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Abstract
We study the problem of learning a mixture of two subspaces over Fn2 . The goal is to recover the
individual subspacesA0, A1, given samples from a (weighted) mixture of samples drawn uniformly
from the subspaces A0 and A1. This problem is computationally challenging, as it captures the
notorious problem of “learning parities with noise” in the degenerate setting when A1 ⊆ A0.
This is in contrast to the analogous problem over the reals that can be solved in polynomial time
(Vidal’03). This leads to the following natural question: is Learning Parities with Noise the only
computational barrier in obtaining efficient algorithms for learning mixtures of subspaces over
Fn2?

The main result of this paper is an affirmative answer to the above question. Namely, we show
the following results:

1. When the subspaces A0 and A1 are incomparable, i.e., A0 6⊆ A1 and A1 6⊆ A0, then there is a
polynomial time algorithm to recover the subspaces A0 and A1.

2. In the case when A1 ⊆ A0 such that dim(A1) ≤ α · dim(A0) for α < 1, there is a nO(1/(1−α)) time
algorithm to recover the subspaces A0 and A1.

Thus, our algorithms imply computational tractability of the problem of learning mixtures of
two subspaces, except in the degenerate setting captured by learning parities with noise.
Keywords: mixture models, subspaces, learning parities with noise

1. Introduction

Mixture models form an expressive class of probabilistic models that are widely used to find struc-
ture in unlabeled data from a heterogeneous population. Each of the k components in a mixture
model represents one of the k sub-populations (assumed to be homogeneous) that constitute the
overall heterogeneous population. A variety of mixture models ranging from Gaussian mixture
models and mixtures of product distributions over continuous domains, to mixtures of ranking mod-
els, mixtures of subcubes over discrete domains are used to capture data in different domains. There
is an extensive literature in statistics and computer science that gives efficient polynomial time algo-
rithms for learning many mixture models with a constant number of mixture components (Feldman
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et al., 2006; Kalai et al., 2010; Moitra and Valiant, 2010; Belkin and Sinha, 2010; Rabani et al.,
2014; Li et al., 2015; Awasthi et al., 2010; Liu and Moitra, 2018; Chen and Moitra, 2019).

A common assumption in high-dimensional data analysis is to assume that the given data belong
to a collection of lower dimensional subspaces. A prominent line of work in machine learning, com-
puter vision and computational geometry (Vidal, 2003; Elhamifar and Vidal, 2013; Soltanolkotabi
et al., 2014; Park et al., 2014) that formalizes this intuition is the problem of learning a mixture of
subspaces (or subspace clustering). Given a set of points in n dimensions that belong to a union of
k ≥ 2 subspaces, the goal is to find the individual subspaces that contain all the points. When the
points belong to Rn, a beautiful result of Vidal (2003) shows that for any mixture of k subspaces,
under some mild general-position assumption of the points in the subspaces,1 there is an algorithm
that runs in time nO(k) that recovers the k individual subspaces. Very recently, subspace cluster-
ing has also been studied with outlier noise, in the special case when the points in each cluster is
drawn from a Gaussian supported on a subspace (Raghavendra and Yau, 2020; Bakshi and Kothari,
2020). However these guarantees are specific to the real domain. A natural question is whether such
algorithmic guarantees also extend to other domains like F2.

Can we efficiently learn a mixture of subspaces over finite fields?

The algorithmic problem has a very different flavor over finite fields and becomes computa-
tionally challenging even in simple settings. In the simplest setting, we are given samples from a
mixture of k = 2 unknown subspaces A0, A1 ⊆ Fn2 of dimension d0, d1 (respectively), with un-
known mixing weights w0, w1 ∈ [0, 1] that add up to 1. Each sample is drawn independently as
follows: with probability w0, the sample is drawn from UA0 , the uniform distribution over subspace
A0 ⊆ Fn2 , and with w1 the sample is drawn from the uniform distribution UA1 over A1 ⊆ Fn2 .
The goal is to learn the individual subspaces A0, A1 from independent samples generated from this
model. We refer the reader to Definition 4 for the formal definition of the model.

Learning mixtures of subspaces over F2 essentially generalizes the problem of learning mixtures
of subcubes that was studied in (Chen and Moitra, 2019). In particular, subcubes correspond to
(affine) subspaces where the constraints are given by standard unit vectors. On the other hand, in
this work, we consider arbitrary subspaces of Fn2 (though we do not allow for affine subspaces). Our
work can also be through the framework of learning from positive examples Denis et al. (2005); De
et al. (2014); Canonne et al. (2020); Ernst et al. (2015) which studies the learnability of supervised
concept classes (in this case subspaces) when the algorithm only gets positive samples.

More interestingly, the simple setting of k = 2 already captures the notorious problem of learn-
ing parities with noise (LPN) as a special case. One can encode LPN as learning a mixture of two
subspaces A0, A1 where the subspaces A1 ⊂ A0 ⊆ Fn2 and dim(A1) = dim(A0) − 1 (see Propo-
sition 21 and Proposition 20). The best known algorithm for LPN runs in time exp

(
O(n/ log n)

)
(Blum et al., 2003). Moreover LPN is also used as an average-case hardness assumption in learning
theory and cryptography (Pietrzak, 2012). To avoid this computational barrier, we will assume
that we are not in the degenerate setting when one subspace contains the other. We call the two
subspaces A0 and A1 incomparable iff A0 * A1 and A1 * A0. This leads to the following natural
question about the computational complexity of the problem:

Question. Is LPN the only computational obstruction for learning a mixture of two subspaces? Can
one design faster algorithms when the subspaces A0, A1 are incomparable?

1. Such an assumption is necessary, to ensure that the individual subspaces are identifiable.
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Our first result shows that one can indeed design a polynomial time algorithm when the two
subspaces are incomparable.

Theorem 1 There is an algorithm INCOMPARABLE-SUBSPACE-RECOVERY with the following
guarantee: given oracle access to O(A0, A1, w0, w1) (for unknown A0, A1, w0, w1), wmin > 0
(such that wmin ≤ min{w0, w1}) and confidence parameter δ > 0,

1. INCOMPARABLE-SUBSPACE-RECOVERY runs in sample and time complexity poly(n/wmin)·
log(1/δ)

2. With probability 1−δ, the algorithm outputs the subspacesA0, A1, and estimates the weights
w0, w1 up to any desired inverse polynomial accuracy.

Hence the above result gives a significantly faster polynomial time algorithm if we are not in the
degenerate comparable setting when one subspace contains the other. In contrast, when A1 ⊂ A0

and dim(A1) = dim(A0) − 1 (or vice versa), the best known algorithm takes exp(O(n/ log n))
time. We remark that the algorithm succeeds in uniquely identifying and recovering the individual
subspaces, as opposed to just finding a mixture of two subspaces that fits the data. In the parlance
of statistics, our algorithm recovers the underlying model (sometimes referred to as parameter esti-
mation) as opposed to just doing density estimation.

Next, observe that the (presumed) hardness of LPN only implies hardness of the subspace re-
covery problem when (i) A1 ⊆ A0 and (ii) dim(A1) = dim(A0) − 1. This naturally prompts the
question whether subspace recovery remains hard if (say) A1 ⊆ A0 but dim(A1) � dim(A0). In
other words, we ask the following question:

Question. Can we design fast algorithms for subspace recovery when dim(A0) and dim(A1) are
substantially different? Note that we are not imposing any conditions on the comparability of the
hidden subspaces A0 and A1.

Our next result provides an affirmative answer to this question.

Theorem 2 Let wmin ≥ 1/100. Let d0 ≥ d1 and suppose α := d1/d0 < 1 − log d0√
d0

. There is an
algorithm SUBSPACE-RECOVER-LARGE-DIFF with the following guarantee: given oracle access
to O(A0, A1, w0, w1)(for unknown A0, A1, w0, w1), wmin > 0 (such that wmin ≤ min{w0, w1})
and confidence parameter δ > 0,

1. SUBSPACE-RECOVER-LARGE-DIFF runs in sample and time complexity
log(1/δ)poly(n) · dO(1)/(1−α)

0 .

