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Abstract
We consider the problem of asynchronous online combinatorial optimization on a network of
communicating agents. At each time step, some of the agents are stochastically activated, requested
to make a prediction, and the system pays the corresponding loss. Then, neighbors of active
agents receive semi-bandit feedback and exchange some succinct local information. The goal
is to minimize the network regret, defined as the difference between the cumulative loss of the
predictions of active agents and that of the best action in hindsight, selected from a combinatorial
decision set. The main challenge in such a context is to control the computational complexity of the
resulting algorithm while retaining minimax optimal regret guarantees. We introduce Coop-FTPL, a
cooperative version of the well-known Follow The Perturbed Leader algorithm, that implements a
new loss estimation procedure generalizing the Geometric Resampling of Neu and Bartók (2013)
to our setting. Assuming that the elements of the decision set are k-dimensional binary vectors
with at most m non-zero entries and α1 is the independence number of the network, we show that
the expected regret of our algorithm after T time steps is of order Q

√
mkT log(k)(kα1/Q+m),

where Q is the total activation probability mass. Furthermore, we prove that this is only
√
k log k-

away from the best achievable rate and that Coop-FTPL has a state-of-the-art T 3/2 worst-case
computational complexity.
Keywords: follow the perturbed leader, online stochastic mirror descent, regret minimization,
multi-agent learning

1. Introduction

Distributed online settings with communication constraints arise naturally in large-scale learning
systems. For example, in domains such as finance or online advertising, agents often serve high
volumes of prediction requests and have to update their local models in an online fashion. Bandwidth
and computational constraints may therefore preclude a central processor from having access to all
the observations from all sessions and synchronizing all local models at the same time. With these
motivations in mind, we introduce and analyze a new online learning setting in which a network of
agents solves efficiently a common nonstochastic combinatorial semi-bandit problem by sharing
information only with their network neighbors. At each time step t, some agents v belonging
to a communication network G are asked to make a prediction xt(v) belonging to a subset A of
{0, 1}k and pay a (linear) loss

〈
xt(v), `t

〉
where `t ∈ [0, 1]k is chosen adversarially by an oblivious

environment. Then, any such agent v receives the feedback
(
xt(1, v)`t(1), . . . , xt(k, v)`t(k)

)
, which
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is shared, together with some local information, to its first neighbors in the graph. The goal is to
minimize the network regret after T time steps

RT = max
a∈A

E

[
T∑
t=1

∑
v∈St

〈
xt(v), `t

〉
−

T∑
t=1

∑
v∈St

〈a, `t〉

]
, (1)

where St is the set of agents v that made a prediction at time t. In words, this is the difference
between the cumulative loss of the “active” agents and the loss that they would have incurred had
they consistently made the best prediction in hindsight.

For this setting, we design a distributed algorithm that we call Coop-FTPL (Algorithm 1), and
prove that its regret is upper bounded by Q

√
mkT log(k)(kα1/Q+m) (Theorem 5), where α1

is the independence number of the network G and Q is the sum over all agents of the probability
that the agent is active during a time step. Our algorithm employs an estimation technique that we
call Cooperative Geometric Resampling (Coop-GR, Algorithm 2). It is an extension of a similar
procedure appearing in (Neu and Bartók, 2013) that relies on the fact that the reciprocal of the
probability of an event can be estimated by measuring the reoccurrence time. We can leverage this
idea in the context of cooperative learning thanks to some statistical properties of the minimum of
a family of geometric random variables (see Lemmas 1–3). Our algorithm has a state-of-the-art
dependence on time of order T 3/2 for the worst-case computational complexity (Proposition 6).
Moreover, we show with a lower bound (Theorem 7) that no algorithm can achieve a regret smaller
than Q

√
mkTα1/Q on all cooperative semi-bandit instances. Thus, our Coop-FTPL is at most a

multiplicative factor of
√
k log k-away from the minimax result.

To the best of our knowledge, ours is the first computationally efficient near-optimal learning
algorithm for the problem of cooperative learning with nonstochastic combinatorial bandits, where
not all agents are necessarily active at all time steps.

2. Related work and further applications

Single-agent combinatorial bandits find applications in several fields, such as path planning, ranking
and matching problems, finding minimum-weight spanning trees, cut sets, and multitask bandits. An
efficient algorithm for this setting is Follow-The-Perturbed-Leader (FTPL), which was first proposed
by Hannan (1957) and later rediscovered by Kalai and Vempala (2005). Neu and Bartók (2013) show
that combining FTPL with a loss estimation procedure called Geometric Resampling (GR) leads to a
computationally efficient solution for this problem. More precisely, the solution is efficient given
that the offline optimization problem of finding

a? = argmin
a∈A

〈a, y〉 , ∀y ∈ [0,+∞)k (2)

admits a computationally efficient algorithm. This assumption is minimal, in the sense that if the
offline problem in Eq. (2) is hard to approximate, then any algorithm with low regret must also
be inefficient.1 Grötschel et al. (2012) and Lee et al. (2018) give some sufficient conditions for
the validity of this assumption. They essentially rely on having an efficient membership oracle for
the convex hull co(A) of A and an evaluation oracle for the linear function to optimize. Audibert
et al. (2014) note that Online Stochastic Mirror Descent (OSMD) or Follow The Regularized Leader

1. A slight relaxation in this direction would be assuming that Eq. (2) can be approximated accurately and efficiently.
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AN EFFICIENT ALGORITHM FOR COOPERATIVE SEMI-BANDITS

(FTRL)-type algorithms can be efficiently implemented by convex programming if the convex
hull of the decision set can be described by a polynomial number of constraints. Suehiro et al.
(2012) investigate the details of such efficient implementations and design an algorithm with k6

time-complexity, which might still be unfeasible in practice. Methods based on the exponential
weighting of each decision vector can be implemented efficiently only in a handful of special cases
—see, e.g., (Koolen et al., 2010) and (Cesa-Bianchi and Lugosi, 2012) for some examples.

The study of cooperative nonstochastic online learning on networks was pioneered by Awerbuch
and Kleinberg (2008), who investigated a bandit setting in which the communication graph is a clique,
agents belong to clusters characterized by the same loss, and some agents may be non-cooperative.
In our multi-agent setting, the end goal is to control the total network regret (1). This objective
was already studied by Cesa-Bianchi et al. (2019a) in the full-information case. A similar line of
work was pursued by Cesa-Bianchi et al. (2019b), where the authors consider networks of learning
agents that cooperate to solve the same nonstochastic bandit problem. In their setting, all agents
are simultaneously active at all time steps, and the feedback propagates throughout the network
with a maximum delay of d time steps, where d is a parameter of the proposed algorithm. The
authors introduce a cooperative version of Exp3 that they call Exp3-COOP with regret of order√

(d+ 1 +Kαd/N)(T logK) where K is the number of arms in the nonstochastic bandit problem,
N is the total number of agents in the network, and αd is the independence number of the d-th power
of the communication network. The case d = 1 corresponds to information that arrives with one
round of delay and communication limited to first neighbors. In this setting Exp3-COOP has regret
of order

√
(1 +Kα1/N)(T logK). Thus, our work can be seen as an extension of this setting to

the case of combinatorial bandits with stochastic activation of agents. Finally, we point out that if the
network consists of a single node, our cooperative setting collapses into a single-agent combinatorial
semi-bandit problem. In particular, when the number of arms is k and m = 1, this becomes the
well-known adversarial multiarmed bandit problem (see (Auer et al., 2002)). Hence, ours is a proper
generalization of all the settings mentioned above. These cooperative problems are also studied in
stochastic setting (see, e.g., Martı́nez-Rubio et al. (2019)).

