[ρh∣G] + P (Ḡ)E[ρh∣Ḡ]
Combined with the probability of the good event and noticing that σ̂(ρ̂h) is always bounded, we get
that

∣E[ρL0(δ)+h]∣ ≤ e
−Ω(h) +Le−Ω(L).

Proof [Proof of Theorem 16 (same as Theorem 54)] We will consider a randomly initialized deep
neural network defined as

fW⃗ (x) = v ⋅Π(σ(WL
1√
m

Π(σ(WL−1⋯ 1√
m

Π(σ(W1x)⋯))))
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We consider a distribution D that is the uniform distribution over a set S that consists of half of the
inputs in {+1,−1}d thereby ensuring that no two inputs are collinear. In particular, one can take the
set of all 2d−1 inputs that fall on one side of a fixed halfspace. The first step in the analysis is to show
that f = sgn(fW⃗ ) is uncorrelated with any fixed function g ∶ Rd → [−1,1]. In particular we have that

E⃗
W

[E
x
[g(x)f(x)]2] = 1

∣S∣2 (∑x
E⃗
W

[g2(x)f2
W⃗

(x))] + 2∑
x≠y

E⃗
W

[g(x)g(y)sgn(fW⃗ (x))sgn(fW⃗ (y))])

= 1

∣S∣2 (∑x
E⃗
W

[g2(x)] + 2∑
x≠y

g(x)g(y) E⃗
W

[sgn(fW⃗ (x))sgn(fW⃗ (y))])

≤ 1

∣S∣2 (∑x
E⃗
W

[g2(x)] + 2∑
x≠y

∣g(x)∣∣g(y)∣∣ E⃗
W

[ΦW⃗ (x) ⋅ΦW⃗ (y)]∣)

Next, Theorem 53 implies that

E⃗
W

∣ΦW⃗ (x) ⋅ΦW⃗ (y)∣ ≤ Le−Ω(L),

Substituting above and noticing that g(x) ∈ [−1,1] we have

E⃗
W

[E
x
[g(x)f(x)]2] ≤ 1

∣S∣2 (∑x
1 + 2∑

x≠y

Le−Ω(L)]).

≤ Le−Ω(L). (24)

Next assume that there exists an algorithm A that makes p(d,L) queries of tolerance r(d,L) to an
SQ oracle for a random function sgn(fW⃗ (x)) as defined above, and with probability at least half
(over the randomness of the algorithm and the random draw of the function), outputs a function g
such that

E
D
[sgn(fW⃗ (x))h(x)] ≥ 1

q(d,L) .

Here we assume that both r(d,L) and q(d,L) are polynomial in d and L. To get a contradiction
we will use the technique from the work of Bshouty and Feldman (2002) (see Theorem 31). As
a first step, since we are in the case of learning with respect to a fixed distribution, from the
work of Bshouty and Feldman (2002) it follows that we can, without loss of generality, assume
that the statistical queries ψ(x, sgn(fW⃗ (x))) used by the algorithm are correlation queries, i.e.
ψ(x, fW⃗ (x)) = ED[sgn(fW⃗ (x))g(x)]. Next we simulate the algorithm A and each time the
algorithm makes a statistical query ED[sgn(fW⃗ (x))gi(x)], we add gi to a set H. Finally, if the
algorithm outputs a hypothesis h at the end, we add h toH as well. Notice that if A makes p(d,L)
queries then ∣H∣ ≤ p(d,L) + 1. Next from (24) and a union bound overH we can say that

Pr
W⃗

[∃h ∈ H ∶ E
D
[(sgn(fW⃗ (x))h(x))]2 > 1

max(q2(d,L), r2(d,L))] ≤

O(max(q2(d,L), r2(d,L))(p(d,L) + 1)e−Ω(L)).

Since the correlation of each function inH with sgn(fW⃗ (x)) is at most 1/r(d,L), a zero answer to
every query asked by the algorithm is a valid output of the SQ oracle, and hence with probability at
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least 1/2, the algorithm must output a function in H that is correlated with sgn(fW⃗ (x)). In other
words, we have that

Pr
W⃗

[∃h ∈ H ∶ E
D
[(sgn(fW⃗ (x))h(x))]2 > 1

max(q2(d,L), r2(d,L))
] ≥ 1

2
.