2. With probability 1− δ, the algorithm outputs the subspaces A0, A1, and estimates the mixing
weights up to any desired inverse polynomial accuracy.

Informally speaking, if the ratio of dimensions α is bounded away from 1, the running time is
polynomial. In general, the running time of the algorithm has a dependence of O(1/(1− α)) in the
exponent.

1.1. Overview of Techniques.

We now briefly describe the algorithmic ideas and techniques used to prove our results. The algo-
rithms that establish Theorem 1 and Theorem 2 use very different ideas. We begin with an overview
of Theorem 1.
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Incomparable Setting (Theorem 1). The main component of the polynomial time algorithm in
the incomparable setting is a careful procedure for dimension reduction that reduces the subspace
clustering problem to O(1) dimensions. We will construct a matrix M ∈ Fr×n2 where r = O(1)
(in the actual proof, we set r = 10), and solve the clustering problem given samples of the form
y = Mx where x is drawn from the original mixture. Note that a subspace under any linear map
M also gives a subspace; hence the samples in Rr are drawn from a mixture of subspaces MA0 and
MA1. Any algorithm for learning a mixture of subspaces in r = O(1) dimensions will allow us to
cluster the points, and recover the individual subspaces A0, A1.

How do we choose the linear map M? A key property that we require of M is that if A0 and
A1 are incomparable, then MA0 and MA1 should also remain incomparable. While it is not hard
to see that such a M exists (even when r = O(1)), it is far from clear how to find it given that we
do not have A0 and A1 explicitly. A natural choice for M is a random matrix, where every entry is
chosen independently from F2. Random linear maps are often used for dimension reduction in the
real domain to approximately preserve inner products and pairwise distances. However, a random
map does not work in our setting, particularly when the target dimension r � d1. This is because
with high probability the subspaces collapse and MA0 = MA1 = Fr2, thereby making it impossible
to recover the individual subspaces MA0,MA1.

Our approach instead proceeds in multiple rounds, where in each round, we reduce the dimen-
sion by one while preserving the property that the projected subspaces remain incomparable. More
precisely, one can show that for a random linear map Mn−1 ∈ F(n−1)×n

2 , with constant probability,
Mn−1A0 and Mn−1A1 are incomparable ifA0, A1 are originally incomparable. However, this does
not suffice per se, since we want to apply this for Ω(n) rounds (and thus, the probability of success
becomes exponentially small). The crucial component of our algorithm is a testing procedure that
runs in polynomial time, which given samples from a mixture of subspaces U, V , w.h.p. outputs
whether U and V are comparable or incomparable. With such a procedure, in every phase we can
reduce the dimension by 1, by sampling several random linear maps, running our testing procedure
on each of them, and picking one that preserves incomparability of the subspaces. The guarantee of
the testing procedure is given below.

Theorem 3 There is an algorithm TEST-COMPARABILITY with the following guarantee: Given
oracle access toO(U, V,wU , wV ) (for unknownU, V,wU , wV ),wmin > 0 (such that min{wU , wV } ≥
wmin) and confidence parameter δ > 0,

1. TEST-COMPARABILITY runs in sample and time complexity 1/wmin
2 · poly(n) log(1/δ).

2. With probability 1 − δ, the algorithm outputs True if U and V are comparable and False
otherwise.

The testing procedure uses the following main insight. Suppose for simplicity the span span(U∪
V ) = Fn2 . We prove that the subspaces U and V are incomparable if and only if there exists a non-
zero polynomial p of degree 2 that vanishes on A = U ∪ V . In fact, it will suffice to choose A to
be a randomly chosen set of polynomial size sampled from the mixture of subspaces U and V . The
set of feasible degree-2 polynomials can then be obtained by setting up a system of linear equations
where the unknowns correspond to co-efficients of p.

Let us define M ∈ FO(1)×n
2 as M = Mr ·Mr+1 · . . . ·Mn−1 – in other words, M is the

linear map obtained by composing the dimension reduction maps over the n − r rounds. Once the
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dimension is reduced to r = O(1), we use a brute-force algorithm to recover MA0,MA1. Finally,
once we know MA0,MA1, we can draw uniform samples from A0\{x ∈ A0 : Mx ∈ MA1} to
recover A0; we can recover A1 similarly (see Lemma 16).

Significant dimension difference (Theorem 2). When the dimension of the subspaces are sub-
stantially different, we use algebraic ideas inspired from techniques in the real domain to recover
the subspaces. The main algorithmic idea is by adapting ideas from related problem of subspace re-
covery over the reals (Hardt and Moitra, 2013; Bhaskara et al., 2019). To explain the idea, consider
the setting with equal mixing weights of 1/2, d0 ≈ n, and suppose α = 1 − Ω(1). If we consider
a random subsample of d0 points from the data set, we expect to have roughly d0/2 points from
subspace A0 and d0/2 points from subspace A1. Suppose α < 1/2 (referred to as the “large gap
case”)i.e., d1 < d0/2, then with high probability there is a linear dependence in this sub-sample.
Further, this linear dependence is (entirely) among points lying in the subspace A1. This can be
used to recover the subspace A1 (and consequently, the subspace A0 as well).

To see why this idea does not work in general, consider the case when the weights w0 =
0.9, w1 = 0.1 and d1 = 0.8d0. Then, to see a linear dependence among the points in A1, we
need to sample at least d1 points from A1. However, on an average, this will mean sampling around
(w0/w1) · d1 = 9d1 many points from A0. As 9d1 is much larger than the ambient dimension and
thus, we will find many spurious linear dependencies – i.e., dependencies which do not come from
points belonging to A1. Thus, this strategy will fail to identify A1.

Instead, when α ≥ 1/2, we will adopt a dimension gap amplification strategy. In particular,
we consider a non-linear map φ : Fd02 → F

d′0
2 where d′0 =

∑`
j=0

(
d0
j

)
for an appropriately chosen

`. Further, for a set B, let us define φ(B) as the set {φ(x) : x ∈ B}. Roughly speaking, we want
to choose an appropriate ` such that dim(span(φ(A1)))/dim(span(φ(A0))) < 1/2. For such an `,
we can now apply the strategy for the large gap case to recover A1 and A0. We note that the idea
of such a dimension gap amplification was also applied in the related subspace recovery problem
over reals (Bhaskara et al., 2019) – there, the goal was recover one subspace S of dimension d ≤ n
containing o(d/n) fraction of the points, while the rest of the points are drawn in general position
from the whole of Rn. While in spirit our idea is similar, it is challenging to get a handle on the
dimensions of span(φ(A1)) and span(φ(A0)). In particular, the techniques of Bhaskara et al. (2019)
which are meant for the reals, do not seem to be applicable in the finite field setting. Fortunately for
us, some powerful results from additive combinatorics (Keevash and Sudakov, 2005; Ben-Eliezer
et al., 2012) let us get precise estimates for dim(span(φ(A0))) and dim(span(φ(A1))). Roughly
speaking, we show that for ` ≈ 1/(1 − α), dim(span(φ(A1)))/dim(span(φ(A0))) < 1/2, thus
reducing to the large gap case.

2. Preliminaries

We start by defining the subspace recovery problem formally.

Definition 4 The Subspace-Recovery problem is instantiated by two subspaces of Fn2 - A0 and
A1 of dimensions d0 and d1 respectively. In addition, we also have weights w0 and w1 such that
w0 + w1 = 1.

The subspaces A0, A1, dimensions d0, d1 as well as the weights w0 and w1 are unknown.
For this instance, we define the sampling oracle O(A0, A1, w0, w1) is defined as follows: sample
b ∈ {0, 1} where Pr[b = 0] = w0 and Pr[b = 1] = w1. If b = 0, O(A0, A1, w0, w1) outputs a
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uniformly random element from A0 and if b = 1, O(A0, A1, w0, w1) outputs a uniformly random
element from A1.

