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Abstract
We study logistic regression with binary labels and categorical (discrete) feature values. Our goal is
to evaluate precisely the (maximal) minimax regret. We express it as the so called Shtarkov sum
known in information theory. To the best of our knowledge such a sum was never computed in the
context of logistic regression.

To be more precise, the pointwise regret of an online algorithm is defined as the (excess) loss
it incurs over some value of a constant comparator (weight vector) that is used for prediction. It
depends on the feature values, label sequence, and the learning algorithm. In the maximal minimax
scenario we seek the best weights for the worst label sequence over all possible learning algorithms/
distributions, therefore it constitutes a lower bound for the pointwise regret. For finite dimension d
and N distinct feature vectors we show that the maximal minimax regret grows as

d

2
log(T/2π) + Cd +O(N/

√
T )

where T is the number of rounds of running a training algorithm and Cd is explicitly computable
constant that depends on the feature values and dimension d. We also extend these results to
non-binary labels. The precise maximal minimax regret presented here is the first result of this kind.
Our findings are obtained using tools of analytic combinatorics and information theory.

1. Introduction

Logistic regression has been important in theory and practice of modern machine learning. It has been
used for tasks, such as, category classification, click-through-rate prediction, and risk assessment.
A model consists of a set of features, whose parameters represent their effect on some outcome. In
an online supervised setup, such a model is trained to learn these parameters from examples whose
outcomes are already labeled. The training algorithm consumes data in rounds, where at each round
t = 1, . . . , T , it is allowed to predict the label based only on the labels it observed in the past t− 1
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rounds. In each round, the prediction algorithm incurs some loss and updates its belief of the model
parameters. The pointwise regret (for all sequences) of an online algorithm is defined as the (excess)
loss it incurs over some value of a constant comparator (weight vector) that is used for prediction
for the complete sequence. The pointwise regret for logistic regression with a Bayesian learning
algorithm has been studied in Foster et al. (2018); Hazan et al. (2014); Kakade and Ng (2005);
McMahan and Streeter (2012); Shamir (2020).

In this paper, we introduce the maximal minimax regret that for a given feature sequence
maximizes pointwise regret over label sequences and minimizes over all learning distributions that
best approximate the label sequence (see also Shamir and Szpankowski (2021)). We express it
as the so called Shtarkov sum, as in Shtarkov (1987), that we evaluate asymptotically. We study
the minimax regret using methods outside traditional machine learning toolbox, namely analytic
combinatorics (see Szpankowski (2001); Flajolet and Sedgewick (2008)) and universal compression
(see Shtarkov (1987); Drmota and Szpankowski (2004); Szpankowski (1998); Szpankowski and
Weinberger (2012); Xie and Barron (1997, 2000)).

For a start, we review various notions of regret and redundancy from information theory that we
adopt for the performance evaluation of logistic regression. The pointwise redundancy RT (P ; yT )
and the average redundancy R̄T (P ) for a given source P (distribution) and source (label) sequence
yT = (y1, . . . , yT ) of length T (over alphabet of size m or in ML language over sequences with m
distinct label values) are defined as

RT (P ; yT ) = L(yT ) + logP (yT ), R̄T (P ) = E[L(Y T )]−HT (P ),

where HT (P ) is the entropy of P , E denotes the expectation, and L(yT ) is the code length of some
code L(·). In the online learning – and indeed in information theory – one ignores the integer nature
of the length (however, see Drmota and Szpankowski (2004)) and replace it by L(yT ) = − logQ(yT )
for some distribution Q that best approximates P . The above definitions imply a probabilistic setting,
in which there is some source that generated the data. A non-probabilistic setting considers individual
sequences (see, e.g., Shtarkov (1987)), where the maximal redundancy is defined as

R∗T (Q,P ) = max
yT

[− logQ(yT ) + logP (yT )]

which somewhat decouples it from modeling assumptions, as pointed out by Rissanen (1978, 1996).
In universal learning and compression, it is assumed that we have some knowledge about a family

of sources S generating real data. Following Davisson (1973), in information theory the average
minimax redundancy R̄T (S) and the maximal minimax redundancy R∗T (S) for family S are defined
as follows

R̄T (S) = min
Q

sup
P∈S

∑
yT

P (yT ) log[P (yT )/Q(yT )],

R∗T (S) = min
Q

sup
P∈S

max
yT

[
log(P (yT )/Q(yT ))

]
.

In words, we search for the best distribution Q for the worst source P on average and for the worst
label sequence yT for individual sequences.

There are other measures of optimality for learning, coding, gambling, and prediction that are
used in universal modeling and machine learning. We refer here to minimax regrets defined as
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follows (cf. Drmota and Szpankowski (2004); Xie and Barron (1997, 2000)):

r̄T (S) = min
Q

sup
P∈S

EP [− logQ(yT ) + log sup
P∈S

P (yT )],

r∗T (S) = min
Q

max
yT

[− logQ(yT ) + log sup
P∈S

P (yT )],

and to the maxmin regret

rT (S) = sup
P∈S

min
Q

E[− logQ(yT ) + log sup
P∈S

P (yT )].