From the above we get that

max(q2(d,L), r2(d,L))(p(d,L) + 1) ≥ eΩ(L).

Appendix G. Interpolation analysis

We need a bit more notation for the analysis. We denote by the infinite matrix X the linear map
from H → Rn corresponding to the inputs x1, x2, . . . , xn, so that for any v ∈ H, Xv ∈ Rn has
ith component v⊺Φ(xi). Note that XX⊺ = K̄, the kernel matrix for the training data defined by
k̄. We denote by y the vector ⟨y1, y2, . . . , yn⟩⊺ ∈ Rn, and by Σ = E(x,y)[Φ(x)Φ(x)⊺] the data
covariance matrix. If K̄ is non-singular, then the linear predictor vS =X⊺K̄−1y interpolates on S,
i.e., v⊺SΦ(xi) = yi for all i ∈ [n], and indeed, is the minimum norm interpolating linear predictor.

The first step in the analysis is the following bound on ∥Σ∥:

Lemma 55 For any positive integer N and γ ∈ (0, 1/2), if the number of hidden layers L ≥
⌈ log(N)

− log(1−µ
2
)
⌉ +L0(∆(N,γ)), then ∥Σ∥ ≤ 8 ln(N)

N .

Proof Let T = {x′1, x′2, . . . , x′N} be a sample set of sizeN drawn i.i.d. from the marginal distribution
of D over the x-coordinate. Let X ′ denote by the infinite matrix corresponding to the linear map
from H → RN such that for any v ∈ H, X ′v ∈ Rm has ith component v⊺Φ(x′i). Let X ′X ′⊺ = K̄ ′,
the top layer kernel matrix for the training data defined by k̄.

Then by the definition of ∆, with probability at least 1 − γ, Assumption A holds for T with
δ = ∆(N,γ). Conditioned on this Assumption A holding, Theorem 3 (part 1) implies that ∥K̄ ′∥ ≤
2 since L ≥ ⌈ log(N)

− log(1−µ
2
)
⌉ + L0(∆(N,γ)). Thus, ∥X ′⊺X ′∥ = ∥X ′X ′⊺∥ ≤ 2, which implies that

PrT [∥X ′⊺X ′∥ ≤ 2] ≥ 1 − γ.
Note that for any x ∈ Sd−1, we have ∥Φ(x)∥2 = k̄(x,x) = σ̂(L)(1) = 1. Thus ∥Φ(x)Φ(x)⊺∥ = 1,

Tr(Σ) ≤ 1, intdim(Σ) ∶= Tr(Σ)

∥Σ∥
≤ 1

∥Σ∥
, and (Φ(x)Φ(x)⊺)2 = Φ(x)Φ(x)⊺. Thus, Theorem 7.7.1 in

(Tropp, 2015) and some simple calculations imply that for ` ∶= ln(8/∥Σ∥), we have

Pr
T

[∥ 1
NX

′⊺X ′ −Σ∥ > 2`
3N +

√
2`∥Σ∥

N ] ≤ 1
2 .

By a union bound, we have

Pr
T

[∥X ′⊺X ′∥ ≤ 2 and ∥ 1
NX

′⊺X ′ −Σ∥ ≤ 2`
3N +

√
2`∥Σ∥

N ] ≥ 1
2 − γ > 0.

This implies that ∥Σ∥ ≤ 2`
N +

√
2`∥Σ∥

N ≤ 2`
N + 2 /̀N+∥Σ∥

2 ⇒ ∥Σ∥ ≤ 6`
N ⇒ ∥Σ∥ ≤ 8 ln(N)

N using the fact
that ` = ln(8/∥Σ∥).
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The following lemma is a standard calculation that is a slight generalization of a similar statement5

in (Bartlett et al., 2019b):

Lemma 56 The excess risk of the minimum norm estimator satisfies

E
(x,y)

[(y − v⊺SΦ(x))2] − E
(x,y)

[(y − v∗⊺Φ(x))2] ≤ 2v∗
⊺
Bv∗ + 2ε⊺Cε,

where ε = y −Xv∗, B = (I −X⊺K̄−1X)Σ(I −X⊺K̄−1X), and C = K̄−1XΣX⊺K̄−1.