Finally, the reader may wonder what kind of results could be achieved if the agents are activated
adversarially rather than stochastically. Cesa-Bianchi et al. (2019a) showed that in this setting no
learning can occur, not even in with full-information feedback.

3. Cooperative semi-bandit setting

In this section, we present our cooperative semi-bandit protocol and we introduce all relevant
definitions and notation.

We say that G = (V, E) is a communication network over N agents if it is an undirected graph
over a set V with cardinality |V| = N , whose elements we refer to as agents. Without loss of
generality, we assume that V = {1, . . . , N}. For any agent v ∈ V , we denote by N (v) the set of
agents containing v and the neighborhood {w ∈ V : (v, w) ∈ E}. We say that α1 is the independence
number of the network G if is the largest cardinality of an independent set of G, where an independent
set of G is a subset of agents, no two of which are neighbors.

We study the following cooperative online combinatorial optimization protocol. Initially, hidden
from the agents, the environment draws a sequence of subsets S1,S2, . . . ⊂ V of agents, that we
call active, and a sequence of loss vectors `1, `2, . . . ∈ Rk. We assume that each agent v has a
probability q(v) of being activated, which need only be known by v. The set of active agents St
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at time t ∈ {1, 2, . . .} is then determined by drawing, for each agent v ∈ V , a Bernoulli random
variable Xt(v) with bias q(v), independently of the past, and St consists exclusively of agents v ∈ V
for which Xt(v) = 1. The decision set is a subset A of

{
a ∈ {0, 1}k :

∑k
i=1 ai ≤ m

}
, for some

m ∈ {1, . . . , k}.
For each time step t ∈ {1, 2, . . .}:

1. each active agent v ∈ St predicts with xt(v) ∈ A (possibly drawn at random);
2. each neighbor v ∈ N (w) of an active agent w ∈ St receives the feedback

ft(w) :=
(
xt(1, w)`t(1), . . . , xt(k,w)`t(k)

)
; (3)

3. each agent v ∈
⋃
w∈St N (w) receives some local information from its neighbors in N (v);

4. the system incurs the loss
∑

v∈St
〈
xt(v), `t

〉
.

The goal is to minimize the expected network regret as a function of the time horizon T , defined by

RT := max
a∈A

E

[
T∑
t=1

∑
v∈St

〈
xt(v), `t

〉
−

T∑
t=1

∑
v∈St

〈a, `t〉

]
, (4)

where the expectation is taken with respect to the draws of S1, . . . ,ST and (possibly) the randomiza-
tion of the learners. In the next sections we will also denote by Pt the probability conditioned to the
history up to and including round t− 1, and by Et the corresponding expectation.

The nature of the local information exchanged by neighbors of active agents will be clarified
in the next section. In short, they share succinct representations of the current state of their local
prediction model.

4. Coop-FTPL and upper bound

In this section we introduce and analyze our efficient Coop-FTPL algorithm for cooperative online
combinatorial optimization.

4.1. The Coop-FTPL algorithm

Coop-FTPL (Algorithm 1) takes as input a decision set A ⊂ {0, 1}k, a time horizon T ∈ N, a
learning rate η > 0, a truncation parameter β, and an exploration distribution ζ. At each time step t,
all active agents v make a FTPL prediction xt(v) (line 4) with an i.i.d. perturbation sampled from
ζ (line 3), then they receive some feedback ft(v) and share it with their first neighbors (line 6).
Afterwards, each agent who received some feedback this round, requests from its neighbors w a
vector Kt(w) of geometric random samples (line 7) which is efficiently computed by Algorithm 2
and will be described in detail later. With these geometric samples, each agent v computes an
estimated loss ̂̀t(v) (line 8) and updates the cumulative loss estimate L̂t(v) (line 9). This estimator
is described in detail in Section 4.3.

4.2. Reduction to OSMD

Before describing Kt(w) and ̂̀t(v), we make a connection between FTPL and the Online Stochastic
Mirror Descent algorithm (OSMD)2 that will be crucial for our analysis.3

2. For a brief overview of some key convex analysis and OSMD facts, see Appendices A and B
3. For a similar approach in the single-agent case, see (Lattimore and Szepesvári, 2020).
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Algorithm 1: Follow the perturbed leader for cooperative semi-bandits (Coop-FTPL)
Input: decision set A, horizon T , learning rate η, truncation parameter β, exploration pdf ζ
Initialization: L̂0 = 0 ∈ Rk

1 for each time t = 1, 2, . . . do
2 for each active agent v ∈ St do // active agents
3 sample Zt(v) ∼ ζ, independently of the past
4 make the prediction xt(v) = argmaxa∈A

〈
a, Zt(v)− ηL̂t−1(v)

〉
5 for each agent v ∈

⋃
w∈St N (w) do // neighbors of active agents

6 receive the feedback ft(w) (Eq. (3)) from each active neighbor w ∈ N (v) ∩ St
7 receive Kt(i, w) (∀ i ∈ {1, . . . , k}) from each neighbor w ∈ N (v) using Algorithm 2
8 compute ̂̀t(i, v) = `t(i)Bt (i, v) minw∈N (v)

{
Kt(i, w)

}
, ∀i ∈ {1, . . . , k} (Eq. (6)–(7))

9 update L̂t(v) = L̂t−1(v) + ̂̀t(v)

Algorithm 2: Geometric resampling for cooperative semi-bandits (Coop-GR)
Input: time step t, component i, agent w, truncation parameter β, exploration pdf ζ

1 for s = 1, 2, . . . do
2 sample z′s ∼ ζ, independently of the past
3 let x′s be the i-th component of the vector argmaxa∈A

〈
a, z′s − ηL̂t−1(w)

〉
4 sample y′s from a Bernoulli distribution with parameter q(w), independently of the past
5 if (x′s = 1 and y′s = 1) or s = β, break
6 return Kt(i, w) = s

5
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Fix any time step t and an agent v. As we mentioned above, if v is active, it makes the following
FTPL prediction (line 4)

xt(v) = argmin
a∈A

〈
a, ηL̂t−1(v)− Zt(v)

〉
,

where Zt(v) ∈ Rk is sampled i.i.d. from ζ (the random perturbations introduce the exploration,
which for an appropriate choice of ζ is sufficient to guarantee small regret). On the other hand, given
a Legendre potential F with dom(∇F ) = int(co(A)), an OSMD algorithm makes the prediction

xt(v) = argmin
x∈co(A)

(〈
x, η ̂̀t−1(v)

〉
+ BF (x, xt−1(v))

)
,

where BF is the Bregman divergence induced by F and co(A) is the convex hull ofA. Using the fact
that dom(∇F ) = int

(
co(A)

)
, the argmin above can be computed in a standard way by studying

when the gradient of its argument is equal to zero, and proceeding inductively, we obtain the two
identities ∇F (xt(v)) = ∇F (xt−1(v)) − η ̂̀t−1(v) = −ηL̂t−1(v) . By duality this implies that
xt(v) = ∇F ∗

(
−ηL̂t−1(v)

)
. We now want to relate xt(v) and xt(v) so that

xt(v) = Et
[
xt(v)

]
= Et

[
argmin
a∈A

〈
a, ηL̂t−1(v)− Zt(v)

〉]
, (5)

where the conditional expectation Et (given the history up to time t−1) is taken with respect to Zt(v).
Thus, in order to view FTPL as an instance of OSMD, it suffices to find a Legendre potential F with
dom(∇F ) = int(co(A)) such that ∇F ∗

(
−ηL̂t−1(v)

)
= Et

[
argmaxa∈A

〈
a, Zt(v) − ηL̂t−1(v)

〉]
.

