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Abstract
We consider the problem of online boosting for regression tasks, when only limited information

is available to the learner. This setting is motivated by applications in reinforcement learning, in
which only partial feedback is provided to the learner. We give an efficient regret minimization
method that has two implications. First, we describe an online boosting algorithm with noisy multi-
point bandit feedback. Next, we give a new projection-free online convex optimization algorithm
with stochastic gradient access, that improves state-of-the-art guarantees in terms of efficiency. Our
analysis offers a novel way of incorporating stochastic gradient estimators within Frank-Wolfe-type
methods, which circumvents the instability encountered when directly applying projection-free
optimization to the stochastic setting.

1. Introduction

Boosting is a fundamental methodology in machine learning which allows us to efficiently convert
a number of weak learning rules into a strong one. The setting of boosting for batch learning has
been studied extensively, leading to a deep and significant theory and celebrated practical success.
See (Schapire and Freund, 2012) for a thorough discussion.

In contrast to the batch setting, online learning algorithms typically don’t make any stochastic
assumptions about the data. They are often faster, memory-efficient, and can adapt to the best
changing predictor over time. A line of previous work has explored extensions of boosting methods
to the online learning setting (Leistner et al., 2009; Chen et al., 2012, 2014; Beygelzimer et al.,
2015b,a; Agarwal et al., 2019; Brukhim et al., 2020). Of these, several works (Beygelzimer et al.,
2015a; Agarwal et al., 2019) formally address the setting of online boosting for regression, providing
theoretical guarantees on variants of the Gradient boosting method (Friedman, 2001; Mason et al.,
2000) widely used in practice. However, such guarantees are only provided under the assumption
that full information is available to the learner, i.e., that the entire loss function is revealed after each
prediction is made.

On the other hand, in many online learning problems, the feedback available to the learner is
limited. These problems naturally occur in many practical applications, in which interactions with
the environment are costly, and the learner has to operate under bandit feedback. Such is often the
case, for example, for Reinforcement Learning in a Markov decision process (Jin and Luo, 2019;
Rosenberg and Mansour, 2019b). In the bandit feedback model, the learner only observes the loss
values related to predictions she chose. In particular, the loss function is not revealed to the learner
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and, unless the prediction was correct, the true label remains unknown. In this paper we propose
the first online boosting algorithm with theoretical guarantees, in the bandit feedback setting.

The underlying ideas used in our approach are based on the fact that boosting can be seen
as an optimization procedure. It can be interpreted as cost minimization over the set of linear
combinations of weak learners. That is, boosting can be thought of as applying a gradient-descent-
type algorithm in a function space (Schapire and Freund, 2012; Friedman, 2001; Mason et al., 2000).
This functional view of boosting has also inspired a few studies of boosting methods (Friedman,
2001; Wang et al., 2015; Beygelzimer et al., 2015a) that are based on the classical Frank-Wolfe
projection free optimization algorithm (Frank and Wolfe, 1956).

In this work we leverage these ideas to yield a new online boosting algorithm based on a Frank-
Wolfe-type technique. Namely, our online boosting algorithm is based on a projection-free Online
Convex Optimization (OCO) method with stochastic gradients. The stochastic gradient assumption
can capture, in particular, bandit feedback, since stochastic gradient estimates can be obtained using
random function evaluation (Flaxman et al., 2005).

However, such existing projection-free OCO methods either achieve suboptimal regret bounds
(Hazan and Kale, 2012) or have high per-iteration computational costs (Mokhtari et al., 2018; Chen
et al., 2018; Xie et al., 2019). To fill this gap, we derive a new method and analysis of a projection-
free OCO algorithm with stochastic gradients. As summarized in Table 1, our projection-free OCO
algorithm is the fastest known method compared to previous work, while achieving an optimal
regret bound. Furthermore, our Frank-Wolfe-type algorithm gives rise to an efficient online boosting
method in the bandit setting.

Our results We propose new online learning methods using only limited feedback. Specifically:

• Online Boosting with Bandit Feedback, we propose the first online boosting algorithm with
theoretical regret bounds in the bandit feedback setting. The formal description of our method
is given in Algorithm 2, and its theoretical guarantees are stated in Theorem 11. In addition,
Section D in the Appendix presents encouraging experiments on benchmark datasets.

• Projection-Free OCO with Stochastic Gradients, an efficient projection-free OCO algo-
rithm, with stochastic gradients, which improves the best known guarantees in terms of com-
putational efficiency. Table 1 compares these results to previous work. Our method is given
in Algorithm 1, and its theoretical guarantees are stated in Theorems 2 and 3.

Algorithm Regret
Per-round

Feedback Guarantee
Cost

Online-FW (Hazan and Kale, 2012) O(T 3/4) O(1) Full deterministic

Meta-FW (Chen et al., 2018) O(
√
T ) O(T 3/2) Stochastic in expectation

MORGFW (Xie et al., 2019) Õ(
√
T ) O(T ) Stochastic w.h.p.

This Work (Thm. 3) Õ(
√
T ) O(

√
T ) Stochastic w.h.p.

Table 1: Comparison of projection-free Online Convex Optimization methods.
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1.1. Techniques and challenges

The main challenge in designing a projection-free OCO method in the partial information setting
is the fact that Frank-Wolfe type approaches are provably not robust to stochastic gradients (see
e.g. Hassani et al. (2017), Appendix B, for an example and further discussion on why Frank-
Wolfe type methods do not easily admit stochastic variants). Thus, the straightforward approach of
using unbiased gradient estimators in conjunction with Frank-Wolfe does not apply. Previous works
(Mokhtari et al., 2018; Chen et al., 2018; Xie et al., 2019) have mitigated these issues by applying
intricate variance reduction techniques, that take a toll on computational efficiency.

An important observation given in this paper is that when sequentially running multiple Frank-
Wolfe procedures within an OCO framework, such issues are entirely eliminated. Our analysis
demonstrates that the stochasticity of the gradients is conditionally independent of other sources of
randomness in the algorithm. This enables the derivation of a simple and efficient projection-free
OCO method in the stochastic setting.

As the main goal of this work is to provide an online boosting framework for the bandit setting,
we employ gradient estimation techniques (Flaxman et al., 2005) that enable to remove the assump-
tion of stochastic gradient oracle access, and thus apply to the more general bandit setting. In our
analysis, we detail how our approach applies to the multi-point noisy bandit setting, where we make
no distributional assumptions on the noise apart from the fact that it is zero-mean and bounded.

Lastly, we derive an effective online boosting framework, which converts a γ-approximate
(weak) online learner for linear loss functions that expect full information, to a 1-competitive
(strong) online learner for any sequence of convex loss functions, which applies in the noisy multi-
point bandit setting.

Paper outline. In the next subsection we discuss related work. Section 2 deals with the setting of
projection-free online convex optimization, with stochastic gradient oracle. We describe the OCO
algorithm and formally state its theoretical guarantees, followed by the analysis and proofs of our
results. In Section 3 we describe a generalization of these techniques, give our main algorithm
of online boosting in the bandit feedback model, and formally state its theoretical guarantees. In
Section 4 we conclude our results and discuss future work. The complete proofs of our results are
given in the Appendix, as well as an empirical evaluation of our boosting algorithm (see Section D).