We call r̄T (S) the average minimax regret, r∗T (S) the maximal minimax regret and rT (S) the
maxmin regret. It is easy to see that R̄T (S) ≤ r̄T (S), and, r∗T (S) = R∗T (S). For more sophisticated
relation between various regrets and redundancy see Drmota and Szpankowski (2004).

In this paper we focus on analyzing the maximal minimax regret for logistic regression minimized
over all learning distribution/ algorithms with categorical (discrete) feature values, that is, we assume
there are N distinct feature vectors with each feature taking finite number of values over a finite
alphabet. In Theorem 1 we show that the maximal minimax regret of dimension d = O(1) for
categorical feature values grows asymptotically as

d

2
log T − d

2
log(2π) + Cd +O(N/

√
T )

where Cd is a constant that depends on the feature values. For example, for d = 1 with features
values {a1, . . . , aN} we find in Corollary 2

C1 = log

∫ ∞
−∞

√√√√ N∑
j=1

a2jαj(1 + e−ajw)−1(1 + eajw)−1dw


where αj is the fraction of T rounds that feature value aj is applied. This seems to be the first
precise result of this kind in the area of logistic regret. In Theorem 3 we extend these results to
non-binary labels. We should point out that the maximal minimax regret constitutes a lower bound
of the pointwise regret for any specific algorithm and label sequences.

We now briefly review relevant literature of information theory and machine learning. We start
with information theory assuming that the size of the underlying alphabet is m (and effectively
assuming d = 1). In Drmota and Szpankowski (2004); Orlitsky and Santhanam (2004); Rissanen
(1996); Shamir (2006); Szpankowski (1998); Xie and Barron (1997, 2000) it was proved that for a
large class of sources (up to Markovian but not for non-Markovian as shown in Csiszar and Shields
(1995); Flajolet and Szpankowski (2002); Drmota and Szpankowski (2004)) the redundancy grows as
m
2 log T +O(1) when m is fixed and m

2 log(T/m) for m = o(T ) (see also Orlitsky and Santhanam
(2004); Shamir (2006)). A full asymptotic expansion for the regret and redundancy for the whole
range of m are derived in Szpankowski and Weinberger (2012).

Regarding the online convex optimization literature, logarithmic regret has been shown for
strongly convex loss functions. Logistic regression, however, fell in the category of weakly convex
loss functions, for whichO(

√
T ) regret bounds have been shown. In most machine learning literature,

the feature values are assumed to belong either to the interval [0, 1] or are binary {0, 1} (active or
passive). To the best of our knowledge, Kakade and Ng (2005) are first to demonstrate results that
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suggest O(d log T/d) regret for logistic regression, using Bayesian model averaging. As mention
before, the redundancy results we described from the information theory literature apply to the single
dimensional binary labels logistic regression problem. Similar O(log T ) pointwise and individual
sequence regret can be achieved for the single dimensional problem with gradient methods based
approaches, as was demonstrated in McMahan and Streeter (2012). The authors of McMahan
and Streeter (2012) then posed the problem of what happens for larger dimensions. Subsequently,
Foster et al. (2018) demonstrated how to achieve regret bounds of O(d log(T/d)) with Bayesian
model averaging. These results were strengthened in Shamir (2020), who show that the pointwise
regret is d/2 log(T/d) + log log T for d = o(

√
T ), again with Bayesian averaging. The worst case

minimax regret was studied in a series of papers by Rakhlin and Sridharan (2014) using Rademacher
complexity rather than Shtarkov sum approach. Here, we analyze precisely the maximal minimax
regret for individual sequences and discrete feature values over a class of learning algorithms/
distributions (not necessary Bayesian).

2. Problem Formulation and Notation

We denote by xt = (x1,t, . . . , xd,t)
τ a d-dimensional column feature vector where τ denotes

transpose operator. Notice that xT is a T × d matrix with xt = (x1,t, . . . , xd,t) as a row. The label
binary vector is denoted as yT = (y1, . . . , yT ) with yt ∈ {−1, 1}. The vector wt = (w1,t, . . . , wd,t)

τ

representing d-dimensional weights is used to design a prediction algorithm, which we will not
discuss here. Furthermore, we assume that the feature vector xt takes only finite number of (vector)
values, that is, we set xt = aj for j = 1, . . . , N where aj = (a1,j , . . . , ad,j)

τ with aij ∈ A for
i = 1, . . . , d, j = 1, . . . , N , and some finite alphabet A. For example, for d = 1 we simply have
xt ∈ A = {a1, . . . , aN} for all t. Finally, by Tj we denote the number of t such that xt = aj where

T1 + · · ·+ TN = T.