Proof Since v∗ is a minimizer of E(x,y)[(y − v⊺Φ(x))2], we have ∇v E(x,y)[(y − v∗⊺Φ(x))2] = 0,
which implies that E(x,y)[(y − v⊺Φ(x))Φ(x)] = 0. Using this fact, we have

E
(x,y)

[(y − v⊺SΦ(x))2] = E
(x,y)

[(y − v∗⊺Φ(x) + (vS − v∗)⊺Φ(x))2]

= E
(x,y)

[(y − v∗⊺Φ(x))2] + 2(vS − v∗)⊺ E
(x,y)

[(y − v∗⊺Φ(x))Φ(x)]

+ E
(x,y)

[((vS − v∗)⊺Φ(x))2]

= E
(x,y)

[(y − v∗⊺Φ(x))2] + E
(x,y)

[((vS − v∗)⊺Φ(x))2].

Using this fact, and that vS =X⊺K̄−1y =X⊺K̄−1(Xv∗ + ε), we get that the excess risk equals

E
(x,y)

[((vS − v∗)⊺Φ(x))2] = E
(x,y)

[((X⊺K̄−1(Xv∗ + ε) − v∗)⊺Φ(x))2]

= E
(x,y)

[(X⊺K̄−1X − I)v∗ +X⊺K̄−1ε)⊺Φ(x))2]

≤ 2 E
(x,y)

[(X⊺K̄−1X − I)v∗)⊺Φ(x))2] + 2 E
(x,y)

[(X⊺K̄−1ε)⊺Φ(x))2]

= 2v∗
⊺
Bv∗ + 2ε⊺Cε.

The last equality uses the fact that for any v ∈ H, we have

E
(x,y)

[(v⊺Φ(x))2] = E
(x,y)

[v⊺Φ(x)Φ(x)⊺v] = v⊺Σv.

We can now prove Theorem 17:
Proof [(Theorem 17)] First, as in the proof of Lemma 55, by the definition of ∆, with probability
at least 1 − γ, Assumption A holds for S with δ = ∆(n2, γ). Conditioned on this Assumption A
holding, Theorem 3 (part 1) implies that λmin(K̄) ≥ 1/2 since L = ⌈ log(n2)

− log(1−µ
2
)
⌉ + L0(∆(n2, γ)).

Thus, with probability at least 1 − γ over the choice of S, K̄ is non-singular, and hence there exists
an interpolating linear predictor.

We now bound the excess risk via Lemma 56. We first analyze the v∗⊺Bv∗ part of the bound.
Note that (I −X⊺K̄−1X) is the matrix corresponding to the projection on to the orthogonal comple-
ment of the row space of X , and so ∥I −X⊺K̄−1X∥ ≤ 1. Thus, ∥B∥ ≤ ∥(I −X⊺K̄−1X)∥∥Σ∥∥(I −
X⊺K̄−1X)∥ ≤ ∥Σ∥, and so

v∗
⊺
Bv∗ ≤ ∥Σ∥∥v∗∥2. (25)

5. Here, we don’t need the E[y∣Φ(x)] to be a linear function of Φ(x).
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Next, we turn to bounding the ε⊺Cε part. We have

ε⊺Cε ≤ ∥C∥∥ε∥2 = ∥C∥∥y −Xv∗∥2 ≤ n(1 + ∥v∗∥2)∥C∥,

since for all i, yi ∈ [−1,1] and ∥Φ(xi)∥ = 1. So now we need to bound ∥C∥. We have C ⪯
K̄−1X(∥Σ∥I)X⊺K̄−1 = ∥Σ∥K̄−1, so ∥C∥ ≤ ∥Σ∥

λmin(K̄)
. As described in the beginning of this proof,

we have PrS[λmin(K̄) ≥ 1/2] ≥ 1−γ. This implies that with probability at least 1−γ over the choice
of S, we have

ε⊺Cε ≤ 2n(1 + ∥v∗∥2)∥Σ∥. (26)

Finally, note that the setting L = ⌈ log(n2)

− log(1−µ
2
)
⌉ +L0(∆(n2, γ)) implies that Lemma 55 holds for

N = n2. So, ∥Σ∥ ≤ 16 ln(n)
n2 . Plugging this bound into (25) and (26), and using Lemma 56, we get the

bound stated in the theorem.

