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Abstract
We study closure properties for the Littlestone and threshold dimensions of binary hypothesis
classes. Given classes H1, . . . ,Hk of binary functions with bounded Littlestone (respectively,
threshold) dimension, we establish an upper bound on the Littlestone (respectively, threshold) di-
mension of the class defined by applying an arbitrary binary aggregation rule to H1, . . . ,Hk. We
also show that our upper bounds are nearly tight. Our upper bounds give an exponential (in k)
improvement upon analogous bounds shown by Alon et al. (COLT 2020), thus answering an open
question posed by their work.
Keywords: Littlestone dimension, threshold dimension, closure property

1. Introduction

Let X be a set and H1, . . . ,Hk be hypothesis classes consisting of binary classifiers h : X →
{0, 1}; for instance, each of H1, . . . ,Hk may be a collection of experts. Given an arbitrary ag-
gregation rule G : {0, 1}k → {0, 1} (e.g., the majority vote among the k experts), we study
the maximum possible complexity of the class G(H1, . . . ,Hk), defined as the set of all classi-
fiers x 7→ G(h1(x), . . . , hk(x)) for some choices h1 ∈ H1, . . . , hk ∈ Hk, as a function of the
complexities ofH1, . . . ,Hk.

Such a closure property has long been known when complexity is measured via the VC dimen-
sion: Dudley (1978) showed that if the VC dimension of each of H1, . . . ,Hk is at most d, then
the VC dimension of G(H1, . . . ,Hk), is at most O(dk log k). (This was also shown independently
when G is the k-wise OR function in Blumer et al. (1989, Lemma 3.2.3).) Recently Alon et al.
(2020) proved similar, but quantitatively weaker, closure properties for the Littlestone dimension
(Littlestone, 1988) (Definition 1), which characterizes online learnability of a class (Ben-David
et al., 2009), and threshold dimension (Shelah, 1978; Hodges, 1997) (Definition 8), which is known
to be exponentially related to the Littlestone dimension and was used by Alon et al. (2019) to show
that privately PAC-learnable classes are online learnable (i.e., have finite Littlestone dimension).
The upper bounds of Alon et al. (2020) exhibit an exponential dependence on k, and it was asked in
Alon et al. (2020) whether this dependence could be improved. Our main contribution is to resolve
this question in the affirmative, proving tighter upper bounds with a nearly linear dependence on k
and to show that this is nearly the best possible. In particular:
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NEAR-TIGHT CLOSURE BOUNDS

1. When the Littlestone dimension of each of H1, . . . ,Hk is at most d, we show that the Little-
stone dimension of G(H1, . . . ,Hk) is at most O(dk log k) (Proposition 3), improving upon
the bound of Õ(22kk2d) of Alon et al. (2020). Moreover, our upper bound is tight up to a
constant factor (Proposition 5).

2. When the threshold dimension of each ofH1, . . . ,Hk is at most d, we show that the threshold
dimension of G(H1, . . . ,Hk) is at most 2O(dk log k) (Proposition 9), and that it can be at least
2Ω(dk) (Proposition 11). These bounds improve upon the upper and lower bounds of 22O(k)d

and 2Ω(d), respectively, shown in Alon et al. (2020).

Related work. Several papers have developed a more refined description of the closure properties
of the VC dimension. Eisenstat and Angluin (2007) showed that theO(dk log k) upper bound on the
VC dimension of G(H1, . . . ,Hk) by Dudley (1978); Blumer et al. (1989) is tight up to a constant
factor even whenG is the k-wise OR function for any d ≥ 5. This condition was improved to d ≥ 2,
which is the best possible for G = OR, in Eisenstat (2009). The question of closure properties has
also been investigated for the specific case that H1 = · · · = Hk is the class of half-spaces in Rd.
It is known that for d ≥ 4, the VC dimension of the class of k-fold unions of half-spaces in Rd is
Θ(kd log k) (Csikós et al., 2018), while for d ≤ 3, the VC dimension of the class of k-fold unions
of half-spaces in Rd is Θ(k) (Dobkin and Gunopulos, 1995).