In the Subspace-Recovery problem, the algorithm is given access to the sampling oracleO(A0, A1, w0, w1),
an error parameter ε > 0 and a weight parameter wmin > 0 with the promise that wmin ≤
min{w0, w1}. The goal of the algorithm is to output subspaces A0, A1 and estimates ŵ0, ŵ1 such
that |w0 − ŵ0|+ |w1 − ŵ1| ≤ ε.

Without loss of generality, we will assume d0 ≥ d1 from now on.

Remark 5 Note that onceA0, A1 is found, estimatingw0, w1 is not hard, this is because Px∼O(A0,A1,w0,w1)[x ∈
A0 \ A1] = w0

|A0\A1|
|A0| . Formally, there is an algorithm with the following guarantee: given oracle

access to O(A0, A1, w0, w1) (for unknown w0, w1), A0, A1 and confidence parameter δ > 0,

1. this algorithm runs in sample and time complexity poly(n) · 1/ε2 · log(1/δ)

2. With probability 1− δ, the algorithm outputs ŵ0, ŵ1 such that |w0 − ŵ0|+ |w1 − ŵ1| ≤ ε.

By this observation, we can focus on finding A0, A1 from now on.

We next define the concept of incomparable subspaces.

Definition 6 We define two subspaces A,B to be incomparable if and only if A * B and B * A.

2.0.1. SOME USEFUL NOTATION

1. For any f : Fn2 → F2, we use zero(f) to denote the set {x : f(x) = 0}.

2. For integers n, d ∈ N, we use RM(n, d) to denote the set of polynomials of degree at most d
over Fn2 .

3. For integers n, k ∈ N with n ≥ k, we use
(
n
≤k
)

to denote
∑k

i=0

(
n
i

)
.

4. For a sample oracle O which return samples in Fn2 , matrix D ∈ Fk×n2 , we use DO to denote
a new sample oracle which each time returns Dx where x is sampled from O.

5. For an index set S, we use xS to denote the set {xi : i ∈ S}.

6. For a set S of vectors, we use rank(S) to denote dim(span(S)).

2.0.2. SOME USEFUL FACTS REGARDING POLYNOMIALS

We next list some useful facts regarding polynomials over the field F2. While most of these are easy
and standard, we list them here for the sake of completeness.

Claim 7 Let p be a polynomial over Fn2 . If the polynomial p is not identically zero (as a formal
expression) and its degree is at most c, then

P
x∼Fn

2

[p(x) 6= 0] ≥ 1/2c.
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Proof The proof is by induction on degree. If c = 0, then p is identically 1 and thus the claim
follows trivially.

Now, as an inductive hypothesis, assume that the claim is true for all polynomials of degree at
most c − 1. Let p be a polynomial of degree c. Since p is not identically zero, there exists i such
that p can be expressed as

p(x1, · · · , xn) = q(x1, . . . , xi−1, xi+1, . . . , xn) · xi + r(x1, . . . , xi−1, xi+1, . . . , xn), (1)

where degree of q is at most c− 1 and q is not identically zero. The above formulation uses the fact
that polynomials over F2 are multilinear. Observe that any choice of x−i = (x1, . . . ,xi−1,xi+1, . . . ,xn)
such that q(x−i) 6= 0,

Pr
xi∼F2

[p(x1, . . . ,xi−1,xi,xi+1, . . . ,xn) 6= 0] ≥ 1

2
. (2)

Now, applying the induction hypothesis on the polynomial q(x1, . . . , xi−1, xi+1, . . . , xn), we have
that

Pr
x∼Fn

2

[q(x1, . . . ,xi−1,xi+1, . . . ,xn) 6= 0] ≥ 1

2c−1
.

Combining this with (1) and (2), we get the claim.

Claim 8 There is an efficient algorithm SIZE-SYSTEM-POLYNOMIAL which given a set of points
as input z1, . . . , zR ∈ Fn2 , determines the size of the set T = |{p ∈ RM(n, 2) : p(z1) = p(z2) =
· · · = p(zr) = 0}|.

Proof Observe that p can be expressed as linear system of equations (i) where the unknowns are
the coefficients of p and (ii) the equations are given by the constraints {p(zi) = 0}1≤i≤R. Using
Gaussian elimination, we can determine the rank r of this system. Observe that the size of T is just
2r, thus proving the claim.

2.0.3. SOME USEFUL FACTS REGARDING SUBSPACES OF Fn2

We now list some useful facts about subspaces of Fn2 .

Claim 9 Let k, d, n ∈ N such that k ≥ 100d. Let V ⊆ Fn2 be a subspace of dimension d. Let
x1, · · · ,xk be k vectors sampled uniformly at random from V . Then,

Px1,··· ,xk
[∀S ⊆ [k] such that |S| ≥ 0.9k, we have span(xS) = V ] ≥ 1− 20.4k. (3)

Proof We know that there always exist a linear bijection between V and Fd2. Without loss of gener-
ality, we assume n = d, V = Fd2. Without loss of generality, assume 0.9k is a integer. For a fixed S
with |S| = 0.9k

P[span(xS) = Fd2]

=

d−1∏
j=0

(
1− 2−0.9k+j

)
See (Ferreira et al., 2012, Equation (2))

≥ 1−
d−1∑
j=0

2−0.9k+j ≥ 1− 2−0.9k+d ≥ 1− 2−0.89k.
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The number of choice of S is at most
(
k

0.1k

)
≤ (10e)0.1k ≤ 20.48k. Then the proof is completed by

a union bound.

The next claim says that a union of two proper subspaces of Fn2 must differ substantially from any
subspace of Fn2 .

Claim 10 Let S be a subspace of Fn2 and of dimension d. Let U, V ( S be two proper subspaces.
Then |S\(U ∪ V )| ≥ 2d−2.

Proof Notice that the size of subspace in F2 is always a power of 2. There are two cases:
Case 1: dim(U) = dim(V ) = d− 1.
Observe that dim(U ∩ V ) ≥ d− 2 and hence |U ∪ V | = |U |+ |V | − |U ∩ V | ≤ 3 · 2d−2.
Case 2: At least one of dim(U) or dim(V ) ≤ d− 2.
In this case, |U ∪V | ≤ |U |+ |V | ≤ 2d−1 +2d−2 ≤ 3 ·2d−2. Thus, in either case, |U ∪V | ≤ 3 ·2d−2
which implies that |S\(U ∪ V )| ≥ 2d−2.

Claim 11 Let b1, · · · , bt ∈ Fn2 be linearly independent. Sample M ∈ Fm×n2 uniformly at ran-
dom. Then Mb1, · · · ,Mbt are independent and identically distributed. In other words, the joint
distribution of Mb1, · · · ,Mbt is the uniform distribution over Fm×t2 .

Proof Let us first add vectors bt+1, . . . , bn such that {b1, . . . , bn} is a basis of Fn2 . Let B be the
matrix whose ith column is bi. Now, observe that the map Ψ : Fm×n2 → Fm×n2 defined as Ψ : M 7→
M · B is a bijection. Thus, if the random variable M is uniform over Fm×n2 , then so is M · B.
Consequently, the first t columns of M ·B, namely, Mb1, . . . ,Mbt are independent and identically
distributed.

The following theorem gives a hypothesis testing routine for mixtures of subspaces over Fn2 . The
proof of this theorem is deferred to Appendix A.

