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Abstract
We give a unified way of testing and learning finite Markov chains from a single Markovian trajec-
tory, using the idea of k-cover time introduced here. The k-cover time is the expected length of a
random walk to cover every state at least k times. This generalizes the notion of cover time in the
literature. The error metric in the testing and learning problems is the infinity matrix norm between
the transition matrices, as considered by Wolfer and Kontorovich.

Specifically, we show that if we can learn or test discrete distributions using k samples, then
we can learn or test Markov chains using a number of samples equal to the k-cover time of the
chain, up to constant factors. We then derive asymptotic bounds on the k-cover time in terms of the
number of states, minimum stationary probability and the cover time of the chain. Our bounds are
tight for reversible Markov chains and almost tight (up to logarithmic factors) for irreducible ones.

Our results on k-cover time yield sample complexity bounds for a wider range of learning and
testing tasks (including learning, uniformity testing, identity testing, closeness testing and their
tolerant versions) over Markov chains, and can be applied to a broader family of Markov chains
(irreducible and reversible ones) than previous results which only applies to ergodic ones.
Keywords: Markov chains, learning and testing

1. Introduction

Learning and testing discrete distributions is an active research area (see, e.g., Anthony and Bartlett
(2009); Batu et al. (2001); Chan et al. (2014) and the references therein). Classical results include
Θ(n/ε2) as sample complexity for learning Anthony and Bartlett (2009) and Θ(

√
n/ε2) as sample

complexity for uniformity testing Paninski (2008). A number of other learning and testing problems
have been proposed and studied as well, including identity testing, closeness testing and tolerant
learning/testing (see, e.g., the survey by Canonne Canonne (2017)).

We consider these problems when the samples are not iid, but instead generated from a finite
Markov chain, as considered in Daskalakis et al. (2017); Wolfer and Kontorovich (2019b, 2020a).
Following Wolfer and Kontorovich (2019b, 2020a), we use the infinity matrix norm as the distance
measure.1 The main challenge in the Markovian case is that, since the samples are dependent, the
mixing properties of the chain needs to be taken into consideration.

Consider a Markov chain over discrete state space [n] = {1, 2, ..., n}. Given the initial stateX0,
one can generate the Markovian trajectory X1, X2, ..., XT according to the transition probabilities
P(Xt = j|Xt−1 = i) = pij for all t ≥ 1. Denote by M = (pij)i,j∈[n] the transition matrix of
this chain. The Markov chain is irreducible if for all i, j ∈ [n], there exists some t ∈ N such
that (M t)ij > 0. For each irreducible Markov chain, the fundamental theorem of Markov chain

1. Note that the infinity matrix norm is equivalent to the metric |||·||| in Wolfer and Kontorovich (2019b).
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guarantees a unique stationary distribution π = (π1, ..., πn) ∈ ∆n−1, which is entry-wise positive,
such that πM = π. Here ∆n−1 , {π : 1Tπ = 1, π ∈ Rn+} is the (n− 1)-dimensional probability
simplex. We denote the minimum stationary probability as π∗ , mini∈[n] πi.

If the chain is reversible in addition to being irreducible, it then satisfies the detailed balance
condition: pijπi = pjiπj ,∀i, j ∈ [n]. If a Markov chain is reversible, then the eigenvalues of its
transition matrix M are all real and can be denoted as λ1 = 1 > λ2 ≥ ... ≥ λn ≥ −1. The
spectral gap of this chain is γ , 1 − λ2, and the absolute spectral gap of this chain is γ∗ ,
min{1 − |λ2|, 1 − |λn|}. It is well known that γ∗ characterizes the mixing time tmix of reversible
chains via the inequalities Ω(1/γ∗) ≤ tmix ≤ O(ln(1/π∗)/γ∗).

(Uniformly) ergodic chains form a sub-family of irreducible chains that also satisfies the aperi-
odicity condition. For ergodic chains, the mixing time is similarly characterized by Paulin’s pseudo-
spectral gap γps Paulin (2015). This quantity generalizes the absolute spectral gap by suitably re-
versiblizing the chain. Formally, γps , maxk≥1

1
kγ((MT )kMk).

Given a Markovian trajectory Xm = (X0, . . . , Xm) from some unknown Markov chain M up
to time m, we are interested in learning M from this trajectory. A popular choice in the literature is
the plug-in estimator M̂ defined as M̂ = (Nij/m)i,j∈[n], where Nij is the the number of transitions
from state i to state j in this trajectory. The quality of any estimator M̂ is then valued by its closeness
to M under some distance measure d(M, M̂).

Besides learning, there are also testing tasks including uniformity testing, identity testing and
closeness testing. We list the following four natural learning and testing tasks for Markov chains
here.

1. (ε, δ)-Learning : Given small constants δ, ε ∈ (0, 1), and a Markovian trajectory Xm
1 from

some unknown chain M , an (ε, δ)-learning algorithm A outputs a transition matrix M̂ =
A(Xm

1 , n) such that d(M̂,M) ≤ ε with probability ≥ 1− δ.

2. (ε, δ)-Uniformity Testing : Given small constants δ, ε ∈ (0, 1), and a Markovian trajec-
tory Xm

1 from some unknown chain M , an (ε, δ)-uniformity testing algorithm A(Xm
1 ,M, n)

outputs “Yes” if M = Mu and “No” if d(M,Mu) ≥ ε with probability ≥ 1 − δ. Here
Mu = 1

n1
T1 yields exactly uniform i.i.d samples.

3. (ε, δ)-Identity Testing : Given small constants δ, ε ∈ (0, 1), a known reference Markov
chain M and a Markovian trajectory Xm

1 from another unknown chain M ′, an (ε, δ)-identity
testing algorithm A(Xm

1 ,M, n) outputs “Yes” if M = M ′ and “No” if d(M,M ′) ≥ ε with
probability ≥ 1− δ.

4. (ε, δ)-Closeness Testing : Given small constants δ, ε ∈ (0, 1), two Markovian trajectories
Xm

1 , Y
m

1 from unknown Markov chains M,M ′ respectively, an (ε, δ)-closeness testing algo-
rithm A(Xm

1 , Y
m

1 , n) outputs “Yes” if M = M ′ and “No” if d(M,M ′) ≥ ε with probability
≥ 1− δ.

For testing problems, there are also tolerant versions: Given 0 < ε1 < ε2 < 1, decide whether
d(M,M ′) ≤ ε1 or d(M,M ′) ≥ ε2. These tolerant testing tasks are in general harder than vanilla
testing tasks. Details about tolerant testing will be covered in Section 3.

Previous works considered various distance measures d(M, M̂): matrix norms, Hellinger-based
distance and the minimax prediction risk. We now discuss these distance measures.
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• Infinity Matrix Norm: Learning Markov chains under the infinity matrix norm ‖M̂ −M‖∞
is studied in Wolfer and Kontorovich (2019b). It is shown that a certain estimator (not the
empirical one) achieves near-optimal sample complexity Θ̃ (1/γpsπ∗ + n/π∗ε2) for learning er-
godic chains. And later, they considered identity testing ergodic chains under this distance,
showing that one can achieve near optimal sample complexity Θ̃ (1/γpsπ∗ +

√
n/π∗ε2) Wolfer

and Kontorovich (2020a). Recently, this distance is also studied in Wolfer and Kontorovich
(2020b) for learning a Markov chain with a countable state space.

• A Hellinger-based Distance: The distance d√(M̂,M) was proposed to study identity testing
problem of Markov chains in Daskalakis et al. (2017); Cherapanamjeri and Bartlett (2019).
However, identity testing under this distance only works for symmetric Markov chains, which
is a quite restricted sub-family of Markov chains. Also, this distance measure fails to satisfy
the triangle inequality and is not a metric Daskalakis et al. (2017). Thus we do not study
learning and testing problems under this distance.

• Minimax Prediction Risk: The problem of learning Markov chains under some smooth f -
divergence based minimax prediction risk ρ(M̂,M) was studied in Hao et al. (2018). They
deduced the near-optimality of the (smoothed) plug-in estimator for achieving low risk, so
long as mini,j pij > 0. This is a fairly strong restriction on Markov chains. Hence, we are
not interested in this measure either.