Closure properties similar to the ones considered in this paper are also known to hold for the
Rademacher complexity (Bartlett and Mendelson, 2003), and its sequential variant (Rakhlin et al.,
2015). Apart from Alon et al. (2020), we are not aware of any prior work studying closure properties
for the Littlestone or threshold dimensions.

The Littlestone dimension of a function class F is closely related to the sample complexity of
online learning for the classF . In particular the Littlestone dimension ofF exactly characterizes the
mistake bound for online learning the class F in the realizable setting (Littlestone, 1988; Shalev-
Shwartz, 2012). In the agnostic setting, if the Littlestone dimension of F is denoted by d, then
the optimal regret Reg(T ) for an online learning algorithm applied to F scales as Ω(

√
dT ) ≤

Reg(T ) ≤ O(
√
dT log T ) (Ben-David et al., 2009; Shalev-Shwartz, 2012). A version of this upper

bound which requires few calls to an (appropriately chosen) oracle for F has also been developed
(Rakhlin et al., 2012).

2. Closure bounds for the Littlestone dimension

2.1. Preliminaries

In this section we mostly follow the notation of Rakhlin and Sridharan (2014); Rakhlin et al. (2015).
For a positive integer n, we use [n] to denote {1, . . . , n}. For a positive integer t and a sequence
ε1, ε2, . . . , εt, . . ., we let ε1:t denote the tuple (ε1, . . . , εt). As a convention let ε1:0 denote the empty
sequence. Let {0, 1}X be the set of all classifiers f : X → {0, 1}.

For a set X , an X-valued tree x of depth n is a collection of functions xt : {0, 1}t−1 → X for
1 ≤ t ≤ n. Consider a binary hypothesis class F ⊆ {0, 1}X . The class F is said to shatter a tree x
of depth n if

∀(ε1, . . . , εn) ∈ {0, 1}n, ∃f ∈ F s.t. f(xt(ε1:t−1)) = εt ∀t ∈ [n].
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NEAR-TIGHT CLOSURE BOUNDS

Definition 1 (Littlestone dimension) The Littlestone dimension of a class F , denoted Ldim(F),
is the depth of the largest X-valued binary tree x that is shattered by F .

A set V of {0, 1}-valued trees of depth n is called a 0-cover for F on a given X-valued tree x of
depth n if:

∀f ∈ F , ∀(ε1, . . . , εn−1) ∈ {0, 1}n−1, ∃v ∈ V s.t. f(xt(ε1:t−1)) = vt(ε1:t−1) ∀t ∈ [n].

The 0-covering number of F on the tree x is defined as:

N0(F ,x) := min {|V| : V is a 0-cover for F on x} .

Lemma 2 (Rakhlin et al. (2014), Theorem 7; “Sauer–Shelah lemma for 0-covering number in trees”)
For any X-valued tree x of depth n, we have

N0(F ,x) ≤
d∑
i=0

(
n

i

)
≤
(en
d

)d
,

when Ldim(F) = d ≤ n.

Finally, recall that the VC dimension of a classF is the length of the longest sequence x1, . . . , xn ∈
X so that for any b = (b1, . . . , bn) ∈ {0, 1}n, there is an f ∈ F so that f(xi) = bi for all i ∈ [n].

2.2. Improved bounds

Let X be a set. For a function G : {0, 1}k → {0, 1} and classifiers h1, . . . , hk : X → {0, 1},
let G(h1, . . . , hk) : X → {0, 1} be the mapping x 7→ G(h1(x), . . . , hk(x)). Then for binary
hypothesis classesH1, . . . ,Hk ⊆ {0, 1}X , we define

G(H1, . . . ,Hk) := {G(h1, . . . , hk) : hi ∈ Hi}.