Appendix H. Conditioning for One Layer ReLU Networks

In this section we establish that given a set of non-collinear points in Rd, a sufficiently wide one
layer neural network with (un-normalized) relu activations leads to a non-singular gram matrix at the
output layer.

Theorem 57 Let S = {x1, x2, . . . , xn} be a set of n vectors in Rd such that each xi is a unit length
vector and for each i ≠ j, it holds that ∣xi ⋅ xj ∣ ≤ 1 − δ. Let w1,w2, . . . ,wm be vectors drawn i.i.d.
from N(0, Id×d) and consider the feature mapping Φ ∶ Rn → Rm defined as

Φ(x) = 1√
m

(σ(w1 ⋅ x), σ(w2 ⋅ x), . . . , σ(wm ⋅ x)),

where σ ∶ R→ R is the (un-normalized) relu activation defined as σ(x) = max(x,0). Let Φ(X) be
the corresponding m × n data matrix obtained by applying Φ to points in S, i.e., column i of Φ(X)
equals Φ(xi). There exists a universal constant c > 0, such that if m ≥ cn

8 log(n/δ)
δ3 , then w.p. at least

1 − 1/poly(n), we have that σmin(Φ(X)TΦ(X)) ≥ Ω( δ3/2

n3 ).

Note: The recent work of Panigrahi et al. (2020) implies a stronger bound and hence supersedes
the result above. In particular, an implication of Theorem 4 in Panigrahi et al. (2020) is that
under the same setting as in the Theorem above, if m ≥ n4 logn

δ3 , then with probability at least

1 − e−Ω̃(mδ3n−2 log−3 n), we have that σmin(Φ(X)TΦ(X)) ≥ Ω( δ3/2

polylog(n)).
Proof [Proof of Theorem 57] The proof is a modification of the gradient lower bound argument as
detailed in the proof of Lemma 9.3 of Allen-Zhu et al. (2018). We will show that σmin(Φ(X)) ≥

δ
3
4

2000n3/2 . This will imply the claim of the Theorem. We will first show that for a fixed α ∈ Rn, such
that ∥α∥ = 1, ∥Φ(X)α∥ is large. Then we will complete the argument using a union bound over an
appropriate net for unit length vectors in Rn. We have that

Φ(X)α =
n

∑
i=1

αiΦ(xi)
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and hence

∥Φ(X)α∥2 = 1

m

m

∑
j=1

(
n

∑
i=1

αihj(xi))2,

where hj(xi) = σ(wj ⋅ xi). Next, fix a particular j ∈ [m] and let

Tj =
n

∑
i=1

αihj(xi).

We will first show that with non-trivial probability Tj is large. Let i∗ ∈ [n] be such that ∣αi∗ ∣ ≥ 1√
n

,
with ties broken arbitrarily. Next, we will write

wj = (
√

1 − θ2z1xi∗ + g) + (θz2xi∗)

= wj,1 +wj,2

Here we pick θ =
√
δ

5n and z1, z2 are independentN(0,1) Gaussians and g is a standard d dimensional
Gaussians orthogonal to xi∗ . Next, define Gj to be the following good event

Gj = 1(∣wj,1 ⋅ xi∗ ∣ ≤
√
δ

10n
∧ ∀i ≠ i∗, ∣wj,1 ⋅ xi∣ >

√
δ

4n
).

Next, we have that Pwj,1(Gj) ≥
√
δ

50n . This is established in Lemma 58 at the end of the section.
Conditioning on Gj , i.e., fixing the randomness in wj,1, we notice that

∣wj,2 ⋅ xi∗ ∣ = θ∣z2∣

and for any i ≠ i∗,
∣wj,2 ⋅ xi∣ ≤ θ∣z2∣.

Since θz2 is a standard Gaussian with variance θ2, we have that the event E ∶ {θ∣z2∣ ∈ [
√
δ

9n ,
√
δ

5n ]}
holds with constant probability, i.e.,

P (E) ≥ 0.2.