As the above discussion shows, both the Hellinger-based distance and the one based on the
minimax population risk put stringent conditions on the families of Markov chains we can study.
Thus, we stick with using matrix norms as the distance measure. Moreover, we find the infinity
matrix norm ‖·‖∞ natural for its intimate connection to learning and testing with i.i.d. samples, as
shown previously in Wolfer and Kontorovich (2019b, 2020a,b). Formally, we have

‖M −M ′‖∞ = max
i∈[n]

∑
j∈[n]

|pij − p′ij |

 = max
i∈[n]

2dTV(pi,p
′
i).

Here pi = (pi1, pi2, ..., pin) denotes the outgoing transition probabilities from state i, and dTV
denotes the total variation distance.

In this paper, we shed light on the connection between learning and testing problems for Markov
chains and those with i.i.d. samples. Specifically, we prove that the sample complexity of learning
and testing Markov chains is controlled by a combinatorial quantity t(k)

cov of the unknown chain which
we dub as the k-cover time. Informally speaking, we show that if the sample complexity of (ε, δ)-
learning/testing discrete distributions under dTV is k(ε, δ), then the sample complexity of learning
and testing Markov chains under ‖·‖∞ is upper bounded by tk(ε,δ′)

cov of the unknown chain.
Our argument works for a large family of learning and testing tasks including learning, unifor-

mity testing, identity testing, closeness testing and related tolerant versions of testing problems. Our
main results (Theorem 20 and Theorem 27) generalize previous Markov chain learning Wolfer and
Kontorovich (2019b) and Markov chain Identity Testing Wolfer and Kontorovich (2020a) results to
every similarly-defined learning and testing problems on Markov chains. Further, previous results
by Wolfer and Kontorovich only hold for ergodic chains, while our results hold more generally for
irreducible chains — arguably the most general family of chains having a finite sample complexity
guarantee.
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Towards our main results, we also prove tight bounds for the k-cover time in terms of k,
minimum stationary probability and the cover time. For reversible chains, our bounds t(k)

cov =
Θ(k/π∗ + tcov) are tight up to constant factors (Theorem 13 and Theorem 19). For irreducible
chains, our upper bound t(k)

cov = Õ(k/π∗ + tcov) is tight up to logarithmic factors (Theorem 13 and
Theorem 22).

2. Preliminaries

In this section, we review some related definitions, lemmas and theorems which will be useful in our
analysis. Specifically, we review some backgrounds on testing and learning discrete distributions as
well as the Ray–Knight’s isomorphism theorem.

2.1. Testing and Learning Discrete Distributions

Testing and learning discrete distributions with i.i.d. samples is a well studied topic, especially under
the total variation distance. The following theorem summarizes some results in this area, including
sample complexity bounds for learning, identity testing, closeness testing and so on.

Theorem 1 ((ε, δ)-learning/testing discrete distributions) The sample complexity of (ε, δ)-learning/testing
discrete distributions via i.i.d. samples over state space [n] is as the following.

1. (ε, δ)-learning (Anthony and Bartlett (2009)): The sample complexity is Θδ(n/ε
2).

2. (ε, δ)-uniform testing (Paninski (2008)): The sample complexity is Θδ(
√
n/ε2).

3. (ε, δ)-identity testing (Batu et al. (2001); Valiant and Valiant (2017)): The sample complexity
is Θδ(

√
n/ε2).

4. (ε, δ)-closeness testing (Chan et al. (2014), Theorem 1): The sample complexity is Θδ(max{
√
n/ε2, n2/3/ε4/3}).

5. (ε1, ε2, δ)-tolerant-uniformity testing (Valiant and Valiant (2011), Theorem 3 and 4): The
sample complexity is Oδ(n/ lnn(ε2 − ε1)2).

6. (ε1, ε2, δ)-tolerant-identity testing (Valiant and Valiant (2011), Theorem 3 and 4): The sample
complexity is Oδ(n/ lnn(ε2 − ε1)2).

7. (ε1, ε2, δ)-tolerant-closeness testing (Valiant and Valiant (2011), Theorem 3 and 4): The sam-
ple complexity is Oδ(n/ lnn(ε2 − ε1)2).

8. (ε/2
√
n, ε, δ)-tolerant-uniform testing (Goldreich and Ron (2011), rephrased): The sample

complexity is Oδ(
√
n/ε4).

9. (ε3/300
√
n lnn, ε, δ)-tolerant-identity testing (Batu et al. (2001), Theorem 24): The sample

complexity is Oδ(
√
n lnn/ε6).

Here Θδ hides the logarithmic term in δ.

In the next section, we will show how Markov chain problems are related to i.i.d. sample prob-
lems via the k-cover time.
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2.2. Ray–Knight’s Isomorphism Theorem

Given an infinite Markovian trajectory X∞1 and t ≥ 1, let {NX
i (t),∀i ∈ [n]} be the counting

measure of states [n] appearing in the subtrajectory Xt
1 up to time t, and we denote the empirical

distribution induced by the trajectory as π̂(t) = (N1(t)/t, ..., Nn(t)/t). We define the random cover
time as τXcov , inf{t : ∀i ∈ [n], NX

i (t) > 0}, the first time to have visited every state. For clearer
illustration, we omit the superscript X in NX

i (t) and τXcov in the rest of the paper when it does not
incur ambiguity. The expectation of τcov given a fixed initial state i0 is E[τcov|X0 = i0] and the
expected cover time is the maximum over the initial state, tcov , maxi0∈[n] E[τcov|X0 = i0].

The random hitting time is the first time when a certain state gets hit by the random walk.
Specifically, for some j ∈ [n] the random hitting time is τhit(j) , inf{t : Nj(t) > 0}. The hitting
time is then defined as thit = maxi0,j∈[n] E[τhit(j)|X0 = i0].

For any reversible Markov chain, denote Π = Diag(π), then A = ΠM is a symmetric matrix
due to reversibility. Specially, associate with A an undirected graph G = (V,E,w) with |V | = n
and edge weights wij ∝ πipij , which follows the matrix A. Then the Markov chain is connected
to the random walk over this undirected weighted graph via pij = wij/

∑
j wij . We denote ci =∑

j wij ∝ πi as the capacity of node i and consider each edge with weight wij as a wire with
capacitance wij , or equivalently, a wire with resistance 1/wij . Then we can also think of this graph
as a resistance network. Given any two node i, j, we denote the effective resistance between i, j
over this network as rij . Specially, we denote c =

∑
i ci as the total capacity.

The continuous-time Markov chain can be constructed from a discrete Markov chain by setting
an exponential clock τexp ∼ Exp(1) to determine the time interval between jumps. Fix the starting
state as i0 ∈ [n], the local time for state i ∈ [n] and time t is

Lit ,
1

ci

∫ t

0
1{Xs=i}ds.

The inverse local time for state i is

τinv(t) , inf{s : Lis > t},

where the dependence on i is hidden in the notation and will be clear from the context. Following
Ding et al. (2011); Ding (2014), we will analyze the (k-) cover time via the local time process{
Liτinv(t) : i ∈ [n]

}
.

We now recall the generalized second Ray-Knight isomorphism theorem of Eisenbaum et al.
(2000) (see also (Marcus and Rosen, 2006, Theorem 8.2.2)).

Theorem 2 (Generalized Second Ray-Knight isomorphism theorem) Fix some state i0 ∈ [n]
and denote T0 , τhit(i0). We let

Γi0(i, j) = E[LjT0 |X0 = i] =
1

2
(ri0i + ri0j − rij)

and let η = {ηi : i ∈ [n]} be a mean zero Gaussian process with covariance Γi0(i, j). Let Pi0
and Pη be the measure on the process

{
Liτinv(t)

}
and {ηx}, respectively. Then under the measure

Pi0 × Pη, for any t > 0, we have the following equality in distribution:{
Liτinv(t) +

1

2
η2
i : i ∈ [n]

}
d.
=

{
1

2
(η′i +

√
2t)2 : i ∈ [n]

}
.
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This powerful isomorphism theorem was used by Ding et al. (2011) to prove the “blanket time
conjecture” of Winkler and Zuckerman (1996). And the Gaussian process described above is called
the Gaussian free field in the literature. We cite the main theorem of Ding et al. (2011) for future
reference.