In Proposition 3, we prove an upper bound for Ldim(G(H1, . . . ,Hk)) in terms of max1≤j≤k Ldim(Hj)
that grows quasi-linearly with k. The proof follows as a consequence of the bound on the 0-covering
number given by the Sauer–Shelah lemma for trees (Lemma 2), in a similar manner to Dudley’s
(Dudley, 1978, Proposition 7.12) proof of a closure property for VC classes using the classic Sauer–
Shelah lemma (Sauer, 1972; Vapnik and Chervonenkis, 1968). In Alon et al. (2020, Section 2.1.1),
the authors state that they are not aware of a proof of Proposition 3 using the related definition
of thicket shatter function. We discuss the relation between 0-covering number and thicket shatter
function further in Appendix A.

Proposition 3 Let G : {0, 1}k → {0, 1} be a Boolean function, let H1, . . . ,Hk ⊆ {0, 1}X be
binary hypothesis classes, and let d ∈ N be such that Ldim(Hi) ≤ d for all i ∈ [k]. Then

Ldim(G(H1, . . . ,Hk)) ≤ O(kd log k).

Before proving Proposition 3 we state the following lemma; its (straightforward) proof is de-
ferred to Appendix A.

Lemma 4 Suppose that F ⊂ {0, 1}X shatters a tree x of depth n. Then any 0-cover V for F on
the tree x has size at least 2n.
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Proof [of Proposition 3] It is without loss of generality to assume d ≥ 3. Let us write N =
Ldim(G(H1, . . . ,Hk)). We may assume N ≥ d; if not, then the conclusion of the proposition is
already established. Let x be an X-valued complete binary tree of depth N that is shattered by F .
By Lemma 2, for each i ∈ [k], since Ldim(Hi) ≤ d for each i, we have

N0(Hi,x) ≤
d∑
i=0

(
N

i

)
≤
(
eN

d

)d
.

Now, for each i ∈ [k], let Vi be a 0-cover forHi on x of size |Vi| ≤ (eN/d)d.
We next construct a 0-cover for G(H1, . . . ,Hk) of size at most

∏k
i=1 |Vi| as follows: for each

tuple τ = (v(1), . . . ,v(k)) ∈ V1 × · · · × Vk, construct a tree w(τ) defined by

w
(τ)
t (ε1:t−1) := G(v

(1)
t (ε1:t−1), . . . ,v

(k)
t (ε1:t−1)) ∀(ε1, . . . , εN−1) ∈ {0, 1}N , t ∈ [N ].

To see that the collection W := {w(τ)}τ∈V1×···×Vk indeed forms a 0-cover, consider any g ∈
G(H1, . . . ,Hk). Then there are h1 ∈ H1, . . . , hk ∈ Hk so that g(x) = G(h1(x), . . . , hk(x)).
Also fix any sequence (ε1, . . . , εN−1) ∈ {−1, 1}N−1. Since Vi is a 0-cover for Hi on x, for each
i ∈ [k], there is some v(i) ∈ Vi so that for all t ∈ [N ], hi(xt(ε1:t−1)) = v

(i)
t (ε1:t−1). Thus, for

τ = (v(1), . . . ,v(k)), for each t ∈ [N ], we have

w
(τ)
t (ε1:t−1) = G(v

(1)
t (ε1:t−1), . . . ,v

(k)
t (ε1:t−1)) = G(h1(xt(ε1:t−1)), . . . , hk(xt(ε1:t−1))) = g(xt(ε1:t−1)).

HenceW is indeed a 0-cover of G(H1, . . . ,Hk) on x.
Since x is shattered by G(H1, . . . ,Hk), by Lemma 4, we have that |W| ≥ 2N . Summarizing,

2N ≤ |W| ≤ (eN/d)kd,

so N ≤ kd log(eN/d), i.e., N ≤ O(kd log k).

We remark that an alternative proof of Proposition 3 follows by applying (Ben-David et al., 2009,
Lemma 12) to cover eachHi by a finite class of at most d experts.