For Tj > 0 we also write αj = Tj/T .
The logistic loss of an algorithm that plays wt at round t is

L(yT |xT ,wT ) :=
T∑
t=1

log [1 + exp(−yt〈xt,wt〉)] (1)

where 〈xt,wt〉 =
∑d

i=1 xi,twi,t. In our case, we can re-write L(yT |xT ,wT ) as

L(yT |xT ,wT ) =

N∑
j=1

log

Tj∏
i=1

[
1 + exp(−ytji 〈aj ,wtji

〉)
]

where tji is a subsequence of t = 1, . . . , T such that xtji = aj .
It is convenient to write `(yt|xt,wt) := log [1 + exp(−yt〈xt,wt〉)]. Both `(yt|xt,wt) and

L((yT |xT ,wT ) depend on xt and wt only through the product 〈xt,wt〉. Notice that for binary
labels, the probability of a label is given by

P (yt|xt,wt) =
1

1 + exp(−yt〈xt,wt〉)
, (2)

hence `(yt|xt,wt) = − logP (yt|xt,wt).
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The goal of a learning algorithm is to find the best approximation Q(yt|xt) of the unknown
distribution P (yt|xt,wt). Hence, we also denote `(Q, yt|xt) = − logQ(yt|xt). The pointwise
regret for all sequences (yt,xt) is defined as in Hazan (2012); Foster et al. (2018); Shamir (2020)

RT (Q, yT |xT ) :=
T∑
t=1

`(Q, yt|xt)−min
w

T∑
t=1

`(yt|xt,w)

for some fixed comparator w. Thus

RT (Q, yT |xT ) = log
supw P (yT |xT ,w)

Q(yT |xT )
. (3)

In our setting we have

P (yT |xT ,w) =
N∏
j=1

(
1

1 + exp(−〈aj ,w〉)

)kj
·
(

1

1 + exp(〈aj ,w〉)

)Tj−kj
(4)

where, we recall, Tj is the number of rounds with aj feature vector, and kj is the number of yt = 1
among Tj rounds. Expression (4) is a consequence of the discrete nature of feature values.

The pointwise regret RT (Q, yT |xT ) is a function of learning algorithm Q, yt and xt, so it
depends on individual sequences (e.g., see Kakade and Ng (2005); Shamir (2020)). A better measure
of the learning algorithm performance should decouple the regret from the learning distribution Q
(so it can provide a universal lower bound for all algorithms) and the fluctuations of yT (but may
still depend on the feature vector xT ). Following information-theoretic view as in Shtarkov (1987);
Drmota and Szpankowski (2004), we define the maximal minimax regret (conditioned on xT ) as

r∗T (xT ) := inf
Q

max
yT

[RT (Q, yT |xT )].

Notice that this definition is over all possible learning distributions represented by Q. Therefore, we
have

r∗T (xT ) ≤ max
yT

RT (Q, yT |xT )

and it represents a general lower bound for the pointwise regret predominately studied in the machine
learning community. For example, in the Bayesian framework one sets

Q(yT |xT ) =

∫
w
ρ(w)P (yT |xT ,w)dw,

where ρ(w) represents a prior. In this paper, we do not restrict ourselves to Bayesian algorithms.
We first find a more succinct representation of the maximal minimax regret. Then, noting that

`(yt|xt,w) = − logP (yt|xt,w), and following Shtarkov (1987); Drmota and Szpankowski (2004)
we find

r∗T (xT ) = min
Q

sup
w

max
yT

[− logQ(yT |xT ) + logP (yT |xT ,w)]

= min
Q

max
yT

[− logQ(yT |xT ) + sup
w

logP (yT |xT )]

= min
Q

max
yT

[logP ∗(yT |xT )/Q(yT |xT )] + log
∑
yT

sup
w
P (yT |xT ,w)

= log
∑
yT

sup
w
P (yT |xT ,w)
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where

P ∗(yT |xT ) :=

sup
w
P (yT |xT ,w)∑

vT supw P (vT |xT ,w)
(5)

is the maximum-likelihood distribution and we set Q(yT |xT ) = P ∗(yT |xT ). In summary

r∗T (xT ) = log
∑
yT

sup
w
P (yT |xT ,w) =: log dT (xT ). (6)

Observe that for not optimal Q 6= P ∗ there will be extra O(1) term in the maximal minimax regret as
discussed in Drmota and Szpankowski (2004). In passing, we point out that Rakhlin and Sridharan
(2014) proposed a slightly different approach to the (worst case) minimax regret (i.e., maxxT r

∗
T (xT ))

and studied it using the Rademacher complexity.
The sum log dT (xT ) in (6) is often called the Shtarkov sum as in Drmota and Szpankowski

(2004); Grunwald (2007). To the best of our knowledge the Shtarkov sum was never evaluated in this
context. The goal of this paper is exactly to do this asymptotically for categorical feature values, up
to o(1) term in order to show the impact of the feature values on the minimax regret. As we shall see
the feature values emerge only in the second term of the asymptotic expansion (see Theorem 1 and
Theorem 3).