Theorem 3 (Constant-factor approximation of cover time) For the random walk on reversible
Markov chains, fix some i0 ∈ [n] as starting state, and let η = {ηi : i ∈ [n]} be the Gaussian
process described in Theorem 2. Then we have

tcov � c
(
Emax

i
ηi

)2

.

The k-cover time naturally generalizes the cover time, and underpins our arguments for sample
complexity bounds. Roughly speaking, it measures the expected length of the Markovian trajectory
to ensure covering each state k times.

Definition 4 (k-cover time) For any k ∈ N+, the random k-cover time τ (k)
cov is the first time when

every state in [n] has been visited k times, i.e., τ (k)
cov , inf{t : ∀i ∈ [n], Ni(t) ≥ k}. And the k-cover

time is t(k)
cov , maxi0∈[n] E[τ

(k)
cov |X0 = i0].

Note that the k-cover time coincides with the cover time when k = 1. And we refer the readers
to Levin and Peres (2017); Aldous and Fill (1995) for a wonderful exposition of techniques and
results on Markov chains.

The rest of this paper is structured as follows. In Section 3, we connect Markov chain learn-
ing/testing to k-cover time. In Section 4, we bound the k-cover time of reversible chains via the
isomorphism theorem, and discuss its implications on testing and learning. In Section 5, we bound
the k-cover time of irreducible chains, discuss its consequences and end with several open problems.

3. Learning and Testing Markov Chains via k-cover Time

In this section, we will see how k-cover time is closely related to Markov chain learning and testing
problems. In the following, we argue that if k(n, ε, δ) i.i.d. samples are enough to (ε, δ)-learn/test n-
state discrete distributions under total variation distance, then tk(n,ε,O(δ/n))

cov samples are sufficient to
learn/test the Markov chain under infinity matrix norm. We first prove the following simple lemma.

Lemma 5 (Exponential decay lemma) For random walk on irreducible chains, for any k,m ∈
N+, and any initial distribution q, we have P(τ

(k)
cov ≥ emt(k)

cov) ≤ e−m.

Proof Consider τ (k)
cov with any fixed starting state X0 ∼ q, we have by Markov’s inequality and

linearity of expectation that

P(τ
(k)
cov ≥ et(k)

cov) ≤ P(τ
(k)
cov ≥ eE[τ

(k)
cov |X0]) ≤ 1/e. (1)

Note that this inequality holds for any initial distribution of starting state q. We then bound
P(τ

(k)
cov ≤ emt(k)

cov) ≥ e−m by induction.
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First, we consider the first two sub-trajectories of the Markov chain, each of length l , et
(k)
cov,

i.e., the chain X l
1 and X2l

l+1. Denote the event E1 , {X l
1 covers the state space k times}, and

E2 , {X2l
l+1 covers the state space k times}. Suppose X0 is drawn from q ∈ ∆n−1, then according

to Eq. (1), we have P(Ec1) = P(τ
(k)
cov ≥ et

(k)
cov) ≤ 1/e. Denote the distribution of Xl conditioned on

Ec1 as q′, and τ (k)′
cov as the k-cover time of X∞l+1, then we have P(Ec2|Ec1) = P(τ

(k)′
cov ≥ et

(k)
cov|τ (k)

cov ≥
et

(k)
cov) = P(τ

(k)′
cov ≥ et

(k)
cov|Xl ∼ q′) ≤ 1/e. Here we used the fact that E1 is determined by X l

1;
while due to Markovian property, E2 do not depend on X l−1

1 .
The above reasoning gives P(Ec1 ∩ Ec2) = P(Ec1)P(Ec2|Ec1) ≤ e−2. Similarly, we can deduce

that P(∩i∈[m]E
c
i ) ≤ e−m. But the event E , {Xml

1 covers the state space k times} includes the
event ∪i∈[m]Ei, thus P(Ec) ≤ P(∩i∈[m]E

c
i ) ≤ e−m. This proves the lemma.

3.1. Learning Markov Chains

Given any (ε, δ)-learner L(Y m
1 , n) for discrete distributions that outputs p̂ with i.i.d. samples Y m

1

from p ∈ ∆n−1, we consider the following learning algorithm for Markov chains. Here k(n, ε, δ)
is the sample complexity of (ε, δ)-learn a discrete distribution using i.i.d. samples.

Input: a Markovian trajectory Xm
1 , parameters n, ε, δ

Output: a candidate Markov chain M̂
for i← 1, 2, ..., n do

if NX
i (m) ≤ k(n, ε, δ/2n) then
p̂i ← 1

n1
else

Let Yi,1, Yi,2, ..., Yi,k(n,ε,δ/2n) be the first k(n, ε, δ/2n) succeeding states of state i in Xm
1

p̂i ← L((Yi,1, ..., Yi,k(n,ε,δ/2n)), n)

end
end
return M̂ ← (p̂1, ..., p̂n)

Algorithm 1: LEARNCHAIN

Then we have the following lemma about the sample complexity of learning Markov chains.

Lemma 6 (k-cover time and learning Markov chain) If we have a (ε, δ)-learner for n-state dis-
tribution with sample complexity k(n, ε, δ), then we can (ε, δ)-learning the chainM usingOδ(t

k(n,ε,δ/2n)
cov )

samples. Here Oδ hides logarithmic factors in δ.

Proof Since we have P(τ
(k)
cov ≥ emt(k)

cov) ≤ e−m according to Theorem 5, then by taking m = ln 2
δ ,

we have P(τ
(k)
cov ≥ et

(k)
cov ln 2

δ ) ≤ δ
2 . Thus, for a length l = et

k(n,ε,δ/2n)
cov ln 2

δ trajectory, we will have
k(n, ε, δ/2n) samples for each states in [n] with probability ≥ 1 − δ/2. We consider the infinite
chain X∞1 , and define the event E = {Ni(l) ≥ k(n, ε, δ/2n)}, Ei = { first k samples for state
i from X∞1 yields dTV(p̂i,pi) ≤ ε}. Then P(E) ≥ 1 − δ/2, and P(Ec) ≤ δ/2; also we have
P(Ei) ≥ 1 − δ/2n, and P(Eci ) ≤ δ/2n, due to the Markov property and the guarantee of the
discrete distribution learner L.

This gives that P(E ∩ E1... ∩ En) = 1 − P(Ec ∪ Ec1... ∪ Ecn). But by union bound P(Ec ∪
Ec1... ∪ Ecn) ≤ P(Ec) +

∑n
i=1 P(Eci ) ≤ δ. And E ∪ E1... ∪ En implies that we have for all

7
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i ∈ [n], dTV(p̂i,pi) ≤ ε, which guarantees ‖M̂ −M‖∞ = maxi∈[n] dTV(p̂i,pi) ≤ ε. Thus, with

probability ≥ 1 − δ, we will have both τ (k)
cov ≤ et

(k)
cov ln 2

δ and ‖M̂ −M‖∞ ≤ ε. Therefore, we can

(ε, δ)-learn the chain using Oδ(t
k(n,ε,δ/2n)
cov ) samples.

3.2. Identity Testing of Markov Chains

We now consider the task of identity testing of Markov chains. Given any (ε, δ)-identity-tester
T (Y m

1 , n,p) for discrete distributions that outputs “Yes” if p = p′ and “No” if dTV(p,p′) ≥ ε, we
consider the following identity testing algorithm for Markov chains. Here k(n, ε, δ) is the sample
complexity of (ε, δ)-identity-test a discrete distribution using i.i.d. samples.

Input: a Markovian trajectory Xm
1 , parameters n, ε, δ, a reference chain M

Output: “Yes” if M = M ′, “No” if ‖M −M ′‖∞ ≥ ε
for i← 1, 2, ..., n do

if NX
i (m) ≤ k(n, ε, δ/2n) then

return “No”
else

Let Yi,1, Yi,2, ..., Yi,k(n,ε,δ/2n) be the first k(n, ε, δ/2n) succeeding states of state i in Xm
1 if

T ((Yi,1, ..., Yi,k(n,ε,δ/2n)), n,pi) = “No” then
return “No”

end
end

end
return “Yes”

Algorithm 2: IDTESTCHAIN

Similarly, we have the following lemma about the sample complexity of identity-testing Markov
chains.