Yet another way to upper bound Ldim(G(H1, . . . ,Hk)) in the context of Proposition 3 is to
use Rakhlin et al. (2015, Proposition 9 and Corollary 6). In particular, Rakhlin et al. (2015, Corollary
6) gives a similar closure property for the sequential Rademacher complexities, and Rakhlin et al.
(2015, Proposition 9) implies that sequential Rademacher complexities are closely related to the
Littlestone dimension. However, this technique would give an upper bound of O(log4(kd) · k2d),
which is worse than that of Proposition 3.

Proposition 5 shows that the upper bound of Proposition 3 is tight up to a constant factor.

Proposition 5 There is a positive constant C so that for any positive integers k, d ≥ C, there is a
domain X and a classH ⊂ {0, 1}X so that:

1. Ldim(H) ≤ d.

2. Defining G : {0, 1}3k → {0, 1} to be the 3k-wise OR function, Ldim(G(H, . . . ,H)) ≥
Ω(kd log k).
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Before proving Proposition 5, we need a couple of lemmas. Lemma 6 was used in Eisenstat and
Angluin (2007) to show an analogous result to Proposition 5 for the VC dimension.

Lemma 6 (Eisenstat and Angluin (2007)) There is a constant k0 so that for all k ≥ k0, for X :=
{1, 2, . . . , bk log kc}, there is a class F ⊂ {0, 1}X so that:

1. For each f1, f2 ∈ F , there are at most 4 distinct points x ∈ X so that f1(x) = f2(x) = 1.

2. Let G : {0, 1}3k → {0, 1} be the 3k-wise OR function. Then:

{(h(1), . . . , h(bk log kc)) : h ∈ G(F , . . . ,F)} = {0, 1}bk log kc.

(It is said that G(F , . . . ,F) shatters the set X .)

To state the next lemma, we define the notion of a subtree of a binary tree x. A subtree of depth 1 is
simply a node of x. For any integer h > 1, a subtree of depth h is obtained by specifying a node v
of x, together with a subtree of depth h− 1 of each of the trees rooted at the left and right children
of v.

Lemma 7 (Shelah (1978); Hodges (1997)) Suppose the nodes of a binary tree x of depth at least
kd− (k − 1) are colored with k colors. Then there is a monochromatic subtree of x of height d.

The specific statement of Lemma 7 may be found in (Jung et al., 2020, Lemma 16). Now we are
ready to prove Proposition 5.
Proof [of Proposition 5] LetC = max{k0, 5}, where k0 is the constant of Lemma 6. Fix any k ≥ C,
and as in Lemma 6 letG be the 3k-wise OR function. By Lemma 6, there is a domainX and a class
F ⊂ {0, 1}X so that items 1 and 2 hold. Item 2 tells us that F shatters the set {1, 2, . . . , bk log kc},
and hence the VC dimension of G(F , . . . ,F) is at least bk log kc. Since VC dimension is a lower
bound on the Littlestone dimension, it follows that Ldim(G(F , . . . ,F)) ≥ bk log kc.

On the other hand, we claim that Ldim(F) ≤ 5. If there were a binary tree x of depth 6
shattered by F , note that there must be at least 2 functions f1, f2 ∈ F so that

fb(x1) = fb(x2(1)) = fb(x3(1, 1)) = fb(x4(1, 1, 1)) = fb(x5(1, 1, 1, 1)) = 1, b ∈ {1, 2}.

Since F shatters x it is straightforward that the 5 points x1,x2(1), . . . ,x5(1, 1, 1, 1) are distinct,
which contradicts item 1.

Next fix any positive integer `. Similar to the argument of Eisenstat and Angluin (2007, Lemma
4), we now define the set Y := {1, 2, . . . , `} ×X , and the classH ⊂ {0, 1}Y by

H =
{
h ∈ {0, 1}Y : ∃f1, . . . , f` ∈ F s.t. ∀x ∈ X, ∀j ∈ [`], h((j, x)) = fj(x)

}
.