3. Main Results

In this section we present our main results. We use the notation from the previous section, and in
addition, we write

p(w) := (1 + e−w)−1, and q(w) = 1− p(w) = p(−w).

Our goal is the estimate asymptotically the Shtarkov sum

dT (xT ) =
∑
yT

sup
w
P (yT |xT ,w),

where, simplifying (4), we arrive at

P (yT |xT ,w) =

N∏
j=1

p(〈ajw〉)kjq(〈ajw〉)Tj−kj

=
1∏N

j=1(1 + e〈ajw〉)Tj
· exp

 N∑
j=1

kj〈ajw〉


with kj being the number of yt = 1 in Tj rounds that use feature vector aj .

Maximizing P (yT |,xT ,w) with respect to w leads to w∗ = w satisfying

N∑
j=1

ajp(〈ajw〉)Tj =

N∑
j=1

ajkj (7)

6
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where we use the fact p′(w) = p(w)q(w). Notice that the above is a system of d linear equations,
thus the tuple that share the same optimal value w∗ are in the intersection of d hyperplanesH1(w

∗),
H2(w

∗), . . . ,Hd(w∗) where

Hi(w) = {kN = (k1, . . . , kN ) :
N∑
j=1

ai,j(kj − p(〈ajw〉)Tj) = 0} (8)

where i = 1, . . . , d. For convenience we denote by Hd(w) = H1(w) ∩ · · · ∩ Hd(w) as a space
vector of co-dimension d.

To estimate the Shtarkov sum we proceed as follows. Since the quantity w∗ does not change
when kN = (k1, . . . , kN ) is in the hyperplane Hd(w∗) the rule of the game will be to cut the set
[0, T1]× · · · × [0, TN ] into parallel slices each representing the hyperplaneHd(w). This allows us
to replace the summation of yT by the following

dT (xT ) =
∑
w

∑
kN∈Hd(w)

B(kN ,w) (9)

where

B(kN ,w) =
N∏
j=1

(
Tj
kj

)
p(〈a,jw〉)kjq(〈aj ,w〉)Tj−kj . (10)

Note that there are
(Tj
kj

)
ways to set yt = 1 among Tj positions. Since B(kN ,w) is the product of

binomial distributions it is maximized at

kN (w) = (p(〈a1w〉)T1, . . . , p(〈aNw〉)TN )

that defines a manifold L of dimension d in the hyper-cube [0, T1]× . . .× [0, TN ] of dimension N
(thus we assume d < N ).

Approximating the product of binomial distributions by normal approximations, we arrive at

P (yT |w∗) =
exp

(
−
∑

j
(kj−kj(w))2

2p(〈ajw〉)q(〈ajw〉)Tj

)
∏
j

√
2πp(〈ajw〉)q(〈ajw〉)Tj

(1 +O(N/
√
T )),

where the error term comes from the rate of convergence in the central limit theorem. Written
differently we have

P (yT |aT ,w) ∼
√

det(A(w)/(2π)) exp

(
−〈(k

N − kN (w))τA(w)(kN − kN (w))〉
2

)
where

A(w) = Diag

(
1

p(〈a1w〉)q(〈a1w〉)T1
, . . . ,

1

p(〈aNw〉)q(〈aNw〉)TN

)
.

In order to evaluate the minimax regret r∗(xT ) = log dT (xT ) we shall use the Euler-Maclaurin
formula (e.g., Szpankowski (2001)) leading to

dT (xT ) =

∫
[0,T1]×···×[0,TN ]

P (yT |w∗)dkN

=

∫
Rd

δ(w)dw1 · · · dwd
∫
Hd(w)

P (yT |w)dkN , (11)

7
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where δ(w) is a thickness factor that takes into account the variation of spacing between the parallel
subspacesHd(w) and counts the number of yT betweenH(w) andH(w + dw). We compute it in
the next section.

This allows us to formulate our main result with the detailed proof delayed till the next section

Theorem 1 Let xt = aj for j = 1, . . . , N where aj = (a1,j , . . . , ad,j)
τ with aij ∈ A for some

finite alphabet A. Define also p(w) = (1 + e−w)−1 with q(w) = 1 − p(w). Then the maximal
minimax regret becomes asymptotically for N = o(

√
T ) and d = O(1) (d ≤ N )

r∗(xT ) =
d

2
log T − d

2
log 2π + log

(∫
Rd

√
det(B̃d(w))dw1 · · · dwd

)
+O(N/

√
T ) (12)

where B̃d(w) is a d× d matrix computed as follows

B̃d(w) =

N∑
i=1

αip(〈aiw〉)q(〈aiw〉)aiaτi

that is, i, j element of B̃d(w) is 〈uiÃ−1d (w)uj〉 with ui = (ai,1, · · · , ai,N ) and

