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Abstract
We consider low-distortion embeddings for subspaces under entrywise nonlinear transformations.
In particular we seek embeddings that preserve the norm of all vectors in a space S = {y : y =
f(x) for x ∈ Z}, where Z is a k-dimensional subspace of Rn and f(x) is a nonlinear activation
function applied entrywise to x. When f is the identity, and so S is just a k-dimensional subspace,
it is known that, with high probability, a random embedding intoO(k/ε2) dimensions preserves the
norm of all y ∈ S up to (1±ε) relative error. Such embeddings are known as subspace embeddings,
and have found widespread use in compressed sensing and approximation algorithms.

We give the first low-distortion embeddings for a wide class of nonlinear functions f . In partic-
ular, we give additive ε error embeddings intoO(k log(n/ε)

ε2 ) dimensions for a class of nonlinearities
that includes the popular Sigmoid, SoftPlus, and Gaussian functions. We strengthen this result to
give relative error embeddings under some further restrictions, which are satisfied e.g., by the Tanh,
SoftSign, Exponential Linear Unit, and many other ‘soft’ step functions and rectifying units.

Understanding embeddings for subspaces under nonlinear transformations is a key step towards
extending random sketching and compressing sensing techniques for linear problems to nonlinear
ones. We discuss example applications of our results to improved bounds for compressed sensing
via generative neural networks.
Keywords: linear sketching, random projection, compressed sensing, generative models

1. Introduction

Random sketching and dimensionality reduction methods are an increasingly important tool in
working with massive and high-dimensional datasets Bingham and Mannila (2001); Vempala (2005);
Woodruff et al. (2014). These methods attempt to very quickly compress data points into a lower-
dimensional space, while still preserving important information about their structure, from which a
downstream task (e.g., clustering, regression, PCA) can be solved approximately.

1.1. Low-Distortion Embeddings

Many such approaches are based around the idea of low-distortion embeddings, dimension reducing
maps which preserve the norm of all vectors in some set.

Definition 1 (Low-Distortion Embedding) A linear map Π : Rn → Rm is an (ε1, ε2)-error em-
bedding for S ⊆ Rn if, for all y ∈ S:

(1− ε1)‖y‖2 − ε2 ≤‖Πy‖2 ≤ (1 + ε1)‖y‖2 + ε2,

where‖·‖2 is the Euclidean norm. When ε2 = 0, we say that Π is an ε1-relative-error embedding.
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SUBSPACE EMBEDDINGS UNDER NONLINEAR TRANSFORMATIONS

When the set S is just a k-dimensional linear subspace of Rn, it is well known that letting Π ∈
Rm×n be a random map (e.g., an appropriately scaled matrix with i.i.d. sub-Gaussian entries) with
m = O

(
k
ε2

)
will result in Π being an ε-relative error embedding for S with high probability.

Such an embedding is known as an oblivious subspace embedding (OSE) since Π can be chosen
from a distribution which is oblivious to the dataset it is applied to. This is a key property e.g., in
applications to low-memory streaming and low-communication distributed algorithms. OSE’s have
found a widespread application in fast algorithms for numerical linear algebra and regression Sarlós
(2006); Clarkson and Woodruff (2013); Nelson and Nguyên (2013); Meng and Mahoney (2013);
Woodruff et al. (2014), clustering Boutsidis et al. (2010); Cohen et al. (2015), and classification
Paul et al. (2013).

Despite their widespread success, OSE’s only apply to linear subspaces. Theoretical results are
limited for more general sets, including natural sets arising in the application of nonlinear models
such as neural networks and modern graph and work embedding methods.

1.2. Subspace Embeddings Under Nonlinear Transformations

In this work, we study low-distortion embeddings for subspaces under entrywise nonlinear trans-
formations. In particular, we study sets of the form:

S = {y : y = f(x) for x ∈ Z}, (1)

whereZ is a k-dimensional linear subspace of Rn and f(x) is a nonlinear activation function applied
entrywise to x. It is helpful to think of such a set S as all possible outputs of a two layer neural
network, with k inputs and n outputs. If f is a nonlinear activation function applied to each neuron
in the output layer, W ∈ Rn×k is the weight matrix connecting the first layer to the second layer,
and x ∈ Rk is any input, then the neural network output will be f(Wx). Since Wx lies in a
k-dimensional subspace (the column span of W ), the output set is thus of the form given in (1).

Understanding low-distortion embeddings for the output sets of neural networks is a key theo-
retical tool behind recent results on compressed sensing from generative models (Bora et al., 2017;
Dhar et al., 2018; Shah and Hegde, 2018). In particular, Bora et al. (2017) study the case for which
f is piecewise linear with 2 pieces – e.g., the popular ReLU activation function. In this setting,
one can see that the set S lies within a union of linear subspaces. Applying an OSE seperately on
each of these subspaces and then taking a union bound, yields a relative error embedding on the set
S. Bora et al. (2017) also study the case for which f is any Lipschitz function. This encompasses
nearly all common activation functions. For such functions, one can extend the results for OSEs
which are based on embedding all points in a net with bounded cardinality over the subspace. The
approximation of this net is preserved under a Lipschitz transformation, and thus the same argu-
ment yields low-distortion embedding bounds for entrywise transformed subspaces. However, this
approach only results in embeddings with additive (not relative) error and requires an additional
restriction – it applies to S of the form:

S = {y : y = f(x) for x ∈ Z and ‖x‖2 ≤ R}, (2)

where R is a bound on the radius of the input set.
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1.3. Our Contributions

We significantly extend the results on low-distortion embeddings for subspaces under nonlinear
transformation. Our results, along with prior work, are summarized in Table 1. Our first bound
applies to a wide class of nonlinearities which (1) have a bounded second derivative and (2) approach
linear asymptotes for large magnitude x. Such nonlinearities include for example, the Sigmoid
f(x) = 1

1+e−x , the SoftPlus f(x) = ln(1 + ex), and the Gaussian f(x) = e−x
2
. We show that

functions of this type can be approximated to small uniform error via a piecewise linear function
with a bounded number of linear regions. Applying embedding results of Bora et al. (2017) for
piecewise linear functions then yields an additive error embedding for these functions. Formally:

Theorem 2 (Additive Error Embedding) Let S = {y : y = f(x) for x ∈ Z}, where Z is
a k-dimensional subspace of Rn and let f : R → R be a nonlinearity satisfying for constants
a, b, c, d1, e1, d2, e2 and any ε ∈ (0, 1]:

1. Bounded Second Derivative: supx |f ′′(x)| ≤ a and f ′′ has a finite number of discontinuities.

2. Linear Asymptotes: ∀x ≥ c
εb

, |f(x)−(d1x+e1)| ≤ ε and ∀x ≤ − c
εb

, |f(x)−(d2x+e2)| ≤ ε.

