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Abstract
This paper shows that the implicit bias of gradient descent on linearly separable data is exactly
characterized by the optimal solution of a dual optimization problem given by a smoothed margin,
even for general losses. This is in contrast to prior results, which are often tailored to exponentially-
tailed losses. For the exponential loss specifically, with n training examples and t gradient descent
steps, our dual analysis further allows us to prove an O (ln(n)/ ln(t)) convergence rate to the `2
maximum margin direction, when a constant step size is used. This rate is tight in both n and
t, which has not been presented by prior work. On the other hand, with a properly chosen but
aggressive step size schedule, we prove O(1/t) rates for both `2 margin maximization and implicit
bias, whereas prior work (including all first-order methods for the general hard-margin linear SVM
problem) proved Õ(1/

√
t) margin rates, or O(1/t) margin rates to a suboptimal margin, with an

implied (slower) bias rate. Our key observations include that gradient descent on the primal variable
naturally induces a mirror descent update on the dual variable, and that the dual objective in this
setting is smooth enough to give a faster rate.

1. Introduction

Recent work has shown that in deep learning, the solution found by gradient descent not only gives
low training error, but also has low complexity and thus generalizes well (Zhang et al., 2016; Bartlett
et al., 2017). This motivates the study of the implicit bias of gradient descent: amongst all choices
with low training error, which is preferred by gradient descent?

This topic has been extensively studied recently: specifically on linear classifiers, Soudry et al.
(2017) show that with linearly separable data and exponentially-tailed losses (such as the expo-
nential loss and the logistic loss), gradient descent converges to the `2 maximum margin direction.
Ji and Telgarsky (2018b) further characterize the implicit bias in the nonseparable setting, while
Gunasekar et al. (2018a) consider generic optimization algorithms such as steepest descent and
adaptive gradient descent.

However, as detailed below, most prior results rely on exponentially-tailed losses, and do not
prove tight rates for a range of step size schedules. In this work, we focus on linear classifiers and
linearly separable data, and make contributions along all these directions:

• We prove that for a broad class of losses that asymptote to 0, including exponentially-tailed
losses, polynomially-tailed losses and others, the gradient descent iterates grow unboundedly,
but their directions (i.e., the normalized gradient descent iterates) converge to some point
given by the dual optimization problem corresponding to a specific smoothed margin function
with an O(1/

√
t) rate (cf. Theorem 5). Previously, Ji et al. (2020) also handle general losses,

and they prove that the gradient descent iterates converge to the same direction as regularized
solutions. However, they do not further give a closed-form characterization of the implicit
bias, and their convergence result is asymptotic.
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• For the exponential/logistic loss, we can use a much more aggressive step size schedule, with
which we prove an O(ln(n)/t) rate for `2 margin maximization (cf. Theorem 7). For the
exponential loss, we can also prove an O(ln(n)/t) rate for convergence to the implicit bias
(cf. Theorem 8). Such a step size schedule is also used in AdaBoost (Freund and Schapire,
1997); however, it does not always maximize the corresponding `1 margin, with counterex-
amples given in (Rudin et al., 2004). To maximize the `1 margin, we need to shrink the step
sizes, and prior work has shown either an O(1/t) convergence rate to a suboptimal margin
(Telgarsky, 2013), or an Õ(1/

√
t) convergence rate to the maximum margin (Nacson et al.,

2018). Their proof ideas can be applied to generic steepest descent, but cannot prove our
O(ln(n)/t) margin maximization rate.

• On the other hand, with a constant step size that is more widely used, for the exponential loss
we prove a tight O (ln(n)/ ln(t)) rate for the directional convergence of gradient descent to
the `2 maximum margin direction (cf. Theorem 8). Previously, Soudry et al. (2017) prove
an O (1/ ln(t)) rate, but the dependency on n is not specified; it should be carefully handled
since the denominator only grows at a rate of ln(t). Ji and Telgarsky (2018b) consider general
nonseparable data, but their convergence rate for the implicit bias in the separable setting is
O
(√

ln(n)/ ln(t)
)

, which is quadratically slower than our rate.

All of our results are based on a primal-dual analysis of gradient descent. One key observation
is that gradient descent on the primal variable induces exactly a mirror descent update on the dual
variable. This perspective has been studied in (Freund et al., 2013) for boosting / coordinate descent.
However, they only prove an Õ(1/

√
t) dual convergence rate, while we can further prove anO(1/t)

dual rate by exploiting the smoothness of the dual objective (cf. Theorem 1). More surprisingly,
our dual analysis further gives rise to a faster primal convergence guarantee (cf. Theorem 1), which
allows us to prove the O(1/t) margin maximization and implicit bias rates.

1.1. Related work

Margin maximization and implicit bias are heavily studied in the context of boosting methods
(Schapire et al., 1997; Schapire and Freund, 2012; Shalev-Shwartz and Singer, 2008). Boosting
methods are themselves a form of coordinate descent, one whose convergence is difficult to analyze
(Schapire, 2010); interestingly, the original proof of AdaBoost’s empirical risk convergence also
uses an analysis in the dual (Collins et al., 2002), though without any rate. This same dual analy-
sis, and also work by Kivinen and Warmuth (1999), point out that AdaBoost, in the dual, performs
iterative Bregman projection.

As mentioned above, prior work did not prove margin maximization rates better than O(1/
√
t),

possibly owing to the nonsmoothness of the problem. This topic is discussed in (Nacson et al.,
2018, Section 3), where it is stated that the current best rate is O(1/

√
t) for the general hard-margin

linear SVM problem via first-order methods, that is, not merely restricting to the framework in this
present work, which applies gradient descent to smooth losses which asymptote to zero.

Regarding lower bounds, Clarkson et al. (2012) prove that, under a few conditions includ-
ing ε−2 = O (min{n, d}) where n is the number of data examples and d is the input dimen-
sion, to maximize the margin up to an additive error of ε, the optimization algorithm has to read
Ω
(
ε−2(n+ d)

)
entries of the data matrix. Due to the required condition, this lower bound is ba-

sically Ω ((n+ d) min{n, d}) = Ω(nd). On the other hand, in this paper we analyze full-batch
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gradient descent, which reads nd entries of the data matrix at each step, and therefore does not
violate this lower bound. More generally, the lower bound for general nonsmooth optimization is
1/
√
t (Nesterov, 2004, Theorem 3.2.1), which is arguably one source of difficulty, as the limiting

hard-margin problem is nonsmooth.
The implicit bias of gradient descent has also been studied in more complicated models, such as

deep linear networks and homogeneous networks (Gunasekar et al., 2018b; Ji and Telgarsky, 2018a;
Lyu and Li, 2019; Chizat and Bach, 2020; Woodworth et al., 2020; Ji and Telgarsky, 2020).

1.2. Notation

In this paper, ‖ · ‖ denotes the `2-norm. The dataset is denoted by {(xi, yi)}ni=1, where xi ∈ Rd
satisfies ‖xi‖ ≤ 1, and yi ∈ {−1,+1}. We consider linear classfiers, and the corresponding
unbounded, unregularized empirical risk minimization problem:

min
w∈Rd

R(w) :=
1

n

n∑
i=1

` (−yi〈w, xi〉) =
1

n

n∑
i=1

` (〈w, zi〉) ,

where zi := −yixi, and we collect them into a matrix Z ∈ Rn×d whose i-th row is z>i . We assume
the loss function ` : R→ R satisfies the following conditions.

Assumption 1 The loss function ` satisfies:

1. `, `′, `′′ > 0, and limz→−∞ `(z) = 0.

2. z`′(z)/`(z) is increasing on (−∞, 0), and limz→−∞ z`
′(z) = 0.

3. For all b ≥ 1, there exists c > 0 (which can depend on b), such that for all a > 0, we have
`′
(
`−1(a)

)
/`′
(
`−1(ab)

)
≥ c.

4. Given ξ ∈ Rn, define

L(ξ) :=
n∑
i=1

`(ξi), and ψ(ξ) := `−1 (L(ξ)) .

Then ψ is convex and β-smooth with respect to the `∞ norm.

Note that by definition, R(w) = L(Zw)/n. The function ψ is called a “generalized sum”
(Hardy et al., 1934), and if the dataset is linearly separable, it can be interpreted as a “smoothed
margin” (Lyu and Li, 2019). In Sections 3 and 4, we will use ψ to characterize the implicit bias and
prove faster margin rates.

The most interesting example satisfying Assumption 1 is the exponential loss `exp(z) := ez ,
in which case ψ(ξ) = ln (

∑n
i=1 exp(ξi)). However, many of our results hold for any loss function

satisfying Assumption 1, such as the logistic loss `log(z) := ln(1 + ez), and polynomially-tailed
losses (cf. Theorem 11). Note that the smoothness constant β will affect the convergence rate, and
although β = 1 for the exponential loss, it can be as large as n for other losses such as the logistic
loss (cf. Lemma 13). In such settings, we can make a finer analysis which uses the smoothness
constant on sublevel sets: for example, for the logistic loss, ψ is 2-smooth on {ξ|ψ(ξ) ≤ 0} (cf.
Lemma 14). We still assume global smoothness in Assumption 1 since it can simplify the analysis
a lot and highlight the key ideas.
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2. A primal-dual convergence analysis for gradient descent

In this section, we start analyzing gradient descent on the (primal) risk R(w). We show that it
naturally induces a mirror descent update on the dual variable, and prove a primal-dual convergence
result (cf. Theorem 1), which will be used in subsequent sections to give a characterization of the
implicit bias, and prove fast convergence rates.

Gradient descent onR(w) starts from some initialization w0, and sets wt+1 := wt−ηt∇R(wt)
for t ≥ 0. For each gradient descent iterate wt, let pt := Zwt and qt := ∇ψ(pt); we call qt the
corresponding dual variable of wt. Note that

qt,i =
`′(pt,i)

`′ (ψ(pt))
=
`′ (〈wt, zi〉)
`′ (ψ(Zwt))

,

and thus

wt+1 = wt − ηt∇R(wt) = wt − η̂tZ>qt,

where η̂t := ηt`
′ (ψ(Zwt)) /n, which will be extensively used in our analysis.

The key observation is that the induced update on the dual variable qt is actually a mirror descent
(more exactly, a dual averaging) update:

pt+1 = pt − η̂tZZ>qt = pt − η̂t∇f(qt), and qt+1 = ∇ψ(pt+1), (1)

where f(q) :=
∥∥Z>q∥∥2

/2. Therefore we can use a mirror descent analysis to prove a dual conver-
gence result for f . Additionally, the analysis also allows us to prove a primal convergence rate for
ψ, which is tight up to a constant.

Let ψ∗ denote the convex conjugate of ψ. Given q ∈ domψ∗, the generalized Bregman distance
(Gordon, 1999) between q and qt is defined as

Dψ∗(q, qt) := ψ∗(q)− ψ∗(qt)− 〈pt, q − qt〉.

It is a generalization of the Bregman distance to the nondifferentiable setting, since ψ∗ may not be
differentiable at qt; instead we just use pt in the definition. Here is our main convergence result.

Theorem 1 Under Assumption 1, for all q ∈ domψ∗, if η̂t ≤ 1/β, then the following results hold:

1. Dual convergence: for all t ≥ 0,

f(qt+1) ≤ f(qt), and η̂t (f(qt+1)− f(q)) ≤ Dψ∗(q, qt)−Dψ∗(q, qt+1).

As a result, for all t > 0,

f(qt)− f(q) ≤
Dψ∗(q, q0)−Dψ∗(q, qt)∑

j<t η̂j
≤
Dψ∗(q, q0)∑

j<t η̂j
.

