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Abstract
Reward-free exploration is a reinforcement learning setting studied by Jin et al. (2020), who address
it by running several algorithms with regret guarantees in parallel. In our work, we instead give a
more natural adaptive approach for reward-free exploration which directly reduces upper bounds on
the maximum MDP estimation error. We show that, interestingly, our reward-free UCRL algorithm
can be seen as a variant of an algorithm of Fiechter from 1994 (Fiechter, 1994), originally proposed
for a different objective that we call best-policy identification. We prove that RF-UCRL needs of
order (SAH4/ε2)(log(1/δ) + S) episodes to output, with probability 1− δ, an ε-approximation of
the optimal policy for any reward function. This bound improves over existing sample-complexity
bounds in both the small ε and the small δ regimes. We further investigate the relative complexities
of reward-free exploration and best-policy identification.
Keywords: reinforcement learning, reward-free exploration, upper confidence bounds

1. Introduction

Reinforcement learning problems are related to learning and/or acting with a good policy in an
unknown, stochastic environment, which requires to perform the right amount of exploration. In
this work, we consider the discounted episodic setting with discount γ ∈ (0, 1] and horizon H and
model the environment as a Markov Decision Process (MDP) with finite state space S of size S and
finite action space A of size A ≥ 2, transition kernels P = (ph(·|s, a))h,s,a and reward function
r = (rh(s, a))h,s,a for h ∈ [H]1, (s, a) ∈ S × A. The value of a policy π = (π1, . . . , πH) in step
h ∈ [H] is given by

V π
h (sh; r) , Eπ

[ H∑
`=h

γh−1rh(s`, π`(s`))
∣∣∣sh].

In this definition we explicitly materialize the dependency in the reward function r, but the expectation
also depends on the transition kernel: for all ` ∈ [H], s`+1 ∼ p`(·|s`, π`(s`)) and a reward with

1. We use the shorthand [n] = {1, . . . , n} for every integer n ∈ N∗.
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ADAPTIVE REWARD-FREE EXPLORATION

expectation r`(s`, π`(s`)) is generated. We denote by π? the optimal policy, such that in every step
h ∈ [H], V π?

h (s; r) ≥ V π
h (s; r) for any policy π, and by V ? its value function.

An online reinforcement learning algorithm successively generates trajectories of length H in
the MDP, starting from an initial state s1 drawn from some distribution P0. The t-th trajectory is
generated under a policy πt which may depend on the data collected in the (t− 1) previous episodes.
Given a fixed reward function r, several objective have been considered in the literature: maximizing
the total reward accumulated during learning, or minimizing some notion of regret (Azar et al., 2017),
proposing a guess for a good policy after a sufficiently large number of episodes (Fiechter, 1994) or
guarantee that the policies used during learning are most of the time ε-optimal (Dann and Brunskill,
2015), see Section 2 for a precise description.

Yet in applications, the reward function r is often handcrafted to incentivize some behavior
from the RL agent, and its design can be hard, so that we may end up successively learning optimal
policies for different reward functions. This is the motivation given by Jin et al. (2020) for the
reward-free exploration problem, in which the goal is to be able to approximate the optimal policy
under any reward function after a single exploration phase. More precisely, an algorithm for reward-
free exploration should generate a dataset DN of N reward-free trajectories —with N as small
as possible— such that, letting π̂N,r be the optimal policy in the MDP (P̂N , r) (where P̂N is the
empirical transition matrix based on the trajectories in DN ), one has

P
(

for all reward functions r, Es1∼P1

[
V ?
1 (s; r)− V π̂N,r

1 (s; r)
]
≤ ε
)
≥ 1− δ. (1)

The solution proposed by Jin et al. (2020) builds on an algorithm proposed for the different
regret minimization objective. In order to generate DN , their algorithm first run, for each (s, h),
N0 episodes of the Euler algorithm of Zanette and Brunskill (2019) for the MDP (P, r(s,h)) where
r(s,h) is a reward function that gives 1 at step h if state s is visited, and 0 otherwise. For each
(s, h), after the corresponding Euler has been executed, the N0 policies used in the N0 episodes
of Euler are added to a policy buffer Φ. Once this policy buffer Φ (which contains S ×H × N0

policies) is complete , the DN database is obtained by generating N episodes under N policies
picked uniformly at random in Φ (with replacement). Jin et al. (2020) provide a calibration of N and
N0 for which (1) holds, leading to a sampling complexity, i.e. a total number of exploration episodes,
of O

(
S2AH5

ε log
(
SAH
δε

)
+ S4AH7

ε2
log3

(
SAH
δε

))
.

In this paper, we propose an alternative, more natural approach to reward free exploration, that
does not rely on any regret minimizing algorithm. We show that (a variant of) an algorithm proposed
by Fiechter (1994) for Best Policy Identification (BPI) —a setting described in details in Section 2—
can be used for reward-free exploration. We give a new, simple, sample complexity analysis for
this algorithm which improves over that of Jin et al. (2020). This (new) algorithm can be seen as a
reward-free variant of UCRL (Jaksch et al., 2010), and is designed to uniformly reduce the estimation
error of the Q-value function of any policy under any reward function, which is instrumental to
prove (1), as already noted by Jin et al. (2020).

Building on a similar idea, the parallel work of Wang et al. (2020) studies reward-free exploration
with a particular linear function approximation, providing an algorithm with a sample complexity
of order d3H6 log(1/δ)/ε2, where d is the dimension of the feature space. In the tabular case,
d = SA and the resulting sample complexity becomes worse than the one of Jin et al. (2020).
Furthermore, Zhang et al. (2020) recently studied a setting in which there are only N possible
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ADAPTIVE REWARD-FREE EXPLORATION

reward functions in the planning phase, for which they provide an algorithm with complexity
Õ
(
H5SA log(N) log(1/δ)/ε2

)
2.

Alternative views on reward-free RL Realistic reinforcement-learning applications often face
a challenge of a sparse rewards which at the beginning provides no signal for decision-making.
Numerous attempts were made to guide the exploration in the beginning, motivated by curiosity
(Schmidhuber, 1991; Still and Precup, 2012), intrinsic motivation (Mohamed and Jimenez Rezende,
2015; Chentanez et al., 2005), exploration bonuses (Tang et al., 2017; Ostrovski et al., 2017) mutual
information (Montufar et al., 2016) and many of its approximations, for instance with variational
autoencoders (Mohamed and Jimenez Rezende, 2015).

Nonetheless, it is even more challenging to analyze the exploration and provide guarantees for it.
A typical take is to consider a well defined proxy for exploration and analyze that. For example, Lim
and Auer (2012); Gajane et al. (2019) cast the skill discovery as an ability to reach any state within L
hops. Another example is to look for policies finding the stochastic shortest path (Tarbouriech et al.,
2019; Cohen et al., 2020) or aiming for the maximum entropy (Hazan et al., 2018). In our work, we
provide an adaptive counterpart to the work of Jin et al. (2020) for a reward-free exploration.

Outline In Section 2, we present the reward-free exploration (RFE) setting and contrast it with
other standard PAC reinforcement-learning settings, notably the best-policy identification (BPI). The
RF-UCRL algorithm is introduced in Section 3. In Section 4, we present its sample complexity
analysis. As a variant of RF-UCRL was originally proposed by Fiechter (1994) for BPI, in Section 5,
we investigate the difference in complexity between RFE and BPI, and propose the BPI-UCRL
algorithm. Finally, we propose numerical simulations in Section 6 to illustrate how the two algorithms
explore, compared to oracle strategies using a generative model.