Then, if Π ∈ Rm×n has i.i.d entries Πij ∼ N (0, 1
m), and m = O

(
k log(n/ε2)+log(1/δ)

ε21

)
for

ε1, ε2, δ ∈ (0, 1], with probability at least 1− δ, Π is an (ε1, ε2)-error embedding for S.

Here, we consider that the nonlinear function f is fixed, and so the number of discontinuities and
other regularity parameters are constants and hidden in the big-Oh notation. For simplicity we
assume Π to be a random Gaussian embedding matrix. However, our results hold more generally for
any family of random embedding matrices that yields a subspace embedding for a k-dimensional
subspace with probability 1 − δ using m = O

(
k+log(1/δ)

ε2

)
. See Woodruff et al. (2014) for a

discussion of various embedding matrix distributions, many of which yield matrices that can be
multiplied by much more quickly and stored in less space than a dense Gaussian embedding.

Next, we investigate relative error embeddings, which, prior to our work, were only known for
linear spaces or unions of linear spaces. These results suffice for f which is piecewise linear, but
not for more general functions. We give the first results for a much wider class of nonlinearities
that, both satisfy the second derivative and linear asymptote assumptions of Theorem 2, along with
an additional property: they are close to linear at the origin. Such nonlinearities include a large
number of ‘soft’ step functions and rectifying units, including Tanh, ArcTan, the SoftSign, the
Square Nonlinearity (SQNL), and the Exponential Linear Unit (ELU). The following theorem gives
an embedding for this class of functions.

Theorem 3 (Relative Error Embedding) Let S = {y : y = f(x) for x ∈ Z}, where Z is a k-
dimensional subspace of Rn and f : R → R is a nonlinearity satisfying conditions (1) and (2) of
Theorem 2 along with, for some constants g1, g2, g3:

3. Linear Near Origin1: For any y with |y| ≤ g1, |g2 · f−1(y)− y| ≤ g3 · y2.

Then, if Π ∈ Rm×n has i.i.d entries Πij ∼ N (0, 1
m), and m = O

(
k log(n/ε)+log(1/δ)

ε2

)
for ε, δ ∈

(0, 1], with probability at least 1− δ, Π is an ε-relative-error embedding for S.

1. Note that when f is bi-Lipschitz, this assumption is equivalent to |f(y)− g2 · y| ≤ g′3 · x2 for some constant g′3.
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Nonlinearity Class Examples Embedding Dim. Error Type Reference
Piecewise linear

with t pieces
ReLU, Binary Step

Leaky ReLU
O
(
k log(nt)

ε2

)
relative

Bora et al. (2017)
See Thm. 4

L-Lipschitz Nearly all O
(
k log(LR/ε2)

ε21

) additive,
input bounded

in radius R
Bora et al. (2017)

f ′′ bounded,
linear asymptotes

Sigmoid, SoftPlus,
Gaussian

O
(
k log(n/ε2)

ε21

)
additive Thm. 2

Near-linear at origin,
f ′′ bounded,

linear asymptotes

Tanh, Arctan, SQNL
SoftSign, ELU

O
(
k log(n/ε)

ε2

)
relative Thm. 3

Table 1: Low-distortion embedding results (Def. 1) for k-dimensional subspaces under entrywise
nonlinear transformations. For simplicity we hide dependences on the failure probability
δ when embedding with a random linear map. Our results (highlighted in rows 3-4) sig-
nificantly expand the class of nonlinearities for which low-dimensional embeddings are
known and give the first relative error results beyond piecewise linear functions.

1.4. Applications

Our primary technical contributions are the embedding results of Theorems 2 and 3. To illustrate the
usefulness of these results, in Section 5 we give example applications to compressed sensing from
generative models (Bora et al., 2017; Shah and Hegde, 2018). In this setting, the goal is to recover
x ∈ Rn from m � n noisy linear measurements y = Ax+ η where A ∈ Rm×n is a measurement
matrix and η ∈ Rm is some measurement noise.

Under the assumption that x lies in some set S (e.g., the set of all possible outputs of a generative
neural network G : Rk → Rn), approximate recovery up to the noise threshold ‖η‖2 is possible
when A is an (ε1, ε2)-error embedding for S. Thus, our improved embedding results immediately
lead to new results here, removing Lipschitzness and bounded input assumptions required by Bora
et al. (2017) when G has two layers and employs any nonlinearity satisfying Theorem 2.

In the important case whenG has d > 2 layers, we show how to apply our techniques to remove
the bounded input assumption of Bora et al. (2017) for any bounded nonlinearity satisfying the
assumptions of Theorem 2, including the Sigmoid, Gaussian, Tanh, Arctan, SoftSign, and SQNL.

1.5. Related Work

Low-distortion embeddings are widely studied in the literature on randomized algorithms and com-
pressed sensing. When S is a finite set, the Johnson-Lindenstrauss lemma (Johnson and Linden-
strauss, 1984; Dasgupta and Gupta, 1999) gives that a random Π ∈ Rm×n is an ε-relative-error
embedding with high probability when m = O

(
log |S|
ε2

)
. A majority of the work on infinite sets

focuses on the case where S is a linear subspace. As discussed, in this setting, many constructions
for relative-error oblivious subspace embeddings (OSEs) are known. See e.g., Kannan and Vempala
(2017) and Woodruff et al. (2014) for surveys.