1.2. Related work

Projection-free OCO. The classical Frank-Wolfe (FW) method was introduced in (Frank and
Wolfe, 1956) for efficiently solving linear programming. The framework of Online Convex Opti-
mization (OCO) was introduced by (Zinkevich, 2003), with the online projected gradient descent
method, achieving O(

√
T ) regret bound. However, the projections required for such an algorithm

are too expensive for many large-scale online problems. The online variant of the FW algorithm
that applies to general OCO was given in (Hazan and Kale, 2012). It attains O(T 3/4) regret for
the general OCO setting, with only one linear optimization step per iteration. Recent work (Hazan
and Minasyan, 2020) on projection-free OCO proposes an approach which guarantees an improved
regret bound of O(T 2/3). A more general setting considers the use of stochastic gradient estimates
instead of exact gradients (Mokhtari et al., 2018; Chen et al., 2018; Xie et al., 2019). Although
it enables to remove the assumption that exact gradient computation is tractable, it often requires
larger computational costs per-iteration. In this work, we give a projection-free OCO method that
improves state-of-the-art guarantees with O(

√
T ) regret bound, and O(

√
T ) per-round cost.
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Online Boosting Previous works on online boosting have mostly focused on classification tasks
(Leistner et al., 2009; Chen et al., 2012, 2014; Beygelzimer et al., 2015b; Jung et al., 2017; Jung and
Tewari, 2018). The main result in this paper is a generalization of the online boosting for regression
problems by (Beygelzimer et al., 2015a), to the bandit feedback model. We combine these ideas with
zero-order convex optimization techniques (Flaxman et al., 2005), and with our novel projection-
free OCO algorithm and analysis. Recent works have also considered online boosting in the bandit
setting for classification tasks (Chen et al., 2014; Zhang et al., 2018). These works give convergence
guarantees in the more restricted mistake-bound model, whereas in this work we provide regret
bounds, compared to a reference function class. The related works of (Garber, 2017; Hazan et al.,
2018) consider the metric of α-regret, which is applicable to computationally-hard problems.

Multi-Point Bandit Feedback In this work we consider a relaxation of the standard bandit set-
ting: noisy multi-point bandit feedback. In this model, the learner can query each loss function at
multiple points, and obtains noisy feedback values. This model is motivated by reinforcement learn-
ing in Markov decision processes, as well as problems in submodular maximization (see discussion
section). Previous work on the multi-point bandit model allows multi-point noiseless feedback
(Agarwal et al., 2010; Duchi et al., 2015; Shamir, 2017). Noiseless feedback is significantly less
challenging, since with only two points one can get an arbitrarily good approximation to the gra-
dient. In addition, other works have also considered a single point projection-free noiseless bandit
model (Garber and Kretzu, 2019; Chen et al., 2019).

2. Projection-Free OCO with Limited Feedback

Consider the setting of Online Convex Optimization (OCO), when only limited feedback is available
to the learner, rather than full information. Recall that in the OCO framework (see e.g. (Hazan,
2016)), an online player iteratively makes decisions from a compact convex setK ⊂ Rd. At iteration
t = 1, ..., T , the online player chooses xt ∈ K, and the adversary reveals the cost `t, chosen from
L a family of bounded convex functions over K. The metric of performance in this setting is regret:
the difference between the total loss of the learner and that of the best fixed decision in hindsight.
Formally, the regret of the OCO algorithm is defined by:

RLA(T ) =

T∑
t=1

`t(xt)− inf
x∗∈K

T∑
t=1

`t(x
∗). (1)

In this work we restrict the information that the learner has with respect to the loss function `t.
Specifically, we focus on two such types of limited feedback:

1. Stochastic Gradients: the learner is only provided with stochastic gradient estimates.

2. Bandit Feedback: the learner only observes the loss values of predictions she made.

Our goal is to design an algorithm which has low regret and low cost per iteration t. We begin with
the more restricted setting which assumes access to a stochastic gradient oracle. In Section 3.2 we
describe a reduction for the more general bandit setting, in the context of online boosting.

As in previous methods of projection-free OCO (Mokhtari et al., 2018; Chen et al., 2018; Xie
et al., 2019), we assume oracle access to an Online Linear Optimizer (OLO). The OLO algorithm
optimizes linear objectives in a sequential manner, and has sublinear regret guarantees. A formal
definition is given below.
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Definition 1 Let L′ denote a class of linear loss functions, `′ : K → R, with σ-bounded gradient
norm (i.e., ‖∇̀ ′(x)‖ ≤ σ). An algorithm A is an Online Linear Optimizer (OLO) for K w.r.t. L′,
if for any sequence `′1, ..., `

′
T ∈ L′, the algorithm has expected regret w.r.t. L′, E[RA(T, σ)]1 that is

sublinear in T , where expectation is taken w.r.t the internal randomness of A.

Suitable choices for an OLO include Follow the Perturbed Leader (Kalai and Vempala, 2005), On-
line Gradient Descent (Zinkevich, 2003), Regularized Follow The Leader (Hazan, 2016), etc.

Denote the diameter of the set K by D > 0, (i.e., ∀x, x′ ∈ K, ‖x− x′‖ ≤ D), denote by G > 0
an upper bound on the norm of the gradients of ` ∈ L over K (i.e., ∀` ∈ L, x ∈ K, ‖∇̀ (x)‖ ≤ G),
and denote by M > 0 an upper bound on the loss (i.e., ∀` ∈ L, x ∈ K, |`(x)| ≤M ). We also make
the following common assumptions:

Assumption 1 The loss functions ` ∈ L are β-smooth, i.e., for any x, x′ ∈ K, ` ∈ L,

‖∇̀ (x)− ∇̀ (x′)‖ ≤ β‖x− x′‖.

Assumption 2 The stochastic gradient oracle O returns an unbiased estimate gt = O(x, t), for
any t ∈ [T ], x ∈ K, and with bounded norm, i.e.,

E[gt] = ∇̀ t(x) , ‖gt‖2 ≤ σ2.

2.1. Algorithm and Analysis

At a high level, our algorithm maintains oracle access to N copies of an OLO algorithm, and
iteratively produces points xt by running a subroutine of a N -step Frank-Wolfe procedure. It uses
previous OLOs’ predictions, and gradient estimates oracle in place of exact optimization with true
gradients. To update parameters, at each iteration t, the algorithm queries the gradient oracle O
at N points. Then, the gradient estimates are fed to the N OLO oracles as linear loss functions.
Intuitively, it guides each OLO algorithm to correct for mistakes of the preceding OLOs. A formal
description is provided in Algorithm 1.

Algorithm 1 Projection-Free OCO with Stochastic Gradients Oracle
1: Oracle access: OLO algorithms A1,...,AN (Definition 1), and a stochastic gradient oracle O.
2: Set step length ηi = 2

i+1 for i ∈ [N ].
3: for t = 1, . . . , T do
4: Define x0t = 0.
5: for i = 1 to N do
6: Define xit = (1− ηi)xi−1t + ηiAi(g1,i, . . . ,gt−1,i).
7: Receive stochastic gradient feedback gt,i = O(xi−1t ), such that E[gt,i] = ∇̀ t(x

i−1
t ).

8: Define linear loss function `it(x) = g>t,i · x, and pass it to OLO Ai.
9: end for

10: Output prediction xt := xNt .
11: Receive loss value `t(xt).
12: end for

The following Theorem states the regret guarantees of Algorithm 1. In this paper, all bounds
are given with respect to the dependence on the different parameters, and omit all constants.