Ãd(w) = Diag

(
1

p(〈a1w〉)q(〈a1w〉)α1
, . . . ,

1

p(〈aNw〉)q(〈aNw〉)αN

)
where 0 < αi = Ti/T < 1 and

∑
j αj = 1

Large d. To understand better the impact of large d on the regret, we shall use the following well
known fact

d

tr(B̃−1)
≤ det1/d(B̃) ≤ tr(B̃)

d

where tr(B̃) is the trace of B̃. Therefore, we find

r∗(xT ) ≤ d

2
log

T

d
− d

2
log 2π + log

(∫
Rd

√
[tr(B̃(w)]ddw1 · · · dwd

)
+O(N/

√
T )

which seems to be asymptotically correct on the leading term. However, it is still an open problem to
find precise asymptotic regret for other ranges of d,N and T . Some recent results in this direction
are reported in Shamir (2020).

Special Cases: d = 1. In the special case when d = 1 we find a simpler expression as in the
corollary below.

Corollary 2 Let xi ∈ {a1, . . . , aN} and d = 1. Then the maximal minimax regret becomes

r∗T (xT ) = log d(xT ) =
1

2
log T − 1

2
log(2π) +

+ log

∫ ∞
−∞

√∑
j

a2jp(ajw)q(ajw)Tj/Tdw

+O(N/
√
T ) (13)

for large T .

8
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In particular, when N = 1 and a1 = 1 (or all ai are the same) we find∫ ∞
−∞

1√
(1 + e−w)(1 + ew)

dw =

∫ ∞
−∞

ew/2

1 + ew
dw = π

and therefore
r∗T (xT ) =

1

2
log T +

1

2
log(π/2) + o(1)

as in Drmota and Szpankowski (2004).

Minimization of redundancy. The part of r∗T (xT ) that depends on the feature values, say for
d = 1, is ∫ ∞

−∞

√∑
j

a2jp(ajw)q(ajw)Tj/Tdw.

Thanks to the concavity property of the square root function we hence have∫ ∞
−∞

√∑
j

a2jp(ajw)q(ajw)Tj/Tdw ≥
∑
j

Tj
T

∫ ∞
−∞

√
a2jp(ajw)q(ajw)dw

=
∑
j

Tj
T

∫ ∞
−∞

√
p(w)q(w)dw = π. (14)

This minimum value is obtained when all ai are the same.

3.1. Extension to non-binary labels

Let us now consider a non-binary label alphabet Y of size m. We also define a matrix W =
[w1, . . . ,wm−1] such that wi = (w1,i, . . . , wd,i). The multinomial logistic function known also as
softmax function is then defined as in Foster et al. (2018)

p`(a
τW) =

e〈a,w`〉∑m
k=1 e

〈a,wk〉
(15)

for ` = 1, . . . ,m− 1 and

q(aτW) = 1−
m−1∑
i=1

p`(a
τW).

We now only briefly describe steps needed to extend our previous analysis to the non-binary case.
Recall that aj = (a1,j , . . . , ad,j)

τ is the j-th feature values column vector. We first observe that the
binomial distribution will become the multinomial distribution, and in particular (10) is

Bn(kN ,W) =
N∏
i=1

(
Ti
ki

)m−1∏
`=1

p`(a
τ
iW)kj,`q(aτjW)Tj−

∑
` kj,`

which we replace by the (m− 1)-dimensional normal distribution with the covariance matrix

Σi(W) = Diag(p(aτiW))− p(aτiW)pτ (aτiW),

9
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where p(a) = [p1(a), . . . ,pm−1(a)]τ is the probability column vector. Also, as before we denote
by Ai(W) the inverse of the above covariance (m− 1)× (m− 1) matrix.

Finally, observe that

P (yT |a,W) =
1∏N

j=1 q(a
τ
jW)Tj

exp

(
m−1∑
`=1

kj`〈ajw`〉

)
.

From this we can obtain the system of linear equations as in (8) for every `. Thus the set of optimal W
is a hyperplaneH(m−1)d that are parallel subspaces of codimension (m− 1)d. ThereforeH(m−1)d

is orthogonal to the vectors ui,` belonging to R(m−1)N . The (k, j)-th coefficient of vector ui,` is
δ(k=`)aji. It is convenient to represent ui,` as vector in R(m−1) ×RN .

Following the footsteps of our previous derivations we arrive at the following final result.