Now conditioned onGj∩E, we have that fixing the randomness inwj,1 fixes the sign of∑i≠i∗ αiσ(wj ⋅
xi). Furthermore, after fixing the randomness in wj,1, there is still a probability of 0.5 over the
randomness in wj,2 that αi∗σ(wj ⋅ xi∗) matches that of αi∗σ(wj,2 ⋅ xi∗). Combining everything, we
get that with probability at least

√
δ

500n (over wj), it holds that T 2
j ≥ δ

81n2 .
Next define B to be the event that for all j, ∣Tj ∣ ≤ 100

√
n
√

logn logm. It is easy to see that
B holds with probability at least 1 − 1/poly(n), and hence when conditioned on B, we also have
that ∣T 2

j ∣ ≥ δ
81n2 with probability at least

√
δ

500n . Next we will argue that when conditioned on B,
∥Φ(X)α∥2 is large except with exponentially small probability. Combined with the fact that B
happens with high probability, this will imply that over the randomness in w1, . . . ,wm, ∥Φ(X)α∥ is
large with high probability.

When conditioned on B, ∥Φ(X)α∥2 is an average of m independent random variables, each
bounded in [0,1002n logn logm] and that

E[∥Φ(X)α∥2] ≥ δ3/2

81000n3
.
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Hence from Chernoff bound and the fact that B holds with high probability we get that with

probability at least 1 − eΩ(− δ3m
n7 logn logm

), ∥Xα∥2 ≥ Ω( δ3/2

n3 ).
Having argued the bound for a fixed α, we now consider an appropriate net over unit length

vectors in Rn to argue that over all α, ∥Φ(X)α∥ is large. In particular, consider an ε-net of the
unit sphere with ε = δ3/4

2000n5/2√m
√

logn logm
. The size of such a net is at most (3/ε)n. Hence, we

get that with probability at least 1 − e−Ω( δ3m
n7 logm logn

)
en log(3/ε), for any vector α in the net, we have

∥Φ(X)α∥ ≥ δ3/4

1000n3/2 . This in turn implies that with the same probability, for any α on the unit sphere
with α̂ being its closest vector in the net, we have

∥Φ(X)α∥ ≥ ∥Φ(X)α̂∥ − ε∥Φ(X)∥

≥ δ3/4

1000n3/2
− ε∥Φ(X)∥.

The bound then follows from noticing that via standard Gaussian concentration we have that with
probability at least 1 − 1/poly(n), ∥Φ(X)∥ ≤ O(

√
mn logm logn).

Lemma 58 Let x1, x2, . . . , xn be unit length vectors in Rm, where ∣xi ⋅ xj ∣ ≤ 1 − δ for i ≠ j. Let

w =
√

1 − θ2zx1 + g

where z is N(0,1), g is a standard d dimensional Gaussian orthogonal to x1, and θ = δ1/4/(5n).
Define G to be the event

G = 1(∣w ⋅ x1∣ ≤
√
δ

10n
∧ ∀i ≠ 1, ∣w ⋅ xi∣ >

√
δ

4n
).

Then it holds that

Pw(Gj) ≥
√
δ

50n
.

Proof We have that w ⋅ x1 is N(0, (1 − θ2)) and also that θ ≤ 1/5. Hence, we have that

P (∣w ⋅ x1∣ <
√
δ

10n
) ≥

√
δ

25n
. (27)

For a fixed i ≠ 1, we have that

w ⋅ xi =
√

1 − θ2z(x1 ⋅ xi) + g.xi.

Conditioning on the fact that ∣w ⋅ x1∣ is at most
√
δ

10n , w ⋅ xi is a Gaussian with mean at most
√
δ

10n and
variance at least δ

2

4 (since projection of xi on g is at least δ/
√

2). Hence, with probability at least

1 − 1/8n, we have that ∣w ⋅ xi∣ >
√
δ

4n . Using a union bound we get that, conditioned on z being small,
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with probability at least 0.5, all i ≠ 1 satisfies ∣w ⋅ xi∣ >
√
δ/(4n). Combining with (27) we get the

claim.

Theorem 1(b) in (Gneiting, 2013) provides a generalization of Theorem 57 to a large class of
activations σ, although it doesn’t prove a quantitative lower bound on the smallest eigenvalue. For
completeness, we reformulate that theorem in our language here:

Theorem 59 Suppose the Hermite expansion of σ has infinitely many even and infinitely many odd
coefficients. If the inputs satisfy Assumption A, then the kernel matrix K̄ for a 1-hidden layer neural
network is non-singular.

Appendix I. NormReLU Analyses

In this section, we derive closed form expressions for the functions λ(c) and b(c) in the definition of
NormReLU:

NormReLUc(x) = λ(c) ⋅ [max{x − c,0} + b(c)].