2. Primal convergence: for all t ≥ 0,

ψ(pt)− ψ(pt+1) ≥ η̂t (f(qt) + f(qt+1)) =
η̂t
2

∥∥∥Z>qt∥∥∥2
+
η̂t
2

∥∥∥Z>qt+1

∥∥∥2
,
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and thus if η̂t is nonincreasing, then

ψ(p0)− ψ(pt) ≥
∑
j<t

η̂j

∥∥∥Z>qj∥∥∥2
− η̂0

2

∥∥∥Z>q0

∥∥∥2
+
η̂t
2

∥∥∥Z>qt∥∥∥2
.

This rate is tight up to a constant, since ψ(p0)− ψ(pt) ≤
∑

j<t η̂j
∥∥Z>qj∥∥2.

Here are some comments on Theorem 1.

• If we let η̂t = 1/β, then we get an O(1/t) dual convergence rate. By contrast, Freund et al.
(2013) consider boosting, and can only handle step size η̂t ∝ 1/

√
t+ 1 and give an Õ(1/

√
t)

dual rate. This is because the dual objective f(q) :=
∥∥Z>q∥∥2

/2 for gradient descent is
smooth, while for boosting the dual objective is given by

∥∥Z>q∥∥2

∞ /2, which is nonsmooth.
In some sense, we can handle a constant η̂t and prove a faster rate because both the primal
objective ψ and the dual objective f are smooth.

• Moreover, the primal and dual smoothness allow us to prove a super tight primal conver-
gence rate for ψ. By contrast, if we use a standard smoothness guarantee and η̂t = 1/β,
then the error term (compared with the upper bound on ψ(p0) − ψ(pt)) can be as large as∑

j<t η̂j
∥∥Z>qj∥∥2

/2 (cf. Lemma 3). While a constant factor does not hurt the risk bound too
much, it can stop us from proving an O(1/t) margin maximization rate with a constant step
size for the exponential loss (cf. Section 4).

• For the exponential loss (and other exponentially-tailed losses), Soudry et al. (2017) prove that
wt converges to the maximum margin direction. This is called an “implicit bias” result since
it does not follow from classical results such as risk minimization, and requires a nontrivial
proof tailored to the exponential function. By contrast, Theorem 1 explicitly shows that the
dual iterates minimize the dual objective f , and the minimum of f is given exactly by the
maximum margin (cf. eq. (9)). Moreover, this dual perspective and Theorem 1 can help us
characterize the implicit bias of a general loss function (cf. Theorem 5).

2.1. Proof of Theorem 1

Here we sketch the proof of Theorem 1. Omitted details are given in Appendix B.
The most important property we use is the `1 smoothness of f . As mentioned before, this is

the key tool to prove the fast 1/t rate; for boosting (coordinate descent), the dual objective is not
smooth, which might be the reason why prior results only have 1/

√
t rates.

Lemma 2 The function f : Rn → R given by f(θ) :=
∥∥Z>θ∥∥2

/2 is 1-smooth with respect to the
`1 norm.

Proof For any θ, θ′ ∈ Rn, using the Cauchy-Schwarz inequality and ‖zi‖ ≤ 1,∥∥∇f(θ)−∇f(θ′)
∥∥
∞ =

∥∥∥ZZ>(θ − θ′)
∥∥∥
∞

= max
1≤i≤n

∣∣∣〈Z>(θ − θ′), zi
〉∣∣∣

≤ max
1≤i≤n

∥∥∥Z>(θ − θ′)
∥∥∥ ‖zi‖

≤
∥∥∥Z>(θ − θ′)

∥∥∥ .
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Furthermore, by the triangle inequality and ‖zi‖ ≤ 1,∥∥∥Z>(θ − θ′)
∥∥∥ ≤ n∑

i=1

∣∣θi − θ′i∣∣ ‖zi‖ ≤ n∑
i=1

∣∣θi − θ′i∣∣ =
∥∥θ − θ′∥∥

1
.

Therefore f is 1-smooth with respect to the `1 norm.

Here are some standard results we need, from the smoothness of ψ; a proof is given in Ap-
pendix B for completeness. Some refined results are given in Lemma 14, which use the smoothness
constants over sublevel sets that could be much better.

Lemma 3 We have

ψ(pt+1)− ψ(pt) ≤ −η̂t
∥∥∥Z>qt∥∥∥2

+
βη̂2

t

2

∥∥∥Z>qt∥∥∥2
and Dψ∗(qt+1, qt) ≥

1

2β
‖qt+1 − qt‖21.

Next is a standard result for mirror descent; a proof is also included in Appendix B.

Lemma 4 For any t ≥ 0 and q ∈ domψ∗, it holds that

η̂t (f(qt)− f(q)) ≤ 〈η̂t∇f(qt), qt − qt+1〉 −Dψ∗(qt+1, qt) +Dψ∗(q, qt)−Dψ∗(q, qt+1).

Moreover, qt+1 is the unique minimizer of

h(q) := f(qt) + 〈∇f(qt), q − qt〉+
1

η̂t
Dψ∗(q, qt),

and specifically h(qt+1) ≤ h(qt) = f(qt).

With Lemmas 2 to 4, we can prove Theorem 1.
Proof (of Theorem 1) Since f is 1-smooth with respect to the `1 norm,

f(qt+1)− f(qt) ≤ 〈∇f(qt), qt+1 − qt〉+
1

2
‖qt+1 − qt‖21.

Further invoking Lemma 3, and η̂t ≤ 1/β, and the function h defined in Lemma 4, we have

f(qt+1) ≤ f(qt) + 〈∇f(qt), qt+1 − qt〉+
1

2
‖qt+1 − qt‖21

≤ f(qt) + 〈∇f(qt), qt+1 − qt〉+ βDψ∗(qt+1, qt)

≤ f(qt) + 〈∇f(qt), qt+1 − qt〉+
1

η̂t
Dψ∗(qt+1, qt) (2)

= h(qt+1) ≤ f(qt),

which proves that f(qt) is nonincreasing.
To prove the iteration guarantee for f , note that rearranging the terms of eq. (2) gives

η̂t 〈∇f(qt), qt+1 − qt〉+Dψ∗(qt+1, qt) ≥ η̂t (f(qt+1)− f(qt)) .
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Lemma 4 then implies

η̂t (f(qt)− f(q)) ≤ η̂t (f(qt)− f(qt+1)) +Dψ∗(q, qt)−Dψ∗(q, qt+1).

Rearranging terms gives

η̂t (f(qt+1)− f(q)) ≤ Dψ∗(q, qt)−Dψ∗(q, qt+1). (3)

Taking the sum of eq. (3) from 0 to t − 1, and noting that f(qj+1) ≥ f(qt) for all j < t since f is
nonincreasing, the proof is done.

To prove the iteration guarantee for ψ, note that

Dψ∗(qt+1, qt) = ψ∗(qt+1)− ψ∗(qt)− 〈pt, qt+1 − qt〉
= 〈pt+1, qt+1〉 − ψ(pt+1)− 〈pt, qt〉+ ψ(pt)− 〈pt, qt+1 − qt〉
= ψ(pt)− ψ(pt+1)− 〈qt+1, pt − pt+1〉 (4)

= ψ(pt)− ψ(pt+1)− η̂t
〈
Z>qt, Z

>qt+1

〉
,

where we used eq. (1). Therefore eq. (2) ensures

ψ(pt)− ψ(pt+1) ≥ η̂t
(
f(qt+1)− f(qt)− 〈∇f(qt), qt+1 − qt〉+

〈
Z>qt, Z

>qt+1

〉)
=
η̂t
2

∥∥∥Z>qt∥∥∥2
+
η̂t
2

∥∥∥Z>qt+1

∥∥∥2
.

Telescoping gives the lower bound on ψ(p0) − ψ(pt). For the upper bound, note that ψ is convex,
and thus

ψ(pt)− ψ(pt+1) ≤ 〈qt, pt − pt+1〉 =
〈
qt, η̂tZZ

>qt

〉
= η̂t

∥∥∥Z>qt∥∥∥2
.

3. The dual optimal solution characterizes the implicit bias

For our implicit bias and margin maximization results, we assume the data examples are linearly
separable.

Assumption 2 There exists u ∈ Rd such that yi〈u, xi〉 > 0 for all i.

As mentioned before, most prior results on the implicit bias are focused on exponentially-tailed
losses. Ji et al. (2020) consider general losses, and show that the gradient descent iterates and
regularized solutions converge to the same direction, but give no closed-form characterization of
the implicit bias or convergence rate. In the following result, we characterize the implicit bias using
the dual optimal solution.

Theorem 5 Under Assumptions 1 and 2, suppose η̂t = ηt`
′ (ψ(Zwt)) /n ≤ 1/β is nonincreasing,

and
∑∞

t=0 η̂t =∞.
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1. The set {q|ψ∗(q) ≤ 0} is nonempty, compact and convex. Moreover minψ∗(q)≤0 f(q) > 0,
and Z>q̄ is the same for all q̄ ∈ arg minψ∗(q)≤0 f(q).

2. For q̄ ∈ arg minψ∗(q)≤0 f(q), and all t with ψ(Zwt) ≤ 0 (which holds for all large enough
t), we have∥∥∥Z>qt − Z>q̄∥∥∥2

≤
2Dψ∗(q̄, q0)∑

j<t η̂j
, and

〈
wt
‖wt‖

,
−Z>q̄
‖Z>q̄‖

〉
≥ 1− δ(w0, q̄)∑

j<t η̂j
,

where δ(w0, q̄) :=
(
ψ(p0) + η̂0f(q0) + ‖w0‖

∥∥Z>q̄∥∥) / (2f(q̄)) is a constant depending
only on w0 and q̄. In particular, it holds that the implicit bias is

lim
t→∞

wt
‖wt‖

= − Z>q̄

‖Z>q̄‖
.

Theorem 5 is partly proved by establishing a lower bound on −ψ(Zwt)/‖wt‖, which will also
help us prove the O(1/t) margin maximization rate for the exponential loss (cf. Theorem 7). Note
also that while the condition ψ∗(q) ≤ 0 in the definition of q̄ looks technical, it appears naturally
when deriving q̄ as the solution to the convex dual of the smoothed margin, as in Appendix A.

3.1. Proof of Theorem 5

Here is a proof sketch of Theorem 5. Omitted proofs are given in Appendix C.
Note that for q̄ defined in Theorem 5, it already follows from Theorem 1 that limt→∞ f(qt) ≤

f(q̄). We further need the following result to ensure f(qt) ≥ f(q̄); its proof is basically identical to
the proof of (Ji and Telgarsky, 2020, Lemma 3.5), and is included in Appendix C for completeness.
We then have limt→∞ = f(q̄), which is crucial in the proof of Theorem 5.

Lemma 6 For any ξ ∈ Rn such that ψ(ξ) ≤ 0, it holds that ψ∗ (∇ψ(ξ)) ≤ 0.

Part 1 of Theorem 5 is fully proved in Appendix C; here we sketch its proof. The set S0 :=
{q|ψ∗(q) ≤ 0} is nonempty because of Lemma 6: note that if `(ξi) ≤ `(0)/n for all i, then
ψ(ξ) ≤ 0. It holds that S0 is closed convex since it is a sublevel set of the closed convex func-
tion ψ∗. To show the boundedness of S0, note that (Rockafellar, 1970, Theorem 23.5) ensures
range∇ψ = dom ∂ψ∗, while (Rockafellar, 1970, Theorem 23.4) ensures dom ∂ψ∗ contains the
relative interior of domψ∗; therefore we only need to consider q = ∇ψ(ξ) for some ξ ∈ Rn. It
follows from the definition of ψ that ‖∇ψ(ξ)‖1 ≤ n, and thus S0 is bounded. On the other hand, it
can be shown using Assumption 1 that ‖∇ψ(ξ)‖1 is bounded below by a positive constant, which
implies

∥∥Z>∇(ξ)
∥∥ is also bounded below by a positive constant, using the following argument:

Assumption 2 ensures there exists a unit vector u ∈ Rd and γ > 0 such that for all 1 ≤ i ≤ n, it
holds that 〈u,−zi〉 = yi〈u, xi〉 ≥ γ. Further note that∇ψ(ξ)i > 0, we have∥∥∥Z>∇ψ(ξ)

∥∥∥ ≥ 〈−Z>∇ψ(ξ), u
〉

=

n∑
i=1

〈u,−zi〉∇ψ(ξ)i ≥ γ ‖∇ψ(ξ)‖1 .