The case where S is the union of linear subspaces is also studied widely in the compressed
sensing literature. The well known Restricted Isometry Property (RIP) is equivalent to a relative
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error embedding for the union of linear subspaces arising as the spans of all subsets of a fixed
number of columns of a given matrix (Candes et al., 2006; Donoho, 2006).

Embeddings for nonlinear spaces have been less explored. As discussed, recent work considers
low-distortion embeddings for the output sets of neural networks (Bora et al., 2017; Dhar et al.,
2018) with ReLU nonlinearities and under Lipschitz assumptions. We build on and significantly
extend this work – see Table 1 for a summary. Baraniuk and Wakin (2009) considers embeddings on
a smooth manifold, although this is different than our nonlinear entrywise transformation setting. A
number of approaches consider random projection for linear regression under various loss functions,
including the Huber, Tukey, and Orlicz norm losses (Clarkson and Woodruff, 2014; Andoni et al.,
2018; Clarkson et al., 2019). These methods prove low-distortion embedding results for the norms
induced by these losses. This can be viewed as embedding results for the standard `1 or `2 norms,
after applying appropriate entrywise nonlinearity, although the goal is find an embedding Π ∈
Rm×n so that for W ∈ Rn×k and all x ∈ Rk,

∥∥f(ΠMx)
∥∥
2
≈
∥∥f(Mx)

∥∥
2
. This is related to but

different from our goal, and requires significantly different techniques.
Finally, we note that Gordon’s theorem in functional analysis (Gordon, 1988) gives that when

S is a set of unit vectors with Gaussian mean width m = Eg∼N (0,1) supx∈S〈g, x〉, a random em-

bedding Π into O
(
m2

ε2

)
dimensions is an ε-relative error embedding with high probability. The

Gaussian mean width is equivalent up to logarithmic factors to the Rademacher complexity of S, a
quantity widely studied in computational learning theory (Shalev-Shwartz and Ben-David, 2014).
A number of Rademacher complexity bounds are known for neural networks (Neyshabur et al.,
2015; Golowich et al., 2018), although they don’t apply directly in our setting since (1) they bound
the complexity of the function class corresponding to the network, rather than its output set S and
(2) they are parameterized by various quantities in the neural network, such as the norms of its
weight matrices. Our bounds are entirely independent of the neural network parameters, depending
only on the nonlinearity used. An interesting direction for future work would be to better under-
stand the connections between randomized dimensionality reduction for subspaces under nonlinear
transformations and the work in learning theory on neural networks Rademacher complexity.

2. Embeddings under Piecewise Linear Transformations

We begin by showing how to extend OSE results to subspaces under piecewise linear entrywise
transformations. The key idea is that such a transformation fragments the subspace into a bounded
number of linear regions, each of which can be embedded with an OSE. This idea is applied e.g.,
by Bora et al. (2017) to embed ReLU networks. For completeness, we give a proof in the general
case for any piecewise linear function with t linear pieces.

Theorem 4 (Piecewise Linear Embedding) Let Z ⊆ Rn be a k−dimensional linear subspace
and f : R → R be piecewise linear with at most t pieces. Let S = {y : y = f(x) for x ∈ Z}.
Then if Π ∈ Rm×n has i.i.d. entries Πij ∼ N (0, 1

m), m = O
(
k log(nt)+log(1/δ)

ε2

)
for ε, δ > 0, with

probability at least 1− δ, Π is an ε-relative-error embedding for S (Definition 1).

We establish Theorem 4 from the following lemma, which counts the number of k−dimensional
linear regions in S. We obtain the embedding for S by a union bound over these regions.
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Lemma 5 Let Z ⊆ Rn be a k−dimensional linear subspace and f : R → R be piecewise linear
with at most t pieces. Let S = {y : y = f(x) for x ∈ Z}. S lies in the union of O((tn)k)
k-dimensional linear subspaces.

Proof Any vector x ∈ Z can be written as Qz for some z ∈ Rk where Q ∈ Rn×k has columns
spanning Z. Any z ∈ Rk thus corresponds to a vector x ∈ S. If we fix the pieces of f that the n
entries of Qz fall into, then f simply performs a linear transformation of Qz, and so x = f(Qz)
lies in a k-dimensional subspace of Rn. Now, each entry of Qz can fall into one of t pieces of f .
Fixing which pieces it falls into splits Rk using n · (t− 1) different k− 1 dimensional hyperplanes,
corresponding to the sets {z ∈ Rk : (Qz)i > tj} where tj is the jth change point of f .

One can show (c.f. Bora et al. (2017)) that c hyperplanes split Rk into O(ck) regions. Plugging
in c = n · (t − 1), we have that S is generated by applying a different linear transformation to
O((tn)k) regions of Rk, and thus S lies in the union of O((tn)k) k-dimensional subspaces.

Proof [Proof of Theorem 4] Let S1, S2 . . . , Sw be the w = O((tn)k) linear subspaces , the union
of which contains S. It is well known (c.f. Theorem 6 of Woodruff et al. (2014)) that if Π ∈ Rn×m

has independent entries Πij ∼ N (0, 1
m) and m = O

(
k+log(1/δ)

ε

)
, then with probability ≥ 1 − δ,

Π is an ε-relative-error embedding for any k-dimensional subspace of Rn.
Setting δ′ = δ/w = O(δ/(tn)k), and applying a union bound, we have that Π is an ε-

relative-error embedding for S1 ∪ . . . ∪ Sw ⊇ S with probability at least 1 − δ as long as m =

O
(
k+log(1/δ′)

ε

)
= O

(
k log(nt)+log(1/δ)

ε2

)
. This completes the proof.

3. Additive Error Embeddings

We next show how to extend the result of Theorem 4 to give additive error embeddings for functions
that are well approximated by piecewise linear functions with a bounded number of pieces. Such
functions include the popular Sigmoid activation function, the SoftPlus, and the Gaussian activa-
tion function. More generally, we give a result for any function which (1) has a bounded second
derivative and (2) converges at a reasonable rate to linear asymptotes.