In order to satisfy this condition, we need that for any x ∈ Rk, the Fenchel conjugate F ∗ of F
enjoys ∇F ∗(x) =

∫
Rk argmaxa∈A〈a, z − x〉 ζ(z) dz. Then, we define h(x) := argmaxa∈A〈a, x〉

for any x ∈ Rk, where h(x) is chosen to be an arbitrary maximizer if multiple maximizers exist.
From convex analysis, if the convex hull co(A) of A had a smooth boundary, then the support
function x 7→ φ(x) := maxa∈co(A)〈a, x〉 = maxa∈A〈a, x〉, of co(A) would satisfy∇φ(x) = h(x).
For combinatorial bandits, co(A) is non-smooth, but, being ζ a density with respect to Lebesgue
measure, one can prove (see, e.g., Lattimore and Szepesvári (2020)) that∇

∫
Rk φ(x+ z)ζ(z) dz =∫

Rk h(x+ z)ζ(z) dz, for all x ∈ Rk. This shows that FTPL can be interpreted as OSMD with a
potential F defined implicitly by its Fenchel conjugate

F ∗(x) :=

∫
Rk

φ(x+ z)ζ(z) dz , ∀x ∈ Rk .

Thus, recalling (5), we can think of the update xt(v) of OSMD as the average of a random component-
wise draw xt(i, v) =

∑
a∈A Pt(a, v) a(i) (for all i ∈ {1, . . . , k}), with respect to a distribution Pt(v)

on A defined in terms of the distribution of Zt, as

Pt(a, v) = Pt
[
h
(
Zt(v)− ηL̂t−1(v)

)
= a

]
, ∀a ∈ A ,

where Pt is the probability conditioned of the history up to time t− 1.

6



AN EFFICIENT ALGORITHM FOR COOPERATIVE SEMI-BANDITS

4.3. An efficient estimator

For the understanding of the definitions and analyses of Kt(w) and ̂̀t(v), we introduce three useful
lemmas on geometric distributions. We defer their proofs to Appendix C.

Lemma 1 Let Y1, . . . , Ym be m independent random variables such that each Yj has a geometric
distribution with parameter pj ∈ [0, 1]. Then, the random variable Z := minj∈{1,...,m} Yj has a
geometric distribution with parameter 1−

∏m
j=1(1− pj).

Lemma 2 Let G be a geometric random variable with parameter q ∈ (0, 1] and β > 0. Then, the
expectation of the random variable min{G, β} satisfies E

[
min{G, β}

]
=
(
1− (1− q)β

)
/q.

Lemma 3 For all v ∈ V , fix two arbitrary numbers p1(v), p2(v) ∈ [0, 1]. Consider a collection{
Xs(v), Ys(v)

}
s∈N,v∈V of independent Bernoulli random variables such that E

[
Xs(v)

]
= p1(v)

and E
[
Ys(v)

]
= p2(v) for any s ∈ N and all v ∈ V . Then, the random variables {G(v)}v∈V defined

for all v ∈ V by G(v) := inf
{
s ∈ N : Xs(v)Ys(v) = 1

}
are all independent and they have a

geometric distribution with parameter p1(v) p2(v).

Fix now any time step t, agent v, and component i ∈ {1, . . . , k}. The loss estimator ̂̀t(i, v) depends
on the algorithmic definition of Kt(i, w) in Algorithm 2, where w ∈ N (v). By Lemma 3, we have
that for any w, conditionally on the history up to time t − 1, the random variable Kt(i, w), has
a truncated geometric distribution with success probability equal to xt(i, w)q(w) and truncation
parameter β. The idea is that using Kt(i, w) as an estimator we can reconstruct the inverse of the
probability that agent v observes i at time t. The truncation parameter β is not needed for the analysis,
but it is used just to optimize the computational efficiency of the algorithm.4

The loss estimator of v is then defined as

̂̀
t(i, v) := `t(i)Bt (i, v) min

w∈N (v)

{
Kt(i, w)

}
, (6)

where

Bt(i, v) = I
{
∃w ∈ N (v) : w ∈ St, xt(i, w) = 1

}
, Kt(i, w) = min

{
Gt(i, w), β

}
, (7)

and given the history up to time t− 1, for each i ∈ {1, . . . , k}, the family
{
Gt(i, w)

}
w∈V consists

of independent geometric random variables with parameter xt(i, w)q(w). Note that the geometric
random variables Gt(i, w) are actually never computed by Algorithm 2 which efficiently computes
only their truncations Kt(i, w), with truncation parameter β. Nevertheless, as it will be apparent
later, they are a useful tool for the theoretical analysis. Note that, by Eq. (5), we have

Pt
[
xt(i, w) = 1

]
= Et[xt(i, w)] = xt(i, w),

4. Previously known cooperative algorithms for limited feedback settings need to exchange at least two real numbers: the
probability according to which predictions are drawn and the loss. Instead of the probability, we only need to pass the
integer Kt(i, w), which requires at most log2(β) bits (order of log(T ), when tuned). Note also that for the loss, we
could exchange an approximation lt of `t using only n = O(log(T )) bits. Indeed one can show that Lemma 4, in this
case, is true replacing `t with lt in the first equality. Everything else works the same in the proof of Theorem 5 up an
extra (negligible) m2−nT term.
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therefore

Bt(i, v) := Et[Bt(i, v)] = 1−
∏

w∈N (v)

(1− xt(i, w) q(w)) =
1

Et
[
minw∈N (v)Gt(i, w)

] ,
where the last identity follows by Lemma 1. Moreover from Lemmas 1 and 2, we have

Et
[

min
w∈N (v)

Kt(i, w)

]
=

1−
∏
w∈N (v)(1− xt(i, w) q(w))β

Bt(i, v)
.

The following key lemma gives an upper bound on the expected estimated loss.

Lemma 4 For any time t, component i, agents v, and truncation parameter β, the expectation of
the loss estimator in (6), given the history up to time t− 1, satisfies

Et
[̂̀
t(i, v)

]
= `t(i)

1−

( ∏
w∈N (v)

(
1− xt(i, w) q(w)

))β ≤ `t(i) .
Proof Using the fact that, conditioned on the history up to time t − 1, the random variable
minw∈N (v)Gt(i, w) has a geometric distribution with parameter Bt(i, v) (Lemmas 1-3), we get

Et
[̂̀
t(i, v)

]
= Et

[
`t(i)Bt(i, v) min

w∈N (v)
{min{Gt(i, w), β}}

]
= Et

[
`t(i)Bt(i, v) min

{
min

w∈N (v)
Gt(i, w), β

}]

= `t(i)Et[Bt(i, v)]Et
[
min

{
min

w∈N (v)
Gt(i, w), β

}]
= `t(i)Bt(i, v)

(
1−

(
1−Bt(i, v)

)β)
Bt(i, v)

= `t(i)
(

1−
(
1−Bt(i, v)

)β)
= `t(i)

1−

( ∏
w∈N (v)

(
1− xt(i, w) q(w)

))β ,

where we plugged in the definition of Bt(i, v) in the last equation. From the fact that xt(i, w) q(w) ∈
[0, 1] and β > 0 follows that Et

[̂̀
t(i, v)

]
≤ `t(i).

4.4. Analysis

We can finally state our upper bound on the regret of Coop-FTPL. The key idea is to apply OSMD
techniques to our FTPL algorithm, as explained in Section 4.2. The proof proceeds by splitting the
regret of each agent in the network in three terms. The first two are treated with standard techniques;
the first one depends on the diameter of co(A) with respect to the regularizer F and the second one
on the Bregman divergence of consecutive updates. The last term is related to the bias of the estimator
and is analyzed leveraging the lemmas on geometric distributions introduced in Section 4.3. Then,
this terms are summed, each with a weight corresponding to their probabilities of being activated,
and this sum is controlled using results that relate a sum of weights over the nodes of a graph of with
the independence number of the graph.
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Theorem 5 If ζ is the Laplace density z 7→ ζ(z) = 2−k exp
(
−‖z‖1

)
, η > 0, and 0 < β ≤ 1/(ηk),

then then the regret of our Coop-FTPL algorithm (Algorithm 1) satisfies

RT ≤
3Qm log k

η
+ 3QηkT

(
k

Q
α1 +m

)
+
α1 k T

β
.