Theorem 3 Let xt = aj for j = 1, . . . , N where aj = (a1,j , . . . , ad,j) with aij ∈ A for some finite
set A. Furthermore, let the label alphabet Y be of size m, and W = [w1, . . . ,wm−1]. Finally,
p`(a

τW) for ` = 1, . . . ,m − 1 are defined in (15). Then the maximal minimax regret becomes
asymptotically for N = o(

√
T ) and m, d = O(1)

r∗(xT ) =
d(m− 1)

2
log

T

2π
+ log

(∫
Rd(m−1)

√
det(B̃d,m(W))dw1 · · · dwm−1

)
+O(N/

√
T )

(16)
where B̃d,m(W) is a d(m − 1) × d(m − 1) matrix whose ik, j` coefficient is 〈uikÃ−1d,m(W)uj`〉
with the k, j coefficient of ui` ∈ R(m−1)N being ajiδk 6=` and

Ã−1d,m(W) =
N∑
i=1

αi (Diag (p(aτiW))− p(aτiW)pτ (aτiW))

where 0 < αj = Tj/T < 1 and
∑

j αj = 1

4. Analysis

In this this section we prove our main result Theorem 1. However, we split the analysis in two parts.
First we prove Corollary 2 for d = 1 to illustrate our methods. Then we provide missing parts of the
proof of Theorem 1.

4.1. Proof of Corollary 2

Assume now that d = 1, We notice that the quantity we want to maximize is the product of the
binomial coefficients

Bj(kj , w) =

(
Tj
kj

)
p(ajw)kjq(ajw)Tj−kj .

The aim is to maximize each coefficients separately. The maximum (w and the Tj fixed) is attained
by kj which is the closest to

kj(w) = p(ajw)Tj .

Thanks to the asymptotic properties of the binomial distribution the maximum is attained asymptoti-
cally at

maxBj(kj , w) = (2πp(ajw)q(ajw)Tj)
−1/2(1 +O(1/

√
Tj)).

10
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Furthermore if kj is close to kj(w) ∈ H(w∗) (e.g., typically kj = kj(w) +O(
√
Tj log Tj)), we

have by virtue of the normal limit of the binomial distribution:(
Tj
kj

)
p(ajw)kjq(ajw)Tj−kj =

1√
2πp(ajw)q(ajw)Tj

exp

(
− (kj − kj(w))2

2p(ajw)q(ajw)

)
(1 +O(1/

√
Tj).

(17)
We shall use the following known lemma to justify (17) (e.g., see Szpankowski (2001)).

Lemma 4 Let pn(k) =
(
n
k

)
pkqn−k where q = 1 − p be the binomial distribution. Then for

|k − pn| ≤ n1/2+ε we have

pn(k) =
1√

2πp(1− p)n
exp

(
− (k − pn)2

2p(1− p)n

)
+O(n−δ) (18)

uniformly as n→∞. Furthermore ∑
|k−np|>

√
p(1−p)n1/2+ε

pn(k) < 2n−εe−n
2ε/2 (19)

for large n.

Let us now evaluate the Shtarkov sum. Using the Euler-Maclaurin formula we have

d(xT ) =

∫ ∞
−∞

δ(w)

∫
H(w)

B(kN , w)dkNdw

where δ(w) is the thickness factor, that is, the volume betweenH(w) andH(w+ dw) and B(kN , w)
is the product of Bj(kN , w). Assuming that only the tuples within O(

√
T log T ) of the mean (see

Lemma 4) significantly contribute to dT (xT ), we can substitute B(kN , w) by

B(kN (w), w) =
1∏

j

√
2πp(ajw)q(ajw)Tj

exp

−∑
j

(kj − kj(w))2

2p(ajw)q(ajw)Tj

 (1 +O(N/
√
T ))

or written differently

B(kN (w), w) =
√

det(A(w)/(2π)) exp

(
−〈(k

N )τA(w)kN 〉
2

)
where

A(w) = Diag

(
1

p(a1w)q(a1w)T1
, . . . ,

1

p(aNw)q(aNw)TN

)
.

In Appendix A we prove

√
det(A(w)/(2π))

∫
H(w)

exp

(
−1

2
〈zτA(w)z

)
dz =

√
1

2π〈uτA−1(w)u〉
(20)

11
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where u = (a1, . . . , aN )τ is the unitary orthogonal vector toH(w). It is the same for all values of w
since the hyperplanes are parallel and

uτ =
1√∑
j a

2
j

(a1, · · · , aN ). (21)

Thus

〈uτA−1u〉 =

∑
j a

2
jp(ajw)q(ajw)Tj∑

j a
2
j

. (22)

To finalize we need to find the thickness factor δ(w) that counts the number of yT between
H(w) and H(w + dw). As discussed, we cut the space [0, T1] × · · · × [0, TN ] into parallel slices
H(w). The hyperplane H(w) is the hyperplane orthogonal to u which contains the point kN (w).
To reflect the full integral in the Cartesian metric δ(w)dw we must restrict thickness to slices
between H(w) and H(w + dw). Since the hyperplane H(w + dw) is obtained by a translation
of the hyperplane H(w) over the vector (kN )′(w)dw. To compute (kN )′(w)dw, we recall that
kN (w∗) = (p(a1w)T1, . . . , p(aNw)TN ) satisfies the following equation∑

j

ajTjp(ajw) =
∑
j

ajkj(w). (23)

Observe now that taking derivative of kj(w) with respect to w we obtain∑
j

a2jTjp
′(ajw) =

∑
j

ajk
′
j(w). (24)

A simple by crucial observation here is that p′(w) = p(w)(1 − p(w)) = p(w)q(w) leading to the
thickness δ(w)dw which is the component of the vector being orthogonal toH(w). We find

δ(w) = 〈uτ (kN )′(w)〉 =

∑
j a

2
jp(ajw)q(ajw)Tj√∑

j a
2
j

.