Theorem 2 Let S = {y : y = f(x) for x ∈ Z}, where Z is a k-dimensional subspace of Rn and
f : R→ R is a nonlinearity satisfying for constants a, b, c, d1, e1, d2, e2:

1. Bounded Second Derivative: supx |f ′′(x)| ≤ a and f ′′ has a finite number of discontinuities.

2. Linear Asymptotes: For any ε ∈ (0, 1], ∀x ≥ c
εb

, |f(x) − (d1x + e1)| ≤ ε and ∀x ≤ − 1
εb

,
|f(x)− (d2x+ e2)| ≤ ε.

Then, if Π ∈ Rm×n has i.i.d entries Πij ∼ N (0, 1
m), and m = O

(
k log(n/ε2)+log(1/δ)

ε21

)
for

ε1, ε2, δ ∈ (0, 1], with probability at least 1− δ, Π is an (ε1, ε2)-error embedding for S.

The first assumption of bounded second derivative ensures that f is well approximated by a piece-
wise linear function with sufficiency small pieces. The second ensures that, outside a range of width
O(1/εb) around the origin, f(x) can be approximated to ε error via a single straight line. This is
a crucial condition that applies to a large class of functions and ensures that the piecewise linear
approximation has a bounded number of pieces. Formally we show:
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Lemma 6 Let f : R → R be a function satisfying the conditions of Theorem 2. Then for any
ε ∈ (0, 1], there exists a piecewise linear function f̃(x) with t = O(1/εb+1/2) pieces so that,
∀x ∈ R, |f(x)− f̃(x)| ≤ ε.

Proof For i = 0, 1, . . . , d 2c
γ·εb e, let ti = −c

εb
+ i · γ, where γ is a stepsize we will define later. These

ti divide the interval
[
− c
εb
, cεb

]
into subintervals of length γ. Let f̃ : R → R be a piecewise linear

approximation of f with d 2c
γ·εb e+ 1 pieces defined by:

f̃(x) =


d1x+ e1, if x ≥ c

εb

d2x+ e2, if x ≤ − c
εb

f(ti) + f(ti+1)−f(ti)
γ (x− ti) if x ∈ [ti, ti+1]

By assumption (2) of Theorem 2 we have |f(x)− f̃(x)| ≤ ε for any x /∈ [− c
εb
, c
εb

]. Thus it suffices
to focus on x ∈ [− c

εb
, c
εb

]. Within this interval, f is approximated by piecewise linear interpolation
over intervals of width γ. For any ti, ti+1 and x ∈ [ti, ti+1] it is well known that (c.f. Carothers
(1998)) Rolle’s theorem yields a bound on the approximation:

|f(x)− f̃(x)| ≤ (ti+1 − ti)2

8
· max
t∈[ti,ti+1]

|f ′′(t)| ≤ γ2 · a
8

,

by our assumed upper bound of f ′′(x) ≤ a. Setting γ =
√

8
a ·
√
ε we have |f(x) − f̃(x)| ≤ ε.

We note that this bound requires that f ′′(x) is continuous on the interval [ti, ti+1]. Since we assume
f ′′(x) has a finite number of discontinuities, we can ensure that this is the case by placing an
additional break point at each discontinuity. This will increase the number of linear pieces in f̃(x)
by just an additive constant. The proof is now complete: f̃(x) is a piecewise linear function with
d 2c
γ·εb e+ 1 = O

(
1

εb+1/2

)
pieces with |f(x)− f̃(x)| ≤ ε, ∀x ∈ R.

We Lemma 6 in place, we now show how to extend the embedding bound of Theorem 4 to any
function that is well approximated by a piecewise linear function.

Lemma 7 Consider a function f : R → R and the set S = {y : y = f(x) for x ∈ Z} where Z
is a k-dimensional subspace of Rn. Assume that there exists piecewise linear f̃ : R → R with t
pieces and |f(x) − f̃(x)| ≤ ε2

n ∀x ∈ R. Then, if Π ∈ Rm×n has i.i.d entries Πij ∼ N (0, 1
m), and

m = O
(
k log(nt)+log(1/δ)

ε21

)
, with probability at least 1− δ, Π is an (ε1, ε2)-error embedding for S.

Proof Define S̃ = {ỹ : ỹ = f̃(x) for x ∈ Z}. By our approximation assumption, for all x ∈ Z,
letting y = f(x) and ỹ = f̃(x), we have: ‖y − ỹ‖2 ≤

ε2
n ·
√
n = ε2√

n
. Applying Theorem 4

with parameters ε1 and δ/2, we have that with probability at least 1− δ/2, Π is an ε1-relative-error
embedding for S̃. Additionally, it is well known (c.f. Rudelson and Vershynin (2010)) that with
probability at least 1− 2e−m/2 ≥ 1− δ/2, Π’s spectral norm is bounded by‖Π‖2 ≤

3
√
n√
m
≤ 3
√
n.
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Assuming both events occur, which happens with probability ≥ 1− δ, for any y ∈ S we have:

‖Πy‖2 ≤‖Πỹ‖2 +
∥∥Π(y − ỹ)

∥∥
2

(triangle inequality)

≤ (1 + ε1)‖ỹ‖2 +‖Π‖2 ·
ε2√
n

(subspace embedding)

≤ (1 + ε1)

(
‖y‖2 +

ε2√
n

)
+ 3ε2 (spectral norm bound + triangle inequality)

≤ (1 + ε1)‖y‖2 +O(ε2).

Symmetrically, we can prove that‖Πy‖2 ≥ (1 − ε1)‖y‖ − O(ε2). Adjusting constants on m, we
have that Π is an (ε1, ε2)-error embedding for S, completing the proof.