Theorem 12 Let D be a distribution of a mixture of two incomparable subspaces A,B ⊆ Fn2 with
mixing weights wA, wB ≥ w0. Let {Aj , Bj}Nj=1 be a collection of N sets of hypothesis with the
property that there exists i such that {Ai, Bi} = {A,B}. There is an algorithm CHOOSE-THE-
RIGHT-HYPOTHESIS which is given a confidence parameter δ, w0, {Aj , Bj}Nj=1 and a sampler
for D. Every subspace of {Aj , Bj}Nj=1 will be represented by a basis of that subspace, and the
algorithm will have the access to the basis. This algorithm has the following behavior,

1. It runs in poly(N, 1/w0) log(1/δ) time.

2. With the probability 1− δ outputs the index i such that {Ai, Bi} = {A,B}.

3. Testing Comparability of the Subspaces

In this section, the main goal is to prove Theorem 3 (restated below for the convenience of the
reader). We recall that Theorem 3 gives an efficient algorithm which given samples from a mix-
ture of two subspaces U, V , decides whether U and V are comparable. This result in turn is an
important piece in our subspace recovery algorithm in the “incomparable” case. The algorithm
TEST-COMPARABILITY is described in Figure 1.
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Theorem 3 There is an algorithm TEST-COMPARABILITY with the following guarantee: Given
oracle access toO(U, V,wU , wV ) (for unknownU, V,wU , wV ),wmin > 0 (such that min{wU , wV } ≥
wmin) and confidence parameter δ > 0,

1. TEST-COMPARABILITY runs in sample and time complexity 1/wmin
2 · poly(n) log(1/δ).

2. With probability 1 − δ, the algorithm outputs True if U and V are comparable and False
otherwise.

The main idea of the algorithm is the following. First we take a few samples from the mixture
to get span(U ∪ V ). By dimension reduction, it suffices to deal with the case span(U ∪ V ) = Fn2 .
The crucial property we use is the following: If span(U ∪V ) = Fn2 , U, V are incomparable iff there
exists non-zero p ∈ RM(n, 2) such that p vanishes on the entire set U ∪V . The proof of Theorem 3
is deferred to the end of the section – to start, we prove some auxiliary lemmas.

Algorithm 1: TEST-COMPARABILITY

Input:
n – ambient dimension
O(U, V,wU , wV ) – oracle for random samples from mixture of subspaces.
wmin – lower bound of two mixture weights.
Output: True (if comparable) or False (if incomparable)

1 Set t = 16n/(wmin
2);

2 Sample x1, · · · ,xt from O(U, V,wU , wV );
3 Set S = span(x1, · · · ,xt), v = dim(S);
4 Find y1, · · · , yv such that they form a basis of S = span(x1, · · · ,xt).;
5 Find a matrix D ∈ Fv×n2 such that Dyi = ei for all i, where ei is the ith element of the

standard basis of Fv2.;
6 Set O′ = DO(U, V,wU , wV ) = O(DU,DV,wU , wV );
7 Set r = 8n2/wmin;
8 Sample z1, · · · , zr from O′ = O(DU,DV,wU , wV );
9 Use algorithm SIZE-SYSTEM-POLYNOMIAL to compute

T = |{p ∈ RM(v, 2) : p(z1) = p(z2) = · · · = p(zr) = 0}|;
// See Claim 8

10 . if T = 1 then
11 return True;
12 else
13 return False;
14 end

Claim 13 Assume s ≥ 8n/wmin. Let x1,x2, · · · ,xs be sampled from a mixture of two subspaces
U, V ⊆ Fn2 (potentially comparable) of dimension at most d with mixing weights wU , wV ≥ wmin.
Then, with probability at least 1− exp(−swmin2/32), span(x1, · · · ,xs) = span(U ∪ V ).

Proof For fixed x1, · · · , xi such that span(x1, · · · , xi) ( span(U ∪ V ), we will show

Pxi+1 [xi+1 /∈ span(x1, · · · , xi)] ≥ wmin/2. (4)

9
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Define W = span(x1, · · · , xi). By our assumption, either U * W or V * W . Let us assume that
it is the former (the other case is symmetric). Under this assumption, U ∩W is a proper subset of
U . Since both are linear subspaces and the size of any linear space over F2 is always a power of 2,
|U ∩W | ≤ 0.5|U |. Hence

P[xi+1 ∈ U\W ] ≥ wU
|U\W |
|U |

≥ wmin · 0.5.

In other words, rank(x1, · · · ,xi+1) = rank(x1, · · · , xi) + 1 will hold with probability at least
wmin/2, thus proving (4). Define yi = rank(x1, · · · ,xi) − rank(x1, · · · ,xi−1), then y1, · · · ,ys
satisfy the condition of Lemma 25 with γ = wmin/2, d = rank(U ∪ V ), k = s. Claim 13 now
follows by applying Lemma 25.

The next (easy) claim says that suppose the distribution Z (over Fd2) is not too concentrated on
any single element. Then, a randomly chosen set of size roughly quadratic in d is a hitting set for
quadratic polynomials over Fd2. In other words, any non-zero element of RM(d, 2) is non-zero on at
least one element of this set.

Claim 14 Let Z be a distribution over Fd2 such that the probability weight of every element is at
least w∗/2d. Let x1,x2, . . . ,xt be independent sampled from Z. Then, we have

P
[
∀q ∈ RM(d, 2) \ {0}, ∃j ∈ [t] s.t. q(xj) 6= 0

]
≥ 1− exp

(
−tw∗/4 +

(
d

≤ 2

)
log 2

)
.

Proof Fix q ∈ RM(d, 2) such that q 6= 0. By Claim 7,

Px∼uFd
2
[q(x) = 1] ≥ 1/4.

As a consequence,

Px∼Z [q(x) = 0] ≤ 1− w∗

4
.

Hence

P[q(x1) = · · · = q(xt) = 0] ≤ (1− w∗/4)t ≤ exp(−tw∗/4).

Notice that |RM(d, 2)| = 2( d
≤2). Using the union bound, we get the claim.

We are now ready to finish the proof of Theorem 3.
Proof of Theorem 3. Without loss of generality, we assume δ = 0.1, since we can always boost
the probability at a multiplicative cost of log(1/δ). By Claim 13, we know that S = span(U ∪ V )
(defined in Step 3 of the algorithm) with probability 0.999. Henceforth, we assume that S =
span(U ∪ V ) holds.

By definition, D (defined in Step 5 of the algorithm) is a linear bijection between S and
Fv2. Hence DU,DV are incomparable if and only if U, V are incomparable. Now observe that,
O′ = O(DU,DV,wU , wV ) will give samples from mixture of two subspaces DU,DV with mix-
ing weights wU , wV ≥ wmin. Notice that span(DU ∪DV ) = Fv2. We divide the rest of the analysis
into two cases.

10
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Case 1: DU,DV are comparable.
We have DU = Fv2 or DV = Fv2. By Claim 14, with probability 0.999, there will only be one
polynomial (the zero polynomial) in the set {p ∈ RM(v, 2) : p(z1) = p(z2) = · · · = p(zr) = 0}.
In this case, T = 1. Thus, overall, with probability 0.998, algorithm returns the correct answer in
this case.
Case 2: DU,DV are incomparable.
In this case, dim(DU) ≤ v − 1 (and dim(DV ) ≤ v − 1). Thus, there exists non-zero vector
bU (resp. bV ) such that 〈bU , DU〉 = {0} (resp. 〈bV , DV 〉 = {0}). Now, consider the non-zero
polynomial p(x) = 〈bU , x〉〈bV , x〉. By definition it satisfies p(DU ∪ DV ) = {0}. Thus, in this
case, the set {p ∈ RM(v, 2) : p(z1) = p(z2) = · · · = p(zr) = 0} has at least two elements. Thus,
overall, with probability 0.999, the algorithm returns the correct answer in this case. �

4. Learning Mixtures of Incomparable Subspaces

In this section, we give a polynomial time algorithm (Algorithm 2: INCOMPARABLE-SUBSPACE-
RECOVERY) for recovering the subspaces A0, A1 when given access to samples from a mixture of
two subspaces that are incomparable. We prove the following theorem.

Theorem 1 There is an algorithm INCOMPARABLE-SUBSPACE-RECOVERY with the following
guarantee: given oracle access to O(A0, A1, w0, w1) (for unknown A0, A1, w0, w1), wmin > 0
(such that wmin ≤ min{w0, w1}) and confidence parameter δ > 0,

1. INCOMPARABLE-SUBSPACE-RECOVERY runs in sample and time complexity poly(n/wmin)·
log(1/δ)

2. With probability 1−δ, the algorithm outputs the subspacesA0, A1, and estimates the weights
w0, w1 up to any desired inverse polynomial accuracy.