2. Several PAC Reinforcement Learning Problems

In this section, we formally introduce the reward free exploration problem, which is a particular PAC
(Probability Approximately Correct) learning problem. We then contrast it with several other PAC
reinforcement learning frameworks that have been studied in the literature.

Reward-free exploration An algorithm for Reward-Free Exploration (RFE) sequentially collects
a database of trajectories in the following way. In each time step t, a policy πt = (πth)Hh=1 is computed
based on data from the t−1 previous episodes, a reward-free episode zt = (st1, a

t
1, s

t
2, a

t
2, . . . , s

t
H , a

t
H)

is generated under the policy πt in the MDP starting from a first state st1 ∼ P0: for all h ∈ [H],
sth ∼ ph(sth−1, π

t(sth−1) and the new trajectory is added to the database: Dt = Dt−1
⋃{zt}. At the

end of each episode, the algorithm can decide to stop collecting data (we denote by τ its random
stopping time) and outputs the dataset Dτ .

A RFE algorithm is therefore made of a triple ((πt)t∈N, τ,Dτ ). The goal is to build an (ε, δ)-PAC
algorithm according to the following definition, for which the sample complexity, that is the number
of exploration episodes τ is as small as possible.

Definition 1 (PAC algorithm for RFE) An algorithm is (ε, δ)-PAC for reward-free exploration if

P
(

for all reward function r,
∣∣∣Es1∼P0

[
V ?
1 (s1; r)− V

π̂?τ,r
1 (s1; r)

]∣∣∣ ≤ ε) ≥ 1− δ,

2. The Õ notation is ignoring logarithmic factors in 1/ε and log(1/δ).
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where π̂?τ,r
3 is the optimal policy in the MDP parameterized by (P̂ τ , r), with P̂ τ being the empirical

transition kernel estimated from the dataset Dτ .

Sample complexity in RL For the discounted episodic setting that is our focus in this paper, in
which learning proceeds by a sequence of episodes, the first formal PAC RL model was proposed
by Fiechter (1994). As in this framework a RL algorithm should also output a guess for a near-
optimal policy, we refer to it as Best Policy Identification (BPI). A BPI algorithm is made of a triple
((πt)t∈N, τ, π̂τ ) where π̂τ is the policy returned after τ steps of exploration.

Definition 2 (PAC algorithm for BPI) An algorithm is (ε, δ)-PAC for best policy identification if

P
(
Es1∼P0

[
V ?
1 (s1)− V π̂τ

1 (s1)
]
≤ ε
)
≥ 1− δ.

In the discounted setting that is the focus of Fiechter (1994), choosing a horizon H = (1 −
γ)−1 log((ε(1− γ))−1) the policy π̂τ 4 outputted by an (ε, δ)-PAC algorithm for BPI with horizon H
is 2ε-optimal in terms of the infinite horizon discounted value function. Yet, this requires an online
learning process in which the agent can control the length of episode and use a “restart button”.
This assumption was presented as a limitation in subsequent works, which converged on a different
notion of PAC algorithm. While the E3 algorithm of Kearns and Singh (2002) stops in some state
sτ and outputs a policy π̂τ that needs to be ε-optimal in that state, other algorithms such as RMAX
(Brafman and Tennenholtz, 2002), Delayed Q-Learning (Strehl et al., 2006) or MBIE (Strehl and
Littman, 2008) do not output a policy, but are proved to be PAC-MDP according to a definition
formalized by Kakade (2003) for discounted or average reward MDPs. Under an (ε, δ)-PAC MDP
algorithm generating a trajectory (st)t∈N, there is a polynomial number of time steps t in which
V ?(st)− V At(st) > ε where At is the policy used in the future steps of the algorithms.

The notion of PAC-MDP algorithm was later transposed to the (discounted) episodic setting
(Dann and Brunskill, 2015; Dann et al., 2017) as an algorithm such that, with probability 1 − δ,∑∞

t=1 1(V ?
1 (st1)− V πt

1 (st1) > ε) is upper bounded by a polynomial in S,A, 1/ε, 1/δ and H . PAC-
MDP seems to be the most studied PAC reinforcement learning framework these days. However,
reward free exploration is closer to the BPI framework: in the latter, an algorithm should stop and
output a guess for the optimal policy associated to a particular reward function r (possibly unknown
and observed through samples), while in the former it should stop and be able to estimate the optimal
policy associated to any reward function. In the next section, we show that a variant of the first
algorithm proposed by Fiechter (1994) for BPI, that we call RF-UCRL can actually be used for the
(harder ?) reward free exploration problem and provide a new sample complexity analysis for it. We
discuss further the link between RFE and BPI in Section 5.

Finally, sample complexity results have also been given for reinforcement learning based on a
generative model, in which one can build a database of transitions performed in an arbitrary order
(without the constrain to generate episodes). In the discounted setting, Azar et al. (2012) propose
an improved analysis of Model-Based Q-Value Iteration (Kearns and Singh, 1998), which samples
n transitions from every state-action pair and run value-iteration in the estimated MDP. They show
that with a total sampling budget T = nSA = O

(
(cSA/((1− γ)3ε2)) log(SA/δ)

)
, the optimal

Q-value in the estimated MDP Q̂ satisfies ‖Q̂−Q?‖∞ ≤ ε with probability larger than 1− δ.

3. We could also define π̂?τ,r to be the outcome of some planning phase that takes as an input Dτ and r with controlled
planning error. Yet for simplicity we stick to the natural choice of π̂?τ,r being the optimal policy in the empirical MDP
built from Dτ , which can be computed exactly using backwards induction in the tabular case that we consider.

4. This policy is extended to select random actions for h > H .
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3. Reward-Free UCRL

To ease the presentation of our algorithm, we assume that the first state distribution P0 is supported
on a single state s1. Following an observation from Fiechter (1994), this is without loss of generality,
as we may otherwise consider an alternative MDP with an extra initial state s0 with a single action
a0 that yield a null reward and from which the transitions are P0(·|s0, a0) = P0. Indeed, letting
Ṽ π̃
0 denote the value of policy π̃ such that π̃0 = a0 and π̃1:H = π for any episodic problem

of horizon H + 1 and discount sequence (1, 1, γ, γ2, . . . ), it holds that Ṽ ?
0 (s0; r) − Ṽ π̃

0 (s0; r) =
Es1∼P1 [V ?

1 (s1; r)− V π
0 (s0; r)].

Notation For all h ∈ [H] and (s, a) ∈ S × A, we let nth(s, a) =
∑t

i=1 1
(
(sih, a

i
h) = (s, a)

)
be the number of times the state action-pair (s, a) was visited in step h in the first t episodes and
nth(s, a, s′) =

∑t
i=1 1

(
(sih, a

i
h, s

i
h+1) = (s, a, s′)

)
. This permits to define the empirical transitions

p̂th(s′|s, a) =
nth(s, a, s′)

nth(s, a)
if nth(s, a) > 0, and p̂th(s′|s, a) =

1

S
otherwise.