We now combine Lemmas 6 and 7 to prove the additive error embedding result of Theorem 2.
Proof [Proof of Theorem 2] By the assumptions of the theorem and Lemma 6, there exists piecewise

linear f̃ : R → R with t = O

(
nb+1/2

ε
b+1/2
2

)
pieces and |f(x) − f̃(x)| ≤ ε2

n for all x ∈ R. Applying

Lemma 7, which holds due to the existence of this f̃ , we have that Π is an (ε1, ε2)-error embedding
for S when:

m = O
(
k log(nt)+log(1/δ)

ε21

)
= O

(
k log(n/ε2)+log(1/δ)

ε21

)
.

This completes the theorem.

3.1. Example Nonlinearities

Many common neural network activation functions satisfy the assumptions of Theorem 2. Thus,
the theorem provides a bound on the number of dimensions required to embed the output space of a
large class of two-layer neural networks. We give some important examples below.

Sigmoid. f(x) = 1
1+e−x .

• Condition 1: We can compute f ′′(x) = 2e−2x

(1+e−x)3
− e−x

(1+e−x)2
. Thus supx |f ′′(x)| = supy |p(y)|

where p(x) = 2y2

(1+y)3
− y

(1+y)2
. We can check that this polynomial is maximized at p(y) =

1
6
√
3

at y = 2 +
√

3. Thus condition (1) of Theorem 2 is satisfied with a = 1
6
√
3
.

• Condition 2: We can also check that for any ε ∈ (0, 1], when x < −1
ε < − ln(1/ε), f(x) ∈

[0, ε). Similarly, when x > 1
ε > ln(1/ε), f(x) ∈ [ 1

1+ε , 1] ⊂ [1− ε, 1]. Thus, condition (2) is
satisfied with b = c = 1, d1 = 1, d2 = 0, and e1 = e2 = 0.

SoftPlus. f(x) = ln(1 + ex).

• Condition 1: We can compute f ′′(x) = ex

(1+ex)2
. Thus supx |f ′′(x)| = supy |p(y)| where

p(x) = y
(1+y)2

. We can check that this polynomial is maximized at p(y) = 1
4 at y = 1. Thus

condition (1) of Theorem 2 is satisfied with a = 1
4 .

• Condition 2: We can also check that for any ε ∈ (0, 1], when x > 1
ε > ln(1/ε), f(x) ≥ x

and f(x) ≤ ln((1 + ε)ex) ≤ x+ ln(1 + ε) ≤ x+ ε. Thus, |f(x)− x| ≤ ε. Similarly, when
x < −1

ε < ln(ε), f(x) ≥ 0 and f(x) ≤ ln(1 + ε) ≤ ε. Thus |f(x)| < ε. So, condition (2) is
satisfied with b = c = 1, d1 = d2 = 0, and e1 = 1 and e2 = 0.
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Gaussian. f(x) = e−x
2
.

• Condition 1: We can verify that f ′′(x) = e−x
2
(4x2−2), and has supx |f ′′(x)| = |f ′′(0)| = 2.

Thus condition (1) of Theorem 2 is satisfied with a = 2.

• Condition 2: We can also check that for any ε ∈ (0, 1], when |x| ≥
√

ln(1/ε) ≤ 1
ε , |f(x)| ≤

ε, and thus condition (2) is satisfied with b = c = 1 and d1 = d2 = e1 = e2 = 0.

4. Relative Error Embeddings

We now show that the additive error embedding result of Theorem 2 can be improved to relative
error under the additional assumption that the nonlinearity f is close to linear near the origin. This
assumption holds for a many ‘soft’ step functions and rectifying units, including Tanh, ArcTan,
SoftSign, Square Nonlinearity (SQNL), and the Exponential Linear Unit (ELU).

Theorem 3 Let S = {y : y = f(x) for x ∈ Z}, where Z is a k-dimensional subspace of Rn and
f : R → R is a nonlinearity satisfying conditions (1) and (2) of Theorem 2 along with, for some
constants g1, g2, g3:

3. Linear Near Origin: For any y with |y| ≤ g1, |g2 · f−1(y)− y| ≤ g3 · y2.

Then, if Π ∈ Rm×n has i.i.d entries Πij ∼ N (0, 1
m), and m = O

(
k log(n/ε)+log(1/δ)

ε2

)
for ε, δ ∈

(0, 1], with probability at least 1− δ, Π is an ε-relative-error embedding for S.

Proof Assume without loss of generality that ε < g1. If it is not, we can replace ε with min(g1, ε),
and since g1 is a fixed constant, this will affect the bound only by constants. We split S into
two sets containing elements with relatively large norms and relatively small norms. Specifically,
S = SL ∪ SU where SL = {y ∈ S :‖y‖2 > ε/

√
n} and SU = {y ∈ S :‖y‖2 ≤ ε/

√
n}. We then

prove that with probability 1− δ/2, Π is an ε-relative-error embedding for each of SL and SU . Via
a union bound, this yields the theorem.

Case 1: SL. Since by assumption f satisfies the requirements of Theorem 2, applying that theorem
with ε1 = ε

2 and ε2 = ε2

2
√
n

and gives that, form = O
(
k log(n/ε)+log(1/δ)

ε2

)
, with probability 1−δ/2,

for all y ∈ SL:

‖Πy‖2 ≤ (1 + ε
2)‖y‖2 + ε2

2
√
n
≤ (1 + ε)‖y‖2 ,

where the second bound holds since for y ∈ SL,‖y‖2 ≥
ε√
n

and thus ε2

2
√
n
≤ ε

2‖y‖2. Similarly, we
have‖Πy‖2 ≥ (1− ε)‖y‖2, which completes the bound in this case.

Case 2: SU . We prove the theorem for SU using the fact f is close to linear near the origin – i.e.,
where‖y‖2 is small. Let f̃(x) = g2 · x be a linear approximation to f near the origin, i.e. for all x
such that |x| < g1, ỹ = f̃(x). The approximation to S thus becomes S̃ = {ỹ : ỹ = f̃(x) for x ∈
Z}. By assumption (3) of the theorem, for y ∈ SU ,‖y‖2 ≤

ε√
n

and thus for all i ∈ {1, 2, . . . n},
|y(i)| ≤ ε√

n
< g1. This gives that:

|g2 · f−1(y(i))− y(i)| = |ỹ(i)− y(i)| ≤ g3 · y(i)2 ≤ g3 · ε√
n
· y(i).