The main idea is a new procedure for dimension reduction that reduces the subspace clustering
problem to O(1) dimensions. We will construct a linear map M ∈ F10×n

2 such that after projecting
using M , the subspaces obtained MA0 = {Mx : x ∈ A0} and MA1 = {Mx : x ∈ A1} are
incomparable. The construction of M involves multiple rounds. In each round, we use Algorithm
TEST-COMPARABILITY (and Theorem 3) as a black-box, and find a projection that brings down
the dimension by one with high probability, while maintaining incomparability of the subspaces.
Once we recover the subspaces MA0,MA1 in O(1) dimensions (using a brute force algorithm:
enumerate all possible pairs of subspace, then use Theorem 12), we can then recover the original
subspaces A0, A1 by considering samples in A0 ∪ A1 which are not mapped to MA0 ∩MA1 by
M . We defer the proof of Theorem 1 to the end of section.

The following lemma is crucial in establishing Theorem 1. The lemma proves that with high
probability, Algorithm FIND-A-GOOD-PROJECTOR (Algorithm 3) reduces the dimension to r = 10
while preserving the incomparability of the subspaces. If M is randomly chosen from F10×n

2 , then
MA1 ⊆ MA0 since MA0 collapses to F10

2 with high probability. Algorithm FIND-A-GOOD-
PROJECTOR instead proceeds in multiple rounds, and reduces the dimension one per round. If the
projector M′ is chosen uniformly at random from F(n−1)×n

2 , with constant probability M′A0,M
′A1 ∈

Fn−12 remain incomparable. We can now use Algorithm TEST-COMPARABILITY (and Theorem 3)

11
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Algorithm 2: INCOMPARABLE-SUBSPACE-RECOVERY

Input:
n – ambient dimension.
O(A0, A1, w0, w1) – oracle for random samples from mixture of subspaces.
wmin – lower bound of two mixture weights.
Output: two subspaces.

1 M=FIND-A-GOOD-PROJECTOR(n,O(A0, A1, w0, w1), wmin);
2 Use brute force to solve

INCOMPARABLE-SUBSPACE-RECOVERY(10,MO(A0, A1, w0, w1), wmin), let U, V be the
output ;

3 Set t = 100n/wmin;
4 Sample x1, · · · ,xt from O(A0, A1, w0, w1);
5 return span({xi : Mxi /∈ V }), span({xi : Mxi /∈ U});

to boost the success probability in each round by repeatedly sampling M ′ and rejecting it if the
resulting subspaces are comparable.

Lemma 15 Given samples from a mixture of two incomparable subspaces A0, A1 ⊆ Fn2 with
mixing weights w0, w1 ≥ wmin. There exists M ∈ F10×n

2 such that MA0,MA1 are incomparable
subspaces. Moreover, there is an algorithm FIND-A-GOOD-PROJECTOR that runs in time 1/wmin ·
poly(n) and find such a M with probability at least 0.999.

Algorithm 3: FIND-A-GOOD-PROJECTOR

Input:
n – ambient dimension
O(A0, A1, w0, w1) – oracle for random samples from mixture of subspaces.
wmin – lower bound of two mixture weights.
Output: a matrix M ∈ F10×n

2 .
1 Set M = In, where In ∈ Fn×n2 is the identity matrix;
2 for i = n; i > 10; i = i− 1 do
3 Sample T ∈ F(i−1)×i

2 uniformly at random;
4 while TEST-COMPARABILITY(i,TMO(A0, A1, w0, w1), wmin, 1/n

2) // the last
parameter is the failure probability we want.

5 do
6 Sample T ∈ F(i−1)×i

2 uniformly at random;
7 end
8 M = TM ;
9 end

10 return M ;

Proof We now show that Algorithm FIND-A-GOOD-PROJECTOR runs in polynomial time and
finds a required projector M with high probability. Observe that from Theorem 3, every call of

12
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TEST-COMPARABILITY (in step 4 of Algorithm 3) fails with probability at most δ = O(1/n2). We
will prove that at any iteration i ∈ {n, n− 1, . . . , 11}, a randomly chosen matrix T ∈ F(i−1)×i

2 (in
step 3) succeeds with constant probability in preserving the incomparability of the subspaces. This
ensures that it will suffice to sample O(log n) many random T per round before we succeed in that
round (and hence O(n log n) overall).

Fix an iteration i ∈ {n, n − 1, . . . , 11}, and let M ∈ Fi×n2 be the current projector. Let U :=
MA0, V := MA1, and assume U, V are incomparable. We show the following claim.
Claim: For a random T ∈ F(i−1)×i

2 chosen in step 3,

PT[TU,TV are incomparable] ≥ 9/128. (5)

We now prove the claim by considering two cases depending on the rank ofU∪V i.e., the dimension
of the span of U ∪ V .

Case 1: rank(U ∪ V ) ≤ i− 1.
Let v = rank(U∪V ) and b1, · · · , bv be a basis of span(U∪V ). By Claim 11, Tb1, · · · ,Tbv can be
viewed as being sampled independently from Fi−12 . A uniformly random matrix from F(i−1)×(i−1)

2

is full-rank with probability at least
∏
j≥1(1− 2−j) ≥ 1/4. Hence,

P[Tb1, · · · ,Tbv are linearly independent] ≥ 1/4.

When Tb1, · · · ,Tbv are linearly independent, TU,TV are incomparable as required. This estab-
lishes (5) in Case 1.
Case 2: rank(U ∪ V ) = i.
Let b1, . . . , bdim(U∩V ) be a basis of U ∩ V . We extend the basis such that
b1, . . . , bdim(U∩V ), c1, . . . , cdim(U)−dim(U∩V ) is a basis of U , and similarly we extend the basis
so that b1, . . . , bdim(U∩V ), d1, . . . , ddim(V )−dim(U∩V ) is a basis of V . Observe that
b1, . . . , bdim(U∩V ), c1, . . . , cdim(U)−dim(U∩V ), d1, . . . , ddim(V )−dim(U∩V ) is a basis of span(U ∪V ).
Reorder this basis to get a1, . . . , ai such that ai−1 = c1, ai = d1. Let tj denote Taj . By Claim 11,
t1, · · · , ti are independent and identically distributed. Let E be the event

E =


tj /∈ span(t1, · · · , tj−1) ∀1 ≤ j ≤ i− 3

ti−2 ∈ span(t1, · · · , ti−3)
ti−1 /∈ span(t1, · · · , ti−2)
ti /∈ span(t1, · · · , ti−1)

Then,

PT[E ] = (

i−3∏
j=1

(1− 2j−1/2i−1)) · 1/4 · 3/4 · 1/2 ≥ 3/4 · 3/32 = 9/128.

Condition on E . We now show that TU,TV are incomparable as required. We will show TU *
TV , the other direction is similar. By definition ti−1 = Tai−1 = Tc1 ∈ TU , and ti−1 /∈
span(t1, t2, · · · , ti−2, ti). However TV ⊆ span(t1, t2, · · · , ti−2, ti), hence ti−1 /∈ TV , TU *
TV . This establishes (5). Hence the lemma follows.

The following lemma shows that a few samples drawn uniformly from S \ T suffice to recover
S with high probability. This will allow us to recover A0 and A1 after clustering the points in
MA0 ∪MA1.
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Lemma 16 Let S be a subspace of Fn2 and of dimension d. Let T be a proper subspace of S. Let
t ≥ 8n be a integer. x1, · · · ,xt are independently uniformly sampled from S\T . Then,

P[span(x1, · · · ,xt) = S] ≥ 1− e−t/128.

Proof Let V ( S be a fixed subspace. Then by Claim 10, |S\(T ∪ V )| ≥ 2d−2, which is at least
1/4 of |S|. We have

Px∼uS\T [x /∈ V ] ≥ 1/4.