Lemma 7 (k-cover time and identity-testing Markov chain) If we have a (ε, δ)-identity-tester
for n-state distribution with sample complexity k(n, ε, δ), then we can (ε, δ)-identity-testing the
chainM against unknown chainM ′ usingOδ(t

k(n,ε,δ/2n)
cov (M)) samples. HereOδ hides logarithmic

factors in δ, and we use t(k)
cov(M) to specify the k-cover time of M instead of M ′.

Proof We consider two cases (i) M = M ′ and (ii) ‖M −M ′‖∞ ≥ ε as the following. Similarly,
we consider the infinite chain X∞1 , and denote E = {Ni(l) ≥ k(n, ε, δ/2n)}, Ei = { the first k
samples for state i from X∞1 yields “No” during the test }.
Case 1. M = M ′.

Due to Theorem 5, for a length l = et
k(n,ε,δ/2n)
cov ln 2

δ trajectory, we will have k(n, ε, δ/2n)
samples for each state with probability ≥ 1 − δ/2, thus P(E) ≥ 1 − δ/2. Moreover, by Markov
property and the guarantee of the learner, the event Ei happens with probability P(Ei) ≤ δ/2n for
any i ∈ [n]. Thus by a union bound, error events happen with probability P(Ec ∪ E1... ∪ En) ≤ δ.
And with probability ≥ 1− δ, the identity tester will answer “Yes”.
Case 2. ‖M −M ′‖∞ ≥ ε.

8



LEARNING MARKOV CHAINS VIA k-COVER TIME

The only case it makes fault by answering “Yes” is when it do not pass Line 2 and Line 6
for all states, which means it will have enough samples for testing each state, and the i.i.d. tester
T answers “Yes” for all sub-tests {pi,∀i ∈ [n]}. Since ‖M − M ′‖∞ ≥ ε implies there exists
i∗ ∈ [n] such that dTV(pi∗ ,p

′
i∗) ≥ ε, and this guarantees that the sub-test for i∗ will return “No”

with probability P(Ei∗) ≥ 1− δ/2n. Thus the probability of the whole process answering “Yes” is
P(E ∩ Ec1... ∩ Ecn) ≤ P(Eci∗) ≤ δ/2n.

To sum up, for both cases, the identity tester will give the correct answer with probability ≥
1− δ. This proves the lemma.

3.3. Closeness Testing of Markov Chains

We now considering the task of closeness testing of Markov chains. Given any (ε, δ)-closeness-
tester T (Y m

1 , Y m′
1 , n) for discrete distributions that outputs “Yes” if p = p′ and “No” if dTV(p,p′) ≥

ε, we consider the following identity testing algorithm for Markov chains, where k(n, ε, δ) is the
sample complexity of (ε, δ)-closeness-test a discrete distribution using i.i.d. samples.

Input: two Markovian trajectories Xm
1 , Xm′

1 , parameters n, ε, δ
Output: “Yes” if M = M ′, “No” if ‖M −M ′‖∞ ≥ ε
for i← 1, 2, ..., n do

if NX
i (m) ≤ k(n, ε, δ/2n) or NX′

i (m) ≤ k(n, ε, δ/2n) then
return “No”

else
Let Yi,1, Yi,2, ..., Yi,k(n,ε,δ/2n) be the first k(n, ε, δ/2n) succeeding states of state i in Xm

1

Let Y ′i,1, Y
′
i,2, ..., Y

′
i,k(n,ε,δ/2n) be the first k(n, ε, δ/2n) succeeding states of state i in Xm′

1

if T ((Yi,1, Yi,2, ..., Yi,k(n,ε,δ/2n)), (Y
′
i,1, ..., Y

′
i,k(n,ε,δ/2n)), n) = “No” then

return “No”
end

end
end
return “Yes”

Algorithm 3: CLOSETESTCHAIN

We then have the following lemma connecting k-cover time to the sample complexity of closeness-
testing Markov chains.

Lemma 8 (k-cover time and closeness-testing Markov chain) If we have a (ε, δ)-closeness-tester
for n-state distribution with sample complexity k(n, ε, δ), then we can (ε, δ)-closeness-testing the
unknown chains M,M ′ using Oδ(min{tk(n,ε,δ/4n)

cov (M), t
k(n,ε,δ/4n)
cov (M ′)}) samples. Here Oδ hides

logarithmic factors in δ.

Proof Consider the cases (i) M = M ′ and (ii) ‖M −M ′‖∞ ≥ ε as the following. Consider the
infinite chain X∞1 , and denote EX = {NX

i (l) ≥ k(n, ε, δ/4n)}, EY = {NY
i (l) ≥ k(n, ε, δ/4n)},

Ei = { the first k samples for state i from X∞1 yields “No” during the test }.
Case 1. M = M ′.

Due to Theorem 5, for a length l = et
k(n,ε,δ/4n)
cov ln 2

δ trajectory, we will have k(n, ε, δ/4n)
samples for each state with probability P(EX) ≥ 1− δ/4 and P(EY ) ≥ 1− δ/4. By a union bound

9
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over the two chains, the probability of passing the condition in Line 2 of Algorithm 2 is ≥ 1− δ/2.
Then we have P(Ei) ≤ δ/4n, and error probability P(EcX ∪ EcY ∪ E1... ∪ En) ≤ 3δ/4. Thus with
probability ≥ 1− δ the identity tester will answer “Yes”.
Case 2. ‖M −M ′‖∞ ≥ ε.

The only case it answers “Yes” is when it do not pass Line 2 and Line 7 in Algorithm 3 for
all states, which means it will have enough samples for testing each state, and the i.i.d. tester T
answers “Yes” for all sub-tests. Then essentially the same argument in Theorem 7 will give that
P(Ei∗) ≥ 1 − δ/4n for some i∗. Therefore, the probability of answering “Yes” is P(EX ∩ EY ∩
Ec1... ∩ Ecn) ≤ P(Eci∗) ≤ δ/4n. This proves the lemma.

3.4. Tolerant Testing and More

We now considering the task of tolerant identity/closeness testing of Markov chains. Given any
(ε1, ε2, δ)-tolerant-identity-tester T (Xm

1 , n,p) for discrete distributions that outputs “Yes” if dTV(p,p′) ≤
ε1 and “No” if dTV(p,p′) ≥ ε2, we can construct similar tolerant tester for Markov chains as above.
We have the following propositions for tolerant testing problems.

Lemma 9 (k-cover time and tolerant-identity-testing Markov chain) If we have a (ε1, ε2, δ)-
tolerant-identity-tester for n-state distribution with sample complexity k(n, ε1, ε2, δ), then we can
(ε1, ε2, δ)-tolerant-identity-testing M against the unknown chains M using

Oδ(max{tk(n,ε1,ε2,δ/2n)
cov (M), t

k(n,ε1,ε2,δ/2n)
cov (M ′)})

samples.

Lemma 10 (k-cover Time and Tolerant-closeness-testing Markov Chain) If we have a (ε1, ε2, δ)-
tolerant-closeness-tester for n-state distribution with sample complexity k(n, ε1, ε2, δ), then we can
(ε1, ε2, δ)-tolerant-closeness-testing the unknown chains M,M ′ using

Oδ(max{tk(n,ε1,ε2,δ/4n)
cov (M), t

k(n,ε1,ε2,δ/4n)
cov (M ′)})

samples.

Besides these, we also have the problem of testing with respect to uniform distributions. We
have the following problem for the Markov chain scenario. Given a trajectory Xm

1 from M ′, can
we test whether it comes from uniform distribution M = 1

n11
T , or it comes from M ′ such that

‖M ′ −M‖∞ ≥ ε. Then we have the following propositions.

Lemma 11 (k-cover Time and Uniform-testing Markov Chain) If we have a (ε, δ)-uniform-tester
for n-state distribution with sample complexity k(n, ε, δ), then we can (ε, δ)-uniform-testing against
unknown chain M ′ using Oδ(t

k(n,ε,δ/2n)
cov (M)) samples, where M = 1

n11
T . We remark that it does

not depend on the k-cover time of the unknown chain.

Lemma 12 (k-cover Time and Tolerant-uniform-testing Markov Chain) If we have a (ε1, ε2, δ)-
tolerant-uniform-tester for n-state distribution with sample complexity k(n, ε1, ε2, δ), then we can
(ε1, ε2, δ)-tolerant-uniform-testing against the unknown chains M ′ using Oδ(t

k(n,ε1,ε2,δ/2n)
cov (M ′))

samples.