9
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In turn we have:

‖y − ỹ‖2 ≤
g3 · ε√
n
·‖y‖2 . (3)

Now, note that S̃ is just a k-dimensional linear subspace. As discussed in the proof of Theorem
2, it is well known that for m = O

(
k+log(1/δ)

ε2

)
, with probability ≥ 1− δ/2,‖Π‖2 ≤ 3

√
n and for

all ỹ ∈ S̃, (1 − ε)‖ỹ‖2 ≤‖Πỹ‖2 ≤ (1 + ε)‖ỹ‖2 (i.e., Π is an ε-error subspace embedding for S̃).
Along with (3), these two conditions give that, for every y ∈ S:

‖Πy‖2 ≤‖Πỹ‖2 +
∥∥Π(y − ỹ)

∥∥
2

≤ (1 + ε)‖ỹ‖2 +‖Π‖2 ·‖y − ỹ‖2
≤ (1 + ε)‖y‖2 + (1 + ε+‖Π‖2) ·‖y − ỹ‖2

≤ (1 + ε)‖y‖2 +
g3(1 + ε+ 3

√
n) · ε√

n
‖y‖2 ≤ (1 + cε)‖y‖2 ,

for some constant c. Similarly, one can prove that‖Πy‖2 ≥ (1− cε)‖y‖2. Thus, adjusting constants
on ε by increasing m by a constant gives that, with probability 1 − δ/2, Π is an ε-relative-error
embedding for S. Combined with our argument for Case 1 (the set SL), this completes the proof.

4.1. Example Nonlinearities

Many common neural network activation functions satisfy the assumptions of Theorem 3. In par-
ticular, soft step functions and rectifying units (i.e., soft variants of the ReLU) often have linear
asymptotes and are close to linear near the origin. We give two illustrative examples below: Tanh
and ELU. Other nonlinearities, including ArcTan, SoftSign and the Square Nonlinearity (SQNL)
are described in Appendix A.

Tanh (Hyperbolic Tangent). f(x) = ex−e−x

ex+e−x

• Condition 1: We can check that supx |f ′′(x)| = 4
3
√
3
, achieved at x = 1

2 ln(2 −
√

3). Thus,

condition (1) of Theorem 2 is satisfied with a = 4
3
√
3
.

• Condition 2: For x > 1
ε > ln(1/ε), we have f(x) ≤ 1 and f(x) ≥ 1/ε−ε

1/ε+ε = 1−ε2
1+ε2

≥ 1 − ε.
So |f(x)− 1| ≤ ε. Similarly, for x < −1

ε < ln(ε) we have f(x) ≥ −1 and f(x) ≤ ε−1/ε
ε+1/ε =

−(1−ε2)
1+ε2

≤ 1 − ε. Thus, |f(x) + 1| ≤ ε. Thus, condition (2) of Theorem 2 is satisfied with
b = c = 1.

• Condition 3: f−1(y) = 1
2 ln

(
1+y
1−y

)
. We can check that

∣∣∣∣ 12 ln
(

1+y
1−y

)
−y

∣∣∣∣
y2

≤ 1
5 for y ∈ [−1/2, 1/2].

Thus, the final condition (3) of Theorem 3 holds with g1 = 1/2, g2 = 1, and g3 = 1/5.

Exponential Linear Unit (ELU). f(x) =

{
ex − 1 for x ≤ 0

x for x ≥ 0
.

• Condition 1: For x ≥ 0 we have f ′′(x) = 0. For x ≤ 0, we have f ′′(x) = ex ≤ 1. Thus,
supx |f ′′(x)| ≤ 1 and condition (1) of Theorem 2 is satisfied with a = 1.

10
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• Condition 2: For x > 1
ε , we have f(x) = x and thus, |f(x) − x| = 0. For x < −1

ε <
− ln(1/ε), we have |f(x) + 1| ≤ ε. Hence condition (2) of Theorem 2 is satisfied with
b = c = 1.

• Condition 3: We have f−1(y) =

{
ln(1 + y) for y ≤ 0

y for y ≥ 0
.

We can check that |f
−1(y)−y|
y2

≤ 1 for y ∈ [−1/2, 0] and |f
−1(y)−y|
y2

= 0 for y > 0. Thus,
condition (3) of Theorem 3 holds with g1 = 1/2, g2 = 1 and g3 = 1.

5. Application: Compressed Sensing from Generative Models

Recently, deep generative models have become an important tool in the recovery of high-dimensional
data from limited measurements using compressed sensing techniques (Bora et al., 2017; Rick Chang
et al., 2017; Shah and Hegde, 2018). They have found significant success in solving linear inverse
problems (McCann et al., 2017), offering a powerful alternative to the traditional structural assump-
tion of sparsity.

Formally, compressed sensing seeks to recover a signal x ∈ Rn from m � n linear measure-
ments, y = Ax+η, whereA ∈ Rm×n is the measurement matrix and η ∈ Rm is some measurement
noise. Recovering x from y requires solving this underdetermined and noisy linear system – a task
which is only possible under structural assumptions on x. Most commonly, in the sparse recovery
setting, it is assumed that x is sparse in some basis, such as the Fourier or Wavelet basis (Donoho,
2006). Methods based on generative models instead assume that x lies in the output span of some
generative neural network G : Rk → Rn. That is, x lies in a low-dimensional subspace under a
series of linear transformations and entrywise nonlinearities.

