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Abstract

The problem of online prediction with sequential side information under logarithmic loss is studied,
and general upper and lower bounds on the minimax regret incurred by the predictor is established.
The upper bounds on the minimax regret are obtained by constructing and analyzing a probabil-
ity assignment based on mixture probability assignments in universal compression, and the lower
bounds are obtained by way of a redundancy—capacity theorem. A tight characterization of the
regret is provided in some special settings.

1. Introduction

We consider a variant of the problem of sequential prediction under log-loss with side information'.
The particular variant under consideration was first studied by Fogel and Feder (2017). Let X € X
and Y € {0,1} denote two jointly distributed random variables. Let the marginal distribution of
X be denoted by Px(z). A hypothesis f in the hypothesis class F determines the conditional
distribution Py (y|x), or equivalently, the conditional probability mass function (pmf) p(y|z), for
y € {0,1} and x € X. Each hypothesis is characterized by a tuple f = (g, 0o, 01), where

1. 6y,0, € [0, 1]
2. geGc{x {01}

In other words, g belongs to a class G of binary functions. We assume that G has finite VC dimen-
sion, denoted by VCdim(G).
Given a chosen hypothesis f = (g, 8, 61) we then have

Y{X =z} ~ Bernoulli(f(,)).

Thus, given the side information X, the random variable Y is distributed as either Bernoulli(6y) or
Bernoulli(#;). Picking a hypothesis f € F,let (X;, Y;)? ; be drawn i.i.d. from the joint distribution
of X and Y characterized by the hypothesis f as

n

P(a",y") = [ [ Px(2:) Pr(yil ). (1)
i=1
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The problem of sequential prediction under log-loss, also known as the sequential probability as-
signment problem, can be thought of as a game between the player and nature. First, nature picks
a hypothesis f € F unbeknownst to the player, and X", Y" are then generated according to the
law (1). Ateach time stepi € [n], X is revealed to the player, who then assigns a pmf ¢(+| X*, Y~ 1)
to Y; conditioned on X? = (X1,...,X;)and Y1 = (Y1,...,Y;_1). Next, Y; is revealed and the
player incurs loss —log ¢(Y;| X, Y*~1). Nature assigns the pmf ps(-|X;) at each time step i and
incurs loss — log pf(Y;|X;). The goal of the game is to minimize the expected value of cumulative
loss relative to nature (known as the regret), without knowledge of f. Importantly, we wish to do
this without knowing Px either.

To make this notion precise, define the regret incurred by the probability assignment ¢ when
nature picked f and the distribution of X is Py as

Ry.py(a,f) = E Zlog Y|X1 E= Zlog Y|X) 6)
Then, the worst-case regret for the probability assignment g is

Rn(q) == max Ry py(q, f)- 3)

X

In this paper, we aim to calculate the min-max regret

R, := min R, (q). 4)
q

and discover a probability assignment g that is optimal or near-optimal in the sense of achieving
R, (q) close to the optimal value (4).

The log-loss is of central importance in information theory as it connects two canonical prob-
lems in data science—compression and prediction; see the survey (Merhav and Feder, 1998). To
motivate the use of the log-loss in the current problem, we view it as an extension of the problem
of universal compression. Indeed, if there is no side information X present, then the problem
is equivalent to universal compression of an i.i.d. Bernoulli source which has been well stud-
ied (Rissanen, 1983a,b, 1984; Xie and Barron, 1997, 2000). The minimax regret R,, then is sig-
nificant operationally, representing the number of extra bits above the entropy one must pay as the
price for compressing the source without knowing its distribution. Remarkably, one can show that
R, = %logn + o(logn) in this setting. In a similar vein, Shkel et al. (2018) studied a closely
related problem where a compressed version of the sequence Y is available as side information
noncausally (i.e. not sequentially) and demonstrate its equivalence to lossy compression.

In the current setting, if the function ¢ is known, then simple extensions of the techniques
developed to tackle the problem of universal compression of an i.i.d. Bernoulli source can be used
to show that R,, < logn + o(logn), and we will elaborate on this important special case in the full
paper. The problem becomes nontrivial when the function g is not known, and new techniques need
to be developed to characterize R,, in this case.