We denote by V̂ t,π
h (s; r) (resp. Q̂t,πh (s, a; r)) the value (resp. Q-values) functions in the empirical

MDP with transition kernels P̂ t and reward function r, where we recall that the Q-value of a policy
π in a MDP with transitions ph(s′|s, a) and mean reward rh(s, a) is defined by Qπh(s, a; r) =

rh(s, a) + γ
∑

s′∈S ph(s′|s, a)V π
h+1(s

′). Finally, we let σh =
∑h−1

i=0 γ
i and note that σh ≤ h.

Error upper bounds RF-UCRL is based on an upper bound on the estimation error for each
policy π (and each value function r). The complete procedure is described in Algorithm 1. For every
π, r, t, we define this error as

êt,πh (s, a; r) := |Q̂t,πh (s, a; r)−Qπh(s, a; r)|.

The algorithm relies on an “upper confidence bound” Eth(s, a) for the error defined recursively as
follows: EtH+1(s, a) = 0 for all (s, a) and, for all h ∈ [H], with the convention 1/0 = +∞,

E
t
h(s, a) = min

(
γσH−h, γσH−h

√
2β(nth(s, a), δ)

nth(s, a)
+ γ

∑
s′

p̂th(s′|s, a) max
b
E
t
h+1(s

′, b)

)
, (2)

where β(n, δ) is some threshold function which is an input of the algorithm. See Theorem 5 for
a theoretical choice. Although Eth(s, a) does not depend on a policy π or a reward function r,
Lemma 3 shows that it is a high-probability upper bound an the error êt,πh (s, a; r) for any π and r.

Lemma 3 With KL(p||q) =
∑

s∈S p(s) log p(s)
q(s) the Kullback-Leibler divergence between two

distributions over S, on the event

E =
{
∀t ∈ N,∀h ∈ [H],∀(s, a),KL

(
p̂th(·|(s, a)), ph(·|(s, a))

)
≤ β(nth(s,a),δ)

nth(s,a)

}
,

it holds that for any policy π and reward function r, êt,πh (s, a; r) ≤ Eth(s, a).
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Proof From the Bellman equations in the empirical MDP and the true MDP,

Q̂t,πh (s, a; r) = rh(s, a) + γ
∑
s′

p̂th(s′|s, a)Q̂t,πh+1(s
′, π(s′); r)

and Qπh(s, a; r) = rh(s, a) + γ
∑
s′

ph(s′|s, a)Qπh+1(s
′, π(s′); r) .

Hence

Q̂t,πh (s, a; r)−Qπh(s, a; r) = γ
∑
s′

(
p̂th(s′|s, a)− ph(s′|s, a)

)
Qπh+1(s

′, π(s′); r)

+γ
∑
s′

p̂th(s′|s, a)
(
Q̂t,πh+1(s

′, π(s′); r)−Qπh+1(s
′, π(s′); r)

)
.

It follows that, for nth(s, a) > 0, using successively that Qπh+1(s
′, a′; r) ≤ σH−h, the definition of

event E and Pinsker’s inequality,

êt,πh (s, a; r) ≤ γ
∑
s′

∣∣p̂th(s′|s, a)− ph(s′|s, a)
∣∣Qπh+1(s

′, π(s′); r)

+ γ
∑
s′

p̂th(s′|s, a)
∣∣∣Q̂t,πh+1(s

′, π(s′); r)−Qπh+1(s
′, π(s′); r)

∣∣∣
≤ γσH−h

∥∥p̂th(·|s, a)− ph(·|s, a)
∥∥
1

+ γ
∑
s′

p̂th(s′|s, a)êt,πh+1(s
′, π(s′); r)

≤ γσH−h

√
2β(nth(s, a), δ)

nth(s, a)
+ γ

∑
s′

p̂th(s′|s, a)êt,πh+1(s
′, π(s′); r) .

Then, noting that êt,πh (s, a; r) ≤ γσH−h, it holds for all nth(s, a) ≥ 0,

êt,πh (s, a; r)≤ min

(
γσH−h, γσH−h

√
2β(nth(s, a), δ)

nth(s, a)
+ γ
∑
s′

p̂th(s′|s, a)êt,πh+1(s
′, π(s′); r)

)
. (3)

We can now prove the result by induction on h. The base case for H + 1 is trivially true since
êt,πH+1(s, a; r) = E

t
H+1(s, a) = 0 for all (s, a). Assume the result true for step h+ 1, using (3) we

get for all (s, a),

êt,πh (s, a; r) ≤ min

(
γσH−h, γσH−h

√
2β(nth(s, a), δ)

nth(s, a)
+ γ

∑
s′

p̂th(s′|s, a)êt,πh+1(s
′, π(s′); r)

)

≤ min

(
γσH−h, γσH−h

√
2β(nth(s, a), δ)

nth(s, a)
+ γ

∑
s′

p̂th(s′|s, a) max
b∈A

E
t
h+1(s

′, b)

)
= E

t
h+1(s, a) .
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Sampling rule and stopping rule The idea of RF-UCRL is to uniformly reduce the estimation
error all policies under all possible reward functions by being greedy with respect to the upper bounds
E
t on these errors. RF-UCRL stops when the error in step 1 is smaller than ε/2:

• sampling rule: the policy πt+1 is the greedy policy with respect to Et(s, a), that is

∀s ∈ S,∀h ∈ [h], πt+1
h (s) = argmaxaE

t
h(s, a). (4)

• stopping rule: τ = inf
{
t ∈ N : E

t
h(s1, π

t+1
1 (s1)) ≤ ε/2

}
.

This algorithm is very similar to the one originally proposed by Fiechter (1994) for Best Policy
Identification in the discounted case. The main difference is that the original algorithm additionally
uses some scaling and rounding: the index used are integers, defined as Ẽth(s, a) = bEth(s, a)/ηc
for some parameter η > 0, and the algorithm stops when Ẽth(s, a) is smaller than a slightly
different threshold. The reason for this discretization is the use of a combinatorial argument in
the sample complexity analysis, which says that every m time steps (with m that is a function
of S,A, δ and ε), at least one of the indices must decrease. The other difference is that the term

σH−h

√
2β(nth(s, a), δ)/nth(s, a) in (2) is replaced by σH−h

√
2 log (2SAH/δ), which we believe is

not enough guarantee the corresponding index to be a high-probability upper bounds on êt,π(s, a; r)5.
In the next section, we propose a different analysis for RF-UCRL compared to the original

analysis of Fiechter (1994), which yields an improved sample complexity in the more general
discounted episodic setting.

Algorithm 1 RF-UCRL

Initialization: Set t = 1, D0 = ∅, initialize E0 with (2) and π1h with (4)
while Et−1h (s1, π

t
1(s1)) ≤ ε/2 do

Observe the initial state st1 ∼ P0

for h = 1 : H do
Play ath ∼ πth(sth)
Observe the next state sth+1 ∼ ph(sth, a

t
h)

end
Compute Et according to (2) and πt+1 according to (4)
Update the database Dt = Dt−1 ∪ (st1, a

t
1, s

t
2, a

t
2, . . . , s

t
H , a

t
H)

Set t = t+ 1
end
Return the database Dt−1

4. Theoretical Guarantees for RF-UCRL

We show that RF-UCRL is (ε, δ)-PAC for reward-free exploration and provide a high-probability
upper bound on its sample complexity.