Recall that the quantities λ(c) and b(c) are chosen so that the function is normalized according to
(2). First, since

E
X∼N(0,1)

[NormReLUc(x)] = λ(c) ⋅ E
X∼N(0,1)

[max{X − c,0} + b(c)].

So b(c) can be obtained from the equation EX∼N(0,1)[max{X − c,0} + b(c)] = 0. Let ϕ(x) =
1√
2π

exp(−x2

2 ) be the Gaussian density function Φ(x) = PrX∼N(0,1)[X ≤ x] be the Gaussian
cumulative distribution function. Using formulas for the mean of truncated normal distributions, we
have

E
X∼N(0,1)

[max{X − c,0} + b(c)] = ∫
∞

x=c
(x − c)ϕ(x)dx + b(c) = ϕ(c) − (1 −Φ(c))c + b(c).

So b(c) = (1 −Φ(c))c − ϕ(c). Now, to compute λ(c), we note that

E
X∼N(0,1)

[NormReLUc(X)2] = λ(c)2 ⋅ E
X∼N(0,1)

[(max{X − c,0} + b(c))2].

So λ(c) = 1√

EX∼N(0,1)[(max{X−c,0}+b(c))2]
. Using formulas for the variance of truncated normal

distributions, we have

E
X∼N(0,1)

[(max{X − c,0} + b(c))2] = ∫
∞

x=c
((x − c) + b(c))2ϕ(x)dx + ∫

c

x=−∞
b(c)2

= (1 −Φ(c)) + cϕ(c) + 2(b(c) − c)ϕ(c) + (b(c) − c)2(1 −Φ(c)) + b(c)2Φ(c)
= (1 −Φ(c))Φ(c)c2 + (1 − 2Φ(c))ϕ(c)c + (1 −Φ(c) − ϕ(c)2).

Hence,
λ(c) = [(1 −Φ(c))Φ(c)c2 + (1 − 2Φ(c))ϕ(c)c + (1 −Φ(c) − ϕ(c)2)]−1/2.
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I.1. Conditioning Analysis

The following is the main theorem that provides bounds on correlations for the NormReLU activation.
We specifically focus on the case c = −1.5975 since we use that value of c in all our experiments.

Theorem 60 For the NormReLU activation, there exist constants α′, δ′ such that for any two inputs
x, y such that ∥x∥2, ∥y∥2 ∈ [0.5,2.0] with x⊺y

∥x∥∥y∥ ≤ 1 − δ for δ > δ′ and for any ε > 0, after a number
of layers

L ≥ L̂ ∶= 2

α′
log( 3

min(ε, µ/4)) ,

we have that
φW (x)⊺φW (y)

∥φW (x)∥∥φW (y)∥ ≤ Bµ/2 (L − L̂, δ − δ′) + δ′ε

The constants are given by α′ = 0.0798 and δ′ = 0.0185.

Remark 61 Note that the above theorem implies that for any two inputs with corelation sufficiently
bounded away from 1 (quantified by δ′), for any ε → 0, after O(log(1/ε)) layers the corelation
decays to ε, recovering our exponential conditioning results for NormReLU. Furthermore, the range
[0.5,2.0], is chosen arbitrarily, the related constants will depend on the choice of the range.

Before stating the proof we will require some preliminaries. We request the reader to recall
the notation established in Appendix D. The proof follows the same schematic of the proof for
Theorem 13, with the main caveat that unlike in the case of odd function the constant bias term for
NormReLU, a{γ}0 is not necessarily 0 at all γ (recall that our conditions impose that a{γ}0 = 1) and
hence it needs to be accounted for in our analysis. We now present closed form expressions for the
quantities of interest for NormReLU. In particular it can be easily derived via calculations similar to
those done for the formulas for b(c) and λ(c) that

a
{γ}
0

λ(c) = EX∼N(0,1)[NormReLUc(
√
γX)]

λ(c) = √
γϕ(c/√γ) − (1 −Φ(c/√γ))c + b(c)

Furthermore we can also derive such a closed form expression for the norm transfer function σ̂l(γ),
and its derivative viz.