Notice that H is the product of ` distinct copies of F . We claim that1 Ldim(H) ≤ 5`. To see this,
suppose for the purpose of contradiction that there is some binary tree x of depth 5`+1 = 6`−(`−1)
that is shattered by H. Next we define the following `-coloring of the nodes of x: each node of x

1. There is also an alternative proof that Ldim(H) ≤ ` · Ldim(F) using the online mistake bound characterization
of Ldim (Littlestone, 1988). Specifically, given an online learner for F , we may devise an online learner for H as
follows. We keep ` copies of the learner for F ; when we receive a sample (j, x) ∈ Y , we output the prediction of
the j-th learner on sample x. It is simple to observe that the mistake bound for the new learner is at most ` times that
of the original learner, implying that Ldim(H) ≤ ` · Ldim(F).

5
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is labeled by some (j, x) ∈ [`] × X ; color that node with the color j. By Lemma 7, there is a
monochromatic subtree, which we call x′, of x of depth 6. Since x is shattered byH, x′ is shattered
by F . But this contradicts the fact that Ldim(F) ≤ 5.

We next claim that Ldim(G(H, . . . ,H)) ≥ `bk log kc. This follows from the fact that the VC
dimension of G(H, . . . ,H) is at least `bk log kc, which in turn holds since G(F , . . . ,F) shatters
the set X , meaning that G(H, . . . ,H) shatters Y , which is of size `bk log kc.

3. Closure bounds for the threshold dimension

For positive integers i, j, write 1[i ≥ j] to be 1 if i ≥ j and 0 otherwise. Similarly write 1[i = j] to
be 1 if i = j and 0 otherwise. The threshold dimension of a hypothesis class is defined as follows:

Definition 8 (Threshold dimension) For a binary hypothesis class F ⊂ {0, 1}X , the threshold
dimension ofF , denoted Tdim(F), is the largest positive integer d so that there are x1, . . . , xd ∈ X
and f1, . . . , fd ∈ F such that fi(xj) = 1[i ≥ j] for all i, j ∈ [d]. In such a case, we say that
x1, . . . , xd are threshold shattered by F via f1, . . . , fd.

Proposition 9 establishes an upper bound for Tdim(G(H1, . . . ,Hk)) in terms of max1≤j≤k Tdim(Hj).
It improves upon an upper bound of Alon et al. (2020) that grows doubly exponentially in k. The
proof technique is similar to that of Alon et al. (2020), except that in the application of Ramsey’s
theorem a coloring with only 2k, as opposed to 22k, colors is used.

Proposition 9 Let G : {0, 1}k → {0, 1} be a Boolean function. Let H1, . . . ,Hk ⊆ {0, 1}X be
binary hypothesis classes, and let d ∈ N be such that Tdim(Hi) ≤ d for all i ∈ [k]. Then

Tdim(G(H1, . . . ,Hk)) ≤ 2O(kd log k).

Proof Let N be the smallest positive integer such that, for every coloring of the edges of the
complete graph KN in c = 2k colors, there exists a monochromatic clique of size r = 2d+ 1. It is
well known in Ramsey theory (e.g., Greenwood and Gleason (1955)) that N ≤ crc = 2O(kd log k).
We will show that Tdim(G(H1, . . . ,Hk)) < N .

Suppose contrapositively that Tdim(G(H1, . . . ,Hk)) ≥ N . By definition of threshold dimen-
sion, there exists x1, . . . , xN ∈ X and hi` ∈ H` for i ∈ [N ], ` ∈ [k] such that

G(hi1(xj), . . . , hik(xj)) = 1[i ≥ j] ∀i, j ∈ [N ].

Consider the complete graph KN and a coloring with 2k colors defined as follows: for each 1 ≤
p < q ≤ N , let ` ∈ [k] be the smallest index such that hp`(xq) 6= hq`(xp); such ` must exist
because G(hp1(xq), . . . , hpk(xq)) = 0 6= 1 = G(hq1(xp), . . . , hqk(xp)). Then, let the color of the
edge {p, q} be (`, hp`(xq)).