Finally, to prove the uniqueness of Z>q̄, note that if q̄1, q̄2 are two minimizers of f on S0, with∥∥Z>q̄1

∥∥ =
∥∥Z>q̄2

∥∥ > 0 but Z>q̄1 6= Z>q̄2, then

Z>q̄1 + Z>q̄2

2
∈ S0, but

∥∥∥∥Z>q̄1 + Z>q̄2

2

∥∥∥∥ < ∥∥∥Z>q̄1

∥∥∥ ,
8
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a contradiction.
Next we prove Part 2 of Theorem 5.

Proof (of Theorem 5 Part 2) Since
∑∞

t=0 η̂t = ∞, Theorem 1 implies that limt→∞ f(qt) ≤ f(q̄).
On the other hand, by Theorem 1 and Part 1 of Theorem 5, ψ(pt) ≤ 0 for all large enough t, and
then Lemma 6 implies that ψ∗ (qt) ≤ 0. By the definition of q̄, we have f(qt) ≥ f(q̄), and thus
limt→∞ f(qt) = f(q̄).

We first prove the convergence of Z>qt to Z>q̄. Let t be large enough such that ψ(pt) ≤ 0 and
thus ψ∗(qt) ≤ 0. By the definition of q̄ and the first-order optimality condition (Borwein and Lewis,
2000, Proposition 2.1.1), we have

〈∇f(q̄), qt − q̄〉 ≥ 0, and thus
∥∥∥Z>q̄∥∥∥2

≤
〈
Z>q̄, Z>qt

〉
. (5)

Theorem 1 and eq. (5) then imply∥∥∥Z>qt − Z>q̄∥∥∥2
=
∥∥∥Z>qt∥∥∥2

− 2
〈
Z>qt, Z

>q̄
〉

+
∥∥∥Z>q̄∥∥∥2

≤
∥∥∥Z>qt∥∥∥2

−
∥∥∥Z>q̄∥∥∥2

≤
2Dψ∗(q̄, q0)∑

j<t η̂j
.

To prove the other claim, we use an idea from (Ji and Telgarsky, 2018b), but also invoke the
tighter guarantee on ψ in Theorem 1. By Fenchel-Young inequality, and recall that ψ∗(q̄) ≤ 0,〈

wt,−Z>q̄
〉

= −〈Zwt, q̄〉 ≥ −ψ(Zwt)− ψ∗(q̄) ≥ −ψ(Zwt) = −ψ(pt). (6)

Moreover, Theorem 1 implies that

−ψ(pt) ≥ −ψ(p0) +
∑
j<t

η̂j

∥∥∥Z>qj∥∥∥2
− η̂0

2

∥∥∥Z>q0

∥∥∥2

≥ −ψ(p0) +
∑
j<t

η̂j

∥∥∥Z>qj∥∥∥∥∥∥Z>q̄∥∥∥− η̂0

2

∥∥∥Z>q0

∥∥∥2
. (7)

On the other hand, the triangle inequality implies ‖wt‖ ≤ ‖w0‖ +
∑

j<t η̂j
∥∥Z>qj∥∥. Recall that

ψ(pt) ≤ 0, then eq. (7) implies

−ψ(pt)

‖wt‖ ‖Z>q̄‖
≥ −ψ(pt)(
‖w0‖+

∑
j<t η̂j ‖Z>qj‖

)
‖Z>q̄‖

≥ 1−
ψ(p0) + η̂0f(q0) + ‖w0‖

∥∥Z>q̄∥∥(
‖w0‖+

∑
j<t η̂j ‖Z>qj‖

)
‖Z>q̄‖

≥ 1−
ψ(p0) + η̂0f(q0) + ‖w0‖

∥∥Z>q̄∥∥
2f(q̄)

∑
j<t η̂j

.

(8)

Finally, eqs. (6) and (8) imply that〈
wt
‖wt‖

,
−Z>q̄
‖Z>q̄‖

〉
≥ −ψ(pt)

‖wt‖ ‖Z>q̄‖
≥ 1−

ψ(p0) + η̂0f(q0) + ‖w0‖
∥∥Z>q̄∥∥

2f(q̄)
∑

j<t η̂j
= 1− δ(w0, q̄)∑

j<t η̂j
.
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4. 1/t and 1/ ln(t) exponential loss rates with fast and slow steps

In this section we focus primarily on the exponential loss ez , proving refined margin maximization
and implicit bias rates, though the margin maximization rate is also proved for the logistic loss
ln(1 + ez). We fix the initialization to w0 = 0, which can make the bounds cleaner; however our
analysis can be easily extended to handle nonzero initialization.

Regarding step sizes, our rates depend on the quantity
∑

j<t η̂j , which at its largest is t by taking
constant η̂j , giving rise to both of our 1/t rates. This step size choice is in fact extremely aggressive;
e.g., for the exponential loss, the induced step sizes on ∇R(wj) are ηj = 1/R(wj), which end up
growing exponentially. While this gives our strongest results, for instance improving the known
rates for hard-margin linear SVM as discussed before, such step sizes are rarely used in practice,
and moreover it is unclear if they could carry over to deep learning and other applications of these
ideas, where the step sizes often have constant or decreasing ηj . These smaller step sizes also figure
heavily in prior work, and so we give special consideration to the regime where ηj is constant, and
prove a tight ln(n)/ ln(t) implicit bias rate.

Turning back to additional notation for this section, for the exponential loss, recall ψ(ξ) =
ln (
∑n

i=1 exp(ξi)), and ψ∗(θ) =
∑n

i=1 θi ln θi with domain the standard probability simplex ∆n :=
{θ ∈ Rn|θ ≥ 0,

∑n
i=1 θi = 1}. Moreover, ψ is 1-smooth with respect to the `∞ norm.

Let γ := max‖u‖=1 min1≤i≤n yi〈u, xi〉 and ū := arg max‖u‖=1 min1≤i≤n yi〈u, xi〉 respec-
tively denote the maximum margin value and direction on the dataset. As in Appendix A in the
general case of ψ, but as presented in prior work for the specific case of losses with bias towards the
maximum margin solution, the maximum margin has a dual characterization (for the exponential
loss) of

γ = min
q∈∆n

∥∥∥Z>q∥∥∥ =
√

2 min
q∈∆n

f(q) = sup
‖w‖≤1
r>0

−rψ(Zw/r). (9)

4.1. O(1/t) margin maximization rates

For the exponential loss,

ψ(Zw) = ln

(
n∑
i=1

exp (〈zi, w〉)

)
≥ ln

(
exp

(
max

1≤i≤n
〈zi, w〉

))
= max

1≤i≤n
〈zi, w〉,

and thus min1≤i≤n〈−zi, w〉 = min1≤i≤n yi〈w, xi〉 ≥ −ψ(Zw). The next result then follows
immediately from eq. (7), and gives O(1/t) margin maximization rates with constant η̂j .

Theorem 7 Under Assumption 2, for the exponential loss, if η̂t = ηtR(wt) ≤ 1 is nonincreasing
and w0 = 0, then

min1≤i≤n yi〈wt, xi〉
‖wt‖

≥ −ψ(Zwt)

‖wt‖
≥ γ − ln(n) + 1

γ
∑

j<t η̂j
.

For the logistic loss, letting t0 = (256 lnn)2/γ2, and ηtR(wt) = 1/2 for t < t0, and η̂t =
ηt`
′ (ψ(Zwt)) /n = 1/2 for t ≥ t0, then for any t > t0,

min1≤i≤n yi〈wt, xi〉
‖wt‖

≥ −ψ(Zwt)

‖wt‖
≥ γ − 1 + 512 lnn

γt− (256 lnn)2/γ
.

10



CHARACTERIZING THE IMPLICIT BIAS VIA A PRIMAL-DUAL ANALYSIS

The full proof of Theorem 7 is given in Appendix D. Here we sketch the proof for the exponen-
tial loss. Note that eqs. (7) and (9) imply

−ψ(Zwt)

‖wt‖
≥
−ψ(p0) +

∑
j<t η̂j

∥∥Z>qj∥∥ · γ − η̂0
2

∥∥Z>q0

∥∥2

‖wt‖

= γ ·
∑

j<t η̂j
∥∥Z>qj∥∥

‖wt‖
−
ψ(p0) + η̂0

2

∥∥Z>q0

∥∥2

‖wt‖
.

By the triangle inequality, ‖wt‖ ≤
∑

j<t η̂j
∥∥Z>qj∥∥. Moreover, ψ(p0) = ln(n), and

∥∥Z>q0

∥∥ ≤ 1
since ‖zi‖ ≤ 1. Therefore we have

−ψ(Zwt)

‖wt‖
≥ γ − ln(n) + 1

‖wt‖
.

Lastly, note that ‖wt‖ ≥ 〈wt, ū〉, and moreover

〈wj+1 − wj , ū〉 = η̂j

〈
−Z>qj , ū

〉
= η̂j〈−Zū, qj〉 ≥ η̂jγ.

Margin maximization has been analyzed in many settings: Telgarsky (2013) proves that for any
ε > 0, the margin can be maximized by coordinate descent to γ − ε with an O(1/t) rate, while
Nacson et al. (2018) show an Õ(1/

√
t) margin maximization rate for gradient descent by letting

η̂t ∝ 1/
√
t+ 1 using our notation. Their proofs also analyze −ψ(Zwt)/‖wt‖, but use Lemma 3.

If we let η̂t be a constant in Lemma 3, the error term
∑

j<t

βη̂2j
2

∥∥Z>qj∥∥2 will be too large to prove
exact margin maximization, while if we let η̂t = 1/

√
t+ 1, then the error term isO (ln(t)), but only

an O
(
ln(t)/

√
t
)

rate can be obtained. By contrast, our analysis uses the tighter guarantee given by
Theorem 1, which always has a bounded error term.

4.2. Tight ln(n)/t and ln(n)/ ln(t) bias rates

Next we turn to a fast implicit bias rate, where we produce both upper and lower bounds. In the
case of aggressive step sizes, there does not appear to be prior work, though a O(1/t1/4) rate can
be easily derived via the Fenchel-Young inequality from the bias rate in prior work (Nacson et al.,
2018). Instead, prior work appears to use constant ηj , and the rate is roughly O(1/ ln(t)), however
the dependence on n in unspecified, and unclear from the proofs. Here we provide a careful analysis
with a rate O(lnn/ ln t) for constant ηj , and rate O(ln(n)/t) for constant η̂j , which we moreover
show are tight. In this subsection we only analyze the exponential loss.

Theorem 8 Consider the exponential loss and nonincreasing steps η̂t = ηtR(wt) ≤ 1 with∑
j ηj = ∞. For any data (zi)

n
i=1 sampled from a density which is continuous w.r.t. the Lebesgue

measure and which satisfies Assumption 2, then almost surely, for every iteration t,∥∥∥∥ wt
‖wt‖

− ū
∥∥∥∥ =

O(lnn)∑
j<t η̂j

=

{
O( lnn

t ) when η̂j = 1,

O( lnn
ln t ) when ηj = 1.

On the other hand, there exists data Z ∈ Rn×2 comprised of n examples in R2 satisfying
Assumption 2, so that for all sufficiently large iterations t ≥ 1,∥∥∥∥ wt

‖wt‖
− ū
∥∥∥∥ ≥ lnn− ln 2

‖wt‖
=

{
lnn−ln 2

t when η̂j = 1,
lnn−ln 2
Θ(ln(t)) when ηj = 1.
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Before sketching the proof, it’s worth mentioning the use of Lebesgue measure in the upper
bound. This assumption ensures the support vectors have reasonable structure and simplifies the
behavior orthogonal to the maximum margin predictor ū; this assumption originated in prior work
on implicit bias (Soudry et al., 2017).