5. There are some missing union bounds in the concentration argument given by Fiechter (1994).
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4.1. Correctness and Sample Complexity

First, for every reward function r, one can easily show (see Appendix C.1) that for all t ∈ N∗,{
∀π,

∣∣∣V̂ t,π
1 (s1; r)− V π

1 (s1; r)
∣∣∣ ≤ ε/2} ⊆ {V ?

1 (s1; r)− V
π̂?t,r
1 (s1; r) ≤ ε

}
. (5)

This property is already used in Lemma 3.6 of Jin et al. (2020), where an extra planning error
is allowed, whereas we assume that the optimal policy π̂?t,r in (P̂ t, r) is computed exactly (with
backward induction). Hence, a sufficient condition to prove the correctness of RF-UCRL is to
establish that, when it stops, the estimation errors for all policies and all reward functions is smaller
than ε/2. But the stopping rule of RF-UCRL is precisely designed to achieve this property.

Lemma 4 (correctness) On the event E , for any reward function r, V ?
1 (s1)− V

π̂?τ,r
1 (s1) ≤ ε.

Proof By definition of the stopping rule, Eτ1(s1, π
τ+1
1 (s1)) ≤ ε/2. As πτ+1 is the greedy policy

w.r.t. Eτ , this implies that for all a ∈ A, Eτ1(s1, a) ≤ ε/2. Hence, by Lemma 3 on the event E , for
all policy π, all reward function r, and all action a, êτ,π1 (s1, a; r) ≤ ε/2. In particular, for all π and
r, |V̂ τ,π

1 (s1; r)− V π
1 (s1; r)| ≤ ε/2, and the conclusion follows from the implication (5).

We now state our main results for RF-UCRL. We prove that for a well-chosen calibration of
the threshold β(n, δ), the algorithm is (ε, δ)-PAC for reward-free exploration and we provide a
high-probability upper bound on its sample complexity.

Theorem 5 RF-UCRL using threshold β(n, δ) = log
(
2SAH/δ

)
+(S−1) log

(
e(1+n/(S−1))

)
is (ε, δ)-PAC for reward-free exploration. Moreover, with probability 1− δ,

τ ≤ CHSA
ε2

[
log

(
2SAH

δ

)
+ 2(S−1)log

(
CHSA
ε2

(
log

(
2SAH

δ

)
+ (S−1)

(√
e+

√
e

S − 1

)))
+ (S−1)

]
where CH = 144(1 +

√
2)2σ4H .

From Theorem 5, the number of episodes of exploration needed is of order

SAH4

ε2
log

(
2SAH

δ

)
+
S2AH4

ε2
log

(
SAH4

ε2
log

(
2SAH

δ

))
,

up to (absolute) multiplicative constants. As explained in Appendix E, for stationary transitions,
we can further replace H4 by H3 in this bound. We now examine the scaling of this bound when ε
goes to zero and when δ goes to zero. In a regime of small ε, our Õ

(
S2AH4/ε2

)
bound improves

the dependency in H compared to the one given by Jin et al. (2020) from H5 to H4 (and to H3

for stationary transitions). This new bound is matching the lower bound of Jin et al. (2020) up
to a factor H2 (and a factor H for stationary transitions). Then, in a regime small δ, the sample
complexity of RF-UCRL scales in O

(
(SAH4/ε2) log (1/δ)

)
, which greatly improves over the

O((S4AH7/ε) (log (1/δ))3) scaling of the algorithm of Jin et al. (2020). Finally, we note that our
result also improves over the original sample complexity bound given by Fiechter (1994), which is in
Õ
(
(S2A/(1− γ)7ε3)) log (SA/((1− γ)δ))

)
in the discounted setting (for which H ∼ 1/(1− γ)).
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4.2. Proof of Theorem 5

We first introduce a few notation. We let pπh(s, a) be the probability that the state action pair (s, a)
is reached in the h-th step of a trajectory generated under the policy π, and we use the shorthand
pth(s, a) = pπ

t

h (s, a). We introduce the pseudo-counts nth(s, a) =
∑t

i=1 p
i
h(s, a) and define

Ecnt =

{
∀t ∈ N?, ∀h ∈ [H],∀(s, a) ∈ S ×A : nth(s, a) ≥ 1

2
nth(s, a)− βcnt(δ)

}
,

where βcnt(δ) = log
(
2SAH/δ

)
. Recalling the event E defined in Lemma 3, we let F = E ∩ Ecnt.

Lemma 10 in Appendix B shows that P(E) ≥ 1 − δ/2 and P(Ecnt) ≥ 1 − δ/2, which yields
P(F) ≥ 1− δ. From Lemma 4, on the event F , it holds that V ?

1 (s1)− V
π̂?τ,r
1 (s1) ≤ ε for all reward

function r, which proves that RF-UCRL is (ε, δ)-PAC.
We now upper bound the sample complexity of RF-UCRL on the event F , postponing the proof

of some intermediate lemmas to Appendix C. The first step is to introduce an average upper bound
on the error at step h under policy πt+1 defined as

qth =
∑
(s,a)

pt+1
h (s, a)E

t
h(s, a).

The following crucial lemma permits to relate the errors at step h to that at step h+ 1.

Lemma 6 On the event E , for all h ∈ [H] and (s, a) ∈ S ×A,

E
t
h(s, a) ≤ 3σH−h

[√
β(nth(s, a), δ)

nth(s, a)
∧ 1

]
+ γ

∑
s′∈S

ph(s′|s, a)E
t
h+1(s

′, πt+1(s′)) .

Thanks to Lemma 6, the average errors can in turn be related as follows:

qth ≤ 3σH−h
∑
(s,a)

pt+1
h (s, a)

[√
β(nth(s, a), δ)

nth(s, a)
∧ 1

]
+ γ

∑
(s,a)

∑
(s′,a′)

pt+1
h (s, a)ph(s′|s, a)1(a′=πt+1(s′))E

t

h+1(s′, a′)

≤ 3σH−h
∑
(s,a)

pt+1
h (s, a)

[√
β(nth(s, a), δ)

nth(s, a)
∧ 1

]
+ γqth+1 . (6)

For h = 1, observe that pt+1
h (s1, a)E

t
h(s1, a) = E

t
h(s1, π

t+1
1 (s1))1

(
πt+1
1 (s1) = a

)
, as the policy

is deterministic. Now, if t < τ , Eth(s1, π
t+1
1 (s1) ≥ ε/2 by definition of the stopping rule, hence

qt1 =
∑
a

pt+1
1 (s1, a)E

t
h(s1, a) ≥ (ε/2)

∑
a∈A

1
(
πt+1
1 (s1) = a

)
= ε/2.

Using (6) to upper bound qt1 yields ε/2 ≤ 3
∑H

h=1

∑
(s,a) γ

h−1σH−hp
t+1
h (s, a)

[√
β(nth(s,a),δ)

nth(s,a)
∧ 1

]
for t < τ and summing these inequalities for t ∈ {0, . . . , T} where T < τ gives

(T + 1)ε ≤ 6
H∑
h=1

γh−1σH−h
∑
(s,a)

T∑
t=0

pt+1
h (s, a)

[√
β(nth(s, a), δ)

nth(s, a)
∧ 1

]
.

The next step is to relate the counts to the pseudo-counts using the fact that the event Ecnt holds.

9
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Lemma 7 On the event Ecnt, ∀h ∈ [H], (s, a) ∈ S ×A,

∀t ∈ N∗,
β(nth(s, a), δ)

nth(s, a)
∧ 1 ≤ 4

β(nth(s, a), δ)

nth(s, a) ∨ 1
.