By our choice of N , the graph must contain a monochromatic clique with vertices i1 < · · · <
i2d+1; let the color of its edges be (t, y) where t ∈ [k] and y ∈ {0, 1}. From how each edge’s color
is defined, the following holds for all distinct u, v ∈ [2d+ 1]:

hiut(xiv) =

{
y if u < v

1− y if u > v.
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Thus, if y = 0, then xi2 , xi4 , . . . , xi2d is threshold shattered byHt (via the hypotheses hi3t, hi5t, . . . , hi2d+1t).
Otherwise, if y = 1, then xi2d , xi2d−2

, . . . , xi2 is threshold shattered byHt (via hi2d−1t, hi2d−1t, . . . , hi1t).
In both cases, we have Tdim(Ht) ≥ d, which concludes our proof.

Next we establish a lower bound showing that Proposition 9 is nearly tight. We need the follow-
ing lemma from Alon et al. (2020), which shows exponential dependence in d (but not necessarily
in k) is necessary.

Lemma 10 (Alon et al. (2020), Theorem 2.2) For every d ≥ 6 there is a class C consisting of
classifiers f : {0, 1, . . . , 2bd/5c − 1} → {0, 1} so that Tdim(C) ≤ d yet

Tdim({f1 ∨ f2 : f1, f2 ∈ C}) = 2bd/5c.

In fact, the class {f1 ∨ f2 : f1, f2 ∈ C} realizes the thresholds x 7→ 1[b ≥ x], for each 0 ≤ b ≤
2bd/5c − 1.

Proposition 11 shows that Proposition 9 is tight, up to possibly the factor of log k in the expo-
nent:

Proposition 11 For any positive integers d ≥ 6 and k, there is a domainX and classesH1, . . . ,H3k :
X → {0, 1} and a function G : {0, 1}3k → {0, 1} so that:

1. max{Tdim(H1), . . . ,Tdim(H3k)} ≤ d.

2. Tdim(G(H1, . . . ,H3k)) = 2kbd/5c.

Proof Fix d ≥ 6, k and write D := 2bd/5c. Consider the domain X := {0, 1, . . . , Dk − 1}.
For x ∈ X , we will write its base-D representation as x = x1x2 · · ·xk, so that x1, . . . , xk ∈
{0, 1, . . . D − 1}. Let C, consisting of functions f : {0, 1, . . . , D − 1} → {0, 1}, be the class from
Lemma 10. We now define k classesH1, . . . ,Hk, as follows: for 1 ≤ j ≤ k, letHj := {hj,f : f ∈
C}, where for f ∈ C,

hj,f (x1 · · ·xk) = f(xj). (1)

Also define classes G1, . . . ,Gk as follows: for j ∈ [k], let Gj := {gj,0, . . . , gj,D−1}, where for
b ∈ {0, 1, . . . , D − 1},

gj,b(x1 · · ·xk) = 1[xj = b].

Now define G̃ : {0, 1}2k → {0, 1} as follows: G̃(y1, . . . , yk, z1, . . . , zk) = 1 if and only if either
(a) y1 = · · · = yk = 1 or (b) in the case that there is a smallest index j with zj = 0, it holds that
y1 = · · · = yj = 1. Finally define G : {0, 1}3k → {0, 1}, as follows:

G(y1, . . . , yk, y
′
1, . . . , y

′
k, z1, . . . , zk) = G̃(y1 ∨ y′1, . . . , yk ∨ y′k, z1, . . . , zk).

On one hand, it is straightforward to see that for each j ∈ [k], Tdim(Hj) ≤ d, since Tdim(C) ≤
d from Lemma 10. It is also straightforward that Tdim(Gj) ≤ 1 for each j: if the threshold
dimension were at least 2, then there would be x(1), x(2) ∈ X that are threshold shattered via
gj,b1 , gj,b2 for some b1, b2 ∈ {0, 1, . . . , D− 1}. However, gj,b1(x(1)) = gj,b2(x(1)) = 1 implies that
b1 = x

(1)
j = b2 which contradicts gj,b1(x(2)) = 0 6= 1 = gj,b2(x(2)).