10
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As the above arguments show, k-cover time establishes a universal connection between the
testing and learning problems of Markov chains and discrete distributions. In a sense, the Markov
chain learning/testing problems can be reduced to those over discrete distributions via k-cover time.
Thus an interesting question would be to bound the k-cover time, in terms of basic quantities like
n, π∗ and tcov associated with a Markov chain. In the next section, we will prove that t(k)

cov =

Θ(tcov + k/π∗) for reversible chains and t(k)
cov = Θ̃(tcov + k/π∗) for irreducible chains. These

bounds on k-cover time then gives nice sample complexity bounds on learning/testing Markov chain
problems in an unified version.

4. The k-cover Time of Reversible Chains

In this section, we focus on bounding the k-cover time of reversible Markov chains with respect to
the basic quantities n, π∗ and tcov. First, we prove an universal lower bound of k-cover time that
applies to all irreducible Markov chains. Then we prove a tight upper bound on t(k)

cov for reversible
Markov chains.

4.1. Lower Bound for General Irreducible Chains

We have the following lower bound on t(k)
cov for all irreducible Markov chains. To prove the lemma,

we will use the connection to return time. For some state i ∈ [n], the return time τret(i) is the first
time a Markov chain starting at i returns to i. And the expected return time is tret(i) = E[τret|X0 =
i]. It is standard result that tret(i) = 1/πi.

Lemma 13 (lower bound on k-cover time) For any irreducible Markov chain with minimum sta-
tionary probability π∗ and cover time tcov, we have t(k)

cov = Ω(k/π∗ + tcov).

Proof Clearly we have t(k)
cov ≥ tcov for all k ≥ 1. We will show tcov ≥ (k − 1)/π∗, which proves

the lemma. Denote i∗ = arg mini∈[n] πi and the pth time of hitting state i∗ as τ (p)
hit (i∗), then it’s

clear that τ (k)
cov ≥ τ

(k)
hit (i∗) for any chain. Thus E[τ

(k)
cov |X0 = i0] ≥ E[τ

(k)
hit (i∗)|X0 = i0]. Note that

τ
(k)
hit (i∗) = τhit(i∗) +

∑k
j=2

(
τ

(j)
hit (i∗)− τ (j−1)

hit (i∗)
)
. Then we have

E[τ
(k)
hit (i∗)|X0 = i0] =E

[
τhit(i∗) +

k∑
j=2

(
τ

(j)
hit (i∗)− τ (j−1)

hit (i∗)
)
|X0 = i0

]
=E[τhit(i∗)|X0 = i0] +

k∑
j=2

E
[
τ

(j)
hit (i∗)− τ (j−1)

hit (i∗)|X0 = i0
]

≥
k∑
j=2

E
[
τ

(j)
hit (i∗)− τ (j−1)

hit (i∗)|X0 = i0
]

(2)

Note that due to the Markov property, τ (j)
hit (i∗)− τ (j−1)

hit (i∗) in fact has the same distribution as
τret(i∗). This certifies that E

[
τ

(j)
hit (i∗)− τ (j−1)

hit (i∗)|X0 = i0
]

= (k−1)tret(i∗) = (k−1)/π∗. Thus,

we have t(k)
cov ≥ (k − 1)/π∗ and the lemma is proved.

11



LEARNING MARKOV CHAINS VIA k-COVER TIME

4.2. Upper Bound for Reversible Chains

Now we prove a matching upper bound for reversible Markov chains using the Ray–Knight’s iso-
morphism theorem. The following lemma on the concentration of the supremum of a Gaussian
process is useful Ding et al. (2011).

Lemma 14 (Gaussian supremum lemma) Consider a Gaussian process {ηi : i ∈ [n]} and define

σ = supi∈[n]

√
E η2

i . Then for α > 0, we have

P

(∣∣∣ sup
i∈[n]

ηi − E sup
i∈[n]

ηi

∣∣∣ > α

)
≤ 2 exp(−α2/2σ2).

Also, we will use the concentration of the inverse local time (Ding, 2014, Lemma 2.1).

Lemma 15 (Inverse local time lemma) Let X be a continuous time random walk on an electrical
network, and denote c =

∑
i,j∈[n]wij be the total conductance. Fixing any state i0 ∈ [n], let

R , maxi,j∈[n] E(ηi − ηj)2 and τinv(t) be the inverse local time for i0. Then for any t ≥ 0 and
λ ≥ 1,

P
(∣∣∣τinv(t)− c · t

∣∣∣ ≥ 1

2
(
√
λRt+ λR) · c

)
≤ 6 exp(−λ/16).

Armed with this lemma, then we can prove an upper bound on the k-cover time of reversible
Markov chains for the continuous-time scenario as the following.

Theorem 16 (k-cover time of continuous-time reversible chains) For continuous-time random
walk on reversible chains, we have t(k)

cov = O(k/π∗ + tcov).

Proof We fix any i0 ∈ [n], and let τinv(t) be the corresponding inverse local time for i0. Note
by τinv(t), with high probability, we should have accumulated Ω(t) local time at each node. To
show this, we denote Λ = E supi ηi and for some small constant δ ∈ (0, 1), consider the event
E = {infi L

i
τinv(t) ≤ δt}. Note that by the isomorphism theorem (Theorem 2),{

Liτinv(t) +
1

2
η2
i : i ∈ [n]

}
d.
=

{
1

2
(η′i +

√
2t)2 : i ∈ [n]

}
.

Thus we have

P
(

inf
i
Liτinv(t) +

1

2
η2
i ≤ (1 + δ)t/2

)
= P

(
inf
i

1

2
(η′i +

√
2t)2 ≤ (1 + δ)t/2

)
.

And we also have

P
(

inf
i
Liτinv(t) +

1

2
η2
i ≤ (1 + δ)t/2

)
≥ P

(
inf
i
Liτinv(t) + sup

i

1

2
η2
i ≤ (1 + δ)t/2

)
.

Moreover, suppose infi L
i
τinv(t) ≤ δt and infi L

i
τinv(t) + supi

1
2η

2
i ≥ (1 + δ)t/2, then we must

have

sup
i

1

2
η2
i ≥ (1 + δ)t/2− inf

i
Liτinv(t) ≥ (1− δ)t/2.

12
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This shows that

P(E) ≤ P(sup
i

1

2
η2
i ≥ (1− δ)t/2 or inf

i
Liτinv(t) + sup

i

1

2
η2
i ≤ (1 + δ)t/2).

By union bound and previous inequalities we have

P(E) ≤ P(sup
i

1

2
η2
i ≥ (1− δ)t/2) + P(inf

i

1

2
(η′i +

√
2t)2 ≤ (1 + δ)t/2)

≤ P(sup
i
|ηi| ≥

√
(1− δ)t) + P(inf

i
η′i ≤

√
(1 + δ)t−

√
2t)

(3)

Here we used the fact that infi |η′i +
√

2t| ≥ infi η
′
i +
√

2t. Note that by symmetry of centered
Gaussian process, we have

P(inf
i
η′i ≤

√
(1 + δ)t−

√
2t) = P(sup

i
η′i ≥

√
2t−

√
(1 + δ)t)

and
P(sup

i
|ηi| ≥

√
(1− δ)t) = P(sup

i
ηi ≥

√
(1− δ)t or inf

i
ηi ≤ −

√
(1− δ)t)

≤ P(sup
i
ηi ≥

√
(1− δ)t) + P(inf

i
ηi ≤ −

√
(1− δ)t)

= 2P(sup
i
ηi ≥

√
(1− δ)t)

(4)

Now by concentration of the supremum of a Gaussian process, we deduce that for t ≥ Λ2/(1−
δ),

P(sup
i
ηi ≥

√
(1− δ)t) = P(sup

i
ηi − Λ ≥

√
(1− δ)t− Λ)

≤ P(| sup
i
ηi − Λ| ≥

√
(1− δ)t− Λ)

≤ 2 exp(−(
√

(1− δ)t− Λ)2/2σ2).