In other words, if span(x1, · · · ,xk) 6= S, then rank(x1, · · · ,xk+1) = rank(x1, · · ·xk) + 1
will hold with probability at least 1/4. Define the random variables yi = rank(x1, · · · ,xi) −
rank(x1, · · · ,xi−1) for i ∈ {1, 2, . . . , t}. Note that y1, · · · ,yt are not quite independent (since the
probability the rank increases at step i depends on the random choices of x1, . . . ,xi−1 in previous
iterations). But they satisfy the condition of Lemma 25 with γ = 1/4, d = dim(S), k = t. The
proof is completed after applying Lemma 25.

We are now ready to complete the proof of Theorem 1.
Proof of Theorem 1. Without loss of generality, we assume δ = 0.1, since we can always boost
the probability at a multiplicative cost of log(1/δ). By Lemma 15, M satisfies the property that
MA0,MA1 are incomparable with high probability (probability at least 0.999, say). Moreover
assuming MA0,MA1 are incomparable, the brute force algorithm will return them with high prob-
ability.

Let U = MA0, V = MA1. We will show that span({xi : Mxi /∈ V } = A0 with probability
0.998. Observe that W = {x ∈ A0 : Mx ∈ MA1} is a proper subspace of A0. Hence if x is
drawn uniformly from A0, x will not in W with probability at least 1/2. By Chernoff bound, we
expect to see at least 20n samples in {xi : Mxi /∈ V } with probability 0.999 and all these samples
can be viewed as uniformly drawn from A0\W . By Lemma 16, span({xi : Mxi /∈ MA1} = A0

with probability 0.998. A similar argument shows that the algorithm also recovers A1 with high
probability. Finally, after recovering A0, A1 it is also easy to estimate the weights w0, w1 to inverse
polynomial accuracy (see Remark 5). �

5. Mixtures of two subspaces with signficant dimension difference

In this section, we prove Theorem 2 (restated below for convenience of the reader) which shows
that there is a computationally efficient algorithm for learning a mixture of two subspaces with
significantly different dimensions. Note that the following theorem does not assume that the two
subspaces are incomparable.

Theorem 2 Let wmin ≥ 1/100. Let d0 ≥ d1 and suppose α := d1/d0 < 1 − log d0√
d0

. There is an
algorithm SUBSPACE-RECOVER-LARGE-DIFF with the following guarantee: given oracle access
to O(A0, A1, w0, w1)(for unknown A0, A1, w0, w1), wmin > 0 (such that wmin ≤ min{w0, w1})
and confidence parameter δ > 0,

1. SUBSPACE-RECOVER-LARGE-DIFF runs in sample and time complexity
log(1/δ)poly(n) · dO(1)/(1−α)

0 .

14



LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

2. With probability 1− δ, the algorithm outputs the subspaces A0, A1, and estimates the mixing
weights up to any desired inverse polynomial accuracy.

The algorithm RECOVER-SUBSPACE-LARGE-DIFF is described in Figure 4. Before proving
Theorem 2, we will make some simplifying assumptions (with their justifications given below)
followed by some useful notation.

Remark 17 Without loss of generality, we can assume

1. n = d0. This is because we can first use Theorem 3 to test whether the underlying sub-
spaces are incomparable. If they are incomparable, we can use Theorem 1 to recover the
subspaces. If not, we can take O(n/wmin) samples from the mixture to get span(A0 ∪ A1)
with high probability (see Claim 13). We can then construct a linear bijection, say D, be-
tween span(A0∪A1) and Fd02 . Applying the map D to every sample from the mixture, we can
now assume that n = d0.

2. The algorithm knows d0, d1. This is because we can enumerate all the possible values of
d0, d1 and run the algorithm SUBSPACE-RECOVER-LARGE-DIFF to get a list of candidate
hypothesis. We can then use the hypothesis testing algorithm in Theorem 12 to identify the
correct one with high probability.

3. We set δ = 0.1. This is because we can always boost the success probability of our algorithm
at a multiplicative cost of log(1/δ).

4. d0 is at least a sufficiently large constant (which only depends on wmin). Otherwise, we can
always apply a brute force algorithm to recover the subspaces.

Notation.

1. We will use φ`(x) ∈ F
( n
≤`)

2 to represent the vector consisting of all the monomials of degree
at most ` on x, including the constant term. As an example, when ` = 2 and n = 2, we have
φ`(x) = (1, x1, x2, x1x2) – note that because the underlying field is F2, all the monomials
are multilinear. We will use φ`(A) to denote {φ`(x) : x ∈ A}. φ`(A) is a set of vectors in

F
( n
≤`)

2 .

2. We define t := d0 − d1 = (1− α)d0 to denote the difference between the dimensions of the
underlying subspaces A0 and A1.

3. For a sequence of vector x1, x2, · · · , xk, we define x−i := {xj : j 6= i}.

4. Let us denote by yi := φ`(xi).

Finally, we note that for any subspace V of dimension d over F2, rank(φ`(V )) =
(
d
≤`
)
.

We start with the following crucial lemma from Ben-Eliezer et al. (2012) (stated below). An
equivalent version was also proven in (Keevash and Sudakov, 2005, Theorem 1.5).

Lemma 18 (Lemma 4, Ben-Eliezer et al. (2012)) Let x1, x2, · · · , xR be R = 2r distinct points
in Fn2 . Consider the linear space of degree d polynomials restricted to these points; that is, the space

{(p(x1), · · · , p(xR)) : p ∈ RM(n, d)}.

The linear dimension of this space is at least
(
r
≤d
)
.
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Algorithm 4: SUBSPACE-RECOVER-LARGE-DIFF

Input:
d0 – dimension of the larger subspace
α ≤ 1 – ratio of the dimensions of two subspaces
O(A0, A1, w0, w1) – oracle for random samples from mixture of subspaces.
wmin – minimum of two mixture weights.
Output: two subspaces U, V .

1 Set ` = 2 log(100/wmin)
1−α ;

2 Use O(A0, A1, w0, w1) to sample m =
(
d0
≤`
)

vectors x1,x2, · · · ,xm;
3 Let S be the set of all i ∈ [m] such that yi := φ`(xi) can be expressed as linear combination of
{φ`(xj) : j 6= i};

4 return U = span({xi : i ∈ S}), V = span({xi : xi /∈ U});

As an easy corollary, we have the following claim.

Lemma 19 Let x1, x2, · · · , xR be distinct points in Fn2 . IfR ≥ 2r, then rank({φ`(x1), · · · , φ`(xR)}) ≥(
r
≤`
)
.

Proof Without loss of generality, we can assume R = 2r, since having more points can only
increase the rank. Let t = |RM(n, `)|. Say RM(n, `) = {p1, · · · , pt}. Let A ∈ Ft×R2 be defined as
Ai,j = pi(xj). Applying Lemma 18 with d = `, we know the row-rank ofA is at least

(
r
≤`
)
. LetB ∈

F
( n
≤`)×R

2 be the matrix whose ith column is φ`(xi). Since every polynomial is a linear combination

of monomials, there exists C ∈ F
t×( n
≤`)

2 such that A = CB, hence rank(B) ≥ rank(A) ≥
(
r
≤`
)
.

Proof of Theorem 2. Let I0 (resp. I1) be the set of all i such that xi was sampled from A0 (resp.
A1). We now define the events E1, E2, E3 and E4 as follows:

1. E1: ∀i ∈ I0,yi /∈ span({y−i} ∪ φ`(A1))

2. E2: |I1| ≥ 10
(
αd0
≤`
)

3. E3: ∀T ⊆ I1 such that |T | ≥ 0.9|I1|, we have span({xj}j∈T ) = A1

4. E4: span({xj}j∈I0) = A0

Assume E1, E2, E3, E4 holds. Note that whenever E1 holds, it follows that S (defined in line 3 of
SUBSPACE-RECOVER-LARGE-DIFF) is a subset of I1. We now show that A1 can be recovered
from the span of the samples corresponding to S. Now, consider the set {φ`(xi) : i ∈ I1 \ S}. By
definition, the elements of this set are linearly independent (otherwise, they will belong in S). As
dim(span(φ`(A1))) ≤

(
αd0
≤`
)
, it follows that |{φ`(xi) : i ∈ I1 \ S}| ≤

(
αd0
≤`
)
. As i 7→ φ`(xi) is a

injection on I1 \S , it follows that |{i ∈ I1 \S}| ≤
(
αd0
≤`
)
. Since E2 holds, |I1 \S| ≤ 0.1|I1|, hence

|S| ≥ 0.9|I1|. Since E3 holds, span ({xj}j∈S) = A1.
We now argue that the algorithm also recovers A0. We claim {j ∈ [m] : xj /∈ A1} = I0. Fix

j ∈ I0. Since E1 holds, φ`(xj) = yj /∈ φ`(A1), then xj /∈ A1. Hence I0 ⊆ {j : xj /∈ A1}. It
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is not hard to see {j : xj /∈ A1} ⊆ I0. Finally when E4 holds, we have span({xj : xj /∈ A1}) =
span({xj : j ∈ I0}) = A0.