7
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On the other hand, we claim that Tdim(G(H1, . . . ,Hk,H1, . . . ,Hk,G1, . . . ,Gk)) ≥ Dk. Now
let Tj := {τj,0, . . . , τj,D−1}, where τj,b(x) = 1[b ≥ xj ]. Notice that

G(H1, . . . ,Hk,H1, . . . ,Hk,G1, . . . ,Gk) = G̃(H1∨H1, . . . ,Hk∨Hk,G1, . . . ,Gk) ⊇ G̃(T1, . . . , Tj ,G1, . . . ,Gk),

where the inclusion above follows from Lemma 10: indeed, the lemma implies that for each b ∈
{0, 1, . . . , D−1}, there are some f1, f2 ∈ C so that (f1∨ f2)(·) = 1[b ≥ ·]. In particular, it follows
that (hj,f1 ∨ hj,f2)(x) = 1[b ≥ xj ] = τj,b(x).

It therefore suffices to show that G̃(T1, . . . , Tk,G1, . . . ,Gk) can realize all threshold functions
on X . Indeed, for any a = a1 · · · ak ∈ X , for a1, . . . , ak ∈ {0, 1, . . . , D − 1}, we have, for each
x ∈ X ,

1[a ≥ x] = G̃(τ1,a1(x), . . . , τk,ak(x), g1,a1(x), . . . , gk,ak(x)).

To see that the above holds, simply note that a ≥ x if and only if either (a) aj ≥ xj for each
1 ≤ j ≤ k, or (b) for the smallest j such that aj 6= xj , we have aj′ ≥ xj′ for 1 ≤ j′ ≤ j.

4. Future work

There is a gap of log k between the exponent in the upper bound of Proposition 9 and in the exponent
of the lower bound of Proposition 11. In the direction of closing this gap, we make the following
observation: for positive integers r, c, let Rc(r) denote the minimum positive integer N so that for
every coloring of the edges of the complete graph KN with c colors, there is a monochromatic
clique of size r. Note that the proof of Proposition 9 shows the following: suppose that, for some
odd integer r = 2d+ 1 there is some hr <∞ so that Rc(r) ≤ hcr for all c ∈ N. Then for any k ∈ N
and aggregation function G : {0, 1}k → {0, 1}, for any binary hypothesis classesH1, . . . ,Hk with
threshold dimensions Tdim(Hi) ≤ d for i ∈ [k], we have that Tdim(G(H1, . . . ,Hk)) ≤ h2k

2d+1 =

2O(k), viewing d as a constant.
Contrapositively, we have the following: suppose that for some integer d, for infinitely many

values of k ∈ N, there are binary hypothesis classes H1, . . . ,Hk and G : {0, 1}k → {0, 1} satisfy-
ing Tdim(Hi) ≤ d for i ∈ [k] and Tdim(G(H1, . . . ,Hk)) = 2kα(k) for some function α(k) which
goes to∞ as k →∞. Then for infinitely many values of k, we have that R2k(2d+ 1) > 22kα(2k),
i.e., lim supc→∞Rc(2d + 1)1/c = ∞. This would resolve a long-standing open question in Ram-
sey theory (see, e.g., Xu and Radziszowski (2016, Conjecture 3.1.3), as well as Abbott and Hanson
(1972); Chung (1973); Chung and Grinstead (1983)). This observation suggests that proving a lower
bound stronger than Proposition 11 is likely to be quite difficult (if possible). On the other hand,
we know of no Ramsey-theoretic implications of an upper bound that matches the lower bound of
Proposition 11.