(5)

Similarly, we have for t ≥ Λ2/(
√

2−
√

1 + δ)2,

P(sup
i
η′i ≥

√
2t−

√
(1 + δ)t) = P(sup

i
η′i − Λ ≥

√
2t−

√
(1 + δ)t− Λ)

≤ 2 exp(−(
√

2t−
√

(1 + δ)t− Λ)2/2σ2).
(6)

To this end, we have shown that for δ = 1/2, and t ≥ 8Λ2/(2−
√

3)2 ' 228.6Λ2,

P(E) ≤ 4 exp(−(
√
t−
√

2Λ)2/4σ2) + 2 exp(−((2−
√

3)
√
t−
√

2Λ)2/4σ2)

≤ 6 exp(−((2−
√

3)
√
t−
√

2Λ)2/4σ2)

≤ 6 exp(−(2−
√

3)2t/16σ2)

≤ 6 exp(−t/450σ2)

(7)

Finally, we have shown that P(mini L
i
τinv(t) ≤ t/2) ≤ 6 exp(−t/450σ2) for t ≥ 230Λ2. Now we

will use the concentration of the inverse local time.

P
(∣∣∣τinv(t)− c · t

∣∣∣ ≥ (
√
λRt+ 2λR) · c

)
≤ 6 exp(−λ/4)

13
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Note R = maxi,j∈[n] E(ηi − ηj)2, hence

σ2 = max
j∈[n]

E(ηi0 − ηj)2 ≤ R ≤ max
i,j∈[n]

2E(η2
i + η2

j ) = 4σ2.

Specially, we have

P
(
τinv(t) ≥ ct+ c(2σ

√
λt+ 8λσ2)

)
≤ 6 exp(−λ/4).

Taking λ = t/100σ2 we have

P (τinv(t) ≥ 2ct) ≤ 6 exp(−t/400σ2).

Using union bound, we derive for t ≥ 230Λ2,

P
(
τinv(t) ≥ 2ct or inf

i
Liτinv(t) ≤ t/2

)
≤ 12 exp(−t/450σ2).

But consider when τinv(t) ≤ 2ct and infi L
i
τinv(t) ≥ t/2. This means that by 2ct, we should have

covered state i at least ciLτinv(t) ≥ cit/2 times (in the continuous sense). We let t′ = 2ct ≥ 460cΛ2,
then by t′, we should have covered each state at least π∗t′/4 times. Take t′ ≥ 4k/π∗, then we
should have covered each state k times by t′, which means τ (k)

cov ≤ t′. Thus we have for t′ ≥
max{4k/π∗, 460cΛ2},

P(τ
(k)
cov ≥ t′) ≤ 12 exp(−t′/900cσ2) ≤ 12 exp(−t′/6000cΛ2).

The last step is due to σ2 ≤ 2πΛ2 Ding et al. (2011) (Equation 22). To this end, we have

t
(k)
cov = E τ (k)

cov ≤
∫ max{4k/π∗,460cΛ2}

0
1dt′ +

∫ ∞
max{4k/π∗,460cΛ2}

P(τ
(k)
cov ≥ t′)dt′

≤ max{4k/π∗, 460cΛ2}+ 80000cΛ2

≤ 4k/π∗ + 90000cΛ2

(8)

Thanks to Theorem 3, we have tcov = Θ(cΛ2), thus t(k)
cov = O(k/π∗ + tcov) for continuous chains.

To adapt this result for discrete-time Markov chains, we need to use concentration results for
sums of i.i.d. exponential random variables.

Lemma 17 (Concentration of exponential RVs.) Let τ1, τ2, ..., τm be i.i.d. exponential variables
from Exp(1), then the sum of these random variables Sm =

∑m
i=1 τi has the following tail concen-

tration bound for ε ∈ (0, 1).

P(Sm ≥ (1 + ε)m) ≤ exp(−mε2/4).

14
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Proof Note that for any t > 0, we have E(etSm) = (1 − t)−m, thus by Markov’s inequality for
ε > 0, we have P(Sm ≥ (1 + ε)m) ≤ exp(−(1 + ε)mt−m ln(1− t)). Taking t = ε/(1 + ε), we
have for ε ∈ (0, 1),

P(Sm ≥ (1 + ε)m) ≤ exp(ln(1 + ε)m− εm) ≤ exp(−mε2/4).

We will also use the following lemma proved by Ding et al. (2011) (Lemma 2.4) using the
method of majorizing measures.

Lemma 18 (Tail bound summing lemma.) For random walk over a reversible chain, there exist
constant a, b, u0 > 0, such that for any u ≥ u0, we have 0-∑

i∈[n]

e−uciΛ
2 ≤ ae−bu.

Now we are able to translate the result for continuous-time chains to that for discrete-time
chains.

Theorem 19 (k-cover time of discrete-time reversible chains) For discrete-time random walk on
reversible chains, we have t(k)

cov = O(k/π∗ + tcov).

Proof Fixing any state i0 ∈ [n], let τinv(t) be the inverse local time for state i0 of the continuous-
time Markov chain. By the proof for Theorem 16, we have for t ≥ 230Λ2,

P
(
τinv(t) ≥ 2ct or inf

i
Liτinv(t) ≤ t/2

)
≤ 12 exp(−t/6000Λ2).

This means that w.h.p., we have τinv(t) ≤ 2ct and we have spent continuous time cit/2 at state
i. However, the probability of taking significantly less jumps in the corresponding discrete Markov
chain and get cit/2 continuous time is very low. Concretely, we have

P(Liτinv(t) ≥ t/2 | Ni(τinv(t)) ≤ cit/4) ≤ exp(−cit/16).

Denote E = {infi L
i
τinv(t) ≤ δt} and E′ , {infi

1
ci
Ni(τinv(t)) ≤ t/4}, then we have

P(E ∪ E′) = P(E) + P(E′ ∩ Ec).

But note that for event E′ ∩ Ec, we have infi
1
ci
Ni(τinv(t)) ≤ t/4 and infi L

i
τinv(t) ≥ t/2, so

there exists some i1 ∈ [n] that satisfies Ni1(τinv(t)) ≤ ci0t/4, but Li1τinv(t) ≥ t/2. We then use union
bound to deduce that

P(E′ ∩ Ec) ≤ P(∃i ∈ [n], Ni(τinv(t)) ≤ cit/4 and Liτinv(t) ≥ t/2)

≤
n∑
i=1

P(Ni(τinv(t)) ≤ cit/4 and Liτinv(t) ≥ t/2)

≤
n∑
i=1

P(Liτinv(t) ≥ t/2 | Ni(τinv(t)) ≤ cit/4)

≤
n∑
i=1

exp(−cit/16).

(9)
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Now we can use the tail bound summing lemma (Theorem 18) to deduce that for t ≥ t0Λ2 for some
constant t0 > 0,

P(E′ ∩ Ec) ≤ a exp(−bt/Λ2).

Here a, b > 0 are also constants. Similarly, we define bad events Σ , {τinv(t) ≥ 2ct} and
Σ′ , {N(τinv(t)) ≥ 4ct}. Here N(τinv(t)) =

∑n
i=1Ni(τinv(t)) is the total number of jumps made

before stopping. These bad events happen with probability

P(Σ′ ∪ Σ) = P(Σ) + P(Σ′|Σc)P(Σc) ≤ P(Σ) + P(Σ′|Σc).

Conditioned on the random variable τinv(t), the distribution of N(τinv(t)) is Poisson with mean
τinv(t) Zhai et al. (2018) (Remark 1.2). By tail bounds for Poisson distribution, we have ∀x > 0,

P(N(τinv(t)) ≥ τinv(t) + x | τinv(t) ≤ 2ct) ≤ exp
(
− x2

2(τinv(t) + x)

)
≤ exp

(
− x2

2(2ct+ x)

)
.

When Σc is true, Σ′ implies N(τinv(t))− τinv(t) ≥ 4ct− 2ct = 2ct, which means N(τinv(t)) ≥
τinv(t) + 2ct. Hence using the tail bound above, we have

P(Σ′|Σc) ≤ P(N(τinv(t)) ≥ τinv(t) + 2ct | τinv(t) ≤ 2ct) ≤ e−ct/2.

Note that Ω(n) = tcov � cΛ2, therefore we have Λ−2 = O(c/n) = o(c). By union bound, the
bad events E ∪ E′ ∪ Σ ∪ Σ′ occurs with probability less than a′ exp(−b′t/Λ2) for t ≥ t′0Λ2 and
some constant a′, b′, t′0 > 0.