In particular, tuning the parameters η, β as follows

β =

⌊
1

kη

⌋
and η =

√√√√ 3m log(k)

5kT
(
k
Qα1 +m

) , where Q =
∑
v∈V

q(v) , (8)

yields

RT ≤ 2Q

√
15mkT log(k)

(
k

Q
α1 +m

)
.

We now present a detailed sketch of the proof of our main result (full proof in Appendix D).
Proof sketch For the sake of convenience, we define the expected individual regret of an agent v ∈ V
in the network with respect to a fixed action a ∈ A by

RT (a, v) := E

[
T∑
t=1

〈xt(v), `t〉 −
T∑
t=1

〈a, `t〉

]
,

where the expectation is taken with respect to the internal randomization of the agent, but not to
its activation probability q(v). With this definition the total regret on the network in Eq. (4) can be
decomposed as

RT = max
a∈A

E

[
T∑
t=1

∑
v∈St

(〈
xt(v), `t

〉
− 〈a, `t〉

)]
= max

a∈A
E

[
T∑
t=1

Et

[∑
v∈St

(〈
xt(v), `t

〉
− 〈a, `t〉

)]]

= max
a∈A

E

[
T∑
t=1

∑
v∈V

q(v)Et
[〈
xt(v), `t

〉
− 〈a, `t〉

]]
= max

a∈A

∑
v∈V

q(v)RT (a, v) . (9)

The proof then proceeds by isolating the bias in the loss estimators. For each a ∈ A we have

RT (a, v) = E

[
T∑
t=1

〈
xt(v)− a, ̂̀t(v)

〉]
+ E

[
T∑
t=1

〈
xt(v)− a, `t − ̂̀t(v)

〉]
.

Exploiting the analogy that we established between FTPL and OSMD, we begin by using the standard
bound for the regret of OSMD in the first term of the previous equation. For the reader’s convenience,
we restate it in Appendix B, Theorem 15. This leads to

RT (a, v)≤ F (x1(v))− F (a)

η︸ ︷︷ ︸
(I)

+E

[
1

η

T∑
t=1

BF (xt(v), xt+1(v))

]
︸ ︷︷ ︸

(II)

+E

[
T∑
t=1

〈
xt(v)− a, `t − ̂̀t(v)

〉]
︸ ︷︷ ︸

(III)

.

9
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The three terms are studied separately and in detail in Appendix D. Here, we provide a sketch of the
bounds.

For the first term (I), we use the fact that the regularizer F satisfies, for all a ∈ A,

F (a) ≥ −m
(
1 + log(k)

)
, (10)

which follows by the definition of F , the properties of the perturbation distribution, and the fact that
‖a‖1 ≤ m for any a ∈ A. One can also show that F (a) ≤ 0 for all a ∈ A, and this, combined with
the previous equation, leads to

(I) ≤ m(1 + log k)

η
.

For the second term (II), we have

BF (xt(v), xt+1(v)) = BF ∗(∇F (xt+1(v)),∇F (xt(v)))

= BF ∗
(
−ηL̂t−1(v)− η̂̀t(v),−ηL̂t−1(v)

)
=
η2

2

∥∥∥̂̀t(v)
∥∥∥2
∇2F ∗(ξ(v))

, (11)

where the first equality is a standard property of Bregmann divergence (see Theorem 13 in Ap-
pendix A), the second follows from the definitions of the updates and the last by Taylor’s theorem,
where ξ(v) = −ηL̂t−1(v) − αη̂̀t(v), for some α ∈ [0, 1]. The estimation of the entries of the
Hessian are non trivial (but tedious); the interested reader can find them in Appendix D. Exploiting
our assumption that β ≤ 1/(ηk), we get, for all i, j ∈ {1, . . . , k},

∇2F ∗
(
ξ(v)

)
ij
≤ e xt(i, v) .

Plugging this estimate in Eq. (11) yields

η2

2

∥∥∥̂̀t(v)
∥∥∥2
∇2F ∗(ξ(v))

=
η2

2

k∑
i=1

k∑
j=1

∇2F ∗
(
ξ(v)

)
i,j
̂̀
t(i, v)̂̀t(j, v)

≤ η2e

2

k∑
i=1

k∑
j=1

xt(i, v)̂̀t(i, v)̂̀t(j, v)

≤ η2e

2

k∑
i=1

k∑
j=1

xt(i, v)Bt(i, v) min
w∈N (v)

{Gt(i, w)}Bt(j, v) min
w∈N (v)

{Gt(j, w)},

where the last inequality follows by neglecting the truncation with β. Hence multiplying (II) by q(v)
and summing over v ∈ V yields

∑
v∈V

q(v)E

[
η

2

T∑
t=1

∥∥∥̂̀t(v)
∥∥∥2
∇2F ∗(ξ(v))

]
=
∑
v∈V

q(v)
η

2
E

[
T∑
t=1

Et
[∥∥∥̂̀t(v)

∥∥∥2
∇2F ∗(ξ(v))

]]

≤
∑
v∈V

q(v)
ηe

2
E

 T∑
t=1

Et

 k∑
i,j=1

xt(i, v)Bt(i, v) min
w∈N (v)

{Gt(i, w)}Bt(j, v) min
w∈N (v)

{Gt(j, w)}

 ,
10
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which is rewritten as

∑
v∈V

q(v)
ηe

2
E

 T∑
t=1

Et

 k∑
i,j=1

xt(i, v)Bt(i, v) min
w∈N (v)

{Gt(i, w)}Bt(j, v) min
w∈N (v)

{Gt(j, w)}


=
∑
v∈V

q(v)
ηe

2
E

 T∑
t=1

Et

 k∑
i=1

k∑
j=1

xt(i, v)Bt(i, v)G̃t(i, v)Bt(j, v)G̃t(j, v)


=
∑
v∈V

q(v)
ηe

2
E

 T∑
t=1

k∑
i=1

k∑
j=1

xt(i, v)Et[Bt(i, v)Bt(j, v)]Et
[
G̃t(i, v)

]
Et
[
G̃t(j, v)

] =: (?) ,

where in the first equality we defined G̃t(i, v) = minw∈N (v)

{
Gt(i, w)

}
and, analogously, G̃t(j, v) =

minw∈N (v)

{
Gt(j, w)

}
, while the second follows by the conditional independence of the three terms(

Bt(i, v), Bt(j, v)
)
, G̃t(i, v), and G̃t(j, v) given the history up to time t− 1. Furthermore, making

use of Lemmas 1–3 and upper bounding, we get:

(?) =
∑
v∈V

q(v)
ηe

2
E

 T∑
t=1

Et

 k∑
i=1

k∑
j=1

xt(i, v)

Bt(i, v)
Bt(i, v)

Bt(j, v)

Bt(j, v)


≤ ηek

2
E

[
T∑
t=1

k∑
i=1

∑
v∈V

xt(i, v)q(v)

Bt(i, v)

]
≤ ηekT

2(1− e−1)
(kα1 +mQ),

where the first equality uses the expected value of the geometric random variables G̃, the first
inequality is obtained neglecting the indicator functionBt(i, v) and taking the conditional expectation
of Bt(j, v), and the last inequality follows by a known upper bound involving independence numbers
appearing, for example in Cesa-Bianchi et al. (2019a,b). For the sake of convenience, we add this
result to Appendix E, Lemma 17. We now consider the last term (III). Since `t ≥ Et

[̂̀
t(v)

]
by

Lemma 4, we have

(III) = E

[
T∑
t=1

Et
[〈
xt(v)− a, `t − ̂̀t(v)

〉]]
≤ E

[
T∑
t=1

Et
[〈
xt(v), `t − ̂̀t(v)

〉]]

= E

 T∑
t=1

k∑
i=1

`t(i)xt(i, v)

( ∏
w∈N (v)

(
1− xt(i, w) q(w)

))β .