1. For ease of presentation we denote RA(T, σ) := RL
′
A (T ).
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Theorem 2 Given that assumptions 1 - 2 hold, then Algorithm 1 is a projection-free OCO algo-
rithm which only requires N = βD

σ

√
T stochastic gradient oracle calls per iteration, such that for

any sequence of convex losses `t ∈ L, and any x∗ ∈ K, its expected regret is,

E

[
T∑
t=1

`t(xt)−
T∑
t=1

`t(x
∗)

]
≤ O

(
σD
√
T
)
.

The theoretical guarantees given in Theorem 2 use expected regret as the performance metric.
Even though expected regret is a widely accepted metric for online randomized algorithms, one
might want to rule out the possibility that the regret has high variance, and verify that the given
result actually holds with high probability. By observing that excess loss can be formulated as a
martingale difference sequence, and by applying analysis using the Azuma-Hoeffding inequality,
we can obtain regret guarantees which hold with high probability. The main result is stated below.

Theorem 3 Given that assumptions 1 - 2 hold, then Algorithm 1 is a projection-free OCO algo-
rithm which only requires N = βD

σ

√
T stochastic gradient oracle calls per iteration, such that for

any ρ ∈ (0, 1), and any sequence of convex losses `t ∈ L over convex set K, w.p. at least 1− ρ,

T∑
t=1

`t(xt)− inf
x∗∈K

T∑
t=1

`t(x
∗) ≤ O

(
σD

√
T log

βDT

σρ

)
.

The complete analysis and proofs of the theorems is deferred to the Appendix. Below we give an
overview of the main ideas used in the proof of Theorem 2. For simplicity assume an oblivious
adversary (although using a standard reduction, our results can be generalized to an adaptive one) 2.

Let `1, ..., `T be any sequence of losses in L. Observe that the only sources of randomness at
play are: the OLOs’ (Ai’s) internal randomness, and the stochasiticity of the gradients. The analysis
below is given in expectation with respect to all these random variables. Note the following fact used
in the analysis; for any t, i, the random variables gt,i and Ai(g1,i, . . . ,gt−1,i) (i.e., the output of Ai
at time t) are conditionally independent, given all history up to time t and step i−1. This fact allows
to derive the following Lemma:

Lemma 4 For any t ∈ [T ] and i ∈ [N ], let gt,i be the unbiased stochastic gradient estimate used
in Algorithm 1. Denote the output of algorithm Ai at time t as xt,i. Then, we have,

E
[
`it(xt,i)

]
= E

[
∇̀ t(x

i−1
t )> · xt,i

]
.

2. See discussion in (Cesa-Bianchi and Lugosi, 2006), Pg. 69, as well as Exercise 4.1 formulating the reduction.

6



ONLINE BOOSTING WITH BANDIT FEEDBACK

Proof

E
[
`it(xt,i)

]
= E

[
g>t,i · xt,i

]
(definition of `it(·))

= E
Ii−1
t

[
E
[
g>t,i · xt,i

∣∣Ii−1t

]]
(law of total expectation)

( Ii−1t denotes the σ-algebra measuring all sources of randomness up to time t, i− 1.)

= E
Ii−1
t

[
Egt,i

[
gt,i
∣∣Ii−1t

]> · EAi

[
xt,i
∣∣Ii−1t

]]
(conditional independence)

( Inner expectations are w.r.t gradient stochasiticity,

and Ai’s internal randomness, respectively.)

= E
Ii−1
t

[
∇̀ t(x

i−1
t )> · E

[
xt,i
∣∣Ii−1t

]]
(Since E[gt,i] = ∇̀ t(x

i−1
t ))

= E
[
∇̀ t(x

i−1
t )> · xt,i

]

Using Lemma 4, the algorithm is analyzed along the lines of the Frank-Wolfe algorithm, ob-
taining the expected regret bound of Algorithm 1.

Proposition 5 Given that assumptions 1 - 2 hold, and given oracle access to N copies of an
OLO algorithm for linear losses, with RA(T, σ) regret (see Definition 1), Algorithm 1 is an online
learning algorithm, such that for any sequence of convex losses `t ∈ L, and any x∗ ∈ K, its
expected regret is,

E

[
T∑
t=1

`t(xt)−
T∑
t=1

`t(x
∗)

]
≤ 2βD2T

N
+RA(T, σ).

Proof Let xt,i ∈ K be the output of the OLO algorithm Ai at time t, and let x∗ be any ∈ K. The
regret definition of Ai (Definition 1), and the definition of `it(·) in Algorithm 1, imply that:

E

[
T∑
t=1

g>t,i · xt,i −
T∑
t=1

g>t,i · x∗
]
≤ RA(T ). (2)

By applying Lemma 6, we have,

∆i ≤ (1− ηi)∆i−1 +
η2i βD

2

2
T + ηi

T∑
t=1

(
g>t,i(xt,i − x∗) + ζt,i

)
where ∆i ,

∑T
t=1 `t(x

i
t)− `t(x∗), and ζt,i , (∇̀ t(x

i−1
t )− gt,i)

> · (xt,i − x∗), for i ∈ [N ]. Take
expectation on both sides. By Lemma 4, we have E[ζt,i] = 0, and by the OLO guarantee (2), we
get that,

E
[
∆i

]
≤ (1− ηi)E

[
∆i−1

]
+
η2i βD

2

2
T + ηiRA(T )
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By Claim 7, we get for all i > 0 that,

E
[
∆i

]
≤ 2βD2T

i+ 1
+RA(T ). (3)

Applying the bound in Equation (3) for i = N concludes the proof.

2.2. Proof of Theorem 2

Proof The proof of Theorem 2 is a direct Corollary of Proposition 5, by plugging Follow the
Perturbed Leader (Kalai and Vempala, 2005) as the OLO algorithm required for Algorithm 1. We
get that the regret of the base algorithms Ai is RA(T, σ) = O(σD

√
T ) w.r.t the sequence of linear

losses {`it}t, where D is the diameter of the set K, and σ is the stochastic gradient norm bound
(Assumption 2). Thus, by setting N = βD

σ

√
T , we get expected regret of O(σD

√
T ) w.r.t the

convex loss sequence {`t}t.

It remains to state the following technical Lemmas that are used in the main analysis of Algo-
rithm 1 and are the core part that is based on the Frank-Wolfe technique. These Lemmas are used
in the proof of Proposition 5 above, as well as in the analysis of our method in the boosting setting,
detailed in the following sections. Their proofs are deferred to the Appendix.

Lemma 6 Let ` : Rd → R be any convex, β-smooth function. Let Z ⊂ Rd be a set of points with
bounded diameter D. Let i ∈ N, and let z1, ..., zi ∈ Z . Let ηi ∈ (0, 1), and γ ≥ 1. Define,

zi = (1− ηi)zi−1 −
ηi
γ
zi,

and gi a random variable, such that E[gi] = ∇̀ (zi−1). Denote ζi = (∇̀ (zi−1) − gi)>( 1γ zi − z).
Then, for any z ∈ Z ,(

`(zi)− `(z)
)
≤ (1− ηi)

(
`(zi−1)− `(z)

)
+ ηi

(
g>i (

1

γ
zi − z) +

ηiβD
2

2γ2
+ ζi

)
.