Using Lemma 7, one can write that, on the event F , for T < τ ,

(T + 1)ε ≤ 12

H∑
h=1

γh−1σH−h
∑
(s,a)

T∑
t=0

pt+1
h (s, a)

√
β(nth(s, a), δ)

nth(s, a) ∨ 1

≤ 12
√
β(T + 1, δ)

H∑
h=1

γh−1σH−h
∑
(s,a)

T∑
t=0

nt+1
h (s, a)− nth(s, a)√

nth(s, a) ∨ 1
,

where we have used that by definition of the pseudo-counts pt+1
h (s, a) = nt+1

h (s, a) − nth(s, a).
Using Lemma 19 of Jaksch et al. (2010) (recalled in Appendix G) to upper bound the sum in t yields

(T + 1)ε ≤ 12(1 +
√

2)
√
β(T + 1, δ)

H∑
h=1

γh−1σH−h
∑
(s,a)

√
nT+1
h (s, a)

≤ 12(1 +
√

2)
√
β(T + 1, δ)

H∑
h=1

γh−1σH−h
√
SA

√∑
s,a

nT+1
h (s, a).

As
∑

s,a n
T+1
h (s, a) = T + 1, one obtains, using further that σH−h ≤ σH ,

ε
√
T + 1 ≤ 12(1 +

√
2)
√
SA

(
σH

H∑
h=1

γh−1

)√
β(T + 1, δ).

For T large enough, this inequality cannot hold, as the left hand side is in
√
T while the right

hand-side is logarithmic. Hence τ is finite and satisfies (applying the inequality to T = τ − 1)

τ ≤ CHSA
ε2

β(τ, δ),

where CH = 144(1 +
√

2)2σ4H . The conclusion follows from Lemma 15 stated in Appendix G.

5. Reward-Free Exploration versus Best Policy Identification

While originally proposed for solving the Best Policy Identification problem (see Definition 2), we
proved that RF-UCRL is (ε, δ)-PAC for Reward-Free Exploration. In particular, RF-UCRL is also
(ε, δ)-PAC for BPI given some deterministic reward function r. In this section, we investigate the
difference in complexity between BPI and RFE, trying to answer the following question: could an
algorithm specifically designed for BPI have a smaller sample complexity than RF-UCRL?

A lower bound for BPI can be found in the work of Dann and Brunskill (2015) (although this
work in focused on the design of PAC-MDP algorithms). This worse-case lower bound says that
for any (ε, δ)-PAC algorithm for BPI there exists an MDP with stationary transitions for which

10
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E[τ ] = Ω
(
((SAH2)/ε2) log (c2/(δ + c3))

)
for some constant c2 and c3. This lower bound directly

translates to a lower bound for RFE, showing that for a small δ the sample complexity of RF-UCRL
is optimal up to a factor H for stationary rewards, for both BPI and RFE. If one is interested
in the small ε regime, the lower bound of Jin et al. (2020) is more informative: it states that
for any (ε, δ)-PAC algorithm for RFE there exists an MDP with stationary transitions for which
E[τ ] = Ω

(
((S2AH2)/ε2)

)
. Observe the increased S2 factor, which may not be needed for a BPI

algorithm to be optimal in the small ε regime, and justifies the need to derive specific BPI algorithms.

BPI algorithms To the best of our knowledge, the BPI problem has not been studied a lot since
the work of Fiechter (1994). Even-Dar et al. (2006) propose (ε, δ)-PAC algorithms that stop and
output a guess for the optimal policy (in all states) for discounted MDPs, but no upper bound on their
sample complexity is given. Another avenue to get an (ε, δ)-PAC algorithm for BPI is to use a regret
minimization algorithm: Jin et al. (2018) suggests to run a regret minimization algorithm for some
well chosen number of episode K and to let π̂ be a policy chosen at random among the K policies
used. Taking as a sub-routine the UCB-VI algorithm of Azar et al. (2017) that has O(

√
H2SAK)

regret for stationary rewards, with K = O(H2SA/(ε2δ2)) this conversion yields an (ε, δ)-PAC for
BPI. Its sample complexity has a bad scaling6 in δ, but is optimal for BPI when ε is small.

To get a better dependency in δ, a first observation is that RF-UCRL can be used: being (ε, δ)-
PAC for RFE, it will also be (ε, δ)-PAC for BPI (with a recommendation rule π̂τ = π̂?τ,r). Yet, the
sampling rule of RF-UCRL does not leverage the knowledge of r, and intuitively, there is something
to be gained by doing it. This is why we propose the BPI-UCRL algorithm, which does exploit the
observation of the rewards during learning, and can be seen as an adaptive conversion from regret to
BPI. The algorithm, described in full details in Appendix D, equips a regret minimizing algorithm
similar to the KL-UCRL algorithm of Filippi et al. (2010) with an adaptive stopping rule, which
leverages upper and lower confidence bounds on the value functions.

BPI-UCRL Letting Qth(s, a) and Qt
h
(s, a) be upper and lower confidence bounds on Q?h(s, a) that

are defined in Appendix D, the three components of BPI-UCRL are

• the sampling rule πt+1, which is the greedy policy w.r.t. to the upper bounds Qth(s, a),

• the stopping rule τ = inf
{
t ∈ N : maxaQ

t
1(s1, a)−maxaQ

t
1
(s1, a) ≤ ε

}
and

• the recommendation rule π̂τ , which is the greedy policy w.r.t. to lower bounds Qτ
h
(s, a) .

We prove in Theorem 11 that BPI-UCRL enjoys the same sample complexity guarantees than
RF-UCRL, both in the small δ and the small ε regime. Yet, as illustrated in the next section,
BPI-UCRL appears to perform more efficient exploration than RF-UCRL for a fixed reward
function. We leave as an open question whether an improved analysis for BPI-UCRL could
corroborate this improvement (besides the slightly smaller constant CH in Theorem 11).

Open questions We summarize in Figure 1 below the best available upper and lower bounds
available for RFE and BPI, when the transitions are stationary. While in RFE the RF-UCRL
algorithm is optimal up to a factor H in both the small δ and small ε regimes, it is not clear whether
an algorithm having this property exists for BPI. Figure 1 also shows that in the small ε regime,

6. As pointed out to us, the scaling in δ can be improved to log2(1/δ) for a different static conversion from regret to BPI,
see Appendix F.
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the complexity of RFE and BPI are different as there exists an algorithm with sample complexity
SAH2/ε2 for BPI while all RFE algorithms have a sample complexity that is larger than S2AH2/ε2.
In the small δ regime, designing algorithms whose sample complexity scales in H2 instead of H3

would allow to conclude that the complexity of the two problems in the same, at least in a worst-case
sense. We leave this task as future work.