However, when no bad event happens, denote t′ := 4ct and let t′ ≥ 16k/π∗, we have for any
i ∈ [n],

Ni(τinv(t)) ≥ cit

4
=
cit
′

16c
≥ cik

cπ∗
=
πik

π∗
≥ k.

We also note that N(τinv(t)) ≤ t′, and therefore τ (k)
cov ≤ t′. In conclusion, we have shown that

for t′ ≥ max{16k/π∗, 4t
′
0cΛ

2},

P(τ
(k)
cov ≥ t′) ≤ a′ exp(−b′t′/4cΛ2).

These directly yields that t(k)
cov = O(k/π∗ + cΛ2) = O(k/π∗ + tcov).

Specially, this gives the tight asymptotic k-cover time for graph random walk. Some interesting
instances are as follows.

Example 1 (k-cover time for graph random walks and independent stochastic processes) We have
the following consequences of the theorem above.

1. For k-coupon collector, the k-cover time is t(k)
cov = Θ(kn + n lnn). The same is true for all

regular expanders including the hypercube.

2. For full binary tree, the k-cover time is t(k)
cov = Θ(kn+ n(lnn)2).

3. For cycle and path, the k-cover time is t(k)
cov = Θ(kn+ n2).
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4. For non-uniform coupon collector with p = (p1, ..., pn) and p∗ = mini∈[n] pi, the k-cover

time is t(k)
cov = Θ(k/p∗ + tcov).

However, this only shows that our lower bound is tight for reversible chains. For the general
irreducible chains, the isomorphism theorem does not hold and the above arguments cannot be
applied.

4.3. Learning and Testing Reversible Chains

In this section, we will see how the k-cover time bound together with previous results on test-
ing/learning discrete distributions together yields sample complexity bounds on learning/testing
Markov chains. Specially, we consider Markov chains drawn from the family of chains with cover
time upper bounded by tcov and minimum stationary probability lower bounded by π∗, and we
denote this family asMrev(tcov, π∗).

We have the following theorem on testing and learning Markov chains due to theorems and
lemmas proved thus far.

Theorem 20 (Sample complexity bounds for learning/testing reversible chains) For a n-state
reversible Markov chains fromMrev(tcov, π∗), we have the following sample complexity bounds.

1. We can (ε, δ)-learn the chain using Oδ(tcov + n lnn
π∗ε2

) samples;

2. We can (ε, δ)-uniform-test the chain using Oδ(n lnn+
√
n lnn
π∗ε2

) samples;

3. We can (ε, δ)-identity-test the chain using Oδ(tcov +
√
n lnn
π∗ε2

) samples;

4. We can (ε, δ)-closeness-test the chains using Oδ(tcov + lnn
π∗

(n
2/3

ε4/3
+
√
n
ε2

)) samples.

5. We can (ε1, ε2, δ)-tolerant-uniform/identity/closeness-test the chain usingOδ(tcov+ n
π∗(ε2−ε1)2

)
samples.

6. We can (ε/2
√
n, ε, δ)-tolerant-uniform-test the chain using Oδ(tcov +

√
n lnn
π∗ε4

) samples.

7. We can (ε3/300
√
n lnn, ε, δ)-tolerant-identity-test the chain usingOδ(tcov+

√
n lnn
π∗ε6

) samples.

Proof This is a direct application of Theorem 1, Theorem 16 and Theorem 6, Theorem 7, The-
orem 8. For example, the sample complexity of learning Markov chain M is Oδ(t

k(n,ε,δ/2n)
cov ) =

Oδ(tcov + k(n, ε, δ/2n)/π∗) = Oδ(tcov + n lnn/π∗ε
2).

5. The k-cover Time of Irreducible Chains

For general irreducible chains, the connections with resistance network and Gaussian free field no
longer hold. However, we can still use the bounds of k-return time for irreducible chains to bound
the k-cover time up to logarithmic factors. We conjecture that the lower bound is tight, i.e., we have
t
(k)
cov = Θ(tcov + k/π∗) for all irreducible chains, but we believe advanced tools will be needed to

prove this conjecture.
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5.1. Upper Bound for Irreducible Chains

The proof of the tight upper bound on k-cover time for reversible chains uses the connections be-
tween the cover time and effective resistance/Gaussian free field, none of which have a nice coun-
terpart for general irreducible chains. However, one can still prove upper bounds on the k-cover
time that’s O(lnn)-factor looser, by bounding the k-hitting times (i.e. the first time when a partic-
ular state i0 is visited k times). Similar idea is used to derive upper bounds on the blanket time in
Winkler and Zuckerman (1996).

Lemma 21 (Concentration of the k-hitting time) For random walk on irreducible chains, the k-
hitting time of state i ∈ V satisfies

P(τ
(k)
hit (i) ≥ t) ≤ e · exp(−t/e(thit + k/πi)),

for any t ≥ 0.

Proof Note for irreducible chains, we still have tret(i) = 1/πi, and hence t(k)
hit (i) = thit(i) + (k −

1)/πi ≤ thit + (k− 1)/πi by the Markov property. Hence P(τ
(k)
hit (i) ≥ e(thit + (k− 1)/πi)) ≤ 1/e.

By similar argument used in the exponential decay lemma, we have P(τ
(k)
hit (i) ≥ em(thit + (k −

1)/πi)) ≤ 1/em, and therefore

P(τ
(k)
hit (i) ≥ t) ≤ e · exp(−t/e(thit + (k − 1)/πi)) ≤ e · exp(−t/e(thit + k/πi)).

This proves the lemma.

This yields an upper bound on k-cover time for irreducible chains as the following.

Theorem 22 (k-cover time from k-hitting time) For random walk on irreducible chains, we have
t
(k)
cov = Õ(tcov + k/π∗).

Proof We can think of the k-cover time τ (k)
cov upper bounded by the maximum of k-hitting times of

different states. That is, we have τ (k)
cov ≤ maxi∈V τ

(k)
hit (i). Then by the concentration of k-hitting

time, we have P(τ
(k)
hit (i) ≥ t) ≤ e · exp(−t/e(thit + k/πi)). By a union bound, we have

P(max
i∈V

τ
(k)
hit (i) ≥ t) ≤

∑
i∈[n]

e · exp(−t/e(thit + k/πi)) ≤ en · exp(−t/e(thit + k/π∗)).

Now we can transform this high probability bound into expectation form as

E[τ
(k)
cov ] ≤

∫ e lnn(thit+k/π∗)

t=0
1 · dt+

∫ ∞
t=e lnn(thit+k/π∗)

en · exp(−t/e(thit + k/π∗)) · dt

=e lnn(thit + k/π∗) + e2(thit + k/π∗),

(10)

This gives us that t(k)
cov = O(tcov lnn+ k lnn/π∗) = Õ(tcov + k/π∗).
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5.2. Upper Bound for Ergodic Chains

In Wolfer and Kontorovich (2019b), the family of ergodic chains with pseudo-spectral gap lower
bounded by γps and minimum stationary probability lower bounded by π∗ asMerg(γps, π∗) is con-
sidered.

We remark that this is a sub-family of irreducible chains that have finite-time mixing properties.
It excludes all periodic random walks, including simple random walk on a two-node single-edge
graph. Thus, our arguments via the k-cover time in fact broaden the family of chains that previous
results can be applied to. Specially, we use Paulin’s result Paulin (2015) to bound the k-cover time
w.r.t. the pseudo-spectral gap γps. This naturally recovers the results in Wolfer and Kontorovich
(2019b, 2020a).

For an irreducible Markov chain Xm
1 over [n], given a function f : [n] → R satisfying f ∈

L2(π), i.e., Ei∼π f2(i) =
∑n

i=1 πif
2(i) < ∞, then it will have finite stationary expectation as

Ef , Eπ f = Ei∼π f(i) < ∞ and finite stationary variance as Vf , Varπ(f) = Eπ f2 −
(Eπ f)2 < ∞. Then we have the following concentration inequality over Markov chains due to
Paulin (2015).

Lemma 23 (Bernstein inequality for Markov chains) For an irreducible Markov chainXm
1 over

[n] and given f ∈ L2(π), if we have |f(i)− Eπ(f)| ≤ C,∀i ∈ [n], and let S =
∑m

i=1 f(Xi), then
for any starting distribution,

P
(∣∣S − E

π
(S)
∣∣ ≥ t) ≤√ 2

π∗
exp

(
−t2γps

−16(m+ 1/γps)Vf + 40tC

)
.