Putting everything together we find

d(xT ) =
1√
2π

∫ ∞
−∞

√∑
j

a2jp(ajw)q(ajw)Tjdw
(

1 +O(N/
√
T )
)
. (25)

This completes the proof of Corollary 2 for d = 1.

4.2. Finishing the Proof of Theorem 1

Following the same line of reasoning as in the previous subsection for general d we have

kN ∈ H1(w) ∩ · · · ∩ Hd(w).

By approximating the underlying binomial distribution by the normal distribution, we arrive at

P (yT |xT ,w) =
exp

(
−
∑

j
(kj−kj(w))2

2p(〈ajw〉)q(〈ajw〉)Tj

)
∏
j

√
2πp(〈ajw〉)q(〈ajw〉)Tj

(1 +O(N/
√
T ))

12
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or written differently √
det(A(w)/(2π)) exp

(
−〈(k

N )τA(w)kN 〉
2

)
where

A(w) = Diag

(
1

p(〈a1w〉)q(〈a1w〉)T1
, . . . ,

1

p(〈aNw〉)q(〈aNw〉)TN

)
.

We now evaluate the minimax regret r∗(xT ) = log dT (xT ) expressed in (11) which we repeat
here

dT (xT ) =

∫
Rd

δ(w)dw1 · · · dwd
∫
Hd(w)

P (yT |w)dkN (26)

where δ(w) is a thickness indicator factor that takes into account the variation of spacing between
the parallel subspacesHd(w). In Appendix B we prove in (33) that√

det(A(w)/(2π))

∫
H1(w)∩···∩Hd(w)

exp

(
−1

2
〈zτA(w)z

)
dzN−d =

√
det(U)

det(2πB(w))
(27)

where U is the d× d matrix whose i, j coefficient is 〈uiuj〉 and B(w) is the d× d matrix whose
i, j coefficient is 〈uiA−1(w)uj〉. Thus

dT (xT ) =

∫
Rd

δ(w)

√
det(U)√

det(2πB(w))
dw1 · · · dwd.

To finalize we need to express the thickness factor δ(w). As before, in the integral (26) we cut the
space [0, T1]× · · · × [0, TN ] into parallel slicesHd(w). The area betweenH(w1, . . . , wd), and each
of theHd(w1 + dw1, w2, . . . , wd),Hd(w1, w2 + dw2, . . . , wd) . . ., andHd(w1, w2, . . . , wd + dwd)
is equivalent to ∣∣∣∣det

(
∂pG(kN (w))

∂w1
, . . . ,

∂pG(kN (w))

∂wd

)∣∣∣∣ dw1 · · · dwd (28)

where pG is the orthogonal projection on the subspace Gd generated by the ui’s. We use here the
known fact that the volume cut off by edge vectors a1, . . .aN is equal to |det(a1, . . .aN )|.

To better understand (28) we notice that the d× d matrix with ij coefficient is 〈uτi
∂kN (w)
∂wj

〉 is
nothing less than matrix B(w). But to express the determinant we need its orthonormal base of
Gd which we denote as (e1, . . . , ed). The determinant we are looking for is the determinant of the
matrix D(w) whose ij coefficient is 〈eτi

∂kN (w)
∂wj

〉. We can create an orthonormal base of Gd just by
setting ei =

∑
j eijuj as long as the matrix E with coefficients eij satisfies:

EtUE = Id (29)

where Id is the d× d identity matrix. Thus D(w) = EB(w) and

δ(w) = |det(D(w))| = |det(EB(w))| = det(B(w))√
det(U)

. (30)

Putting everything together:

dT (xT ) =
1

(2π)d/2

∫
Rd

√
det(B(w)dw1 · · · dwd

(
1 +O(N/

√
T )
)
. (31)

This proves Theorem 1, after some simple final calculations.

13
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Appendix A: Special One-Dimensional Case

Let A be a self adjoint matrix which is definite positive. Let H be a hyperplane orthogonal to the
unitary vector u, not necessarily an eigenvector of A. We want to compute the integral

I(H,A) =
√

det(A/2π)

∫
H

exp

(
−〈z

τAz〉
2

)
dz

with zτ being the transpose of z = (z1, . . . , zN ). We know that the integral on the whole space,
since the integrand is a Gaussian density with A−1 as the covariance matrix. We will make the use
of the following identity obtained by slicing the whole space into a folio of hyperplanes parallel toH

√
det(A/2π)

∫ +∞

−∞
dt

∫
H

exp

(
−〈(z + tu)τA(z + tu)〉

2

)
dz = 1.