11
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Multiplying (III) by q(v) and summing over the agents, we now upper bound `t(i) with 1 and use
the facts that 1− x ≤ e−x for all x ∈ [0, 1] and e−y ≤ 1/y for all y > 0, to obtain

∑
v∈V

q(v)E

 T∑
t=1

k∑
i=1

`t(i)xt(i, v)

 ∏
w∈N (v)

(1− xt(i, w) q(w))

β


≤ E

 T∑
t=1

k∑
i=1

∑
v∈V

xt(i, v) q(v)

 ∏
w∈N (v)

(1− xt(i, w) q(w))

β


= E

 T∑
t=1

k∑
i=1

∑
v∈V

xt(i,v) q(v)>0

xt(i, v) q(v)

 ∏
w∈N (v)

(1− xt(i, w) q(w))

β


≤ E

 T∑
t=1

k∑
i=1

∑
v∈V

xt(i,v) q(v)>0

xt(i, v)q(v) exp

−β ∑
w∈N (v)

xt(i, w) q(w)




≤ E

 T∑
t=1

k∑
i=1

∑
v∈V

xt(i,v) q(v)>0

xt(i, v) q(v)

β
∑

w∈N (v) xt(i, w) q(w)

 ≤ E

[
T∑
t=1

k∑
i=1

α1

β

]
=
α1 k T

β

where the last inequality follows by a known upper bound involving independence numbers appearing,
for example in (Alon et al., 2017, Lemma 10). For the sake of convenience, we add this result to
Appendix E, Lemma 16. Putting everything together and recalling that β =

⌊
1/(kη)

⌋
≥ 1/(2kη),

we can finally conclude that

RT ≤ Q
m(1 + log(k))

η
+Q

ηekT

2(1− e−1)

(
k

Q
α1 +m

)
+
α1 k T

β

≤ Qm(1 + log(k))

η
+Q

ηekT

2(1− e−1)

(
k

Q
α1 +m

)
+ 2ηα1k

2T

= Q
m(1 + log(k))

η
+ ηQkT

(
e

2(1− e−1)

(
k

Q
α1 +m

)
+ 2α1

k

Q

)
≤ Qm(1 + log(k))

η
+ 5ηQkT

(
k

Q
α1 +m

)
≤ 2Q

√
15mkT log(k)

(
k

Q
α1 +m

)
.

We conclude this section by discussing the computational complexity of our Coop-FTPL al-
gorithm. The next result shows that the total number of elementary operations performed by
Coop-FTPL over T time-steps scales with T 3/2 in the worst-case. To the best of our knowledge, no
known algorithm attains a lower worst-case computational complexity.

12
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Proposition 6 If the optimization problem (2) can be solved with at most c ∈ N elementary
operations, the worst-case computational complexity γCoop-FTPL of each agent v ∈ V running our
Coop-FTPL algorithm with the optimal tuning (8) for T rounds is

γCoop-FTPL = O

(
T 3/2c

√
α1/Q+ 1

m

)
.

Proof The result follows immediately by noting that the number of elementary operations performed
by each agent v at each time step t is at most

c(β + 1) ≤ c
(

1

kη
+ 1

)
= c

(
1

k

√
5kT (kα1/Q+m)

2m log k
+ 1

)
= c

(√
5T (α1/Q+m/k)

2m log k
+ 1

)
.

5. Lower bound

In this section we show that no cooperative semi-bandit algorithm can beat the Q
√
mkTα1/Q rate.

The key idea for constructing the lower bound is simple: if the activation probabilities q(v) are
non-zero only for agents v belonging to an independent set with cardinality α1, then the problem is
reduced to α1 independent instances of single-agent semi-bandits, whose minimax rate is known.

Theorem 7 For each communication network G with independence number α1 there exist coopera-
tive semi-bandit instances for which the regret of any learning algorithm satisfies

RT = Ω
(
Q
√
mkTα1/Q

)
.

Proof LetW = {w1, . . . , wα1} ⊂ V be an independent set with cardinality α1. Furthermore, let
q ∈ (0, 1] be a positive probability and for all agents v ∈ V , let

q(v) = qI{v ∈ W} .

In words, only agents belonging to an independent set with largest cardinality are activated (with
positive probability), and all with the same probability. Thus, only agents inW contribute to the
expected regret and their total mass Q =

∑
v∈V q(v) is equal to α1q. Moreover, note that being

non-adjacent, agents inW never exchange any information. Each agent w ∈ W is therefore running
an independent single-agent online linear optimization problem with semi-bandit feedback for an
average of qT rounds. Since for single-agent semi-bandits, the worst-case lower bound on the regret
after T ′ time steps is known to be Ω

(√
mkT ′

)
(see, e.g., Audibert et al. (2014); Lattimore et al.

(2018)) and the cardinality ofW is α1, the regret of any cooperative semi-bandit algorithm run on
this instance satisfies

RT = Ω
(
α1

√
mk qT

)
= Ω

(
α1q
√
mkT/q

)
= Ω

(
Q
√
mkTα1/Q

)
,

where we used Q = α1q. This concludes the proof.

In the previous section we showed that the expected regret of our Coop-FTPL algorithm can
always be upper bounded by Q

√
mkT log(k)(kα1/Q+m) (ignoring constants). Thus, Theorem 7

shows that, up to the additive m term inside the rightmost bracket, the regret of Coop-FTPL is at
most

√
k log k-away from the minimax optimal rate.

13



AN EFFICIENT ALGORITHM FOR COOPERATIVE SEMI-BANDITS

6. Conclusions and open problems

Motivated by spatially distributed large-scale learning systems, we introduced a new cooperative
setting for adversarial semi-bandits in which only some of the agents are active at any given time step.
We designed and analyzed an efficient algorithm that we called Coop-FTPL for which we proved
near-optimal regret guarantees with state-of-the-art computational complexity costs. Our analysis
relies on the fact that agents are aware of their activation probabilities, and they have some prior
knowledge about the connectivity of the graph. Two interesting new lines of research are investigating
if either of these assumptions could be lifted while retaining low regret and good computational
complexity. In particular, removing the need for prior knowledge of the independence number would
represent a significant theoretical and practical improvement, given that computing α1 is NP-hard
in the worst-case. It is however unclear if existing techniques that address this problem in similar
settings (e.g., Cesa-Bianchi et al. (2019b)) would yield any results in our general case. We believe
that entirely new ideas will be required to deal with this issue. We leave these intriguing problems
open for future work.
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Appendix A. Legendre functions and Fenchel conjugates

In this section, we briefly recall a few known definitions and facts in convex analysis.

Definition 8 (Interior, boundary, and convex hull) For any subset E of Rk, we denote its topolog-
ical interior by int(E), its boundary by ∂E, and its convex hull by co(E).

Definition 9 (Effective domain) The effective domain of a convex function F : Rk → R ∪ {+∞}
is

dom(F ) :=
{
x ∈ Rk : F (x) < +∞

}
. (12)

With a slight abuse of notation, we will denote with the same symbol f a convex function
f : → R ∪ {+∞} and its restriction f̃ : dom(f)→ R to its effective domain.