To state the upper and lower bounds more explicitly and to sketch the proof of Theorem 8 (full
details are in the appendices), we first introduce some additional notation. Recall that γ denotes the
maximum margin, and we let ū := arg max‖u‖=1 min1≤i≤n yi〈u, xi〉 denote the maximum margin
direction. Given any vector a ∈ Rd, let Π⊥[a] := a − 〈a, ū〉ū denote its component orthogonal to
ū. Given a gradient descent iterate wt, let vt := Π⊥[wt]. Given a data point zi, let zi,⊥ := Π⊥[zi].

Let S := {zi : 〈ū,−zi〉 = γ} denote the set of support vectors, and let

Rγ(w) :=
1

n

∑
zi∈S

exp (〈w, zi〉)

denote the risk induced by support vectors, and

R>γ(w) :=
1

n

∑
zi 6∈S

exp (〈w, zi〉)

denote the risk induced by non-support vectors. In addition, let S⊥ := {zi,⊥ : zi ∈ S}, and

R⊥(w) :=
1

n

∑
zi∈S

exp (〈w, zi,⊥〉) =
1

n

∑
z∈S⊥

exp (〈w, z〉)

denote the risk induced by components of support vectors orthogonal to ū. By definition,R⊥(w) =
Rγ(w) exp (γ〈w, ū〉). Lastly, let γ′ := minzi 6∈S〈ū,−zi〉 − γ denote the margin between support
vectors and non-support vectors. If there is no non-support vector, let γ′ =∞.

Below is our main result.

Theorem 9 If the data examples are sampled from a density w.r.t. the Lebesgue measure, then
almost surely R⊥ has a unique minimizer v̄ over span(S⊥). If all η̂j = ηR(wj) ≤ 1 are nonin-
creasing, then

‖vt − v̄‖ ≤ max {‖v0 − v̄‖ , 2}+
2 ln(n)

γγ′
+ 2.

The key potential used in the proof of Theorem 9 is ‖vt − v̄‖2. The change in this potential
comes from three parts: (i) a part due to support vectors, which does not increase this potential; (ii)
a part due to non-support vectors, which is controlled by the dual convergence result Theorem 1;
(iii) a squared gradient term, which is again controlled via the dual convergence result Theorem 1.
The full proof is given in Appendix D.

Theorem 9 implies that ‖vt‖ ≤ ‖v̄‖+ ‖v0 − v̄‖+O (ln(n)). On the other hand, it is proved in
the prior work (Soudry et al., 2017; Ji and Telgarsky, 2018b) that ‖wt‖ = Θ (ln(t)). Therefore∥∥∥∥ wt

‖wt‖
− ū
∥∥∥∥ =
‖wt − ‖wt‖ū‖
‖wt‖

≤ 2‖vt‖
‖wt‖

≤ O
(

ln(n)

ln(t)

)
.

Below we further show that this bound is tight: ‖vt − v̄‖ could be Ω (ln(n)) for certain datasets.

12
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Theorem 10 Consider the dataset in R2 where z1 = (0.1, 0) and z2, . . . , zn are all (0.2, 0.2).
Then γ = 0.1, and v̄ = (0, 0), and starting from w0 = (0, 0), for large enough t, we have

‖vt − v̄‖ = ‖vt‖ ≥ ln(n)− ln(2).

The proof of Theorem 10 is also given in Appendix D.

5. Examples of losses satisfying Assumption 1

It remains a question what loss functions satisfy Assumption 1. Here are some examples:

• The exponential loss `exp(z) := ez .

• The logistic loss `log(z) := ln(1 + ez).

• The polynomial loss `poly,k(z): on (−∞, 0], it is defined as

`poly,k(z) :=
1

(1− z)k
, and thus `′poly,k(z) =

k

(1− z)k+1
, and `′′poly,k(z) =

k(k + 1)

(1− z)k+2
,

for some k > 0. On (0,∞), we let `′poly,k(z) := 2k − k(1 + z)−k−1, and therefore

`poly,k(z) = 2kz +
1

(1 + z)k
, and `′′poly,k(z) =

k(k + 1)

(1 + z)k+2
.

Theorem 11 Assumption 1 is satisfied by `exp, `log, and `poly,k for all k > 0.

The tricky thing to verify is the convexity and smoothness of ψ. The following result can help
us establish the convexity of ψ; it is basically (Hardy et al., 1934, Theorem 3.106), and a proof is
included in Appendix E for completeness.

Lemma 12 If `′2/(``′′) is increasing on (−∞,∞), then ψ is convex.

On the smoothness of ψ, we have the following global estimate.

Lemma 13 For `exp, the smoothness constant β = 1. In general, if `′′ ≤ c`′ for some constant
c > 0, then β ≤ cn.

Note that for `log and `poly,k, the above upper bound on the smoothness constant is cn, which looks
bad. However, in these cases `′ is bounded above by some universal constant c′; therefore to satisfy
the condition η̂t = ηt`

′ (ψ(Zwt)) /n ≤ 1/β in Theorems 1 and 5, it is enough if ηt ≤ 1/(cc′).
In other words, we can still handle a constant step size for gradient descent on the empirical risk
function R. A finer approach is to use the smoothness constant on sublevel sets; we demonstrate
this in the next result for the logistic loss.

Lemma 14 For the logistic loss, on the sublevel set {ξ|ψ(ξ) ≤ 0} = {ξ|L(ξ) ≤ `(0)}, it holds
that 1 ≤ ‖∇ψ(ξ)‖1 ≤ 2, and ψ is 2-smooth with respect to the `∞ norm. Moreover, if L(Zwt) ≤
`(0)/(2e2), and η̂t = ηt`

′ (ψ(Zwt)) /n ≤ 1/2, then

ψ(Zwt+1)− ψ(Zwt) ≤ (−η̂t + η̂2
t )
∥∥∥Z>qt∥∥∥2

, and Dψ∗(qt+1, qt) ≥
1

4
‖qt+1 − qt‖21.
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To prove Theorem 7, we can proceed as with the exponential loss over those iterations [t0, t]
where Lemma 14 is in effect, achieving the same O(ln(n)/t) rate over those iterations. To control
the magnitude of t0 and ‖wt0‖, we can use a delicate but more standard analysis, giving t0 =
O((lnn)2/γ2) and ‖wt0‖ = O((lnn)/γ) (cf. Theorem 21).

The full proofs of results in this section are given in Appendix E.

6. Open problems

One open problem is to extend our results to nonlinear models, such as deep linear or homogeneous
networks. For example, Chizat and Bach (2020) prove that gradient descent can maximize the
margin on a 2-homogeneous network, assuming (a different kind of) dual convergence. It is very
interesting to see if our analysis can be applied to this setting.

Another open problem is to see whether our analysis can be extended to other training algo-
rithms, such stochastic gradient descent and accelerated gradient descent.
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Appendix A. Dual objective to the smoothed margin

This appendix justifies calling 1
2‖Z

Tq‖2 the dual potential via convex duality, which also gives
another appearance of the constraint ψ∗(q) ≤ 0.

To start, it seems that ideally we would build a duality around ψ(Zw)/‖w‖, however this is not
convex. Instead, consider the persective function ψ̂ of ψ (cf. (Hiriart-Urruty and Lemaréchal, 2001,
Section B.2.2)), a standard notion in convex analysis:

ψ̂(v, r) :=


rψ(v/r) r > 0,

limr↓0 rψ(v/r) r = 0,

∞ r < 0.

The nonnegative scalar r takes on the role of 1/‖w‖.
A standard fact from convex analysis is that the perspective of a convex function is also convex

(in joint parameters (v, r) ∈ Rn+1). We will also need the conjugate of ψ̂, and the fact that ψ̂ →
max for both `exp and `log.

Lemma 15 If ψ is closed and convex, then ψ̂ is convex (as a function over Rn+1), and has conju-
gate

ψ̂∗((q, b)) =

{
∞ b > −ψ∗(q),
0 b ≤ −ψ∗(q).

Furthermore, for ` ∈ {`log, `exp} and v ∈ Rn with v < 0 (coordinate-wise), then r 7→ ψ̂(v, r) is
nondecreasing, and limr↓0 ψ̂(v, r) = maxi vi.

Proof As mentioned above, the perspective function of a closed convex function is also closed and
convex (Hiriart-Urruty and Lemaréchal, 2001, Section B.2.2). For the conjugate, since ψ̂ is convex
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and closed,

ψ̂∗((q, b)) = sup
v,r
〈v, q〉+ br − ψ̂(v, r) = sup

r>0
r

(
b+ sup

v
[〈v/r, q〉 − ψ(v/r)]

)
= sup

r>0
r (b+ ψ∗(q))

=

{
∞ b > −ψ∗(q),
0 b ≤ −ψ∗(q).

For the second part, let v < 0 and ` ∈ {`exp, `log} be given. By (Ji and Telgarsky, 2020,
Lemma C.5, after correcting the signs on the losses), 〈v,∇ψ(v)〉 ≤ ψ(v), meaning in particular
〈v/r,∇ψ(v/r)〉 ≤ ψ(v/r) for any r > 0, and

d
dr
ψ̂(v, r) = ψ(v/r) + r

〈
ψ(v/r),−v/r2

〉
= ψ(v/r)− 〈ψ(v/r), v/r〉 ≥ 0,

meaning r 7→ ψ̂(v, r) is nondecreasing. It only remains to show that limr↓0 ψ̂(v, r) = mini vi. For
`exp, this is a consequence of the standard inequalities

ψ̂(v, r) = r ln
∑
i

exp(vi/r) ≥ r ln max
i

exp(vi/r)

= max
i
vi

= r ln max
i
vi/r ≥ r ln

1

n

∑
i

vi/r = ψ̂(v, r)− r lnn,

and thus limr↓0 ψ̂(v, r) = maxi vi. For `log, since `−1
log(z) = ln(exp(z)−1), definingM := maxi vi

for convenience, it suffices to note that

lim
r↓0

ψ̂log(v, r) = lim
r↓0

r ln

(
exp(

∑
i

ln(1 + exp(vi/r))− 1)

)

= lim
r↓0

r ln

(∏
i

(1 + exp(vi/r))− 1

)

= lim
r↓0

r ln
∑

S⊆{1,...,n}
|S|≥1

exp

(∑
i∈S

vi/r

)

= M + ln lim
r↓0

 ∑
S⊆{1,...,n}
|S|≥1

exp

(∑
i∈S

(vi −M)/r

)
r

= M.

With ψ̂ and ψ̂∗ in hand, we can easily form a relevant pair of primal-dual problems.

Theorem 16 Suppose ψ is closed convex, and ψ̂(w, r) is bounded below over ‖w‖ ≤ 1. Then

max
‖w‖≤1
r≥0

−ψ̂(Zw, r) = min
q∈Rn

ψ∗(q)≤0

‖ZTq‖2.

17
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Remark 17 This form makes the primal and dual explicitly the maximum margin γ for exp-tailed
losses. Alternatively, we could use an SVM form of the objective, whereby the dual contains ‖ZTq‖22,
and is thus closer to f .

Proof Let v ∈ Rd+1 be a single variable for (w, r), and let ι denote the convex indicator of the set
{v ∈ Rd+1 : ‖v1:d‖ ≤ 1}, whereby

ι∗(s) = sup
‖v1:d‖≤1

〈v, s〉 =

{
‖s‖ sd+1 = 0,

∞ sd+1 6= 0.