Small δ UB LB

RFE SAH3

ε2
log
(
1
δ

)
SAH2

ε2
log
(
1
δ

)
RF-UCRL Dann and Brunskill (2015)

BPI SAH3

ε2
log
(
1
δ

)
SAH2

ε2
log
(
1
δ

)
BPI-UCRL Dann and Brunskill (2015)

RF-UCRL

Small ε UB LB

RFE S2AH3

ε2
S2AH2

ε2

RF-UCRL Jin et al. (2020)

BPI SAH2

ε2
SAH2

ε2

UCB-VI Dann and Brunskill (2015)

Figure 1: Available upper and lower bounds on the sample complexity for RFE and BPI for stationary
transition kernels (ph(s′|s, a) = p(s′|s, a)) in a regime of small δ (left) and small ε (right)

6. Numerical Illustration

In this section we report the results of some experiments on synthetic MDPs aimed at illustrating
how RF-UCRL and BPI-UCRL perform exploration, compared to simple baselines: (i) exploration
with a random policy (RP) agent, and (ii) a generative model (GM) agent, which samples a fixed
number of transitions from each state-action pair.

We perform the following experiment: each algorithm interacts with the environment until it
gathers a total of n transitions (exploration phase). RP, GM and RF-UCRL use the gathered data
to estimate a model P̂ and, at the end, they are given a reward function r and compute V̂ ?

1 (s1; r)
(estimation phase). Only the BPI-UCRL agent is allowed to observe the rewards during exploration
phase, after which it outputs a policy π̂?. For RF-UCRL and BPI-UCRL we use the threshold
β(n, δ) specified in Theorems 5 and 11 with δ = 0.1. For RF-UCRL we found out that removing
the minimum with γσH−h in the definition of the error bound (2) (which still gives a valid high-
probability upper bound) leads to better practical performance, and we report results for this variant.
Our study does not include the parallel regret minimization approach of Jin et al. (2020) described in
the Introduction as this algorithm is mostly theoretical: the parameters N0 and N that ensure the
(ε, δ)-PAC property are only given up to non-specified multiplicative constants.

We consider a Double Chain MDP, with states S = {0, . . . , L− 1}, where L is the length
of the chain, and actions A = {0, 1}, which correspond to a transition to the left (action 0) or
to the right (action 1). When taking an action, there is a 0.1 probability of moving to the other
direction. A single reward of 1 is placed at the rightmost state s = L − 1, and the agent starts
at s1 = (L − 1)/2, which leaves two possible directions for exploration. Figure 2(a) shows the
estimation error |V̂ ?

1 (s1; r)−V ?
1 (s1; r)| as a function of n, estimated overN = 48 runs. As expected,

this error decays the fastest under BPI-UCRL, since its exploration is guided by the observed rewards.
Interestingly, the performance of RF-UCRL is close to the agent which has access to a generative
model. Figure 2(b) shows the number of visits to each state during the exploration phase. We observe
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(d) Estimation of E[τ |τ < 106] for BPI-UCRL

Figure 2: RF-UCRL and BPI-UCRL on the DoubleChain MDP, with parameters L = 31, H = 20.

that the random policy is not able to reach the borders of the chain and, by design, the GM agent
uniformly distributes its number of visits. RF-UCRL actively seeks to sample less visited states,
and manage to fully explore the chain, whereas BPI-UCRL focuses its exploration on the part of the
chain where the highest reward is placed. In Appendix A we report additional results of experiments
in a GridWorld, where we observe the same behavior. In Figure 2(c) and 2(d) we estimate the sample
complexity τ of RF-UCRL and BPI-UCRL for different values of ε using N = 48 runs of n = 108

(resp. n = 106) sampled transitions, and checking the time needed for stopping at a level ε (if
stopping occurs before n). BPI-UCRL has indeed a much smaller sample complexity.

7. Conclusion

Inspired by the work of Fiechter from 1994, we proposed Reward-Free UCRL, a natural adaptive
approach to Reward-Free Exploration. The improved sample complexity of this (ε, δ)-PAC algorithm
is matching the existing lower bounds up to a factor H in both regimes of small ε and small δ.
We also proposed BPI-UCRL for the related Best Policy Identification problem that was the initial
focus of the work of Fiechter. Understanding the difference in complexity between RFE and BPI
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is an interesting open question, not fully solved in this paper. In particular, we will investigate in
future work whether it is possible to design algorithms that are simultaneously optimal in the small δ
and small ε regime for RFE or BPI. For BPI, we believe that one should look beyond the existing
worse-case lower bound for problem dependent guarantees.
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Appendix A. Additional Experiments

Here, we consider a GridWorld environment, whose state space is a set of discrete points in a
21 × 21 grid. In each state, an agent can choose four actions: left, right, up or down, and it has a
5% probability of moving to the wrong direction. The reward is equal to 1 in state (16, 16) and is
0 elsewhere. Figure 3(a) shows

∣∣∣V̂ ?
1 (s1; r)− V ?

1 (s1; r)
∣∣∣ as a function of n and Figure 3(b) shows

the number of visits to each state during the exploration phase. We observe the same behavior
as explained for the DoubleChain: RF-UCRL seeks to sample from less visited states, whereas
BPI-UCRL focuses its exploration near the rewarding state (16, 16).
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Figure 3: Comparison of several algorithms on the Gridworld MDP.
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Appendix B. High Probability Events

We recall that the event F introduced in the proof of Theorem 5 is the intersection of the two events

E =

{
∀t ∈ N, ∀h ∈ [H],∀(s, a),KL

(
p̂th(·|(s, a)), ph(·|(s, a))

)
≤ β(nth(s, a), δ)

nth(s, a)

}
,

Ecnt =

{
∀t ∈ N?, ∀h ∈ [H], ∀(s, a) ∈ S ×A : nth(s, a) ≥ 1

2
nth(s, a)− log

(
2SAH

δ

)}
.

We first recall some useful concentration inequalities. The first one is a time-uniform deviation
inequality for categorical random variable, proved by Jonsson et al. (2020).

Lemma 8 (Proposition 1 in Jonsson et al. (2020)) Let X1, X2, . . . , Xn, . . . be i.i.d. samples from
a distribution supported over {1, . . . ,m}, of probabilities given by p ∈ Σm, where Σm is the
probability simplex of dimension m− 1. We denote by p̂n the empirical vector of probabilities, i.e.
for all k ∈ {1, . . . ,m}

p̂n,k =
1

n

n∑
`=1

1(X` = k) .

For all p ∈ Σm, for all δ ∈ [0, 1],

P
(
∃n ∈ N∗, nKL(p̂n, p) > log(1/δ) + (m− 1) log

(
e(1 + n/(m− 1))

))
≤ δ .

The second is time-uniform deviation inequality for a sequence of Bernoulli random variables,
proved by Dann et al. (2017).

Lemma 9 (Lemma F.4 in Dann et al. (2017)) Let X1, X2, . . . , Xn, . . . be a sequence of Bernoulli
random variables adapted to the filtration (Ft)t∈N. If we denote pn = P(Xn = 1|Fn−1), then for
all δ ∈ (0, 1]

P

(
∃n ∈ N∗ :

n∑
`=1

X` <
n∑
`=1

p`/2− log(1/δ)

)
≤ δ .

We can now prove the following.

Lemma 10 For β(n, δ) = log
(
2SAH/δ

)
+ (S − 1) log

(
e(1 + n/(S − 1))

)
, it holds that P (E) ≥

1− δ
2 . Moreover, P (Ecnt) ≥ 1− δ

2 .