Definition 10 (Legendre function) A convex function F : Rk → R ∪ {+∞} is Legendre if
1. int

(
dom(F )

)
is non-empty;

2. F is differentiable and strictly convex on int
(
dom(F )

)
;

3. for all x0 ∈ ∂
[
int
(
dom(F )

)]
, if x ∈ int

(
dom(F )

)
, x→ x0, then ‖∇F (x)‖2 → +∞.
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Definition 11 (Fenchel conjugate) Let F : Rk → R ∪ {+∞} be a convex function. The Fenchel
conjugate F ∗ of F is defined as the function

F ∗ : Rk → R ∪ {+∞}
z 7→ F ∗(z) := sup

x∈Rk

(
〈x, z〉 − F (x)

)
.

Definition 12 (Bregman divergence) Let F : Rk → R∪ {+∞} a convex function with non-empty
int
(
dom(F )

)
that is differentiable on int

(
dom(F )

)
. The Bregman divergence induced by F is

BF : Rk × int
(
dom(F )

)
→ R ∪ {+∞}

(x, y) 7→ BF (x, y) := F (x)− F (y)−
〈
∇F (y), x− y

〉
.

The following results are taken from (Lattimore and Szepesvári, 2020, Theorem 26.6 and
Corollary 26.8).

Theorem 13 Let F : Rk → R ∪ {+∞} be a Legendre function. Then:
1. the Fenchel conjugate F ∗ of F is Legendre;
2. ∇F : int

(
dom(F )

)
→ int

(
dom(F ∗)

)
is bijective with inverse (∇F )−1 = ∇F ∗;

3. BF (x, y) = BF ∗
(
∇F (y),∇F (x)

)
, for all x, y ∈ int

(
dom(f)

)
.

Corollary 14 If F : Rk → R ∪ {+∞} is a Legendre function and x ∈ argminx∈dom(F ) F (x), then
x ∈ int

(
dom(F )

)
.

Appendix B. Online Stochastic Mirror Descent (OSMD)

In this section, we briefly recall the standard Online Stochastic Mirror Descent algorithm (OSMD)
(Algorithm 3) and its analysis.

For an overview on some basic convex analysis definitions and results, we refer the reviewer
to the previous Appendix A. For a convex function F : Rk → R ∪ {+∞} that is differentiable on
the non-empty interior int

(
dom(F )

)
6= ∅ of its effective domain dom(F ), we denote by BF the

Bregman divergence induced by F (Definition 12). Following the existing convention, we refer to
the input function F of OSMD as a potential. Furthermore, given a measure P on a subset of Rk, we
say that a vector x ∈ Rk is the mean of the measure P if x is the component-wise expectation of a
Rk-valued random variable with distribution P . For any time step t ∈ {1, 2, . . .}, we denote by Et
the expectation conditioned to the history up to and including round t− 1.

It is known that since co(A) is convex and compact, int
(
dom(F )

)
∩ co(A) 6= ∅, and F is

Legendre, then, all the argmin’s exist in Algorithm 3 and xt ∈ int
(
dom(F )

)
∩ co(A) for all

t ∈ {1, 2, . . .} (see, e.g., (Lattimore and Szepesvári, 2020, Exercise 28.2)).
The following result is taken from (Lattimore and Szepesvári, 2020, Theorem 28.10) and gives

an upper bound on the regret of OSMD.

Theorem 15 Suppose that OSMD (Algorithm 3) is run with input F,A, η. If the estimates ̂̀t
computed at line 4 satisfy Et

[̂̀
t

]
= `t for all t ∈ {1, 2, . . .}, then, for all x ∈ co(A),

E

[
T∑
t=1

〈xt, `t〉 −
T∑
t=1

〈x, `t〉

]
≤ E

[
F (x)− F (x1)

η
+

T∑
t=1

〈
xt − xt+1, ̂̀t〉− 1

η

T∑
t=1

BF (xt+1, xt)

]
.
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Algorithm 3: Online Stochastic Mirror Descent (OSMD)

Input: Legendre potential F : Rk → R ∪ {+∞}, compact action set A ⊂ Rk with
int
(
dom(F )

)
∩ co(A) 6= ∅, learning rate η > 0

Initialization: x1 = argminx∈dom(F )∩co(A) F (x)

1 for t = 1, 2, . . . do
2 choose a measure Pt on A with mean xt
3 make a prediction xt drawn from A according to Pt and suffer the loss 〈xt, `t〉
4 compute an estimate ̂̀t of the loss vector `t
5 make the update: xt+1 = argminx∈dom(F )∩co(A) η

〈
x, ̂̀t〉+ BF (x, xt)

Furthermore, letting
x̃t+1 = argmin

x∈dom(F )
η
〈
x, ̂̀t〉+ BF (x, xt)

and assuming that −η̂̀t +∇F (x) ∈ ∇F
(
dom(F )

)
for all x ∈ co(A) almost surely, then

sup
x∈co(A)

E

[
T∑
t=1

〈xt, `t〉 −
T∑
t=1

〈x, `t〉

]
≤

diamF

(
co(A)

)
η

+
1

η

T∑
t=1

E
[
BF (xt, x̃t+1)

]
,

where diamF

(
co(A)

)
:= supx,y∈co(A)

(
F (x)− F (y)

)
is the diameter of co(A) with respect to F .

Appendix C. Proofs of lemmas on geometric distributions

In this section we provide all missing proofs on geometric distributions that we stated in Section 4.
Proof of Lemma 1 For all j ∈ {1, . . . ,m}, the cumulative distribution function (c.d.f.) of Yj is
given, for all n ∈ N, by

P[Yj ≤ n] = pj

n∑
i=1

(1− pj)i−1 = 1− (1− pj)n .

The c.d.f. of Z is given, for all n ∈ N, by

P[Z ≤ n] = P
[

min
j∈{1,...,m}

Yj ≤ n
]

= 1−
m∏
j=1

P[Yj > n] = 1−
m∏
j=1

(1− P[Yj ≤ n])

= 1−
m∏
j=1

(1− (1− (1− pj)n)) = 1−

 m∏
j=1

(1− pj)

n

= 1−

1−

1−
m∏
j=1

(1− pj)

n

,

and this is the c.d.f. of a geometric random variable with parameter (1−
∏m
j=1(1− pj) .
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Proof of Lemma 2 By elementary calculations,

E[min{G, β}] =
∞∑
n=1

n(1− q)n−1q −
∞∑
n=β

(n− β)(1− q)n−1q

=
∞∑
n=1

n(1− q)n−1q − (1− q)β
∞∑
n=β

(n− β)(1− q)n−β−1q

=
(

1− (1− q)β
) ∞∑
n=1

n(1− q)n−1q =

(
1− (1− q)β

)
q

.

Proof of Lemma 3 The proof follows immediately from the fact that
{
Xs(v)Ys(v)

}
s∈I,v∈V is a col-

lection of independent Bernoulli random variables with expectation E
[
Xs(v)Ys(v)

]
= p1(v) p2(v)

for any s ∈ N and all v ∈ V .