Claim 7 Define ηi = 2/(i + 1), for some i ∈ N. Let C1, C2 > 0 be some constants, and define
φi ∈ R, such that,

φi ≤ (1− ηi)φi−1 +
η2iC1

2
+ ηiC2.

Then, it holds that φi ≤ ηiC1 + C2.

3. Online Boosting with Bandit Feedback

The projection-free OCO method given in Section 2, assumes oracle access to an online linear
optimizer (OLO), and utilizes it by iteratively making oracle calls with modified objectives, in order
to solve the harder task of convex optimization. Analogously, boosting algorithms typically assume
oracle access to a ”weak” learner, which are utilized by iteratively making oracle calls with modified
objective, in order to obtain a ”strong” learner, with boosted performance. In this section, we derive
an online boosting method in the bandit setting, based on an adaptation of Algorithm 1.
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In the online learning setting, we assume that in each round t for t = 1, 2, ..., T , an adversary
selects an example xt ∈ X and a loss function `t : Y → R, where Y ⊂ Rd. The loss `t is chosen
from a class of bounded convex losses L. The adversary then presents xt to the online learning
algorithm A, which predicts A(xt) in the goal of minimizing the sum of losses over time, when
compared against a function class F ⊂ YX . Specifically, the metric of performance in this setting
is policy regret: the difference between the total loss of the learner’s predictions, and that of the best
fixed policy/function f ∈ F , in hindsight:

RLA(T ) =

T∑
t=1

`t(A(xt))− inf
f∈F

T∑
t=1

`t(f(xt)). (4)

To compare this setting with the OCO setting detailed in Section 2, observe that in the OCO setting,
at every time step, the adversary only picks the loss function, and the online player picks a point in
the decision setK, towards minimizing the loss and competing with the best fixed point in hindsight.
On the other hand, in this online learning setting, at every time step the adversary picks both an
example and a loss function, and the online player picks a point in Y , towards minimizing the
loss and competing with the best fixed mapping in hindsight, of examples in X to labels in Y .
Considering these observations, we describe the online boosting methodology next.

Generalizing from the offline setting for boosting, the notion of a weak learning algorithm is
modeled as an online learning algorithm for linear loss functions that competes with a base class of
regression functions, while a strong learning algorithm is an online learning algorithm with convex
loss functions that competes with a larger class of regression functions. We follow a similar setting
to that of the full information Online Gradient Boosting method Beygelzimer et al. (2015a), in the
more general case of noisy, bandit feedback, and a weaker notion of weak learner.

Definition 8 Let F denote a reference class of regression functions f : X → Y , let T denote the
horizon length, and let γ ≥ 1 denote the advantage. Let L′ denote a class of linear loss functions,
`′ : Y → R. An online learning algorithm A is a (γ, T )-agnostic weak online learner (AWOL)
for F w.r.t. L′, if for any sequence (x1, `

′
1), ..., (xT , `

′
T ) ∈ X × L′, at every iteration t ∈ [T ], the

algorithm outputs A(xt) ∈ Y such that for any f ∈ F ,

E

[
T∑
t=1

`′t
(
A(xt)

)
− γ

T∑
t=1

`′t
(
f(xt)

)]
≤ RA(T, σ),

where the expectation is taken w.r.t the randomness of the weak learnerA and that of the adversary,
and the regret RA(T, σ) is sub-linear in T .

Note the slight abuse of notation here; A(·) is not a function but rather the output of the online
learning algorithmA computed on the given example using its internal state. Observe that the above
definition is the natural extension of the γ-approximation guarantee of a standard classification weak
learner in the statistical setting Schapire and Freund (2012), to regression tasks in online learning.

The weak learning algorithm is ”weak” in the sense that it is only required to, (a) learn linear
loss functions, (b) succeed on full-information feedback, and (c) γ-approximate the best predictor
in its reference class F , up to an additive regret. Our main result is an online boosting algorithm
(Algorithm 2) that converts a weak online learning algorithm, as defined above, into a strong online
learning algorithm. The resulting algorithm is ”strong” in the sense that it, (a) learns convex loss
functions, (b) relies on bandit feedback only, and (c) 1-approximates the best predictor in a larger
class of functions, CH(F) the convex hull of the base class F , up to an additive regret.
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3.1. Setting

At every round t, the learner predicts y ∈ Y , and receives the noisy bandit feedback ˜̀
t(y) = `t(y)+

w, where the noise is drawn i.i.d from a distribution D. We make no distributional assumptions on
the noise apart from the fact that it is zero-mean and bounded. Denote the diameter of the set Y by
D > 0, (i.e., ∀y, y′ ∈ Y , ‖y − y′‖ ≤ D), denote by L > 0 an upper bound on the norm of the
gradients of ` ∈ L over X (i.e., ∀` ∈ L, x ∈ K, ‖∇̀ (x)‖ ≤ L), and denote by M > 0 an upper
bound on the loss (i.e., ∀` ∈ L, y ∈ Y, |`(x)| ≤ M ). Denote the bound on the noise by M w.l.o.g.
(i.e., |w| ≤ M for all w ∼ D). Additionally, assume that the set Y is endowed with a projection
operation, that we denote by ΠY , and satisfies the following properties,

Assumption 3 The function ΠY : Rd 7→ Y satisfies that for any z ∈ Rd, ` ∈ L, `
(
ΠY(z)

)
≤ `(z).

Consider the following example which demonstrates that Assumption 3 is in fact a realistic as-
sumption: for any Y ⊂ Rd let the class of loss functions L contain losses that are of the form
`(y) = ‖y − yt‖2 for some yt ∈ Y , and let ΠY(z) , arg miny∈Y ‖z − y‖ be the Euclidean pro-
jection. Indeed, it can be shown that for any z ∈ Rd, ‖ΠY(z) − yt‖2 ≤ ‖z − yt‖2, simply by a
generalization of the Pythagorean theorem. 3

3.2. Stochastic Gradients to Bandit Feedback

We build on the techniques shown in Section 2, and describe an implementation of the unbiased
stochastic gradient oracle, in the bandit setting. Recall that in the bandit feedback model, the only
information revealed to the learner at iteration t is the loss `t(xt) at the point xt that she has chosen.
In particular, the learner does not know the loss had she chosen a different point xt.

We consider a more relaxed noisy multi-point bandit setting, in which the learner can choose
several points for which the loss value will be observed. We remark that unlike previous work on
multi-point bandit Agarwal et al. (2010); Duchi et al. (2015); Shamir (2017) we consider noisy
feedback, and do not require additional assumptions on the loss function, as we show next.

The idea is to combine the method in Algorithm 1, with gradient estimation techniques for the
bandit setting, by Flaxman et al. (2005). The approach of Flaxman et al. (2005) is based on con-
structing a simple estimate of the gradient, computed by evaluating the loss `t at a random point.
Therefore, we obtain a smoothed approximation of the loss function. Note that since we construct
a smoothed approximation of the loss, the smoothness assumption (Assumption 1) becomes redun-
dant, as well the stochastic gradient oracle (Assumption 2). The following lemmas introduce the
smoothed loss function and its properties:

Lemma 9 (Flaxman et al. (2005), Lemma 2.1) Let L be a set of convex loss functions ` : Y → R
that are L-Lipschitz. For any ` ∈ L, define the function ˆ̀∈ L̂ as follows: ˆ̀(y) , Ev[`(y + δv)],
where v is a unit vector drawn uniformly at random, and δ > 0. Then, ˆ̀ is differentiable, and:

∇ˆ̀(y) = Ev
[
d

δ
`(y + δv)v

]
.