Bora et al. (2017) extend the well-known restricted eigenvalue condition (REC) from sparse
recovery, showing that, under the assumption that x lies in some set S, as long as the objective
function minx∈S‖y −Ax‖2 can be minimized to small additive error (e.g., via projected gradient
descent), x can be approximately recovered from any measurement matrix A ∈ Rm×n satisfying
the S-REC property:∥∥A(x1 − x2)

∥∥ ≥ (1− ε1)‖x1 − x2‖ − ε2 ∀x1, x2 ∈ S. (4)

In turn, Bora et al. (2017) consider S = {x : x = G(z) for z ∈ Rk,‖z‖2 ≤ R} – the output
span of a generative model G under a bounded input restriction. They show that when A ∈ Rm×n

has i.i.d. N (0, 1/m) entries, it satisfies (4) with high probability as long as m = O
(
k log(LR/ε2)

ε21

)
,

where L is the Lipschitzness of G (i.e., for any z1, z2 ∈ Rk,
∥∥G(z1)−G(z2)

∥∥ ≤ L‖z1 − z2‖).
When G uses just ReLU nonlinearities, the bounded radius and Lipschitz assumptions can be re-
moved, ε2 = 0, and m = O

(
dk logn
ε21

)
, where d is the depth of the neural network.

5.1. Our Results

Our improved embedding results immediately apply to the setting of Bora et al. (2017), letting us
remove the dependence on the Lipschitz constantL and the assumption of a bounded input‖z‖2 ≤ R
for two layer neural networks under the nonlinearities discussed in Sections 3 and 4 (including the
Sigmoid, Tanh, ELU, Softplus, etc.)

11
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We employ a small modification of Theorem 2, which applies to the difference of two vectors
generated from a subspace under an entrywise nonlinearity. This theorem is proven essentially
identically to Theorem 2.

Theorem 8 (Additive Error Embedding – Distance) Let S = {y : y = f(x) for x ∈ Z}, where
Z is a k-dimensional subspace of Rn and f : R → R is a nonlinearity satisfying the conditions of
Theorem 2. Then, if Π ∈ Rm×n has i.i.d entries Πij ∼ N (0, 1

m), and m = O
(
k log(n/ε2)+log(1/δ)

ε21

)
for ε1, ε2, δ ∈ (0, 1], with probability at least 1− δ, for all y1, y2 ∈ S:

(1− ε1)‖y1 − y2‖2 − ε2 ≤
∥∥Π(y1 − y2)

∥∥
2
≤ (1 + ε1)‖y1 − y2‖2 + ε2.

Now, let G : Rk → Rn be a two layered generative neural network with G(z) = f(Wz) for
some weight matrix W ∈ Rn×k and some nonlinearity f satisfying the conditions of Theorem 2.
Let S be the output set of G: S = {x ∈ Rn : x = G(z) for z ∈ Rk}. Then Theorem 8 implies
that, when A has random Gaussian entries, it satisfies the restricted eigenvalue condition of (4),
and thus, x can be recovered from noisy measurements y = Ax+ η. In comparison to the result of
Bora et al. (2017),m = O

(
k log(n/ε2)+log(1/δ)

ε21

)
has no dependence on the Lipschitzness L ofG(z).

Additionally, the bound holds under the weaker assumption that S is G’s full output set, rather than
the outputs restricted to the range of bounded diameter inputs.

5.2. Extension to deep networks

Our results apply to depth-2 neural networks, and an important direction for future work is to extend
them to general depth-d networks. In this section, we give an example of how our techniques can
be applied to deeper networks.

Let G : Rk → Rn be a neural network with d layers and ≤ n nodes per non-input layer. The
previously mentioned results of Bora et al. (2017) show that whenA ∈ Rn×m has i.i.d entriesAij ∼
N (0, 1

m), it satisfies the S-REC property of (4) for S = {x : x = G(z) for z ∈ Rk,‖z‖2 ≤ R}
and m = O

(
k log(LR/ε2)

ε21
)
)

. We extend this result, showing how to remove the norm restriction
on the representation z for nonlinearities that satisfy the conditions of Theorem 2 and are bounded
in magnitude by some constant u. This includes all soft step functions we consider, such as the
Sigmoid, Tanh and SoftStep.

We split G into the composition of two functions: G1 : Rk → Rn mapping the input layer to
the second layer and G2 : Rn → Rn, mapping the second layer to the output. Assume that G2

is L-Lipschitz Note that G1(z) = f(W1z), where W1 is the weight matrix of the first layer and f
is the nonlinearity. Let G̃1 : Rk → Rn be an approximation to G1 which uses a piecewise linear

approximation f̃ with |f̃(x)−f(x)| ≤ ε2
nL ∀x. The existence of f̃ with t = O

((
nL
ε2

)b+1/2
)

pieces

is guarantee by Lemma 6. We have for any z ∈ Rk,
∥∥∥G1(z)− G̃1(z)

∥∥∥
2
≤ ε2√

nL
.

Let G̃(z) = G2(G̃1(z)). By our Lipschitzness assumption on G2, for all z,∥∥∥G(z)− G̃(z)
∥∥∥ =

∥∥∥G2(G1(z))−G2(G̃1(z))
∥∥∥
2
≤ L ·

∥∥∥G1(z)− G̃1(z)
∥∥∥
2
≤ ε2√

n
. (5)

Additionally, by Lemma 5, the output of G̃1(z) lies in the union of (nt)k k-dimensional linear
subspaces. Since we assume f(x) ≤ u for all x, f̃(x) ≤ u + ε2

nL for all x. Thus
∥∥∥G̃1(z)

∥∥∥
2
≤

12
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(u + ε2
nL) ·

√
n = O(

√
n). Thus, the output of G̃(z) lies in the union of t regions of the form S =

{G2(z
′) : z′ ∈ Z,

∥∥z′∥∥
2

= O(
√
n)}, where Z is a k-dimensional subspace. We know via the results

of Bora et al. (2017) and a union bound over these t regions that for m = O
(
k log(Ln/ε2)+log 1/δ

ε21

)
,

with probability ≥ 1− δ, for any x̃1, x̃2 ∈ Rn in the approximate output set S̃ = {G̃(z) : z ∈ Rk},∥∥A(x̃1 − x̃2)
∥∥
2
≥ (1− ε1)‖x̃1 − x̃2‖2 − ε2.