Appendix D. Proof of Theorem 5

In this section, we present a complete proof of Theorem 5.
Proof of Theorem 5 For the sake of convenience, we define the expected individual regret of an
agent v ∈ V in the network with respect to a fixed action a ∈ A by

RT (a, v) := E

[
T∑
t=1

〈xt(v), `t〉 −
T∑
t=1

〈a, `t〉

]
,

where the expectation is taken with respect to the internal randomization of the agent, but not its
activation probability q(v). With this definition the total regret on the network in Eq. (4) can be
decomposed as

RT = max
a∈A

E

[
T∑
t=1

∑
v∈St

(〈
xt(v), `t

〉
− 〈a, `t〉

)]
= max

a∈A
E

[
T∑
t=1

Et

[∑
v∈St

(〈
xt(v), `t

〉
− 〈a, `t〉

)]]

= max
a∈A

E

[
T∑
t=1

∑
v∈V

q(v)Et
[〈
xt(v), `t

〉
− 〈a, `t〉

]]
= max

a∈A

∑
v∈V

q(v)RT (a, v) . (13)

18
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The proof then proceeds by isolating the bias in the loss estimators. For each a ∈ A we get

RT (a, v)

= E

[
T∑
t=1

〈xt(v)− a, `t〉

]
= E

[
Et

[
T∑
t=1

〈xt(v)− a, `t〉

]]
= E

[
T∑
t=1

〈xt(v)− a, `t〉

]

= E

[
T∑
t=1

〈
xt(v)− a, ̂̀t(v)

〉]
+ E

[
T∑
t=1

〈
xt(v)− a, `t − ̂̀t(v)

〉]

≤ F (x1(v))− F (a)

η︸ ︷︷ ︸
(I)

+E

[
1

η

T∑
t=1

BF (xt(v), xt+1(v))

]
︸ ︷︷ ︸

(II)

+E

[
T∑
t=1

〈
xt(v)− a, `t − ̂̀t(v)

〉]
︸ ︷︷ ︸

(III)

where the inequality follows by the standard analysis of OMD. We bound the three terms separately.
For the first term (I), we have

F (a) = sup
x∈Rk

(
〈a, x〉 − F ∗(x)

)
= sup

x∈Rk

(
〈a, x〉 − E

[
max
a′∈A

〈
a′, x+ Z

〉])

≥ −E
[
max
a′∈A

〈
a′, Z

〉]
≥ −mE[‖Z‖∞] = −m

k∑
i=1

1

i
≥ −m(1 + log(k)), (14)

where the first inequality follows by choosing x = 0, the second follows from Hölder’s inequality
and ‖a‖1 ≤ m for any a ∈ A, and the last equality is Exercise 30.4 in Lattimore and Szepesvári
(2020). It follows that

F
(
x1(v)

)
− F (a) ≤ m

(
1 + log(k)

)
,

where we use the fact that F (a) ≤ 0 for all a ∈ A and this follows from the first line of Eq. (14) by
the convexity of the maximum of a finite number of linear functions, using Jensen’s inequality and
the fact that the random variable Z is centered. Thus

(I) ≤ m(1 + log k)

η
.

We now study the second term (II). We have

BF (xt(v), xt+1(v)) = BF ∗(∇F (xt+1(v)),∇F (xt(v)))

= BF ∗
(
−ηL̂t−1(v)− η̂̀t(v),−ηL̂t−1(v)

)
=
η2

2

∥∥∥̂̀t(v)
∥∥∥2
∇2F ∗(ξ(v))

, (15)

where the first equality is a standard property of Bregmann divergence, the second follows from the
definitions of the updates and the last by Taylor’s theorem, where ξ(v) = −ηL̂t−1(v)− αη̂̀t(v), for
some α ∈ [0, 1]. To calculate the Hessian we use a change of variable to avoid applying the gradient
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to the (possibly) non-differentiable argmax and we get:

∇2F ∗(x) = ∇(∇F ∗(x)) = ∇E[h(x+ Z)] = ∇
∫
Rk

h(x+ z)ζ(z)dz

= ∇
∫
Rk

h(u)ζ(u− x)du =

∫
Rk

h(u)(∇ζ(u− x))>du

=

∫
Rk

h(u)sign(u− x)>ζ(u− x)du =

∫
Rk

h(x+ z)sign(z)>ζ(z)dz

Using the definition of ξ(v) and the fact that h(x) is nonnegative,

∇2F ∗(ξ(v))ij =

∫
Rk

h(ξ(v) + z)isign(z)jζ(z)dz

≤
∫
Rk

h(ξ(v) + z)iζ(z)dz

=

∫
Rk

h
(
z − ηL̂t−1(v)− αη̂̀t(v)

)
i
ζ(z)dz

=

∫
Rk

h
(
u− ηL̂t−1(v)

)
i
ζ
(
u+ αη̂̀t(v)

)
du

≤ exp
(∥∥∥αη̂̀t(v)

∥∥∥
1

)∫
Rk

h
(
u− ηL̂t−1(v)

)
i
ζ(u)du

≤ exp

(
αη

k∑
i=1

Bt(i, v)β

)
xt(i, v)

≤ exp(αηkβ)xt(i, v)

≤ e xt(i, v)

where the last inequality follows by α ≤ 1 and β ≤ 1/(ηk). Plugging this estimate in Eq. (15) yields

η2

2

∥∥∥̂̀t(v)
∥∥∥2
∇2F ∗(ξ(v))

=
η2

2

k∑
i=1

k∑
j=1

∇2F ∗
(
ξ(v)

)
i,j
̂̀
t(i, v)̂̀t(j, v)

≤ η2e

2

k∑
i=1

k∑
j=1

xt(i, v)̂̀t(i, v)̂̀t(j, v)

≤ η2e

2

k∑
i=1

k∑
j=1

xt(i, v)Bt(i, v) min
w∈N (v)

{Gt(i, w)}Bt(j, v) min
w∈N (v)

{Gt(j, w)},

where the last inequality follows by neglecting the truncation with β. Hence multiplying (II) by q(v)
and summing over v ∈ V yields

∑
v∈V

q(v)E

[
η

2

T∑
t=1

∥∥∥̂̀t(v)
∥∥∥2
∇2F ∗(ξ(v))

]
=
∑
v∈V

q(v)
η

2
E

[
T∑
t=1

Et
[∥∥∥̂̀t(v)

∥∥∥2
∇2F ∗(ξ(v))

]]

≤
∑
v∈V

q(v)
ηe

2
E

 T∑
t=1

Et

 k∑
i,j=1

xt(i, v)Bt(i, v) min
w∈N (v)

{Gt(i, w)}Bt(j, v) min
w∈N (v)

{Gt(j, w)}

 ,
20
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which is rewritten as

∑
v∈V

q(v)
ηe

2
E

 T∑
t=1

Et

 k∑
i,j=1

xt(i, v)Bt(i, v) min
w∈N (v)

{Gt(i, w)}Bt(j, v) min
w∈N (v)

{Gt(j, w)}


=
∑
v∈V

q(v)
ηe

2
E

 T∑
t=1

Et

 k∑
i=1

k∑
j=1

xt(i, v)Bt(i, v)G̃t(i, v)Bt(j, v)G̃t(j, v)


=
∑
v∈V

q(v)
ηe

2
E

 T∑
t=1

k∑
i=1

k∑
j=1

xt(i, v)Et[Bt(i, v)Bt(j, v)]Et
[
G̃t(i, v)

]
Et
[
G̃t(j, v)

] =: (?) ,

where in the first equality we defined G̃t(i, v) = minw∈N (v)

{
Gt(i, w)

}
and, analogously, G̃t(j, v) =

minw∈N (v)

{
Gt(j, w)

}
, while the second follows by the conditional independence of the three terms(

Bt(i, v), Bt(j, v)
)
, G̃t(i, v), and G̃t(j, v) given the history up to time t− 1. Furthermore, making

use of Lemmas 1–3, we get

(?) =
∑
v∈V

q(v)
ηe

2
E

 T∑
t=1

Et

 k∑
i=1

k∑
j=1

xt(i, v)

Bt(i, v)
Bt(i, v)

Bt(j, v)

Bt(j, v)