3. Moreover, projections according to distances other than the Euclidean distance can be defined, in particular w.r.t.
Bregman divergences, and an analogue of the generalized Pythagorean theorem remains valid (see e.g., Lemma 11.3
(3. Continued) in Cesa-Bianchi and Lugosi (2006)). Thus, any class of loss functions that are measuring distance
to some yt ∈ Y based on a Bregman divergences, denote `(y) = BR(y, yt), corresponds to a suitable projection
operation, that is simply ΠY(z) , arg min

y∈Y
BR(y, z).

10
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Lemma 10 Let ˆ̀∈ L̂, be a smoothed function as defined in Lemma 9. Then, the following holds:

1. ˆ̀ is convex, L-Lipschitz, and for any y ∈ Y , |ˆ̀(y)− `(y)| ≤ δL.

2. For any y, y′ ∈ Y , ‖∇ˆ̀(y)−∇ˆ̀(y′)‖ ≤ d
δL‖y − y

′‖. Thus, ˆ̀ is dL
δ -smooth.

3. For any y ∈ Y , unit vector v, ‖dδ `(y + δv)v‖ ≤ dM
δ , σ.

3.3. Algorithm and Analysis

The boosting algorithm maintains oracle access to N copies of a weak learning algorithm (see
Definition 8), and iteratively produces predictions yt, upon receiving an example xt, by running a
subroutine of a N -step optimization procedure. It generates a randomized gradient estimator gt,i
of function ˆ̀

t(·), a smoothed approximation of the loss function `t(·),4 as shown in Lemma 9, and
Lemma 10. The estimator gt,i is used in place of exact optimization with true gradients.

To update parameters, the gradient estimates are fed to the N weak learners as linear loss func-
tions. Recall that Ai(·) is not a function but rather the output of the algorithm Ai computed on
the given example using its internal state, after having observed g1,i...gt−1,i. Intuitively, boosting
guides each weak learner Ai to correct for mistakes of the preceding learner Ai−1. The output
prediction of the boosting algorithm (Line 13) relies on the projection operation, described in As-
sumption 3. A formal description is provided in Algorithm 2.

Algorithm 2 Online Gradient Boosting with Noisy Bandit Feedback
1: Maintain N weak learners A1,...,AN (Definition 8).
2: Input: δ > 0. Set step length ηi = 2

i+1 for i ∈ [N ].
3: for t = 1, . . . , T do
4: Receive example xt.
5: Define y0t = 0.
6: for i = 1 to N do
7: Define yit = (1− ηi)yi−1t + ηi

1
γAi(xt).

8: Draw a unit vector vit uniformly at random.
9: Receive bandit feedback: ˜̀

t(y
i−1
t + δvit).

10: Set gt,i = d
δ

˜̀
t(y

i−1
t + δvit)v

i
t.

11: Define linear loss function `it(y) = g>t,i · y, and pass (xt, `
i
t(·)) to weak learner Ai.

12: end for
13: Output prediction yt := ΠY

(
yNt
)
.

14: Receive bandit feedback ˜̀
t(yt).

15: end for

The following Theorem states the regret guarantees of Algorithm 2. We remark that although it
uses expected regret as the performance metric, it can be converted to a guarantee that holds with
high probability, with techniques similar to those used to obtain Theorem 3.

4. We assume that one can indeed query `t(·) at any point y+ δv. It is w.l.o.g. since a standard technique (see Agarwal
et al. (2010); Hazan (2016)) is to simply run the learners Ai on a slightly smaller set (1 − ξ)Y , where ξ > 0 is
sufficiently large so that y + δv must be in Y . Since δ can be arbitrarily small, the additional regret/error incurred is
arbitrarily small.

11
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Theorem 11 Given that the setting in 3.1, and assumption 3 hold, and given oracle access to N
copies of an online weak learning algorithms (Definition 8) w.r.t. reference classF for linear losses,
withRA(T, σ) regret, then Algorithm 2 is an online learning algorithm w.r.t. reference class CH(F)
for convex losses `t, such that for any f ∈ CH(F),

E[RB(T )] = E

[
T∑
t=1

`t(yt)−
T∑
t=1

`t(f(xt))

]
≤ 2dLD2T

δγ2N
+
RA(T, dM/δ)

γ
+ 2TδL.

On the implications of Theorem 11. On the face of it, Theorem 11 converts a low regret algo-
rithm into an algorithm with worse regret, at a computational cost of O(N) per iteration. However,
the main strength of this method is that it converts algorithms for a restricted setting into a signifi-
cantly more general setting. In particular:

1. The input weak learners are γ-weak, guaranteeing a multiplicative loss guarantee. The result-
ing method is 1-competitive.

2. The input weak learners apply to linear loss functions. The resulting method applies to any
convex loss sequence.

3. The input weak learners expect full information. The resulting method applies to the noisy
multi-point bandit setting.

By setting the weak learning algorithm A to be any online learner for linear losses with a regret
bound of RA(T, dM/δ) = O(

√
TdM/δ), and by plugging in δ = T−1/4 and N =

√
T , an

overall expected regret bound of E[RB(T )] = O(T 3/4) is attained. Observe that the average regret
RB(T )/T converges to 0 as T → ∞. While the requirement that N → ∞ may raise concerns
about computational efficiency, this is in fact analogous to the guarantee in the batch setting: the
algorithms converge only when the number of boosting stages goes to infinity. Moreover, previous
work on online boosting in the full information setting, gives a lower bound (Beygelzimer et al.
(2015a), Theorem 4) which shows that N 7→ ∞ is indeed necessary for sublinear regret.

Lastly, high probability bounds can also be obtained. Using a similar technique as in the OCO
setting (Section 2, Theorem 3), a regret bound of RB(T ) = O(T 3/4) which holds with high proba-
bility can be achieved in the boosting setting.

4. Discussion and future work

In this work, we have proposed a general framework for boosting regret minimization, when only
limited information is provided. We demonstrated 2 implications: (a) a projection-free OCO algo-
rithm with stochastic gradients, and (b) the first online boosting algorithm for regression problems in
the multi-point noisy bandit setting. In this section, we discuss possible extensions of these results,
that are left for future work.

Reinforcement learning. Consider the task of Reinforcement Learning (RL) in an adversarial
Markov Decision Process (MDP) model (Even-Dar et al., 2009), which deals with online deci-
sion making against an adversary. These adversarial MDP models typically assume that the losses
change arbitrarily over time, and that the transition function is unknown or adversarial (Rosenberg
and Mansour, 2019a; Yadkori et al., 2013), and often also assume bandit feedback (Jin and Luo,
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2019; Rosenberg and Mansour, 2019b). Therefore, this framework introduces an interesting appli-
cation to the online boosting algorithm (Algorithm 2), when applied to the episodic-RL setting, i.e.,
where each episode t ∈ [T ] is treated as a separate time step.