Moreover, let M ∈ R(n+1)×(d+1) denote the matrix which is obtained by adding a row and a
column to Z which are 0 except in the common (n + 1, d + 1)-th entry where they are 1, whereby
M(w, r) = (Zw, r). By Fenchel-Rockafellar duality (Rockafellar, 1970, Section 31), since ψ̂ is
closed convex by Theorem 15,

inf
‖w‖≤1
r≥0

ψ̂(Zw, r) = inf
v∈Rd+1

ψ̂(Mv) + ι(v) = max
s∈Rn+1

−ψ̂∗(−s)− ι∗(MTs).

By the earlier form of ι∗ and the construction of M , we have the constraint sn+1 = (MTs)d+1 = 0.
Writing q ∈ Rn for the first n coordinates of S and baking in a 0 for an (n + 1)-st coordinate, and
additionally using the form of ψ̂∗ from Theorem 15, we have the simpler form

inf
‖w‖≤1
r≥0

ψ̂(Zw, r) = max
q∈Rn

−ψ̂∗(−(q, 0))− ‖ZTq‖ = max {−‖ZTq‖ : q ∈ Rn, 0 ≥ ψ∗(−q)} .

To finish, we replace q with −q in the dual.

Appendix B. Omitted proofs from Section 2

Proof (of Lemma 3) Since ψ is β-smooth with respect to the `∞ norm,

ψ(pt+1)− ψ(pt) ≤ 〈∇ψ(pt), pt+1 − pt〉+
β

2
‖pt+1 − pt‖2∞

=
〈
qt,−η̂tZZ>qt

〉
+
βη̂2

t

2

∥∥∥ZZ>qt∥∥∥2

∞

= −η̂t
∥∥∥Z>qt∥∥∥2

+
βη̂2

t

2

∥∥∥ZZ>qt∥∥∥2

∞
.

Moreover, since ‖zi‖ ≤ 1,∥∥∥ZZ>qt∥∥∥
∞

= max
1≤i≤n

∣∣∣〈Z>qt, zi〉∣∣∣ ≤ max
1≤i≤n

∥∥∥Z>qt∥∥∥ ‖zi‖ ≤ ∥∥∥Z>qt∥∥∥ .
As a result,

ψ(pt+1)− ψ(pt) ≤ −η̂t
∥∥∥Z>qt∥∥∥2

+
βη̂2

t

2

∥∥∥Z>qt∥∥∥2
.

18
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On the second claim, note that since ψ is β-smooth with respect to the `∞ norm, (Shalev-
Shwartz et al., 2011, Lemma 2.19) implies that ψ∗ is (1/β)-strongly convex with respect to the `1
norm, and in particular Dψ∗(qt+1, qt) ≥ ‖qt+1 − qt‖21/(2β).

Proof (of Lemma 4) Since f is convex, we have

η̂t (f(qt)− f(q)) ≤ 〈η̂t∇f(qt), qt − q〉 = 〈η̂t∇f(qt), qt − qt+1〉+ 〈η̂t∇f(qt), qt+1 − q〉 .

Recall that pt+1 = pt − η̂tZZ>qt = pt − η̂t∇f(qt), therefore

η̂t (f(qt)− f(q)) ≤ 〈η̂t∇f(qt), qt − qt+1〉+ 〈η̂t∇f(qt), qt+1 − q〉
= 〈η̂t∇f(qt), qt − qt+1〉+ 〈pt − pt+1, qt+1 − q〉 .

It can be verified by direct expansion that

〈pt − pt+1, qt+1 − q〉 = Dψ∗(q, qt)−Dψ∗(q, qt+1)−Dψ∗(qt+1, qt),

and thus

η̂t (f(qt)− f(q)) ≤ 〈η̂t∇f(qt), qt − qt+1〉+Dψ∗(q, qt)−Dψ∗(q, qt+1)−Dψ∗(qt+1, qt).

On the other claim, let ∂ denote subdifferential. We have

∂h(q) = {∇f(qt)}+
1

η̂t
(∂ψ∗(q)− {pt}) .

Note that q′ ∈ arg minh(q) if and only if 0 ∈ ∂h(q′), which is equivalent to

pt − η̂t∇f(qt) = pt+1 ∈ ∂ψ∗(q).

By (Rockafellar, 1970, Theorem 23.5), pt+1 ∈ ∂ψ∗(q) if and only if q = ∇ψ(pt+1); in other words,
qt+1 is the unique minimizer of h, and specifically h(qt+1) ≤ h(qt) = f(qt).

Appendix C. Omitted proofs from Section 3

We first prove Lemma 6.
Proof (of Lemma 6) Define σ(s) := `′

(
`−1(s)

)
`−1(s). Note that Assumption 1 implies

lim
s→0

σ(s) = 0 and σ(s)/s is increasing on (0, `(0)) .

It then follows that σ is super-additive on (0, `(0)), meaning for any a, b > 0 such that a+b < `(0),
it holds that σ(a+b) ≥ σ(a)+σ(b). In particular, if ψ(ξ) ≤ 0, or equivalently if

∑n
i=1 `(ξi) ≤ `(0),

then

n∑
i=1

σ (`(ξi))− σ

(
n∑
i=1

`(ξi)

)
≤ 0.
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Now note that

ψ∗ (∇ψ(ξ)) = 〈∇ψ(ξ), ξ〉 − ψ(ξ) =

n∑
i=1

`′(ξi)ξi
`′ (ψ(ξ))

− ψ(ξ),

and thus

`′ (ψ(ξ))ψ∗ (∇ψ(ξ)) =

n∑
i=1

`′(ξi)ξi − `′ (ψ(ξ))ψ(ξ) =

n∑
i=1

σ (`(ξi))− σ

(
n∑
i=1

`(ξi)

)
≤ 0.

Since `′ > 0, it follows that ψ∗ (∇ψ(ξ)) ≤ 0.

Next we prove Part 1 of Theorem 5
Proof (of Theorem 5 Part 1) Recall that S0 := {q|ψ∗(q) ≤ 0}. It is nonempty since for ξ ∈ Rn, if
`(ξi) ≤ `(0)/n for all i, then L(ξ) ≤ `(0) and ψ(ξ) ≤ 0, and Lemma 6 implies ψ∗ (∇ψ(ξ)) ≤ 0.
Moreover, S0 is closed convex since it is a sublevel set of the closed convex function ψ∗.

To prove the boundedness of S0, note that since (Rockafellar, 1970, Theorem 23.5) ensures
range∇ψ = dom ∂ψ∗, while (Rockafellar, 1970, Theorem 23.4) ensures dom ∂ψ∗ contains the
relative interior of domψ∗, it is enough to consider q = ∇ψ(ξ) for some ξ ∈ Rn. Recall that

∇ψ(ξ)i =
`′(ξi)

`′ (ψ(ξ))
=

`′
(
`−1 (`(ξi))

)
`′ (`−1 (

∑n
i=1 `(ξi)))

. (10)

Since ` > 0, we have `(ξi) <
∑n

i=1 `(ξi), and since `′ and `−1 are increasing, it follows from
eq. (10) that 0 < ∇ψ(ξ)i ≤ 1, and ‖∇ψ(ξ)‖1 ≤ n. Consequently, S0 is bounded.

Next we prove
∥∥Z>∇ψ(ξ)

∥∥ ≥ c for all ξ ∈ Rn and some positive constant c. Let s :=
max1≤i≤n `(ξi), then

∑n
i=1 `(ξi) ≤ ns. Since `′ > 0, and `′ and `−1 are increasing,

‖∇ψ(ξ)‖1 ≥
`′
(
`−1 (s)

)
`′ (`−1 (

∑n
i=1 `(ξi)))

≥
`′
(
`−1(s)

)
`′ (`−1(ns))

.

By Assumption 1, there exists a constant c > 0 such that

‖∇ψ(ξ)‖1 ≥
`′
(
`−1(s)

)
`′ (`−1(ns))

≥ c.

On the other hand, Assumption 2 ensures that there exists u ∈ Rd and γ > 0 such that 〈u,−zi〉 ≥ γ
for all 1 ≤ i ≤ n. Therefore∥∥∥Z>∇ψ(ξ)

∥∥∥ ≥ 〈−Z>∇ψ(ξ), u
〉

=

n∑
i=1

〈u,−zi〉∇ψ(ξ)i ≥ γ ‖∇ψ(ξ)‖1 ≥ γc.

Next we prove Z>q̄ is unique. Suppose q̄1 and q̄2 both minimize f over S0, with
∥∥Z>q̄1

∥∥ =∥∥Z>q̄2

∥∥ > 0, but Z>q̄1 6= Z>q̄2. It follows that Z>q̄1 and Z>q̄2 point to different directions, and〈
Z>q̄1, Z

>q̄2

〉
<
∥∥∥Z>q̄1

∥∥∥2
.

Since ψ∗ is convex, S0 is convex, and therefore (q̄1 + q̄2)/2 ∈ S0. However, we then have∥∥∥∥Z>q̄1 + Z>q̄2

2

∥∥∥∥2

=
1

2

∥∥∥Z>q̄1

∥∥∥2
+

1

2

〈
Z>q̄1, Z

>q̄2

〉
<
∥∥∥Z>q̄1

∥∥∥2
,

a contradiction.
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Appendix D. Omitted proofs from Section 4

Before proving Theorem 7, we first prove a few lemmas that will be needed. First, we need to upper
and lower bound ‖wt‖.

Lemma 18 Let w0 = 0, then for the exponential loss,

γ
∑
j<t

η̂j ≤ ‖wt‖ ≤
∑
j<t

η̂j .

For the logistic loss, we have ‖qj‖1 ≥ 1 and ‖wt‖ ≥ γ
∑

j<t η̂j .

Proof For the exponential loss, since ‖zi‖ ≤ 1 and qj ∈ ∆n, the triangle inequality implies∥∥Z>qj∥∥ ≤ 1, and moreover

‖wt‖ ≤
∑
j<t

η̂j

∥∥∥Z>qj∥∥∥ ≤∑
j<t

η̂j .

On the other hand, by the definition of the maximum margin γ and the unit maximum margin
solution ū, we have 〈−zi, ū〉 = yi〈xi, ū〉 ≥ γ for all i. Moreover, for the exponential loss, qj ∈ ∆n.
Therefore

〈wj+1 − wj , ū〉 = η̂j

〈
−Z>qj , ū

〉
= η̂j〈−Zū, qj〉 ≥ η̂jγ.

Since w0 = 0, the Cauchy-Schwarz inequality implies

‖wt‖ ≥ 〈wt, ū〉 =
∑
j<t

〈wj+1 − wj , ū〉 ≥ γ
∑
j<t

η̂j .

For the logistic loss, the lower bound proof also works, since ‖qj‖1 ≥ 1. To see this, note that
given ξ ∈ Rn, we have

‖∇ψ(ξ)‖1 =

n∑
i=1

`′(ξi)

`′ (ψ(ξ))
=

n∑
i=1

`′
(
`−1 (`(ξi))

)
`′ (`−1 (

∑n
i=1 `(ξi)))

.

Consider the function ρ(z) := `′
(
`−1(z)

)
= 1 − e−z . It holds that ρ(0) = 0, and on [0,∞), we

have ρ is subadditive: for all a, b > 0, it holds that ρ(a+ b) ≤ ρ(a) + ρ(b). Therefore

‖∇ψ(ξ)‖1 =

n∑
i=1

`′
(
`−1 (`(ξi))

)
`′ (`−1 (

∑n
i=1 `(ξi)))

=

∑n
i=1 ρ (`(ξi))

ρ (
∑n

i=1 `(ξi))
≥ 1.

With these tools in hand, we turn to the margin rates.
Proof (of Theorem 7) We first consider the exponential loss. Note that eqs. (7) and (9) imply

−ψ(Zwt)

‖wt‖
≥
−ψ(p0) +

∑
j<t η̂j

∥∥Z>qj∥∥ · γ − η̂0
2

∥∥Z>q0

∥∥2

‖wt‖

= γ ·
∑

j<t η̂j
∥∥Z>qj∥∥

‖wt‖
−
ψ(p0) + η̂0

2

∥∥Z>q0

∥∥2

‖wt‖
.