≤
∑
v∈V

q(v)
ηe

2
E

 T∑
t=1

Et

 k∑
i=1

k∑
j=1

xt(i, v)

Bt(i, v)

Bt(j, v)

Bt(j, v)


=
∑
v∈V

q(v)
ηe

2
E

 T∑
t=1

k∑
i=1

k∑
j=1

xt(i, v)

Bt(i, v)

����
Bt(j, v)

����
Bt(j, v)


=
ηek

2
E

[
T∑
t=1

k∑
i=1

∑
v∈V

xt(i, v)q(v)

Bt(i, v)

]

≤ ηek

2
E

[
T∑
t=1

k∑
i=1

(
1

1− e−1

(
α1 +

∑
v∈V

xt(i, v)q(v)

))]

=
ηek

2
E

[
T∑
t=1

(
1

1− e−1

(
kα1 +

∑
v∈V

k∑
i=1

xt(i, v)q(v)

))]

≤ ηekT

2(1− e−1)
(kα1 +mQ) ,

where the first equality uses the expected value of the geometric random variables G̃, the first
inequality is obtained neglecting the indicator function Bt(i, v), the following equality uses the
expected value of the geometric random variables Bt, the second inequality follows by Lemma 17.
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We now consider the last term (III). Since `t ≥ E[̂̀t(v)], from Lemma 4, we have

(III) = E

[
T∑
t=1

Et
[〈
xt(v)− a, `t − ̂̀t(v)

〉]]
≤ E

[
T∑
t=1

Et
[〈
xt(v), `t − ̂̀t(v)

〉]]

= E

 T∑
t=1

k∑
i=1

`t(i)xt(i, v)

 ∏
w∈N (v)

(1− xt(i, w) q(w))

β
 .

Multiplying (III) by q(v) and summing over the agents, we can now upper bound `t(i) with 1, then
we use facts that 1− x ≤ e−x for x ∈ [0, 1] and that e−y ≤ 1/y for all y > 0, to obtain

∑
v∈V

q(v)E

 T∑
t=1

k∑
i=1

`t(i)xt(i, v)

 ∏
w∈N (v)

(1− xt(i, w) q(w))

β


≤ E

 T∑
t=1

k∑
i=1

∑
v∈V

xt(i, v) q(v)

 ∏
w∈N (v)

(1− xt(i, w) q(w))

β


= E

 T∑
t=1

k∑
i=1

∑
v∈V

xt(i,v) q(v)>0

xt(i, v) q(v)

 ∏
w∈N (v)

(1− xt(i, w) q(w))

β


≤ E

 T∑
t=1

k∑
i=1

∑
v∈V

xt(i,v) q(v)>0

xt(i, v)q(v) exp

−β ∑
w∈N (v)

xt(i, w) q(w)




≤ E

 T∑
t=1

k∑
i=1

∑
v∈V

xt(i,v) q(v)>0

xt(i, v) q(v)

β
∑

w∈N (v) xt(i, w) q(w)


≤ E

[
T∑
t=1

k∑
i=1

α1

β

]
=
α1 k T

β
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where in the last inequality follows by Lemma 16. Putting all together and recalling that β =
⌊

1
kη

⌋
≥

1
2kη , we can conclude that for every a ∈ A, thanks to Eq. (13), we have

RT ≤ Q
m(1 + log(k))

η
+Q

ηekT

2(1− e−1)

(
k

Q
α1 +m

)
+
α1 k T

β

≤ Qm(1 + log(k))

η
+Q

ηekT

2(1− e−1)

(
k

Q
α1 +m

)
+ 2ηα1k

2T

= Q
m(1 + log(k))

η
+ ηQkT

(
e

2(1− e−1)

(
k

Q
α1 +m

)
+ 2α1

k

Q

)
≤ Qm(1 + log(k))

η
+ 5ηQkT

(
k

Q
α1 +m

)
≤ 2Q

√
15mkT log(k)

(
k

Q
α1 +m

)
.

Appendix E. Bounds on independence numbers

The two following lemmas provide upper bounds of sums of weights over nodes of a graph expressed
in terms of its independence number.

Lemma 16 Let G = (V, E) be an undirected graph with indedence number α1, q(v) ≥ 0, and
Q(v) =

∑
w∈N (v) q(w) > 0 for all v ∈ V . Then∑

v∈V

q(v)

Q(v)
≤ α1

Proof Initialize V1 = V , fix w1 ∈ argminw∈V1 Q(w), and denote V2 = V \ N (w1). For k ≥ 2 fix
wk ∈ argminw∈Vk Q(w) and shrink Vk+1 = Vk \ N (wk) until Vk+1 = ∅. Since G is undirected
wk /∈

⋃k−1
s=1 N (ws), therefore the number m of times that an action can be picked this way is upper

bounded by α1. Denoting N ′(wk) = Vk ∩N (wk) this implies∑
v∈V

q(v)

Q(v)
=

m∑
k=1

∑
v∈N ′(wk)

q(v)

Q(v)
≤

m∑
k=1

∑
v∈N ′(wk)

q(v)

Q(wk)

≤
m∑
k=1

∑
v∈N (wk)

q(v)

Q(wk)
= m ≤ α1

concluding the proof.

Lemma 17 Let G = (V, E) be an undirected graph with independence number α1. For each v ∈ V ,
let N (v) be the neighborhood of node v (including v itself), and p(1, v), . . . , p(k, v) ≥ 0. Then, for
all i ∈ {1, . . . , k},∑

v∈V

p(i, v)

q(i, v)
≤ 1

1− e−1

(
α1 +

∑
v∈V

p(i, v)

)
where q(i, v) = 1−

∏
w∈N (v)

(
1− p(i, w)

)
.

23



AN EFFICIENT ALGORITHM FOR COOPERATIVE SEMI-BANDITS

Proof Fix i ∈ {1, . . . , k} and set for brevity P (i, v) =
∑

w∈N (v) p(i, w). We can write

∑
v∈V

p(i, v)

q(i, v)
=

∑
v∈V :P (i,v)≥1

p(i, v)

q(i, v)︸ ︷︷ ︸
(I)

+
∑

v∈V :P (i,v)<1

p(i, v)

q(i, v)︸ ︷︷ ︸
(II)

,

and proceed by upper bounding the two terms (I) and (II) separately. Let r(v) be the cardinality of
N (v). We have, for any given v ∈ V ,

min

q(i, v) :
∑

w∈N (v)

p(i, w) ≥ 1

 = 1−
(

1− 1

r(v)

)r(v)
≥ 1− e−1 .

The equality is due to the fact that the minimum is achieved when p(i, w) = 1
r(v) for all w ∈ N (v),

and the inequality comes from r(v) ≥ 1 (for, v ∈ N (v)). Hence

(I) ≤
∑

v∈V :P (i,v)≥1

p(i, v)

1− e−1
≤
∑
v∈V

p(i, v)

1− e−1
.

As for (II), using the inequality 1− x ≤ e−x, x ∈ [0, 1], with x = p(i, w), we can write

q(i, v) ≥ 1− exp

− ∑
w∈N (v)

p(i, w)

 = 1− exp(−P (i, v)) .

In turn, because P (i, v) < 1 in terms (II), we can use the inequality 1− e−x ≥ (1− e−1)x, holding
when x ∈ [0, 1], with x = P (i, v), thereby concluding that

q(i, v) ≥ (1− e−1)P (i, v)

Thus

(II) ≤
∑

v∈V :P (i,v)<1

p(i, v)

(1− e−1)P (i, v)
≤ 1

1− e−1
∑
v∈V

p(i, v)

P (i, v)
≤ α1

1− e−1
,

where in the last step we used Lemma 16.
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