For any x1, x2 ∈ Rn in the true output set S = {G̃(z) : z ∈ Rk} via (5) we thus have, following
the proof of Lemma 7:∥∥A(x1 − x2)

∥∥
2
≥
∥∥A(x̃1 − x̃2)

∥∥
2
−‖A‖2 ·

2ε2√
n

(triangle inequality)

≥ (1− ε1)‖x̃1 − x̃2‖2 − ε2 −O(ε2) (‖A‖2 = O(
√
n) with high probability)

≥ (1− ε1)‖x1 − x2‖2 −O(ε2) (triangle inequality)

Adjusting constants on ε2, this gives us the S-REC property of (4) for S = {G(z) : z ∈ Rk}whenA
makes m = O

(
k log(Ln/ε2)+log 1/δ

ε21

)
measurements. Thus, for any Lipschitz neural network using

bounded linearities satisfying the assumptions of Theorem 2, we obtain a similar result to Bora et al.
(2017) but without the bounded input assumption.

5.3. Conclusions and Future Work

Our paper makes initial steps in building a systematic understanding of randomized dimensionality
reduction for subspaces under entrywise nonlinear transformations. An important next step is to
extend our results to the output spaces of neural networks with d > 2 layers. It is possible to use
an argument similar to Theorem 2 to give some bounds here, by approximating all nonlinearities
in the neural network via piecewise linear functions. However, due to compounding error at each
level, ε2 must be set very small at the first level, leading to relatively weak embedding bounds.
Understanding how to avoid this compounding error would be very interesting.

As discussed, it would also be interesting to apply Rademacher and other complexity bounds
for learning neural networks to understanding the compressibility of their output spaces and to give
low-distortion embedding bounds. This would let us leverage an even richer class of tools in proving
embedding bounds. Moreover, Kamath et al. (2019) and Liu and Scarlett (2020) have shown that
m = O(k log n) is required to obtain a constant distortion embedding for a three layered ReLU
network, where the output set consists of k-sparse, n-length functions. It would be interesting to
generalize these results to give embedding bounds for other nonlinearities. We expect that m =
Ω(k log n) dependence is required for the class of functions considered in this paper, but proving
this is an open question. It would also be interesting to see lower bounds for a broader class of
functions.
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Appendix A. Example Nonlinearities for Relative Error Embeddings

We now give a number of other examples of nonlinearities that satisfy the assumptions of our relative
error embedding result, Theorem 3.

ArcTan. f(x) = tan−1(x)

• Condition 1: . We can check that supx |f ′′(x)| = 3
√
3

8 achieved at |x| = 1√
3
. Thus, condition

(1) of Theorem 2 is satisfied with a = 3
√
3

8 .

• Condition 2: We use a series expansion which gives that:

tan−1(x) =


x− x3

3 + x5

5 −
x7

7 + .. for |x| ≤ 1
π
2 −

1
x + 1

3x3
− .. for x ≥ 1

−π
2 −

1
x + 1

3x3
− .. for x ≤ −1

.

For x ≥ 1
ε , we thus have f(x) ≤ π

2 and f(x) ≥ π
2 − ε. Thus |f(x) − π

2 | ≤ ε. Similarly,
for x ≤ −1

ε , we have |f(x) + π
2 | ≤ ε. Thus, condition (2) of Theorem 2 is satisfied with

b = c = 1.

• Condition 3: f−1(y) = tan(y) for y ∈ (−π
2 ,

π
2 ). We can check that when |y| ≤ 1,

|tan(y)−y|
y2

≤ tan(1)− 1 ≤ .56. Thus, condition (3) of Theorem 3 holds with g1 = 1, g2 = 1
and g3 = .56.

SoftSign. f(x) = x
1+|x| .

• Condition 1: It can be checked that f ′′(x) = 2x
(1+|x|)3 −

2|x|
x(1+|x|)2 and supx |f ′′(x)| = 2,

achieved at x = 0. Thus, condition (1) of Theorem 2 is satisfied with a = 2.

• Condition 2: For x > 1
ε , we have f(x) ≤ 1 and f(x) ≥ 1− 1

1+x ≥ 1−ε. Thus, |f(x)−1| ≤ ε.
Similarly, for x < −1

ε , we have f(x) ≥ −1 and f(x) ≤ −1 + 1
1−x ≤ −1 + ε. Thus,

|f(x) + 1| ≤ ε. Hence condition (2) of Theorem 2 is satisfied with b = c = 1.

• Condition 3: We have f−1(y) = y
1−|y| . It can be checked that |f

−1(y)−y|
y2

≤ 2 when |y| ≤ 1/2.
Thus, condition (3) of Theorem 3 holds for for g1 = 1/2, g2 = 1 and g3 = 2.
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Square Nonlinearity (SQNL). Here f(x) =


1 for x ≥ 2

x− x2

4 for x ∈ [0, 2]

x+ x2

4 for x ∈ [−2, 0]

−1 for x ≤ 2

.

• Condition 1: f ′′(x) = 0 for x /∈ [−2, 2], f ′′(x) = −1
2 for x ∈ [0, 2] and f ′′(x) = 1

2 for
x ∈ [−2, 0] Thus, supx |f ′′(x)| = 1

2 and so condition (1) of Theorem 2 is satisfied with
a = 1

2 .

• Condition 2: For x ≥ 1
ε , we have f(x) = 1 and hence, |f(x)− 1| = 0. For x ≤ −1

ε , we have
f(x) = −1 and hence |f(x) + 1| = 0. Hence condition (2) of Theorem 2 is satisfied with
b = c = 1.

• Condition 3: f−1(y) =

{
2− 2

√
1− y for y ∈ [0, 2]

−2 + 2
√

1 + y for x ∈ [−2, 0]
.

We can check that |f
−1(y)−y|
y2

≤ 1 for y ∈ [−1/2, 1/2], which gives that condition (3) of
Theorem 3 holds for for g1 = 1/2, g2 = 1 and g3 = 1.
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