Thus, it remains to show that E1, E2, E3 and E4 hold simultaneously with probability 0.99.
Proof of P[E1] ≥ 0.999: First, observe that by definition, ` = 2 log(100/wmin)

1−α . Using the assumption
on d0 and wmin, it follows that

` =
2 log(100/wmin)

1− α
= O

( √
d0

log d0

)
; d0 ≥

2`

(1− α)
. (6)

From this, applying the constraints on d0 and ` from (6), we get(wmin
100

)1/`
≥ 1 +

1

`
· log

(wmin
100

)
≥ (1 + α)

2
≥ α+

`

d0
. (7)

Now, it is not difficult to see that
(
αd0
≤`
)
≤
(
αd0+`
`

)
– it easily follows from the combinatorial

interpretation of binomial coefficients. Now, using this and (7), we get(
αd0
≤`
)(

d0
≤`
) ≤ (αd0+``

)(
d0
`

) ≤
(
α+

`

d0

)`
≤ wmin

100
. (8)

We now have,

P
[

dim(span({y−i} ∪ φ`(A1))) ≤ (1− 0.4wmin)

(
d0
≤ `

)]
(9)

≥P
[

dim(span({y−i} ∪ φ`(A1))) ≤ (1− 0.5wmin)

(
d0
≤ `

)
+

(
αd0
≤ `

)]
using (8),

≥P
[

dim(span({y−i})) ≤ (1− 0.5wmin)

(
d0
≤ `

)]
using dim(span(φ`(A1))) =

(
αd0
≤ `

)
,

≥P[|I0| ≤ (1− 0.5wmin)

(
d0
≤ `

)
]

using |I0| ≥ |{y−i}| ≥ dim(span({y−i})),

≥1− e−
wmin

2

24 (d0
≤`) (10)

from a standard Chernoff bound.

Let us now define the event Bi as the event that i ∈ I0 and dim(span({y−i} ∪ φ`(A1))) ≤ (1 −
0.4wmin)

(
d0
≤`
)
. Let r := d(1− 0.4wmin/`)d0 + `e. Using reasoning similar to (8), we have(

r
≤`
)(

d0
≤`
) ≥ (

r
`

)(
d0+`
`

) ≥ (r − `
d0

)`
≥
(

1− 0.4wmin
`

)`
≥ 1− 0.4wmin.

Thus, it follows that if the event Bi holds, dim(span({y−i} ∪ φ`(A1))) ≤
(
r
≤`
)
. Now, let us define

the setHi = {x ∈ Fd02 : φ`(x) ∈ span({y−i} ∪ φ`(A1))}. By Lemma 19, we get that |Hi| ≤ 2r+1.
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Thus, we now have

P[yi ∈ span({y−i} ∪ φ`(A1))|Bi] =
|Hi|
2d0
≤ 2r+1

2d0
≤ 2−

0.35wmind0
` . (11)

Applying the above inequality along with (10), we get

P[yi /∈ span({y−i} ∪ φ`(A1))|i ∈ I0] ≥ 1− 2
−0.35wmind0

` − e−
wmin

2

24 (d0
≤`) ≥ 1− 2

−0.3wmind0
` .

(12)

By taking a union bound, it follows that

P[∀i ∈ I0,yi /∈ span({y−i} ∪ φ`(A1))] ≥ 1−
(
d0
≤ `

)
2
−0.3wmind0

` ≥ 1− 2
−0.2wmind0

` . (13)

As we have chosen d0 to be sufficiently large, the right hand side is at least 0.999 showing that
P[E1] ≥ 0.999.

Proof of P[E2] ≥ 0.999: This follows from a straightforward Chernoff bound on the sampling
process defining I1.

Proof of P[E3] ≥ 0.999: This is a direct application of Claim 9.

Proof of P[E4] ≥ 0.999: This also follows from Claim 9.
�

6. Reduction from Learning Noisy Parities

In this section, we show how the problem of learning a mixture of two (comparable) subspaces
captures the notorious hard problem of learning parity with noise (LPN).

Given n ∈ N, the (n, ε)-LPN problem is instantiated by an (unknown) parity function f :
Fn2 → F2 and a noise parameter ε ∈ (0, 1/2). The samples are generated i.i.d. by a sampling oracle
O = O(f, ε) as follows. First, x ∼u Fn2 is sampled uniformly at random from Fn2 . Then b ∈ {0, 1}
is sampled such that P[b = 0] = 1 − ε and P[b = 1] = ε. If b = 0, O outputs (x, f(x)) and if
b = 1, outputs (x, 1 − f(x)). Given samples generated i.i.d. by the sampling oracle O(f, ε), the
goal is to learn the unknown parity function f .

The following simple proposition reduces LPN to learning mixtures of (comparable) subspaces
in Fn+1

2 , where the subspaces have dimensions n+ 1 and n respectively.

Proposition 20 Suppose there exists an algorithm ALG that given samples from a mixture of
two subspaces A0 = Fn+1

2 , A1 ⊆ Fn+1
2 of dimensions n + 1, n respectively, with mixing weights

2ε, 1 − 2ε, runs in time T = T (n, δ) and solves this problem with probability 1 − δ. Then there is
an algorithm that solves (n, ε)-LPN with probability 1− δ and running time O(T ) + poly(n).

Proof Consider a sample (x,y) ∈ Fn+1
2 (with x ∈ Fn2 ) drawn from a sampling oracle O(f, ε)

for the (n, ε)-LPN problem. We can view (x,y) as a sample from a mixture of two subspace
Fn+1
2 , A1 ⊆ Fn+1

2 of dimension n+ 1, n (respectively) with mixing weights 2ε, (1− 2ε) as follows.

18
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Let A1 be the subspace of dimension n defined by the linear equation f(x) + y = 0 over F2. On
the one hand, if b = 1, then (x,y) ∈ Fn+1

2 does not belong to A1; it is drawn from A0 \ A1. On
the other hand when b = 0, (x,y) ∈ Fn+1

2 lies in the subspace A1. But this could correspond
to a sample drawn from A1 or to the portion of A0 that overlaps with A1 (recall that A1 ⊂ A0

and |A0 ∩ A1| = |A0|/2 in our case). Hence by setting the mixing weights of the subspaces
A0 = Fn+1

2 , A1 to be 2ε, 1 − 2ε respectively, we can view a sample (x,y) drawn from the LPN
problem as being drawn from the mixture of subspaces A0, A1.

Our goal is then to recover A0, A1 from i.i.d. samples of the form (x,y) drawn from the LPN
problem. If the algorithm ALG succeeds in finding A1, then this provides a parity function f
(corresponding to the constraint defining A1) that satisfies the LPN problem.

The next proposition shows that learning mixtures of two subspaces A0, A1 in Fn+1
2 where

A0 = Fn+1
2 and dim(A1) = n is in fact equivalent to the LPN problem.

Proposition 21 Suppose there is an algorithm ALG that solves (n, ε)-LPN with probability 1− δ
and running time T = T (n, δ). Then, there is an algorithm that given samples from a mixture of
two subspaces Fn+1

2 , A1 ⊆ Fn+1
2 of dimension n+ 1, n respectively with mixing weights 2ε, 1− 2ε,

runs in time O(nT ) + poly(n) and recovers A1 with probability 1− δ − exp(−n).