Let u = p(u) + v where p(u) is the projection of u onH according to the metric induced by A.
Thus in the integrand we have

〈(z + tu)τA(z + tu)〉 = 〈(z + tp(u))τA(z + tp(u))〉+ t2〈vτAv〉.

For a given t we have by a simple change of variable∫
H

exp

(
−〈(z + tp(u))τA(z + tp(u))〉

2

)
dz =

∫
H

exp

(
−〈z

τAz〉
2

)
dz.

Thus
I(H,A)

∫ ∞
−∞

exp(−t2〈vτAv〉/2)dt = 1

and therefore,

I(H,A) =

√
〈vτAv〉

2π
.

In order to determine v we notice that if v is orthogonal to H with metric A then Av is
orthogonal toH with classic metric. Thus Av is colinear with u, or equivalently A−1u is colinear
with v. Since u− v must belong toH then 〈uτ (u− v)〉 = 0 and

v =
1

〈uτA−1u〉
A−1u,

and consequently 〈vτAv〉 = 1
〈uτA−1u〉 . Finally, we arrive at

I(H,A) =

√
1

2π〈uτA−1u〉

which proves

δ(w) = 〈uτ (kN )′(w)〉 =

∑N
j=1 a

2
jp(ajw)q(ajw)Tj√∑N

j=1 a
2
j

(32)

in the d = 1 case.

14
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Appendix B: General d dimensional case

Now let Hd be the intersection of d hyperplanes, respectively orthogonal to u1,u2, . . .ud not
necessarily orthonormal. We write

I(Hd,A) =
√

det(A/(2π))

∫
Hd

exp

(
−zτAz

2

)
dzN−d.

We know that √
det(A/(2π))

∫
exp

(
−zτAz

2

)
dzN−d = 1.

Let Gd be the sub vector space orthogonal toHd. We have∫
exp

(
−zτAz

2

)
dzN =

∫
z∈Hd

∫
x∈Gd

exp

(
〈(z + x)τA(z + x)〉

2

)
dzN−ddxd.

The vector space is generated by the vectors ui. Let t = (t1, . . . , td) and we denote by x(t) =∑
i tiui. Thus the change of variable leads to∫
exp

(
−zτAz

2

)
dzN =

∫
z∈Hd

∫
t∈Rd

exp

(
〈(z + x(t))τA(z + x(t))〉

2

)
dzN−d

√
det(U)dtd.

Let pH(x) be the projection of x onHd according to metric A. We denote by pA(x) = x− pH(x).
Thus∫

exp

(
−zτAz

2

)
dzN =

∫
z∈Hd

∫
td

exp

(
〈(z + pH(x(t)))τA(z + pH(x(t)))〉

2

)√
det(U)

× exp

(
−〈pA(x(t))τApA(x(t))〉

2

)
dzN−ddtd

=

∫
z∈Hd

exp

(
−zτAz

2

)
dzN−d

√
det(U)

×
∫
td

exp

(
−〈pA(x(t))τApA(x(t))〉

2

)
dtd

= I(HdA)
√

det(U)

∫
td

exp

(
−〈pA(x(t))τApA(x(t))〉

2

)
dtd.

The pA(x(t)) belongs to the vector space orthogonal to Hd according to metric A. It is the
image of Gd by the operator A−1 and is generated by the vectors A−1ui. Let cij be such that

pA(uj) =
N∑
i=1

cijA
−1ui.

We denote by C = [cij ]
N
i,j=1 the matrix whose ij coefficient is cij . To determine the matrix C we use

the fact that for all j the vector uj − pA(uj) belongs toHd, i.e for all k: 〈(uj − pA(uj))
τuk〉 = 0,

thus

〈uτjuk〉 =

N∑
i=1

cij〈uτiA−1uk〉.

15
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In other words, we have the matrix identity: U = BC with B the d× d matrix whose ij coefficient
is 〈uτiA−1uj〉. Thus C = B−1U. We therefore have

pA(x(t))τApA(x(t)) =

N∑
ij=1

titjcik〈uτkA−1AA−1u`〉c`j

= 〈tτCτBCt〉 = 〈tτUB−1Ut〉.

Finally √
det(U)

∫
td

exp

(
−〈pA(x(t))τApA(x(t))〉

2

)
dtd =

√
det(U)

∫
td

exp

(
−〈t

τUB−1Ut〉
2

)
dθd =

=

√
det(U)

det(UB−1U/(2π)
=

√
det(2πB)

det(U)
.

In summary,

I(Hd,A) =

√
det(U)

det(2πB)
(33)

proving (27).
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