Alon et al. (2020) additionally established a similar closure property to the ones considered in
this note for the sample complexity of private PAC learning. Their upper bound has a polynomial
dependence on k; it would be interesting to determine if a stronger upper bound (say, nearly linear
in k) could be established.
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Appendix A. 0-covering numbers vs. thicket shatter function

In this section we discuss an alternative to the 0-covering number for which a Sauer–Shelah lemma
holds as well. This alternative to the 0-covering number is known as the thicket shatter function
(Bhaskar, 2017):

Definition 12 (Thicket shatter function) For anX-valued tree x and function classF , let ρ(F ,x)
denote the number of sequences ε = (ε1, . . . , εn) ∈ {0, 1}n so that there is some f ∈ F with

f(xt(ε1:t−1)) = εt ∀t ∈ {1, 2, . . . , n}. (2)

In the event that (2) holds, we will say that the sequence ε admits a solution in F for the tree x.

Analogously to Lemma 2, Bhaskar (2017, Theorem 4.1) showed that if the Littlestone dimension of
F is at most d, then for any tree x of depth n, we have ρ(F ,x) ≤

∑d
i=0

(
n
i

)
. Lemma 13 shows that

this statement follows directly from Lemma 2.

Lemma 13 For an X-valued tree x and a function class F ⊂ {0, 1}X , it holds that ρ(F ,x) ≤
N0(F ,x).

10

http://www.mit.edu/~rakhlin/courses/stat928/stat928_notes.pdf


NEAR-TIGHT CLOSURE BOUNDS

Proof Let us give {0, 1}n the lexicographic ordering with (0, . . . , 0) first, (0, . . . , 0, 1) second,
(0, . . . , 1, 0) third, and so on. Let V be a 0-cover for F on the tree x.

Fix any sequence ε = (ε1, . . . , εn) ∈ {0, 1}n that admits a solution in F (i.e., (2) holds). There
must be some v(ε) ∈ V so that for t ∈ [n], we have v

(ε)
t (ε1:t−1) = εt. Fix any ε′ < ε (using the

lexicographic ordering) which also admits a solution in F , and choose t0 as small as possible so
that ε′t0 < εt0 . For all t < t0, it follows that ε′t = εt. Then we have

v
(ε′)
t0

(ε1:t0−1) = 0 6= 1 = v
(ε)
t0

(ε1:t0−1).

Hence v(ε) 6= v(ε′), and hence, for all ε ∈ {0, 1}n admitting a solution in F , the v(ε) are distinct.

As an immediate corollary of Lemma 13, we obtain Lemma 4, since a tree x that is shattered by F
satisfies ρ(F ,x) = 2n.

Finally, we show in Proposition 14 that there are trees x so that ρ(F ,x) and N0(F ,x) may be
very far apart. (This fact is not used to prove any other results in this article.)

Proposition 14 For any n ∈ N, there is a function class F and a tree x of depth n so that
ρ(F ,x) = 1 yet N0(F ,x) ≥ 2n−1.

Proof Let us label all 2n − 1 nodes of the tree x with different elements of X; in particular, for
each 1 ≤ t ≤ n, denote the 2t−1 nodes of layer t by xt,1, . . . , xt,2t−1 , with all xt,j distinct. For
simplicity we may assume that X = {xt,j : t ∈ [n], 1 ≤ j ≤ 2t−1}. Now, choose F to be the set of
all functions f : X → {0, 1} so that f(x1,1) = f(x2,1) = · · · = f(xn,1) = 0. Then ρ(F ,x) = 1
since the only ε admitting a solution in F for the tree x (i.e., satisfying (2)) is ε = (0, . . . , 0).

On the other hand, letting ε1 := 1, then for any ε2, . . . , εn ∈ {0, 1}, there is some f ∈ F so that

f(x1,1) = f(x1) = 0, f(xt(ε1:t−1)) = εt ∀t ≥ 2.

Now the argument of Lemma 13 establishes that there must be a unique element of a 0-cover for
each sequence of the form (1, ε2, . . . , εn). Thus N0(F ,x) ≥ 2n−1.
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