Proof Using Lemma 8 and a union bound yields

P (Ec) ≤
H∑
h=1

∑
(s,a)∈S×A

P
(
∃t ∈ N : nth(s, a) KL

(
p̂th(·|(s, a)), ph(·|(s, a))

)
≥ β(nth(s, a), δ)

)
≤

H∑
h=1

∑
(s,a)∈S×A

δ

2SAH
=
δ

2
.
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Then, using Lemma 9 and a union bound yields

P
((
Ecnt)c) ≤ H∑

h=1

∑
(s,a)∈S×A

P
(
∃t ∈ N : nth(s, a) ≤ 1

2
nth(s, a)− log

(
2SAH

δ

))

≤
H∑
h=1

∑
(s,a)∈S×A

P

(
∃t ∈ N :

t∑
i=1

1
(
(sih, a

i
h) = (s, a)

)
≤ 1

2

t∑
i=1

pih(s, a)− log

(
2SAH

δ

))

≤
H∑
h=1

∑
(s,a)∈S×A

δ

2SAH
=
δ

2
.

Appendix C. Proof of Auxiliary Lemmas for Theorem 5

C.1. From Values to Optimal Values

In this section, we prove the inclusion (5), namely that for all t{
∀π,

∣∣∣V̂ t,π
1 (s1; r)− V π

1 (s1; r)
∣∣∣ ≤ ε/2} ⊆ {V ?

1 (s1; r)− V
π̂?t,r
1 (s1; r) ≤ ε

}
.

We denote by π? the optimal policy in the MDP (P, r) and recall that π̂?t,r is the optimal policy in the
MDP (P̂t, r). One can write

V ?
1 (s1; r)− V

π̂?t,r
1 (s1; r) = V π?

1 (s1; r)− V̂ t,π?

1 (s1; r) + V̂ t,π?

1 (s1; r)− V̂
t,π̂?t,r
1 (s1; r)︸ ︷︷ ︸

≤0

+V̂
t,π̂?t,r
1 (s1; r)− V

π̂?t,r
1 (s1; r).

The middle term is non-negative as π̂?t,r is the optimal policy in the empirical MDP which yields

V ?
1 (s1; r)− V

π̂?t,r
1 (s1; r) ≤

∣∣∣V π?

1 (s1; r)− V̂ t,π?

1 (s1; r)
∣∣∣+
∣∣∣V̂ t,π̂?t,r

1 (s1; r)− V
π̂?t,r
1 (s1; r)

∣∣∣
and easily yields the inclusion above.

C.2. Proof of Lemma 6

By definition of Eth(s, a) and the greedy policy πt+1, if nth(s, a) > 0,

E
t
h(s, a) ≤ γσH−h

√
2β(nth(s, a), δ)

nth(s, a)
+ γ

∑
s′∈S

p̂th(s′|s, a)E
t
h+1(s

′, πt+1(s′)) . (7)

From the definition of the event E and Pinsker’s inequality, one can further upper bound
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∑
s′∈S

p̂th(s
′|s, a)Eth+1(s

′, πt+1(s′)) ≤
∑
s′∈S

pth(s
′|s, a)Eth+1(s

′, πt+1(s′)) +
∑
s′∈S

(
p̂th(s

′|s, a)− pth(s′|s, a)
)
E
t
h+1(s

′, πt+1(s′))

≤
∑
s′∈S

pth(s
′|s, a)Eth+1(s

′, πt+1(s′)) + ‖p̂th(·|s, a)− pth(·|s, a)‖1σH−h

≤ σH−h

√
2
β(nth(s, a), δ)

nth(s, a)
+
∑
s′∈S

pth(s
′|s, a)Eth+1(s

′, πt+1(s′)) ,

where we used that Eth+1(s
′, πt+1(s′)) ≤ γσH−h−1 ≤ σH−h. Plugging this in (7), upper bounding

γ by 1 and using 2
√

2 ≤ 3 yields

E
t
h(s, a) ≤ 3σH−h

√
β(nth(s, a), δ)

nth(s, a)
+ γ

∑
s′∈S

pth(s′|s, a)E
t
h+1(s

′, πt+1(s′))

The conclusion follows by noting that it also holds that

E
t
h(s, a) ≤ γσH−h ≤ 3σH−h ≤ 3σH−h + γ

∑
s′∈S

pth(s′|s, a)E
t
h+1(s

′, πt+1(s′))

and that the inequality is also true for nth(s, a) = 0 with the convention 1/0 = +∞.

C.3. Proof of Lemma 7

As the event Ecnt holds, we know that for all t < τ ,

nt`(s, a) ≥ 1

2
nt`(s, a)− βcnt(δ).

We now distinguish two cases. First, if βcnt(δ) ≤ 1
4n

t
`(s, a), then

β(nt`(s, a), δ)

nt`(s, a)
∧ 1 ≤ β(nt`(s, a), δ)

nt`(s, a)
≤ β

(
1
4n

t
`(s, a), δ

)
1
4n

t
`(s, a)

≤ 4
β
(
nt`(s, a), δ

)
nt`(s, a) ∨ 1

,

where we use that x 7→ β(x, δ)/x is non-increasing for x ≥ 1, x 7→ β(x, δ) is non-decreasing, and
βcnt(δ) ≥ 1.

If βcnt(δ) > 1
4n

t
`(s, a), simple algebra shows that

β(nt`(s, a), δ)

nt`(s, a)
∧ 1 ≤ 1 < 4

βcnt(δ)

nt`(s, a) ∨ 1
≤ 4

β(nt`(s, a), δ)

nt`(s, a) ∨ 1
,

where we use that 1 ≤ βcnt(δ) ≤ β(0, δ) and x 7→ β(x, δ) is non-decreasing.
In both cases, we have [

β(nt`(s, a), δ)

nt`(s, a)
∧ 1

]
≤ 4

β(nt`(s, a), δ)

nt`(s, a) ∨ 1
.
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Appendix D. An Algorithm for Best Policy Identification

In this section, we describe the BPI-UCRL algorithm and analyze its sample complexity. BPI-UCRL
aims at finding the optimal policy for a fixed reward function r, assumed to deterministic. Hence to
ease the notation we drop the dependency in r in the value and Q-value functions.

Unlike RF-UCRL, who builds upper bound on the estimation errors, BPI-UCRL relies on
confidence intervals on the Q-value function of a policy π. To define these confidence regions, we
first introduce a confidence region on the transition probabilities

Cth(s, a) =

{
p ∈ ΣS : KL

(
p̂th(·|s, a), p

)
≤ β(nth(s, a), δ)

nth(s, a)

}
and define, for each policy π the confidence regions after t episodes as

Q
t,π
h (s, a) = (rh + γ max

ph∈Cth(s,a)
phV

t,π
h+1)(s, a) Qt,π

h
(s, a) = (rh + γ min

p
h
∈Cth(s,a)

p
h
V t,π
h+1)(s, a)

V
t,π
h (s) = πQ

t,π
h (s) V t,π

h (s) = πQt,π
h

(s)

V
t,π
H+1(s) = 0 V t,π

H+1(s) = 0

pt,πh (s, a) ∈ argmax
p∈Cth(s,a)

phV
t,π
h+1(s, a) pt,π

h
(s, a) ∈ argmin

p∈Cth(s,a)
p
h
V t,π
h+1(s, a) ,

where we use the notation phf(s, a) = Es′∼ph(.|s,a) f(s′) for the expectation operator and πg(s) =
g
(
s, π(s)

)
for the application of a policy. We also define upper and lower confidence bounds on the

optimal value and Q-value functions as

Q
t
h(s, a) = (rh + γ max

ph∈Cth(s,a)
phV

t
h+1)(s, a) Qt

h
(s, a) = (rh + γ min

p
h
∈Cth(s,a)

p
h
V t
h+1)(s, a)

V
t
h(s) = max

a
Q
t
h(s, a) V t

h(s) = max
a

Qt
h
(s, a)

V
t
H+1(s) = 0 V t

H+1(s) = 0 (8)

pth(s, a) ∈ argmax
p∈Cth(s,a)

phV
t
h+1(s, a) pt

h
(s, a) ∈ argmin

p∈Cth(s,a)
p
h
V t
h+1(s, a)

πth(s, a) ∈ argmax
a

Q
t
h(s, a) πth(s, a) ∈ argmax

a
Qt
h
(s, a) .