21



CHARACTERIZING THE IMPLICIT BIAS VIA A PRIMAL-DUAL ANALYSIS

By the triangle inequality, ‖wt‖ ≤
∑

j<t η̂j
∥∥Z>qj∥∥. Moreover, ψ(p0) = ln(n), and η̂0 ≤ 1, and∥∥Z>q0

∥∥ ≤ 1 since ‖zi‖ ≤ 1. Therefore

−ψ(Zwt)

‖wt‖
≥ γ ·

∑
j<t η̂j

∥∥Z>qj∥∥∑
j<t η̂j ‖Z>qj‖

−
ln(n) + 1

2

‖wt‖
≥ γ − ln(n) + 1

‖wt‖
.

Lemma 18 then implies the bound.
Now consider the logistic loss. The analysis is divided into two phases: let t0 denote the first

iteration where the conditions of Lemma 14 hold, after which we may proceed as for the expo-
nential loss. To bound t0 and ‖wt0‖ and in particular to handle the iterations before t0, we apply
Theorem 21, which guarantees t0 = O((lnn)2/γ2) and ‖wt0‖ = O((lnn)/γ).

Now we can apply Lemma 14, and start the analysis from wt0 with smoothness constant 2. All
the results in Sections 2 and 3 still hold, and in particular eq. (8) ensures for t > t0,

−ψ(Zwt)

‖wt‖
≥
−ψ(pt0) +

∑t−1
j=t0

η̂j
∥∥Z>qj∥∥ · γ − η̂t0

2

∥∥Z>qt0∥∥2

‖wt0‖+
∑t−1

j=t0
η̂j ‖Z>qj‖

= γ −
ψ(pt0) +

η̂t0
2

∥∥Z>qt0∥∥2
+ ‖wt0‖γ

‖wt0‖+
∑t−1

j=t0
η̂j ‖Z>qj‖

≥ γ −
ψ(pt0) +

η̂t0
2

∥∥Z>qt0∥∥2
+ ‖wt0‖γ

γ
∑t−1

j=t0
η̂j

,

where we use
∥∥Z>qj∥∥ ≥ γ, since ‖qj‖1 ≥ 1 as given by Lemma 18. By construction, ψ(pt0) ≤ 0,

and Lemma 14 implies ‖qt0‖1 ≤ 2. Further letting η̂j = 1/2, we get

−ψ(Zwt)

‖wt‖
≥ γ − 1 + 2‖wt0‖γ

γ(t− t0)
.

Plugging in the earlier bounds on t0 and ‖wt0‖ from Theorem 21 gives the final left hand side. To
upper bound the left hand side by the exact margin, Theorem 15 suffices.

We then prove the almost-sure existence of v̄.
Proof (of first part of Theorem 9) Theorem 2.1 of (Ji and Telgarsky, 2018b) ensures that S⊥ can
be decomposed into two subsets B and C, with the following properties:

• The risk induced by B

RB(w) :=
1

n

∑
z∈B

exp (〈w, z〉)

is strongly convex over span(B).

• If C is nonempty, then there exists a vector ũ, such that 〈z, ũ〉 = 0 for all z ∈ B, and
〈z, ũ〉 ≥ γ̃ > 0 for all z ∈ C.
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On the other hand, Lemma 12 of (Soudry et al., 2017) proves that, almost surely there are at
most d support vectors, and furthermore the i-th support vector zi has a positive dual variable θi,
such that

∑
zi∈S θizi = γū. As a result,∑

zi∈S
θizi,⊥ =

∑
zi,⊥∈S⊥

θizi,⊥ = 0.

Note that

0 =

〈 ∑
zi,⊥∈S⊥

θizi,⊥, ũ

〉
=

∑
zi,⊥∈C

θi〈zi,⊥, ũ〉 ≥ γ̃
∑

zi,⊥∈C
θi,

which implies that C is empty, and thus R⊥ is strongly convex over span(S⊥). The existence and
uniqueness of the minimizer v̄ follows from strong convexity.

To prove the second part of Theorem 9, we need the following iteration guarantee. Note that
it holds for the exponential loss and logistic loss, and will later be used to provide a better “warm
start” analysis for the logistic loss (cf. Theorem 21)

Lemma 19 ((Ji and Telgarsky, 2018b) Lemma 3.4) Suppose ` is convex, `′ ≤ `, and `′′ ≤ `. For
any t ≥ 0, if η̂t = ηtR(wt) ≤ 1, then

R(wt+1) ≤ R(wt)− ηt
(

1− ηtR(wt)

2

)
‖∇R(wt)‖2 .

Note that under the condition of Theorem 9 that ηt ≤ min{1, 1/R(w0)}, Theorem 19 implies that
R(wt) is nonincreasing. Moreover, we have the following bound on

∑
j<t η̂j when ηj is a constant.

Lemma 20 Let w0 = 0 and ηt = η ≤ 1 for all t, then∑
j<t

η̂j ≥ ln

(
1 +

ηγ2

2
t

)
.

Proof We first need a risk upper bound. Recall that Theorem 19 ensures that for any j < t, if
η̂j = ηjR(wj) ≤ 1, then

R(wj+1) ≤ R(wj)− ηj
(

1− ηjR(wj)

2

)
‖∇R(wj)‖2 . (11)

As a result, if we let ηj = η ≤ 1/R(w0) = 1, then R(wj) never increases, and the requirement
η̂j = ηjR(wj) ≤ 1 of eq. (11) always holds.

Dividing both sides of eq. (11) byR(wj)R(wj+1) and rearranging terms gives

1

R(wj+1)
≥ 1

R(wj)
+ η

(
1− ηR(wj)

2

)
‖∇R(wj)‖2

R(wj)R(wj+1)
.

Notice that

‖∇R(wj)‖ ≥ |〈∇R(wj), ū〉| =

∣∣∣∣∣ 1n
n∑
i=1

exp (−〈wj , zi〉) 〈zi, ū〉

∣∣∣∣∣ ≥ γR(wj),
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and thus

1

R(wj+1)
≥ 1

R(wj)
+ η

(
1− ηR(wj)

2

)
γ2 R(wj)

R(wj+1)
≥ 1

R(wj)
+ η

(
1− ηR(wj)

2

)
γ2. (12)

Since ηR(wj) ≤ 1, eq. (12) implies

1

R(wj+1)
≥ 1

R(wj)
+ η

(
1− ηR(wj)

2

)
γ2 ≥ 1

R(wj)
+
η

2
γ2,

and thus

R(wt) ≤ 1/

(
1

R(w0)
+
ηγ2

2
t

)
≤ 1/

(
1 +

ηγ2

2
t

)
. (13)

Now we prove the lower bound. Notice that lnR is also convex, since it is the composition of
ln-sum-exp and a linear mapping. Therefore the convexity of lnR gives

lnR(wj+1)− lnR(wj) ≥ 〈∇ lnR(wj), wj+1 − wj〉 = −η̂j ‖∇ lnR(wj)‖2 = −η̂j
∥∥∥Z>qj∥∥∥2

.

The triangle inequality ensures
∥∥Z>qj∥∥ ≤ ∑n

i=1 qj,i‖zi‖ ≤ 1, which implies lnR(wj+1) −
lnR(wj) ≥ −η̂j , and thus ∑

j<t

η̂j ≥ lnR(w0)− lnR(wt). (14)

Combining eqs. (13) and (14) gives

∑
j<t

η̂j ≥ lnR(w0) + ln

(
1 +

ηγ2

2
t

)
= ln

(
1 +

ηγ2

2
t

)
.

Next we prove the refined rate for the implicit bias.
Proof (of second part of Theorem 9) For technical reasons, we consider a range of steps during
which ‖vj − v̄‖ ≥ 1. If ‖vt − v̄‖ ≤ 1, then the proof is done. Otherwise let t−1 denote the last step
before t such that

∥∥vt−1 − v̄
∥∥ ≤ 1; if such a step does not exist, let t−1 = −1. Furthermore, let

t0 = t−1 + 1. Since it always holds that

‖ηj∇R(wj)‖ = ηj

∥∥∥∥∥ 1

n

n∑
i=1

exp (〈wj , zi〉) zi

∥∥∥∥∥
= ηjR(wj)

∥∥∥∥∥
n∑
i=1

exp (〈wj , zi〉)∑n
i′=1 exp (〈wj , zi′〉)

zi

∥∥∥∥∥
≤ ηjR(wj) = η̂j ≤ 1,

we have ‖vt0 − v̄‖ ≤ max{‖v0 − v̄‖ , 2}.
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Note that

‖vj+1 − v̄‖2 = ‖vj − v̄ − ηjΠ⊥ [∇R(wj)]‖2

= ‖vj − v̄‖2 − 2ηj 〈Π⊥∇R(wj), vj − v̄〉+ η2
j ‖Π⊥∇R(wj)‖2

= ‖vj − v̄‖2 − 2ηj 〈∇R(wj), vj − v̄〉+ η2
j ‖Π⊥∇R(wj)‖2 , (15)

where the middle Π⊥ could be dropped since Π⊥(vj − v̄) = vj − v̄ and Π⊥ = ΠT
⊥ can be moved

across the inner product. Continuing, this inner product term in eq. (15) can be decomposed into
two parts, for support vectors and non-support vectors respectively:

−〈∇R(wj), vj − v̄〉 =

〈
1

n

∑
zi∈S

exp (〈wj , zi〉) zi, v̄ − vj

〉

+

〈
1

n

∑
zi 6∈S

exp (〈wj , zi〉) zi, v̄ − vj

〉
. (16)

The support vector part in eq. (16) is non-positive, due to convexity ofR⊥:〈
1

n

∑
zi∈S

exp (〈wj , zi〉) zi, v̄ − vj

〉
=

〈
1

n

∑
zi∈S

exp (〈wj , zi〉) zi,⊥, v̄ − vj

〉

= exp (−γ〈wj , ū〉)

〈
1

n

∑
zi∈S

exp (〈vj , zi,⊥〉) zi,⊥, v̄ − vj

〉
= exp (−γ〈wj , ū〉) 〈∇R⊥(vj), v̄ − vj〉
≤ exp (−γ〈wj , ū〉) (R⊥(v̄)−R⊥(vj)) ≤ 0. (17)

The part for non-support vectors in eq. (16) is bounded using the Cauchy-Schwarz inequality:〈
1

n

∑
zi 6∈S

exp (〈wj , zi〉) zi, v̄ − vj

〉
≤ 1

n

∑
zi 6∈S

exp (〈wj , zi〉) ‖zi‖‖vj − v̄‖

≤ R>γ(wj)‖vj − v̄‖. (18)

For t0 ≤ j < t, combining eqs. (15) to (18), and invoking ‖vj − v̄‖ ≥ 1,

‖vj+1 − v̄‖2 ≤ ‖vj − v̄‖2 + 2ηjR>γ(wj)‖vj − v̄‖+ η2
j ‖Π⊥∇R(wj)‖2

≤ ‖vj − v̄‖2 + 2ηjR>γ(wj)‖vj − v̄‖+ η2
j ‖Π⊥∇R(wj)‖2 ‖vj − v̄‖

≤

(
‖vj − v̄‖+ ηjR>γ(wj) +

η2
j

2
‖Π⊥∇R(wj)‖2

)2

,

and thus

‖vj+1 − v̄‖ ≤ ‖vj − v̄‖+ ηjR>γ(wj) +
η2
j

2
‖Π⊥∇R(wj)‖2 . (19)
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The middle term withR>γ is bounded using Theorem 1. First we have

1

2

∥∥∥Z>qj∥∥∥2
≥ 1

2

〈
−Z>qj , ū

〉2
=

1

2
〈−Zū, qj〉2

≥ 1

2

(
γ + γ′

R>γ(wj)

R(wj)

)2

≥ 1

2
γ2 + γγ′

R>γ(wj)

R(wj)
. (20)

As a result, let q̄ denote a minimizer of f(q) =
∥∥Z>q∥∥2

/2, then Theorem 1 and eq. (20) ensure

DKL(q̄, qj)−DKL(q̄, qj+1) ≥ η̂j
(
f(qj+1)− 1

2
γ2

)
≥ ηjR(wj+1)γγ′

R>γ(wj+1)

R(wj+1)

= ηjγγ
′R>γ(wj+1).