σ̂l(γ)
λ2(c) =

∞

∑
j=0

(a{γ}j )
2

λ2(c) = EX∼N(0,1)[NormReLU2
c(

√
γX)]

λ2(c)
= (c2 + γ − 2cb(c))(1 −Φ(c/√γ)) + (2b(c) − c)√γϕ(c/√γ) + b(c)2

σ̂′l(γ)
λ2(c) = 1 −Φ(c/√γ) + b(c)√

γ
ϕ(c/√γ)

Furthermore we define the following function which represents a form of bias which increases
correlations over layers:

bias(γ) ∶=
(a{γ}0 )

2

∑∞j=0 (a
{γ}
j )

2

The following observations are evident from the graphs in Figure 6.
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Figure 6: Plots of the functions σ̂l(γ) and bias in the range [0.5,2]. They can be seen to be concave and convex
respectively.

Fact 1 The following properties hold for the NormReLU activation

1. For γ ∈ [0.5,2], σ̂l(γ) is a non-decreasing concave function with σ̂l(0.5) ∼ 0.5399 and
σ̂′l(1) ∼ 0.8428.

2. For γ ∈ [0.5,2], bias(γ) is a convex non-negative function with minimum value at γ = 1,
bias(1) = 0. Furthermore we have that bias(0.5) ∼ 0.00086 and bias(2) ∼ 0.0029.

The above facts lead to the following simple calculations. Firstly note that since bias(γ) is a
convex function we have the following

bias(γ) ≤
⎧⎪⎪⎨⎪⎪⎩

2bias(0.5)(1 − γ) if γ ∈ [0.5,1]
bias(2)(γ − 1) if γ ∈ [1,2]

(28)

The constant (defined in Theorem 38) ασ = min(α−σ, α+σ) for NormReLU activation are as
follows.

α−σ ∶= 2σ̂l(0.5) − 1 ∼ 0.0798

α+σ ∶= 1 − σ̂′l(1) ∼ 0.1572

With these in place we are now ready to prove the theorem.
Proof Firstly consider two sequences defined by the following:

(1 − γ−l ) = (1 − α−σ)(1 − γ−l−1) γ−0 = 0.5

(γ+l − 1) = (1 − α+σ)(γ−l−1 − 1) γ+0 = 2.0

The following is immediate from the above derivations above and (28).

∞

∑
l=0

bias(γ−l ) =
bias(0.5)

α−σ
,

∞

∑
l=L′

bias(γ−l ) =
bias(0.5)ε

α−σ

∞

∑
l=0

bias(γ+l ) =
bias(2)
α+σ

,
∞

∑
l=L′

bias(γ+l ) =
bias(2)ε
α+σ
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Now note from Theorem 38 we have that if ∥x∥2 ≤ 1, the norm of the representation at layer l,
k̄l(x,x) ∈ [γ−l ,1] and correspondingly if ∥x∥2 ≥ 1, k̄l(x,x) ∈ [1, γ+l ]. The same holds for y as well.
Furthermore from the properties of the bias function we have that,

bias(k̄l(x,x)) ≤
⎧⎪⎪⎨⎪⎪⎩

bias(γ−l ) if ∥x∥ ≤ 1

bias(γ+l ) if ∥x∥ ≥ 1
.

The same holds for y. Define the following shorthand for the corelation between the representations
at layer l:

ρl ∶=
k̄l(x, y)√

k̄l(x,x)k̄l(y, y)
, δl ∶= 1 − ∣ρl∣.

Using the analysis derived in the proof of Lemma 42we have the following,

∣ρl∣ ≤
√

bias(k̄l−1(x,x))bias(k̄l−1(y, y)) +

¿
ÁÁÁÁÁÀ
∑∞j=1 (a

{k̄l−1(x,x)}
j )

2
∣ρl−1∣j

∑∞j=1 (a
{k̄l−1(x,x)}
j )

2

¿
ÁÁÁÁÁÀ
∑∞j=1 (a

{k̄l−1(y,y)}
j )

2
∣ρl−1∣j

∑∞j=1 (a
{k̄l−1(y,y)}
j )

2

≤
√

bias(k̄l−1(x,x))bias(k̄l−1(y, y)) + (1 − δl−1)
√

(1 − µ{k̄l−1(x,x)}δl−1)
√

(1 − µ{k̄l−1(y,y)}δl−1).
(29)

Iterating the above equation over L′ steps we immediately get that

∣ρL′ ∣ ≤ 1 − δ0 +
L′

∑
l=1

√
bias(k̄l−1(x,x))bias(k̄l−1(y, y))

≤ 1 − δ +max(
∞

∑
l=0

bias(γ−l ),
∞

∑
l=0

bias(γ+l ))

= 1 − δ +max(bias(0.5)
α−σ

,
bias(2)
α+σ

) .