Submodular optimization. Our framework considers the task of online learning for convex loss
functions. A natural question is whether such an approach could be extended to the non-convex
setting. Recently, continuous DR-submodular (diminishing returns) functions have been proposed
as a broad class of non-convex functions which admit efficient approximate maximization routines,
albeit exact maximization being NP-Hard (Bian et al., 2017). This setting capture many real-life
applications, as well as a continuous relaxation of discrete submodular functions. A key property
such functions hold is that they are concave in positive directions; thus they are amenable to efficient
maximization via our framework, under similar assumptions. As previous work (Chen et al., 2018;
Mokhtari et al., 2018) has demonstrated the tight connection between convexity and continuous
DR-submodularity in the context of projection-free OCO, this suggests a natural extension of our
methods to the submodular optimization setting.
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Appendix A. Technical Lemmas

In this section we prove several useful claims and lemmas that are used in the main analysis.

A.1. Proof of Lemma 6

Proof We have,

`(zi) = `(zi−1 + ηi(
1

γ
zi − zi−1)) (5)

≤ `(zi−1) + ηi∇̀ (zi−1)> · ( 1

γ
zi − zi−1) +

η2i β

2
‖1

γ
zi − zi−1‖2

≤ `(zi−1) + ηi∇̀ (zi−1)> · ( 1

γ
zi − zi−1) +

η2i βD
2

2γ2
,

where the inequalities follow from the β-smoothness of `, and the bound on the set Z , respectively.
Observe that,

∇̀ (zi−1)>(
1

γ
zi − zi−1) = g>i (

1

γ
zi − zi−1) + (∇̀ (zi−1)− gi)>(

1

γ
zi − zi−1) (6)

(by adding and subtracting the term: g>i (
1

γ
zi − zi−1))

= g>i (
1

γ
zi − z) + g>i (z − zi−1) + (∇̀ (zi−1)− gi)>(

1

γ
zi − zi−1)

(by adding and subtracting the term: g>i z)

= g>i (
1

γ
zi − z) + ∇̀ (zi−1)>(z − zi−1) + (∇̀ (zi−1)− gi)>(

1

γ
zi − z)

(by adding and subtracting the term: ∇̀ (zi−1)>z)

≤ g>i (
1

γ
zi − z) + `(z)− `(zi−1) + (∇̀ (zi−1)− gi)>(

1

γ
zi − z)

(by convexity, ∇̀ (zi−1)> · (z − zi−1) ≤ `(z)− `(zi−1)).

Combining (5) and (6), and the definition of ζi we have that,(
`(zi)− `(z)

)
≤ (1− ηi)

(
`(zi−1)− `(z)

)
+
η2i βD

2

2γ2
+ ηi

(
g>i (

1

γ
zi − z) + ζi

)
.

A.2. Proof of Claim 7

Proof We prove by induction over i > 0. For i = 1, since η1 = 1, the assumption implies that
φ1 ≤ C1

2 + C2. Thus, the base case of the induction holds true. Now assume the claim holds for
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i = k, and we will prove it holds for i = k + 1. By the induction step,

φk+1 ≤
(

1− 2

k + 2

)
φk +

2C1

(k + 2)2
+

2C2

k + 2

≤ k

k + 2

( 2C1

k + 1
+ C2

)
+

2C1

(k + 2)2
+

2C2

k + 2

=
2C1

k + 2

( k

k + 1
+

1

k + 2

)
+ C2 ≤

2C1

k + 2
+ C2.

Appendix B. High probability bounds for Projection-Free OCO with Stochastic
Gradients

In this section we give a high-probability regret bound to Algorithm 1. Observe that when the
variance of the base OLO algorithm is unbounded, the regret guarantees cannot hold with high
probability. Thus, we slightly modify the OLO definition to hold w.h.p. This is w.l.o.g as there are
projection-free OLO algorithm for which such guarantees hold, as we describe in Theorem 3.

Definition 12 Let L′ denote a class of linear loss functions, `′ : K → R. An online learning
algorithm A is an Online Linear Optimizer (OLO) for K w.r.t. L′, if for any ρ ∈ (0, 1), and any
sequence of losses `′1, ..., `

′
T ∈ L′, w.p. at least 1− ρ, the algorithm has regret w.r.t. L′, RA(T ) that

is sublinear in T .

We can now derive the following proposition (corresponding to Proposition 5 of the expected case):

Proposition 13 Given that assumptions 1 - 2 hold, and given oracle access to N copies of an
OLO algorithm for linear losses, with RA(T ) regret, Algorithm 1 is an OCO algorithm which only
requires N = O(

√
T ) stochastic gradient oracle calls per iteration, such that for any ρ ∈ (0, 1),

and any sequence of convex losses `t over convex set K, w.p. at least 1− ρ,

T∑
t=1

`t(xt)− inf
x∗∈K

T∑
t=1

`t(x
∗) ≤ 2βD2T

N
+RA(T ) + (σ +G)D

√
2T log(4N/ρ).

Proof Let xt,i ∈ K be the output of the OLO algorithm Ai at time t, and let x∗ be any point in K.
The regret definition of Ai (Definition 12), and the definition of `it(·) in Algorithm 1, imply that for
ρ ∈ (0, 1) we have that, w.p. at least 1− ρ/(2N),

T∑
t=1

g>t,i · xt,i −
T∑
t=1

g>t,i · x∗ ≤ RA(T ). (7)

By applying Lemma 6, and by the OLO guarantee (7), we get that,

∆i ≤ (1− ηi)∆i−1 +
η2i βD

2

2
T + ηi

(
RA(T ) +

T∑
t=1

ζt,i

)
. (8)
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where ∆i ,
∑T

t=1 `t(x
i
t) − `t(x∗), and ζt,i , (∇̀ t(x

i−1
t ) − gt,i)

> · (xt,i − x∗), for i ∈ [N ]. By
applying the union bound, the above inequality holds for all i ∈ [N ], with probability at least 1−ρ/2.

For any fixed i ∈ [N ], Observe that E
[
ζt,i|Iit−1

]
= E

[
(∇̀ t(x

i−1
t )− gt,i)

> · (xt,i − x∗)|Iit−1
]

=

0 by Lemma 4. Therefore, {ζt,i}Tt=1 is a martingale difference sequence. Moreover, by the Cauchy-
Schwartz inequality, we have,

|ζt,i| ≤ ‖∇̀ t(x
i−1
t )−gt,i‖·‖xt,i−x∗‖ ≤

(
‖∇̀ t(x

i−1
t )‖+‖gt,i‖

)
·‖xt,i−x∗‖ ≤ (G+σ) ·D = ct,

where the second inequality follows from the triangle inequality, and the last inequality follows
from the diameter bound D on the set K, the bound on the gradient norm G, and the bound on the
stochastic gradient estimate (Assumption 2). Let λ = (σ + G)D

√
2T log(4N/ρ), by the Azuma-

Hoeffding inequality,

P

[∣∣∣ T∑
t=1

ζt,i

∣∣∣ ≥ λ] ≤ 2 exp

(
− λ2

2
∑T

t=1 c
2
t

)
= ρ/2N.

Observe that, by applying the union bound, the above inequality holds for all i ∈ [N ], with
probability at least 1− ρ/2. Therefore, by combining the above with (8), applying union bound, we
get that w.p. at least 1− ρ, we have for all i ∈ [N ],

∆i ≤ (1− ηi)∆i−1 +
η2i βD

2

2
T + ηi

(
RA(T ) + (σ +G)D

√
2T log(4N/ρ)

)
.