Later we will need to evaluate
∑

j ηjR>γ(wj), which by applying the above and telescoping gives

∞∑
j=0

ηjR>γ(wj) = ηjR>γ(w0) +

∞∑
j=1

ηjR>γ(wj) ≤ 1 +
DKL(q̄, q0)

γγ′
≤ 1 +

ln(n)

γγ′
. (21)

The squared gradient term in eq. (19) can also be bounded using Theorem 1. To start, by
the definition of Π⊥ and since ū = −ZTq̄/‖ZTq̄‖ and using the first order condition ‖ZTq̄‖2 ≤
〈ZTq̄, ZTqt〉 (which appeared earlier as eq. (5)), and since η̂j ≤ 1 are nonincreasing,

η2
j ‖Π⊥∇R(wj)‖2 = η̂2

j ‖∇ψ(wj)−∇ψ(wj)
Tūū‖2

= η̂2
j

(
‖ZTqj‖2 −

〈ZTqj , Z
Tq̄〉2

‖ZTq̄‖2

)
≤ η̂j η̂j−1

(
‖ZTqj‖2 − ‖ZTq̄‖2

)
≤ η̂j (Dψ∗(q̄, qj−1)−Dψ∗(q̄, qj)) ≤ Dψ∗(q̄, qj−1)−Dψ∗(q̄, qj).

As mentioned before, we will need to sum across iterations, which telescopes and gives

∞∑
j=0

η2
j ‖Π⊥∇R(wj)‖2 ≤ η2

0‖Π⊥∇R(w0)‖2+

∞∑
j=1

η2
j ‖Π⊥∇R(wj)‖2 ≤ 1+Dψ∗(q̄, q0) ≤ 1+ln(n).

(22)
Combining these pieces, applying eq. (19) recursively and then controlling the summations with

eqs. (21) and (22) and using max{γ, γ′} ≤ 1 gives

‖vt − v̄‖ ≤ ‖vt0 − v̄‖+
∞∑
j=0

ηjR>γ(wj) +
∞∑
j=0

η2
j

2
‖Π⊥R(wj)‖2 ≤ ‖vt0 − v̄‖+

2 ln(n)

γγ′
+ 2,

which finishes the proof.
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Below is the proof of the lower bound on ‖vt − v̄‖.
Proof (of Theorem 10) By construction, the only support vector is z1 = (0.1, 0), and z1,⊥ = (0, 0).
Therefore span(S⊥) = span ({(0, 0)}) = {(0, 0)}, γ = 0.1, and v̄ = (0, 0). Moreover,

Rγ(w) =
1

n
exp (0.1w1) , and R>γ(w) =

n− 1

n
exp (0.2(w1 + w2)) ,

and for any t ≥ 0,

∇R(wt)1 = 0.1Rγ(wt) + 0.2R>γ(wt), and ∇R(wt)2 = 0.2R>γ(wt). (23)

Recall that w0 = 0, and thus eq. (23) implies that wt,1, wt,2 ≤ 0, and Rγ(wt) ≤ 1/n for all
t. As a result, as long as R(wt) ≥ 2/n, it holds that R>γ(wt) ≥ Rγ(wt) and |∇R(wt)2| ≥
|∇R(wt)1| /2.

Let τ denote the first step when the risk is less than 2/n:

τ = min {t : R(wt) < 2/n} .

Since |∇R(wt)2| ≥ |∇R(wt)1| /2 for all t < τ , we have

|wτ,2| ≥ |wτ,1|/2.

On the other hand, since ‖zi‖ ≤ 1/3, it holds thatR(wτ ) ≥ exp (−‖wτ‖/3), which implies that

‖wτ‖ ≥ 3 ln(n/2).

As a result,

|wτ,2| ≥ ln(n/2).

Lastly, we put together the preceding pieces to get the main simplified implicit bias bound.
Proof (of Theorem 8) For the upper bound, let Z be given as stated, whereby Theorem 9 holds, and
thus almost surely

‖vt − v̄‖ = O(lnn), whereby ‖vt‖ = ‖v̄‖+ ‖vt − v̄‖ = O(lnn).

Next,

‖wt − ū‖wt‖‖2 = ‖[‖ 1]Π⊥ (wt − ū‖wt‖)2 + ‖[‖ 1](wt − ū‖wt‖)T ūū
2

= ‖vt‖2 + (wT
t ū− ‖wt‖)

2
.

Since ‖vt‖ = O(lnn) whereas ‖wt‖ → ∞ via
∑

j ηj =∞ and Lemma 18, then for all sufficiently
large t, wT

t ū > ‖vt‖, and thus ‖wt‖ ≤ wT
t ū+ ‖vt‖, and

‖vt‖2 + (wT
t ū− ‖wt‖)

2 ≤ 2 ‖vt‖2 .

As such, combining these pieces with the inequality ‖wt‖ ≥ γ
∑

j<t η̂j from Lemma 18,∥∥∥∥ wt
‖wt‖

− ū
∥∥∥∥ ≤ √2‖vt‖

‖wt‖
= O

(
lnn∑
j<t η̂j

)
.
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For η̂j = 1, we have
∑

j<t η̂j = t. For ηj = 1, we have
∑

j<t η̂j = Ω(ln(t)) from Theorem 20.
For the lower bound, let Z be given by the data in Theorem 10, and by the guarantee there,∥∥∥∥ wt

‖wt‖
− ū
∥∥∥∥ =
‖wt − ū‖wt‖‖
‖wt‖

≥ ‖[‖ 1]Π⊥ (wt − ū‖wt‖)
‖wt‖

=
‖vt‖
‖wt‖

≥ lnn− ln 2

‖wt‖
.

The proof is now complete after upper bounding ‖wt‖. For η̂j = 1, by Lemma 18, we can just take
‖wt‖ ≤ t. For ηj = 1, Soudry et al. (2017, Theorem 3) show that ‖wt‖ = Θ(ln(t)).

Appendix E. Omitted proofs from Section 5

We first prove Lemmas 12 and 13, which can help us check the convexity and smoothness of ψ in
general.
Proof (of Lemma 12) Note that∇ψ(ξ)i = `′(ξi)/`

′ (ψ(ξ)), and

∇2ψ(ξ) = diag
(

`′′(ξ1)

`′ (ψ(ξ))
, . . . ,

`′′(ξn)

`′ (ψ(ξ))

)
− `′′ (ψ(ξ))

`′ (ψ(ξ))
∇ψ(ξ)∇ψ(ξ)>. (24)

We need to show that for any v ∈ Rn,

n∑
i=1

`′′(ξi)

`′ (ψ(ξ))
v2
i ≥

`′′ (ψ(ξ))

`′ (ψ(ξ))

(
n∑
i=1

`′(ξi)

`′ (ψ(ξ))
vi

)2

. (25)

Note that by the Cauchy-Schwarz inequality,(
n∑
i=1

`′(ξi)

`′ (ψ(ξ))
vi

)2

≤

(
n∑
i=1

`′′(ξi)

`′ (ψ(ξ))
v2
i

)(
n∑
i=1

`′(ξi)
2

`′′(ξi)`′ (ψ(ξ))

)
,

and therefore to show eq. (25), we only need to show that

`′ (ψ(ξ))2

`′′ (ψ(ξ))
≥

n∑
i=1

`′(ξi)
2

`′′(ξi)
,

or

`′ (ψ(ξ))2

`′′ (ψ(ξ))
=
`′
(
`−1 (

∑n
i=1 `(ξi))

)2
`′′ (`−1 (

∑n
i=1 `(ξi)))

≥
n∑
i=1

`′
(
`−1 (`(ξi))

)2
`′′ (`−1 (`(ξi)))

. (26)

Consider the function φ : (0,∞)→ R given by

φ(s) :=
`′
(
`−1(s)

)2
`′′ (`−1(s))

.

Note that φ(s)/s = `′(z)2/ (`(z)`′′(z)) for z = `−1(s), and since `′2/``′′ is increasing, it follows
that φ(s)/s is increasing on (0,∞), and lims→0 φ(s) = 0. In other words, φ is super-additive,
which then implies eq. (26).
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Proof (of Lemma 13) Similarly to the proof of (Shalev-Shwartz and Singer, 2007, Lemma 14), to
check that ψ is β-smooth with respect to the `∞ norm, we only need to ensure for any ξ, v ∈ Rn, it
holds that v>∇2ψ(ξ)v ≤ β‖v‖2∞. By eq. (24), it is enough if

n∑
i=1

`′′(ξi)

`′ (ψ(ξ))
v2
i ≤ β max

1≤i≤n
v2
i . (27)

For `exp,

`′′(ξi)

`′ (ψ(ξ))
=

eξi∑n
i=1 e

ξi
, and thus

n∑
i=1

`′′(ξi)

`′ (ψ(ξ))
v2
i ≤ max

1≤i≤n
v2
i .

In general, if `′′(z) ≤ c`′(z), the since `′(ξi) ≤ `′ (ψ(ξ)), it holds that
n∑
i=1

`′′(ξi)

`′ (ψ(ξ))
≤

n∑
i=1

c`′(ξi)

`′ (ψ(ξ))
≤ cn,

and thus we can let β = cn.

Next we prove Theorem 11.
Proof (of Theorem 11) The first two conditions of Assumption 1 are easy to verify in most cases;
we only check that ϕ(z) := z`′(z)/`(z) is increasing on (−∞, 0) for the logistic loss. We have

ϕ(z) =
z

(1 + e−z) ln(1 + ez)
, and ϕ′(z) =

(1 + e−z) ln(1 + ez) + ze−z ln(1 + ez)− z
(1 + e−z)2 ln(1 + ez)2

.

Since (1 + e−z) ln(1 + ez) > 0, and

ze−z ln(1 + ez)− z = ze−z (ln(1 + ez)− ez) > 0,

since z < 0 and ln(1 + ez) < ez , it follows that ϕ′(z) > 0.
On the third requirement of Assumption 1, for `exp we have `′

(
`−1(s)

)
= s, and thus the

condition holds with c = 1/b. For `log we have `′
(
`−1(s)

)
= 1− e−s, and the condition holds with

c = 1/b. For `poly,k, if a ≥ `(0)/b, then

`′
(
`−1(a)

)
`′ (`−1(ab))

≥
`′
(
`−1 (`(0)/b)

)
2k

,

while if a ≤ `(0)/b, then `−1(a) ≤ `−1(ab) ≤ 0. Note that on (−∞, 0),

`′
(
`−1(s)

)
= ks(k+1)/k, and thus

`′
(
`−1(a)

)
`′ (`−1(ab))

= b−(k+1)/k.

We use Lemma 12 to verify the convexity of ψ. For `exp, we have `′2/(``′′) = 1. For `log, we
have `′2/(``′′) = ez/ ln(1 + ez), which is increasing. For `poly,k, on (−∞, 0], we have `′2/(``′′) =
k/(k + 1). On (0,∞),

`′2

``′′
=

(
2k − k

(1+z)k+1

)2(
2kz + 1

(1+z)k

)
k(k+1)

(1+z)k+2

=
k2
(
2(1 + z)k+1 − 1

)2
(2kz(1 + z)k + 1) k(k + 1)

,
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and thus we only need to show

α(z) :=

(
2(1 + z)k+1 − 1

)2
2kz(1 + z)k + 1

is increasing on (0,∞). Note that(
2kz(1 + z)k + 1

)2
α′(z) = 2

(
2(1 + z)k+1 − 1

)
· 2(k + 1)(1 + z)k ·

(
2kz(1 + z)k + 1

)
−
(

2(1 + z)k+1 − 1
)2 (

2k(1 + z)k + 2kz · k(1 + z)k−1
)
,

and therefore we only need to show that on (0,∞),

κ(z) := 2(k + 1)(1 + z) ·
(

2kz(1 + z)k + 1
)
−
(

2(1 + z)k+1 − 1
) (
k(1 + z) + k2z

)
≥ 0.