In the standard study of classification in statistical learning theory, the loss function employed
is the 0-1 loss or the indicator loss, and the notion of VC dimension plays a crucial role in char-
acterizing the fundamental limits of binary classification (Shalev-Shwartz and Ben-David, 2014).
In particular, VCdim(G) < oo implies the PAC-learnability of the hypothesis class G. Viewing
the current setting as a log-loss variant of the standard classification problem studied in statistical
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learning (which uses the indicator loss) motivates the choice of constraint VCdim(G) < oo. A
variant of the current problem with indicator loss instead of log-loss was studied in (Lazaric and
Munos, 2012). We have considered a specific class of conditional distributions to compete against
(recall that under hypothesis f we have py(Y = 0|X = z) = Bern((,)))- As mentioned in the
preceding paragraphs, our motivation stems from universal compression with side information, and
to consider a log-loss variant of the standard binary classification problem. In both these cases, the
choice of the considered class seems natural. However, in general, one could view this problem as
an online conditional density estimation problem and correspondingly consider an arbitrary class
F where any f € F may characterize the conditional distribution p¢(y|z) in a far more complex
manner. It then makes sense to expect R, in this case to depend on a measure of complexity of
F akin to the VC dimension. Indeed, in (Rakhlin et al., 2015a) the authors develop a remarkable
theory parallel to statistical learning theory when the data is non-i.i.d. They develop analogues of
several combinatorial dimensions and the Rademacher complexity in the non-i.i.d. case. They then
leverage this theory in (Rakhlin et al., 2015b) to study the minmax regret in several online learning
problems (with adversarial data). This approach is employed to study sequential prediction with the
log-loss in (Rakhlin and Sridharan, 2015) and (Bilodeau et al., 2020). However, it is important to
note that the proofs in these works are nonconstructive—they proceed via using minmax duality and
analyzing the dual game, which does not provide a strategy (i.e. a probability assignment) achiev-
ing the regret upper bound that is proven. Our method on the other hand involves construction of a
sequential probability assignment. In the next subsection, we will mention and compare our results
with the aforementioned two papers studying the log-loss.

1.1. Main Results

Our first main result is a probability assignment that yields an upper bound on R,,.

Theorem 1 If G is such that VCdim(G) = d < oo, we have for an absolute constant C < 250, for
a probability assignment q* (which is specified in detail further on)

R, (q*) < 125CVdnlog(2n) + d(logn)? + 2. (5)

Moreover, for any Px, f,d € (0,1), with probability greater than 1 — 6,

Zlog Y|Xz Yi— 1 Zlog Y|X)

21
< 25Cdn log(2n) (O\/E+ 2log (:Sg”> +d(logn)®+2 (6)

In the full paper, we construct and analyze the probability assignment ¢*. In (Fogel and Feder,
2017), the authors established that R, = O(dy/nlogn), and R,, < (2d+ 1+ log}) y/nlogn
with probability > 1 — §. Our proof (and probability assignment) is different and achieves the same
dependence on n, and a better dependence on ¢ in the high-probability version of the result.

We also establish a lower bound on R,,.

Theorem 2 We have

R, > d+log(n + 1) — 2y/ed?e31/1004 _og(rre).
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The non-constructive approaches of the papers (Rakhlin and Sridharan, 2015) and (Bilodeau
et al., 2020) mentioned earlier establish an O(d logn) upper bound for the F under consideration.
In conjunction with Theorem 2 we see that the dependence of R, on n is indeed ©(logn). This
implies that the ¢* employed to prove Theorem 1 is suboptimal, and raises the important question
of constructing a better probability assignment achieving the tight upper bound.

Open Problem 1 Construct a probability assignment q for the VC hypothesis class that achieves
O(dlogn) regret.

As mentioned earlier, the problem of sequential probability assignment can be posed for any
general (and possibly very complex) class F and viewed as an online conditional density estimation
problem.

Open Problem 2 Construct and analyze a probability assignment q for the case when F is a
general hypothesis class.

As a starting step towards Open Problem 1, we considered a few special cases of the function class
G and distribution Px and provide a sequential probability assignment achieving O(d logn) upper
bound. These upper bounds constitute our third main result.
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