Proof We start with a simple observation. Suppose (*) xi1 + xi2 + · · ·+ xik = 0 be the constraint
defining subspace A1, and suppose j ∈ {i1, i2, · · · , ik}. Consider the parity

f : F{1,2,...,n+1}\{j}
2 → F2, where f(x) =

∑
`∈{i1,i2,...,ik}\{j}

x`.

On one hand, if (x1, . . . ,xn+1) is drawn from A1 (this is with probability 1 − 2ε), then the pair
(x−j ,xj) satisfies the parity f by definition of A1. On the other hand, if (x1, . . . ,xn+1) is drawn
from A0 (this is with probability 2ε), it satisfies parity f with probability 1/2. In total, the parity
f is satisfied with probability 1 − 2ε + 1

2(2ε) = 1 − ε. Hence, a sample (x1, . . . ,xn+1) from the
mixture of subspaces with weights 2ε, 1 − ε, (x−j ,xj) can be viewed as a sample of (n, ε)-LPN
with unknown parity f .

We do not know {i1, i2, . . . , ik}. However we can guess and try out j = 1, · · · , j = n+ 1 and
get at most n+ 1 candidate hypothesises. We can then use the well known hypothesis testing result
from Proposition 22 to filter and find the correct subspace A1 with high probability.
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Appendix A. Hypothesis Test

In this section we will prove the following theorem.

Theorem 12 Let D be a distribution of a mixture of two incomparable subspaces A,B ⊆ Fn2 with
mixing weights wA, wB ≥ w0. Let {Aj , Bj}Nj=1 be a collection of N sets of hypothesis with the
property that there exists i such that {Ai, Bi} = {A,B}. There is an algorithm CHOOSE-THE-
RIGHT-HYPOTHESIS which is given a confidence parameter δ, w0, {Aj , Bj}Nj=1 and a sampler
for D. Every subspace of {Aj , Bj}Nj=1 will be represented by a basis of that subspace, and the
algorithm will have the access to the basis. This algorithm has the following behavior,

1. It runs in poly(N, 1/w0) log(1/δ) time.

2. With the probability 1− δ outputs the index i such that {Ai, Bi} = {A,B}.

We defer the proof to the end of this section.
In order to prove Theorem 12, we need a fundamental tool from statistics, namely “hypothesis

testing for distributions”. There are many equivalent forms of this algorithm — we use the following
(convenient) version from De et al. (2014).

Proposition 22 (Simplified (De et al., 2014, Proposition 6)) Let D be a distribution over W and
Dε = {Dj}Nj=1 be a collection of N distribution over W with the property that there exists i ∈ [N ]

such that dTV (D,Di) ≤ ε. There is an algorithm TD which is given an accuracy parameter ε, a
confidence parameter δ, and is provided with access to (i) samplers for D and Dk, for all k ∈ [N ]
(ii) a evaluation oracle EV ALDk

, for all k ∈ [N ], which, on input w ∈ W , output the value
Dk(w). This algorithm has the following behavior: It makes m = O((1/ε2)(logN + log(1/δ)))
draws from D and each Dk, k ∈ [N ], and O(m) calls to each oracle EV ALDk

, k ∈ [N ], performs
O(mN2) arithmetic operations, and with probability 1− δ outputs an index i∗ ∈ [N ] that satisfies
dTV (D,Di∗) ≤ 6ε.

Definition 23 D(A,B,wA, 1 − wA) is defined as the distribution induced by a mixture of two
incomparable subspaces A,B ⊆ Fn2 of dimension at most d with mixing weights wA, 1− wA.

Lemma 24 Let A,B,C,D be 4 subspaces of Fn2 . Suppose {A,B} 6= {C,D}. Let D1 =
D(A,B,wA, 1− wA),D2 = D(C,D,wC , 1− wC), w∗ = min(wA, 1− wA, wC , 1− wC). Then
dTV (D1,D2) ≥ w∗/8.

Proof Without loss of generality, assumeA has largest dimension among all 4 subspaces. We divide
the rest of the analysis into a few cases.



Case 1 : A 6= C and A 6= D.

A = C or A = D. Assume A=C.2


Case 2 : A = B or A = D.

A 6= B and A 6= D.


Case 3 : A,B are incomparable.
Case 4 : A,D are incomparable.
Case 5 : B ( A and D ( A.
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Case 1:
In this case, A ∩C and A ∩D are two proper subspace of A. By Claim 10, |A\(C ∪D)| ≥ |A|/4,
dTV (D1,D2) ≥ w∗/4.
Case 2:
Without loss of generality, assumeA = B. We have dim(A) ≥ dim(D) andD 6= A. HenceA∩D
is a proper subspace of A. |(D1 −D2)(A\D)| = (1− wC)|A\D|/|A| ≥ w∗ · 1/2.
Case 3:
If B ⊆ D, we have B ( D. Since A,B are incomparable, A,D are incomparable. |(D1 −
D2)(D\(A∪B)| ≥ w∗/4. IfB * D,B∩D is a proper subspace ofB, |(D1−D2)(B\(A∪D)| ≥
w∗/4.
Case 4: similar to Cases 3.
Case 5:
If |wA−wC | ≥ w∗/2, then |(D1−D2)(A\(B∪D))| = |wA−wC |·|A\(B∪D))|/|A| ≥ w∗/2·1/4.
If |wA−wC | ≤ w∗/2, without loss of generality, assume dim(B) ≥ dim(D). SinceB 6= D,B∩D
is a proper subspace ofB. |(D1−D2)(B\D)| = |(wA−wC)·|B\D|/|A|+(1−wA)|B\D|/|B|| ≥
(1− wA)|B\D|/|B| − |(wA − wC) · |B\D|/|A|| ≥ w∗/2− w∗/2 · 1/2 = w∗/4.

Proof [Proof of Theorem 12] Set ε = w0/100,M = d1/εe, γ = (1 − w0)/M . Let Dε =
{D(Aj , Bj , w0+k∗γ, 1−w0−k∗γ}j∈[N ],k∈[M ]∪{0}. It is not hard to see that there exist D∗ ∈ Dε

such that dTV (D∗,D) ≤ ε. By Proposition 22, we can find D′ ∈ Dε such that dTV (D′,D) ≤ 6ε
with probability 1 − δ. Say D′ = D(A′, B′, w′, 1 − w′). We claim {A′, B′} = {A,B}. For a
contradiction, suppose it is not true. Then by Lemma 24, dTV (D′,D) ≥ w0/8 > 6ε, we derive a
contradiction.

Appendix B. Generalized Chernoff Bound

Lemma 25 Let γ ∈ (0, 1), d, k ∈ N. Let x1,x2, · · · ,xk be a sequence of random variables such
that for all i ∈ [k]

P[(xi = 1) ∨ (x1 + x2 + · · ·+ xi−1 ≥ d)|x1, · · · ,xi−1] ≥ γ.

Assume k ≥ 2d/γ. Then

P[x1 + · · ·+ xk ≥ d] ≥ 1− exp
(
−kγ2/8

)
.

Proof We will use the coupling technique. Define

yi =

{
1 if x1 + · · ·+ xi−1 ≥ d.
xi otherwise.

Then

1. x1 + · · ·+ xk ≥ d ⇐⇒ y1 + · · ·+ yk ≥ d.

2. For all i ∈ [k],P[yi = 1|y1, · · · ,yi−1] ≥ γ.

2. This is without loss of generality.
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Define a submartingale Z0, · · · ,Zk by Z0 = 0 and Zj =
∑

1≤l≤j yl − jγ. Then,

P[x1 + · · ·+ xk ≥ d]

= P[y1 + · · ·+ yk ≥ d]

= 1− P[y1 + · · ·+ yk ≤ d− 1]

≥ 1− P[Zk − Z0 ≤ d− 1− kγ]

≥ 1− exp

(
−(kγ − (d− 1))2

2k

)
by Azuma–Hoeffding inequality

≥ 1− exp
(
−kγ2/8

)
. by kγ ≥ 2d
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