Applying Claim 7, and setting i = N yields that,

T∑
t=1

`t(xt)− `t(x∗) ≤
2βD2T

N
+RA(T ) + (σ +G)D

√
2T log(4N/ρ). (9)

B.1. Proof of Theorem 3

Proof The proof of Theorem 3 is a direct Corollary of Proposition 13, by plugging Follow the
Perturbed Leader Kalai and Vempala (2005) with high probability guarantees (e.g., Neu and Bartók
(2016)) as the OLO algorithm required for Algorithm 1. We get that the regret of the base algorithms
Ai is RA(T ) = O(σD

√
T ), where D is the diameter of the set K, and σ is the bound on the

stochastic gradient norm (Assumption 2). Thus, by setting N = βD
σ

√
T , we get that w.p. at least

1− ρ,

T∑
t=1

`t(xt)− `t(x∗) ≤ 2σD
√
T +O(σD

√
T ) + (σ +G)D

√
2T log

(
βDT/(σρ)

)
= O

(
σD
√
T log

(
βDT/(σρ)

))
.
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B.2. Proof of Lemma 10

Proof Below are the proofs of each item:

1. The fact that ˆ̀is convex, L-Lipschitz is immediate from its definition and the assumptions on
`. The inequality follows from v being a unit vector and that ` is assumed to be L-Lipschitz.

2. For any x, x′ ∈ Rd,

‖∇ˆ̀(x)−∇ˆ̀(x′)‖ =
d

δ
‖E[(`(x+ δv)− `(x′ + δv))v]‖

≤ d

δ
E
[
‖(`(x+ δv)− `(x′ + δv))v‖

]
≤ d

δ
E
[
|`(x+ δv)− `(x′ + δv)|

]
≤ d

δ
L‖x− x′‖,

where the first inequality follows from Jensen’s Inequality, the second inequality follows from
the fact that v is a unit vector, and the next inequality from ` being L-Lipschitz. This property
implies that the function ˆ̀ is dL

δ -smooth.

3. For any x ∈ Rd, and unit vector u, ‖∇ˆ̀(x)−
(
d
δ

˜̀(x+ δu)u
)
‖ ≤ ‖dδ ˜̀(x+ δu)u‖+ ‖∇ˆ̀(x)‖.

Note that by the fact that ˆ̀ is L-Lipschitz, we have ‖∇ˆ̀(x)‖ ≤ L. The first term can be
bounded as follows:

‖d
δ

˜̀(x+ δu)u‖ =
d

δ
˜̀(x+ δu)‖u‖ ≤ d

δ
˜̀(x+ δu)

=
d

δ

(
`(x+ δu) + w

)
≤ d

δ
2M,

where the first inequality follows from the fact that u is a unit vector, the equality follows
from the definition of ˜̀, and the last inequality follows from the bounds on ` and w ∼ D.
Therefore, we have,

‖∇ˆ̀(x)−
(d
δ

˜̀(x+ δu)u
)
‖ ≤ 2dM

δ
+ L.

Theorem 14 Algorithm 1 is a projection-free OCO algorithm for the bandit setting, withN =
√
T

bandit feedback values per round, such that for any ρ ∈ (0, 1), and any sequence of convex losses
`t ∈ L over convex set K, w.p. at least 1− ρ,

T∑
t=1

`t(xt)− inf
x∗∈K

T∑
t=1

`t(x
∗) ≤ O

(
dMLD2T 3/4

√
log(T/ρ)

)
= Õ(T 3/4).
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B.3. Proof of Theorem 14

Proof Observe that by Lemma 9, we have that Assumptions 1-2 are redundant, and so Lemma 4
and Proposition 13 hold for losses ˆ̀

t ∈ L̂, with G = L, σ = dM/δ, and β = dL/δ, by Lemma 10.
Thus, we have that w.p at least 1− ρ,

T∑
t=1

ˆ̀
t(xt)− ˆ̀

t(x
∗) ≤ 2dLD2T

δN
+RA(T ) + (dM/δ + L)D

√
2T log(4N/ρ). (10)

Now, observe that,

T∑
t=1

`t(xt)− `t(x∗) ≤
T∑
t=1

ˆ̀
t(xt)− ˆ̀

t(x
∗) + 2TδL (By Lemma 10 (1))

≤ 2dLD2T

δN
+RA(T ) + (dM/δ + L)D

√
2T log(4N/ρ) + 2TδL

(By (10))

≤ 2dLD2T

δN
+O(dMD

√
T/δ) + (dM/δ + L)D

√
2T log(4N/ρ) + 2TδL

(11)

where the last inequality follows by plugging Follow the Perturbed Leader Kalai and Vempala
(2005) with high probability guarantees (e.g., Neu and Bartók (2016)) as the OLO algorithm re-
quired for Algorithm 1. Thus, the base algorithms Ai’s regret is RA(T ) = O(dMD

√
T/δ).

Lastly the results follows by plugging in δ = T−1/4 and N =
√
T into Equation (11), to obtain

regret of at most O
(
dMLD2T 3/4

√
log(T/ρ)

)
= Õ(T 3/4), w.p at least 1− ρ.

Appendix C. Online Boosting: Proofs

In this section we give the full analysis of the Algorithm and results given in Section 3. For
simplicity assume an oblivious adversary (can also be shown to hold for an adaptive one). Let
(x1, `1), ..., (xT , `T ) be any sequence of examples and losses. Observe that the only sources of ran-
domness at play are: the weak learners’ (Ai’s) internal randomness, the random unit vectors vit, and
the additive zero-mean noise for any bandit feedback. The analysis below is given in expectation
with respect to all these random variables.

Lemma 15 For any t ∈ [T ] and i ∈ [N ], let gt,i be the stochastic gradient estimate used in
Algorithm 1, s.t. E[gt,i] = ∇ˆ̀(yi−1t ), and `it(y) = g>t,i · y. Then, we have,

E
[
`it
(
Ai(xt)

)]
= E

[
∇ˆ̀(yi−1t )> · Ai(xt)

]
.
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Proof Let Ii−1t denotes the σ-algebra measuring all sources of randomness up to time t and learner
i − 1; i.e., the internal randomness of weak learners A1, ...,Ai−1, the the random unit vectors
vj1, ..., u

j
t , for all j < 1, and the noise terms w1,j , ..., wt,j for all j < 1. Then,

E
[
`it
(
Ai(xt)

)]
= E

[
g>t,i · Ai(xt)

]
(definition of `it(·))

= E
[(d
δ

˜̀
t(y

i−1
t + δvit) · vit

)>
· Ai(xt)

]
(definition of gt,i)

= E
[(d
δ
`t(y

i−1
t + δvit) · vit

)>
· Ai(xt)

]
(since ˜̀(z) = `(z) + w, with w i.i.d., E[w] = 0)

= E
Ii−1
t

[
E
[(d
δ
`t(y

i−1
t + δvit) · vit

)>
· Ai(xt)

∣∣∣Ii−1t

]]
(by law of total expectation)

= E
Ii−1
t

[
Evit
[d
δ
`t(y

i−1
t + δvit) · vit

∣∣∣Ii−1t

]>
· E
[
Ai(xt)

∣∣∣Ii−1t

]]
(by conditional independence)

= E
Ii−1
t

[
∇ˆ̀

t(y
i−1
t )> · E

[
Ai(xt)

∣∣∣Ii−1t

]]
(by Lemma 9)

= E
[
∇ˆ̀

t(y
i−1
t )> · Ai(xt)

]

C.1. Proof of Theorem 11

Proof First, note that for any i = 1, 2, . . . , N , since `it is a linear function, we have

inf
f∈CH(F)

T∑
t=1

`it(f(xt)) = inf
f∈F

T∑
t=1

`it(f(xt)).