Rearranging terms gives

κ(z) = 2k(1 + z)k+1(kz + z − 1) + (k2 + 3k + 2)z + (3k + 2).

Note that κ(0) = k + 2 > 0, and when z ≥ 0,

κ′(z) = 2k(k + 1)(1 + z)k(kz + z − 1) + 2k(1 + z)k+1(k + 1) + (k2 + 3k + 2)

= 2k(k + 1)(1 + z)k(kz + 2z) + (k2 + 3k + 2) > 0.

Therefore κ > 0 on (0,∞).
The smoothness of ψ is established by Lemma 13.

E.1. Warm start tools for the logistic loss

If we try to prove fast margin rates for the logistic loss directly from Theorem 5, we will pay for the
bad initial smoothness of the corresponding ψ, which is n, and the rate will be n/t. The smoothness
later improves, which is proved as follows.
Proof (of Lemma 14) We first prove that for all ξ ∈ Rn with ψ(ξ) ≤ 0, it holds that 1 ≤
‖∇ψ(ξ)‖1 ≤ 2. Given ξ ∈ Rn, we have

‖∇ψ(ξ)‖1 =

n∑
i=1

`′(ξi)

`′ (ψ(ξ))
=

n∑
i=1

`′
(
`−1 (`(ξi))

)
`′ (`−1 (

∑n
i=1 `(ξi)))

.

Consider the function ρ(z) := `′
(
`−1(z)

)
= 1−e−z . It holds that ρ(0) = 0, and on z ∈ [0, `(0)] =

[0, ln(2)], we have ρ(z)′ ∈ [1/2, 1], and ρ is subadditive: for all a, b > 0 with a + b ≤ ln(2), it
holds that ρ(a+ b) ≤ ρ(a) + ρ(b). Now note that since ψ(ξ) ≤ 0, we have

∑n
i=1 `(ξi) ≤ `(0), and

thus the subadditivity of ρ implies

‖∇ψ(ξ)‖1 =

n∑
i=1

`′
(
`−1 (`(ξi))

)
`′ (`−1 (

∑n
i=1 `(ξi)))

=

∑n
i=1 ρ (`(ξi))

ρ (
∑n

i=1 `(ξi))
≥ 1.
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On the other hand, the mean value theorem implies

‖∇ψ(ξ)‖1 =

∑n
i=1 ρ (`(ξi))

ρ (
∑n

i=1 `(ξi))
≤
∑n

i=1 `(ξi)
1
2

∑n
i=1 `(ξi)

= 2.

Then we show that ψ is 2-smooth with respect to the `∞ norm on the sublevel set {ξ|ψ(ξ) ≤ 0}.
Recall from eq. (27) that we only need to check

n∑
i=1

`′′(ξi)

`′ (ψ(ξ))
v2
i ≤ 2 max

1≤i≤n
v2
i .

This is true since `′′ ≤ `′, and
∑n

i=1 `
′(ξi)/`

′ (ψ(ξ)) = ‖∇ψ(ξ)‖1 ≤ 2.
Next we prove the iteration guarantee on ψ. Let

η̃ := arg max
{

0 ≤ η̂ ≤ 1
∣∣∣ψ (Z(wt − η̂Z>qt)

)
≤ 0
}
, and w̃ := wt − η̃Z>qt.

Since L(Zwt) < `(0), we have ψ(Zwt) < 0, and thus η̃ > 0. We claim that η̃ ≥ 1/2. If this is not
true, then we must have ψ(w̃) = 0. Since ψ is convex, and ψ(Zwt) < 0, the line between Zwt and
Zw̃ are all in the sublevel set {ξ|ψ(ξ) ≤ 0}. Using 2-smoothness of ψ, and the same analysis as in
Lemma 3, we have

ψ(Zw̃)− ψ(Zwt) ≤ 〈qt, Zw̃ − Zwt〉+ ‖Zw̃ − Zwt‖2∞

= −η̃
∥∥∥Z>qt∥∥∥2

+ η̃2
∥∥∥ZZ>qt∥∥∥2

∞

≤ −η̃
∥∥∥Z>qt∥∥∥2

+ η̃2
∥∥∥Z>qt∥∥∥2

. (28)

Since ψ(Zwt) < 0, and 0 < η̃ ≤ 1/2 due to our assumption, and
∥∥Z>qt∥∥ > 0 by Theorem 5, we

have ψ(Zw̃) < 0, a contradiction. As a result, η̃ ≥ 1/2, and the iteration guarantee follows from
eq. (28).

Next we prove the strong-convexity-style property for ψ∗. Let ξ, ξ′ satisfy

ψ(ξ), ψ(ξ′) ≤ `−1

(
`(0)

2e2

)
, or L(ξ),L(ξ′) ≤ `(0)

2e2
.

Since L(ξ) =
∑n

i=1 `(ξi), it follows that for all 1 ≤ i ≤ n, we have `(ξi), `(ξ′i) ≤ `(0)/(2e2), and
thus ξi, ξ′i ≤ 0. Note that for all z ≤ 0, we have ez/2 ≤ ln(1 + ez) ≤ ez , therefore

`(z + 2)

`(z)
=

ln(1 + ez+2)

ln(1 + ez)
≤ ez+2

ez/2
= 2e2.

Consequently, for all ξ̃ ∈ Rn such that ‖ξ− ξ̃‖∞ ≤ 2, it holds that L(ξ̃) ≤ `(0), and thus ψ(ξ̃) ≤ 0.
Now let θ = ∇ψ(ξ), and θ′ = ∇ψ(ξ′), and

ξ̃i := ξi −
‖θ − θ′‖1

2
· sgn

(
θi − θ′i

)
.
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Recall from the proof of Theorem 1 that

Dψ∗(θ
′, θ) = ψ(ξ)− ψ(ξ′)− 〈θ′, ξ − ξ′〉

= ψ(ξ)− ψ(ξ̃) + ψ(ξ̃)− ψ(ξ′)− 〈θ′, ξ − ξ′〉
= ψ(ξ)− ψ(ξ̃)− 〈θ′, ξ − ξ̃〉+ ψ(ξ̃)− ψ(ξ′)− 〈θ′, ξ̃ − ξ′〉. (29)

Note that ‖θ‖1, ‖θ′‖1 ≤ 2, therefore ‖θ−θ′‖1 ≤ 4. It then follows that ‖ξ−ξ̃‖∞ = ‖θ−θ′‖1/2 ≤ 2
and ψ(ξ), ψ(ξ̃) ≤ 0, and since ψ is 2-smooth on the 0-sublevel set, we have

ψ(ξ)− ψ(ξ̃) ≥ 〈θ, ξ − ξ̃〉 − ‖ξ − ξ̃‖2∞ = 〈θ, ξ − ξ̃〉 − ‖θ − θ
′‖21

4
. (30)

Then eqs. (29) and (30) and the convexity of ψ imply

Dψ∗(θ
′, θ) ≥ 〈θ, ξ − ξ̃〉 − ‖θ − θ

′‖21
4

− 〈θ′, ξ − ξ̃〉+ ψ(ξ̃)− ψ(ξ′)− 〈θ′, ξ̃ − ξ′〉

≥ 〈θ, ξ − ξ̃〉 − ‖θ − θ
′‖21

4
− 〈θ′, ξ − ξ̃〉

= 〈θ − θ′, ξ − ξ̃〉 − ‖θ − θ
′‖21

4
.

By the construction of ξ̃, we have 〈θ − θ′, ξ − ξ̃〉 = ‖θ − θ′‖21/2, therefore

Dψ∗(θ
′, θ) ≥ ‖θ − θ

′‖21
4

.

The preceding analysis requires L(Zwt) ≤ `(0)/(2e2). We now produce a second analysis to
handle those initial iterations leading to this condition.

Lemma 21 Consider the logistic loss ln(1 + ez), with step size ηj = 1/(2R(wj)). Suppose
Assumption 2 holds, and let γ and ū denote the corresponding maximum margin value and direction.
Then the first iteration t with L(Zwt) ≤ `(0)/(2e2) satisfies ψ(Zwt) ≤ 0 and

t ≤
(

256 lnn

γ

)2

and ‖wt‖ ≤
256 lnn

γ
.

Proof Let t denote the first iteration with R(wt) ≤ 1/(32n), whereby L(Zwt) ≤ ln(2)/(2e2)
and ψ(Zwt) ≤ 0. Additionally, define r := 128 lnn/γ and u := rū; Expanding the square and
invoking Theorem 19 and convexity ofR, for any j < t,

‖wj+1 − u‖2 = ‖wj − u‖2 − 2ηj 〈∇R(wj), wj − u〉+ η2
j ‖∇R(wj)‖2

≤ ‖wj − u‖2 + 2ηj (R(u)−R(wj)) + η2
j ‖∇R(wj)‖2.

Applying
∑

j<t to both sides and telescoping,

2
∑
j<t

ηjR(wj) + ‖wt − u‖2 − ‖w0 − u‖2 ≤ 2
∑
j<t

ηjR(u) +
∑
j<t

η2
j ‖∇R(wj)‖2. (31)

The various terms in this expression can be simplified as follows.
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• Since ηj = 1
2R(wj) , then 2

∑
j<t ηjR(wj) = t.

• Since w0 = 0,

‖wt − u‖2 − ‖w0 − u‖2 = ‖wt‖2 − 2 〈wt, u〉 = ‖wt‖2 − 2r 〈wt, ū〉 .

• Since `log ≤ `exp, by the choice of r,

R(u) ≤ Rexp(u) ≤ 1

n

∑
i

exp(−〈zi, ū〉 r) ≤
1

128n
,

and usingR(wj) ≥ 1
32n and ηj = 1

2R(wj) ≤ 16n gives

2
∑
j<t

ηjR(u) ≤ 2
∑
j<t

16n

128n
=
t

4
.

• Since `′ ≤ `,

‖∇R(wj)‖ =

∥∥∥∥∥ 1

n

n∑
i=1

`′(〈zi, wj〉)zi

∥∥∥∥∥ ≤ 1

n

n∑
i=1

`′(〈zi, wj〉) ‖zi‖ ≤
1

n

n∑
i=1

`(〈zi, wj〉) = R(wj),

and since ηj = 1
2R(wj) , ∑

j<t

η2
j ‖∇R(wj)‖2 ≤

∑
j<t

η2
jR(wj)

2 =
t

4
.

Combining these inequalities with eq. (31) gives

t+ ‖wt‖2 − 2r 〈wt, ū〉 ≤ 2
∑
j<t

ηjR(wj) + ‖wt − u‖2 − ‖w0 − u‖2

≤ 2
∑
j<t

ηjR(u) +
∑
j<t

η2
j ‖∇R(wj)‖2

≤ t

4
+
t

4
,

which rearranges to give
t

2
+ ‖wt‖2 − 2r 〈wt, ū〉 ≤ 0. (32)

Since t ≥ 0, then by Cauchy-Schwarz, ‖wt‖ ≤ 2r. Similarly, Cauchy-Schwarz grants

t

2
+ ‖wt‖2 − 2r 〈wt, ū〉 ≥

t

2
+ ‖wt‖2 − 2r‖wt‖,

which is in fact minimized when ‖wt‖ = 2r, giving

t

2
+ ‖wt‖2 − 2r 〈wt, ū〉 ≥

t

2
− 2r2,

which combined with eq. (32) implies t ≤ 4r2.
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