Similar inequality is true for reversible Markov chains, with γ∗ instead of γps in the right hand
side and is slightly tighter.

Lemma 24 (High probability bound on k-cover time of ergodic chain) For an ergodic Markov

chain with minimum stationary probability π∗ and pseudo-spectral gap γps , whenm ≥ max{ 300
π∗γps

ln
(
n
δ

√
2
π∗

)
, 2k
π∗
},

we have P({τcov ≤ m}) ≥ 1− δ.

Proof Denote the event Ei , {Ni(m) ∈ [0.5mπi, 1.5mπi]}, and event E , ∪i∈[n]Ei. Then due
to Paulin’s result, we have

P(Ei) = P(|Ni(m)−mπi| ≥ 0.5mπi) ≤
√

2

π∗
exp

(
−

m2πiγps

64(m+ 1/γps) + 80m

)
Here we used f(j) = δji ,∀j ∈ [n], then |f(j) − Eπ(f)| ≤ 1, and Vf = πi(1 − πi) ≤ πi, S =

Ni(m) =
∑m

i=1 f(Xi). Then by a union bound, we have

P(E) ≤
∑
x∈[n]

P(Ex) ≤
∑
i∈[n]

√
2

π∗
exp

(
−

m2πiγps

64(m+ 1/γps) + 80m

)
≤n
√

2

π∗
exp

(
−

m2π∗γps

150(m+ 1/γps)

)
.

(11)

Thus if we denote αδ , 150
π∗

ln
(
n
δ

√
2
π∗

)
, then we have for m ≥ αδ

2γps
+ 1

2

√(
αδ
γps

)2
+ 4αδ

γ2ps
,

P(E) ≤ δ. Note αδ > 1, and use
√
x+ y ≤

√
x +
√
y, we have that m ≥ 2αδγps

suffices to make
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P(E) ≤ δ. Note we have P(Ec) ≤ P ({∀i ∈ [n], Ni(m) ≥ 0.5mπx}) ≤ P({∀i ∈ [n], Ni(m) ≥
0.5mπ∗}) ≤ P({τ (0.5mπ∗)

cov ≤ m}). Let m ≥ 2k
π∗

, then P({τ (k)
cov ≤ m}) ≥ P({τ (0.5mπ∗)

cov ≤ m}).

Thus, for m ≥ max{ 2k
π∗
, 2αδγps

}, we have P({τ (k)
cov ≤ m}) ≥ 1− δ.

This then gives the following bound on the expected k-cover time.

Theorem 25 (Upper bound on expected k-cover time for irreducible chain) For an ergodic Markov
chain with π∗ and pseudo-spectral gap γps, we have t(k)

cov ≤ max{ 4k
π∗
, 600
π∗γps

ln
(

150
√

2n√
π∗

)
}, and hence

t
(k)
cov = O( k

π∗
+ 1

π∗γps
ln n

π∗
).

Proof Since for m ≥ max{ 300
π∗γps

ln
(
n
δ

√
2
π∗

)
, 2k
π∗
} , we have P({τcov ≤ m}) ≥ 1 − δ. Thus let

t = 300
π∗γps

ln
(
n
δ

√
2
π∗

)
, we have P(τ

(k)
cov ≤ max{t, 2k/π∗}) ≥ 1−n

√
2
π∗

exp
(
− π∗γpst

300

)
. Thus, the

expected k-cover time

E(τ
(k)
cov ) =

∫ 2k
π∗

0
P(τ

(k)
cov ≥ t)dt+

∫ ∞
2k
π∗

P(τ
(k)
cov ≥ t)dt

≤2k

π∗
+

∫ ∞
2k
π∗

n

√
2

π∗
exp

(
−
π∗γpst

300

)
dt.

(12)

This finally gives t(k)
cov ≤ 2k

π∗
+ 300

√
2n

γpsπ
3/2
∗

exp
(
− γpsk

150

)
. When k ≥ k∗ , 150

γps
ln
(

150
√

2n√
π∗

)
, we

have 150
√

2n√
π∗

exp
(
− γpsk

150

)
≤ 1, and therefore, 300

√
2n

γpsπ
3/2
∗

exp
(
− γpsk

150

)
≤ 2

γpsπ∗
. Note k ≥ 1

γps
, thus

2k
π∗
≥ 300

√
2n

γpsπ
3/2
∗

exp
(
− γpsk

150

)
and hence t(k)

cov ≤ 4k
π∗

. But when k ≤ k∗, we have t(k)
cov ≤ t

(k∗)
cov ≤ 4k∗

π∗
.

This proves the theorem.

Remark 26 (Concentration inequality for general irreducible chains) In Moulos (2020), the fol-
lowing concentration inequality is proved. Here f : [n] → (a, b) is any bounded function on the
state space and q is the initial distribution. For any irreducible Markov chain,

P
(∣∣S − E

q
(S)
∣∣ ≥ t) ≤√ 2

π∗
exp

(
−t2

2m(b− a)2t2hit

)
.

However, since the right hand side incurs a quadratic dependence on t2hit = Θ̃(t2cov), it would yield
a much worse bound on the k-cover time than that in Theorem 22.

5.3. Learning and Testing Irreducible (or Ergodic) Chains

Again, we will see how the k-cover time bound implies sample complexity bounds on learn-
ing/testing Markov chains. We consider the family of irreducible chains with cover time upper
bounded by tcov and minimum stationary probability lower bounded by π∗, which we denote as
Mirr(tcov, π∗). We also considerMerg(γps, π∗), the family of ergodic chains with pseudo-spectral
gap lower bounded by γps and minimum stationary probability

The following theorem on testing and learning Markov chains is a natural corollary of the theo-
rems proved.
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Theorem 27 (Sample complexity bounds for learning/testing irreducible chains) For a n-state
irreducible Markov chains fromMirr(tcov, π∗) (orMerg(γps, π∗)), we have the following sample
complexity bounds.

1. We can (ε, δ)-learn the chain using Õ(tcov + n
π∗ε2

) (or Õ( 1
π∗γps

+ n
π∗ε2

)) samples;

2. We can (ε, δ)-identity-test the chain using Õ(tcov +
√
n

π∗ε2
) (or Õ( 1

π∗γps
+
√
n

π∗ε2
)) samples;

3. We can (ε, δ)-closeness-test the chains using Õ(tcov+ 1
π∗

(n
2/3

ε4/3
+
√
n
ε2

)) (or Õ( 1
π∗γps

+ 1
π∗

(n
2/3

ε4/3
+

√
n
ε2

))) samples.

4. The other results are analogous to Theorem 20, within a logarithmic factor.

Proof This is a direct application of Theorem 1, Theorem 22 and Theorem 6, Theorem 7, Theo-
rem 8. Results about Markov chains fromMierg(γps, π∗) uses Theorem 25 instead of Theorem 22.

6. Conclusion and Open Problems

In this paper, we considered the problem of testing and learning Markov chains from a single tra-
jectory. We show that the sample complexity of a number of learning and testing problems over
Markov chains is strongly related to the k-cover time of the unknown chain. We then proved that
t
(k)
cov = Θ(tcov + k/π∗) for reversible Markov chains and t(k)

cov = Θ̃(tcov + k/π∗) for general irre-
ducible Markov chains. These results on k-cover time give sample complexity bounds for a broad
family of learning and testing problems over Markov chains, and apply to a broader family of chains
than in the previous works.

We leave the tight characterization of k-cover time for irreducible chains as an open problem,
but we conjecture the lower bound to be tight. It would also be nice if one can prove corresponding
lower bounds on sample complexity using the idea of k-cover times.

Moreover, it has been considered by Newman that the second set of coupon in the coupon collec-
tor’s problem costs Θ(n ln lnn), even though the first set of coupon costs Θ(n lnn) in expectation.
It’s dubbed the “double dixie cup problem” in Newman (1960). We find it interesting to ask similar
questions in the setting of Markov chains: what’s the cost of a second cover in n-cycle, n-path or
torus? By our theorem for k-cover time, for k large enough, it seems that each marginal cover costs
Θ(1/π∗), but it gives no clue about the cost of the second cover.
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