Let f be any function in CH(F). The equality above, the regret bound of the weak learner Ai for
F (see Definition 8), and the definition of `it(·) in Algorithm 2, imply that:

E

[
T∑
t=1

g>t,i · Ai(xt) − γ
T∑
t=1

g>t,i · f(xt)

]
≤ RA(T ). (12)

Now define, for i = 0, 1, 2, . . . , N , ∆i =
∑T

t=1
ˆ̀
t(y

i
t)− ˆ̀

t(f(xt)). By applying Lemma 6, we
get,

∆i ≤ (1− ηi)∆i−1 +
η2i βD

2

2γ2
T + ηi

T∑
t=1

(
g>t,i(

1

γ
Ai(xt)− f(xt)) + ζt,i

)
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Full Information Bandit

Dataset
Baseline Online Baseline Online Relative
(OGD) Boosting (N-FKM) Boosting Decrease

abalone 3.708 ±.027 3.71 ±.006 12.21 ±.210 11.68 ±.154 4.34%
adult 0.154 ±.003 0.151 ±.002 0.161 ±.003 0.150 ±.001 6.83%

census 0.160 ±.002 0.032 ±.001 0.163 ±.001 0.105 ±.020 35.6%
letter 0.507 ±.008 0.498 ±.002 0.522 ±.006 0.517 ±.003 0.95%
slice 0.042 ±.0001 0.040 ±.0001 0.049 ±.001 0.045 ±.001 8.16%

Table 2: Average loss of boosting and baseline algorithms on various datasets, with standard devi-
ation. Relative loss decrease of boosting compared to baseline, shown for bandit setting.

where ζt,i , (∇̀ t(y
i−1
t ) − gt,i)

> · (Ai(xt) − f(xt)). Take expectation on both sides. By Lemma
15, we have E[ζt,i] = 0, and by the weak learning guarantee (12), we get that,

E
[
∆i

]
≤ (1− ηi)E

[
∆i−1

]
+
η2i βD

2

2γ2
T +

ηi
γ
RA(T )

By Claim 7 (with φi = E[∆i]), we get,

E
[
∆i

]
≤ 2βD2T

γ2(i+ 1)
+
RA(T )

γ
. (13)

Lastly, observe that,

E

[
T∑
t=1

`t(yt)− `t(f(xt))

]
≤ E

[
T∑
t=1

ˆ̀
t(yt)− ˆ̀

t(f(xt))

]
+ 2TδL (by Lemma 10 (2))

≤ E

[
T∑
t=1

ˆ̀
t(y

N
t )− ˆ̀

t(f(xt))

]
+ 2TδL (by Assumption 3)

≤ 2βD2T

γ2N
+
RA(T )

γ
+ 2TδL (by (13), for i = N )

≤ 2dLD2T

δγ2N
+
RA(T )

γ
+ 2TδL (by Lemma 10 (3))

Appendix D. Experiments

While the focus of this paper is theoretical investigation of online boosting and projection-free al-
gorithms with limited information, we have also performed experiments to evaluate our algorithms.
We focused our empirical investigation on the more challenging task of Online Boosting with ban-
dit feedback, proposed in Section 3. Algorithm 2 was implemented in NumPy, and the weak online
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learner was a linear model updated with FKM Flaxman et al. (2005), online projected gradient de-
scent with spherical gradient estimators. To facilitate a fair comparison to a baseline, we provided
an FKM model with a N -point noisy bandit feedback, where N is the number of weak learners of
the corresponding boosting method. We denote this baseline as N-FKM. We also compare against
the full information setting, which amounts to the method used in previous work (Beygelzimer
et al. (2015a), Algorithm 2), and compared to a linear model baseline updated with online gradient
descent (OGD). The main strength of our results compared to previous work of online boosting
Beygelzimer et al. (2015a) is the ability to handle partial information without a large loss of accu-
racy, as demonstrated in Table 2. Table 2 summarizes the average squared loss and the standard
deviation, and the last column refers to the relative loss decrease on average, of boosting in the
bandit setting compared to the N-FKM baseline.

The experiments we carry out were proposed by Beygelzimer et al. (2015a) for evaluating online
boosting. They are composed of several data sets for regression and classification tasks, obtained
from the UCI machine learning repository (and further described in the supplementary material).
We remark that our setting assumes noisy bandit feedback. Therefore, the true label cannot be
easily recovered even for binary label classification, and the task is significantly harder than in the
full information setting. This is also evident by the comparison over these datasets with previous
work (where the online boosting algorithm in the full information setting performs better since it
is given the true loss) and with the baseline in the bandit setting (which performs worse without
boosting), as shown in Table 2 .

For each experiment, reported are average results over 20 different runs. In the bandit setting,
each loss function evaluation was obtained with additive noise, uniform on [±.1], and gradients
were evaluated as in Algorithm 2. The only hyper-parameters tuned were the learning rate, N the
number of weak learners, and the smoothing parameter δ. Our theoretical guarantees determine that
only N :=

√
T iterations need to be used, and N is a pre-specified parameter. Empirically, we find

that a small number of iterations is sufficient, much smaller than
√
T , and was set to at most 30,

even for very large datasets (T ≈ 300K). Parameters were tuned based on progressive validation
loss on half of the dataset; reported is progressive validation loss on the remaining half. Progressive
validation is a standard online validation technique, where each training example is used for testing
before it is used for updating the model Blum et al. (1999).

D.1. Experimental setup description

The datasets were taken from the UCI machine learning repository, and their statistics are detailed
below, along with the link to a downloadable version of each dataset.

Dataset #Instances #Features Downloadable Task Label
version range

abalone 4,177 10 Link regression [1, 29]
adult 48,842 105 Link classification [0, 1]

census 299,284 401 Link classification [0, 1]
letter 20,000 16 Link classification [−1, 1]
slice 53,500 385 Link regression [0, 1]

Algorithm 2 was implemented in NumPy, and the weak online learner was a linear model up-
dated with FKM Flaxman et al. (2005), online projected gradient descent with spherical gradient
estimators. To facilitate a fair comparison to a baseline, we provided an FKM model with a N -
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point noisy bandit feedback, where N is the number of weak learners of the corresponding boosting
method. We denote this baseline as N-FKM. We also compare against the full information setting,
which amounts to the method used in previous work (Beygelzimer et al. (2015a), Algorithm 2), and
compared to a linear model baseline updated with online gradient descent (OGD).

The experiments we carry out were proposed by Beygelzimer et al. (2015a) for evaluating online
boosting, they are composed of several data sets for regression and classification tasks, obtained
from the UCI machine learning repository. For each experiment, reported are average results over
20 different runs. In the bandit setting, each loss function evaluation was obtained with additive
noise, uniform on [±.1], and gradients were evaluated as in Algorithm 2. The only hyper-parameters
tuned were the learning rate, N the number of weak learners, and the smoothing parameter δ:

• N was set in the range of [5, 30].

• δ was set to 1/2 in all the experiments.

• Learning rate at time t is lr ∗t−c where lr and c were set in the ranges [1e-04, 0.1], [.25, 1].
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