We define

δ′ = max(bias(0.5)
α−σ

,
bias(2)
α+σ

) ∼ 0.0185.

Furthermore as argued in the proof of Theorem 13 we have that for any l ≥ L′ we have that

µ{k̄l(x,x)}, µ{k̄l(y,y)} ≥ µ/2.

Now using the above and iterating (29) from L′ onwards we get that

∣ρL∣ ≤ Bµ/2(L −L′, δ − δ′) +max(
∞

∑
l=L′

bias(γ−l ),
∞

∑
l=L′

bias(γ+l ))

≤ Bµ/2(L −L′, δ − δ′) +max(bias(0.5)ε
α−σ

,
bias(2)ε
α+σ

)

≤ Bµ/2(L −L′, δ − δ′) + δ′ε.

This finishes the proof.
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Figure 7: Train and test accuracy vs. the number of epochs. The plots are obtained by training a depth 32 and a depth 64
fully connected network with 3000 hidden units in each layer.

Figure 8: Train and test accuracy vs. the number of epochs. The plots are obtained by training a depth 32 and a depth 110
ResNet architecture with skip connections but without the use of batch normalization.

I.2. Comparison of NormReLU and SeLU

In this section we compare the training and generalization behavior of the NormReLU activation
that we proposed in this work and the closely related SeLU activation Klambauer et al. (2017) (see
Figure 2). Similar to Section 7 we first train, on the CIFAR-10 dataset, fully connected feedforward
networks with depths 32 and 64 and containing 3000 hidden units in each layer. Figure 7 shows the
training and the test accuracy achieved when using either NormReLU or the SeLU activation. As
can be seen, the training and generalization behavior of the two activations is very similar.

We next train ResNet architectures of depth 32 and 110 and with skip connections on the CIFAR-
10 dataset. As in Section 7, we switch off batch normalization. Figure 8 shows that in this case as well,
the two activations behave similarly in terms of speed of training and generalization performance,
with NormReLU achieving slightly higher test accuracies.

I.3. Discussion of Training Settings

All the experiments in this work were performed on the CIFAR-10 dataset (Krizhevsky et al., 2009).
In each case, the learning rate was chosen via cross validation. All the models were trained for
300 epochs and the learning rate was reduced by a factor of 0.1 after every 100 iterations. In each
case, the model was trained for 10 independent runs. For the experiment in Figure 1 the fully
connected networks were trained with learning rates of 0.005 for batch normalization, 0.003 for layer
normalization and 0.0009 for NormReLU. The convolutional networks were trained with learning
rates of 0.1 for batch normalization, 0.05 for layer normalization and 0.001 for NormReLU. For
the experiment in Figure 3, the fully connected networks of depth 32 were trained with learning
rates of 0.01 for batch normalization, 0.001 for layer normalization and 0.0009 for NormReLU. The
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depth 64 networks were trained with learning rates of 0.007 for batch normalization, 0.001 for layer
normalization and 0.0009 for NormReLU.

For the experiment in Figure 4 the depth 32 networks were trained with learning rates of 0.1 for
batch normalization and 0.009 for NormReLU. The depth 110 networks were trained with learning
rates of 0.05 for batch normalization and 0.005 for NormReLU. To compare with fixup initialization
as in Figure 5 we use the fixup-110 architecture as proposed in the work of Zhang et al. (2019). We
switch on data augmentation as used in Zhang et al. (2019) and train with fixup initialization using a
learning rate of 0.1 and the learning rate schedule as proposed by the authors in Zhang et al. (2019).
We train with NormReLU using a learning rate of 0.005. For the experiment in Figure 7 we use a
learning rate of 0.001 for depth 32 and of 0.0005 for depth 64. The same learning rate is used for
both NormReLU and SeLU. Finally, for the experiment in Figure 8 we use a learning rate of 0.01 at
depth 32 and of 0.009 at depth 110 and keep it the same for both the activations.
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