By definition of the event E in Lemma 3, note that for all h and (s, a) the true transition probability
ph(·|s, a) belongs to Cth(s, a) for all t, hence one can easily prove by induction that for all π,
Qt,π
h

(s, a) ≤ Qπh(s, a) ≤ Qt,πh (s, a) and Qt
h
(s, a) ≤ Q?h(s, a) ≤ Qth(s, a).

BPI-UCRL We are now ready to present an algorithm for BPI based on the UCRL algorithm,
named BPI-UCRL. The complete procedure is described in Algorithm 2. It is defined by the three
rules:

• Sampling rule The policy πt+1 = πt acts greedily with respect to the upper-bounds on the
optimal Q-value functions.

• Stopping rule τ = inf
{
t ∈ N : V

t
1(s1)− V t

1(s1) ≤ ε
}

.
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• Recommendation rule The prediction π̂τ = πτ is the policy that acts greedily with respect to
the lower-bounds on the optimal Q-value functions.

BPI-UCRL bears some similarities with the online algorithms proposed by Even-Dar et al.
(2006) to identify the optimal policy in a discounted MDP. They also build (different) upper and
lower confidence bounds on Q?(s, a) for all (s, a) and output the greedy policy with respect to Q.
However the stopping rule waits until for all state s and all action a that has not been eliminated,
|Q(s, a) − Q(s, a)| < ε(1 − γ)/2, which may take a very long time if some states have a small
probability to be reached. In our case, only the confidence interval on the optimal value in state s1
needs to be small to trigger stopping. This different stopping rule is also due to a different objective:
find an optimal policy in state s1 (or when s1 is drawn from some distribution P0) as opposed to find
an optimal policy in all states. In our case, we are able to provide upper bound on the stopping rule,
which are not given by Even-Dar et al. (2006), who analyze the sample complexity of a different
algorithm that requires a generative model.

Algorithm 2 BPI-UCRL

Initialization: Set t = 1, initialize Qt, V t
, πt, Qt, V t, πt with (8) and πt+1

h = πt

while V t
1(s1)− V t

1(s1) ≤ ε/2 do
Observe the initial state st1 ∼ P0

for h = 1 : H do
Play ath ∼ πth(sth)
Observe the next state sth+1 ∼ ph(sth, a

t
h)

end
Compute Qt, V t

, πt, Qt, V t, πt according to (8) and set πt+1
h = πt

Update t = t+ 1
end
Return the policy π̂t−1

We now give an analysis of BPI-UCRL, which bears strong similarity with the proof of The-
orem 5 and establishes similar sample complexity guarantees as those proved for RF-UCRL: a
O
(
(SAH4/ε2) log(1/δ)

)
bound in a regime of small δ and a O

(
S2AH4/ε2

)
bound in a regime

of small ε. For stationary transitions, the dependency in H in these bounds can be improved to H3,
following the same steps as in Appendix E.

Theorem 11 BPI-UCRL using threshold

β(n, δ) = log
(
2SAH/δ

)
+ (S − 1) log

(
e(1 + n/(S − 1))

)
is (ε, δ)-correct for best policy identification. Moreover, with probability 1 − δ, the number of
trajectories τ collected satisfy

τ ≤ CHSA
ε2

[
log

(
2SAH

δ

)
+ 2(S−1)log

(
CHSA
ε2

(
log

(
2SAH

δ

)
+ (S−1)

(√
e+

√
e

S − 1

)))
+ (S−1)

]
where CH = 64(1 +

√
2)2σ4H .
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Proof The first part of the theorem is a direct consequence of the correctness of the confidence
bounds. Indeed on the event E if the algorithm stops at time τ , then we know

V
πτ

1 (s1) ≥ V τ,πτ

1 (s1) = V τ
1(s1) ≥ V τ

1(s1)− ε ≥ V ?
1 (s1)− ε .

The fact that the event E holds with probability at least 1− δ (see Lemma 10) allows us to conclude
that BPI-UCRL is (ε, δ)-correct.

The proof of upper bounds on the complexity is very close to a classical regret proof. Fix some
T < τ . Then we know that for all t ≤ T it holds

ε ≤ V t
1(s1)− V t

1(s1) ≤ V
t
1(s1)− V t,πt

1 (s1) .

On the event F for a state action (s, a), using the holder inequality, the fact that V t,πt

h+1(s
′) ≤ σH−h

and V t
h+1(s

′) ≤ σH−h and the Pinsker’s inequality we have

Q
t
h(s, a)−Qt,πt

h
(s, a) = γ(pth − ph)V

t
h+1(s, a) + γ(ph − pt,πh )V t,πt

h+1(s, a) + γph(V
t
h+1 − V t,πt

h+1)(s, a)

≤ ‖pth(·|s, a)− ph(·|s, a)‖1σH−h + ‖pth(·|s, a)− pt,πt
h

(·|s, a)‖1σH−h
+ γph(V

t
h+1 − V t,πt

h+1)(s, a)

≤ 4σH−h

[√
β(nth(s, a), δ)

nth(s, a)
∧ 1

]
+ γph(V

t
h+1 − V t,πt

h+1)(s, a) .

Thus, using that πt = πt+1 and by definition that V t
h(s) = πt+1

h Q
t
h(s) and V t,πt

h (s) = πt+1
h Q

t,πt

h (s),
we obtain a recursive formula for the difference of upper and lower bound on the value functions,
which may be viewed as a counterpart of Lemma 6 in the proof of Theorem 5:

V
t
h(s)− V t,πt

h (s) ≤ 4σH−h

[√
β(nth(s, a), δ)

nth(s, a)
∧ 1

]
+ γph(V

t
h+1 − V t,πt

h+1)(s, a)

Recalling that pth(s, a) denotes the probability that the state action pair (s, a) is visited at step h
under the policy πt used in the t-th episode, we can prove by induction with the previous formula
that for all t < τ ,

ε ≤ V t
1(s)− V t,πt

1 (s) ≤ 4

H∑
h=1

γh−1σH−h
∑
s,a

pt+1
h (s, a)

[√
β(nth(s, a), δ)

nth(s, a)
∧ 1

]

Thus summing for all 0 ≤ t ≤ T < τ leads to

(T + 1)ε ≤
T∑
t=0

4

H∑
h=1

γh−1σH−h
∑
s,a

pt+1
h (s, a)

[√
β(nth(s, a), δ)

nth(s, a)
∧ 1

]
.

We can then conclude exactly as in the proof of Theorem 5, that is use Lemma 7 to relate the
counts nth(s, a) to the pseudo-counts nth(s, a) to upper bound the sample complexity on the event
F = E ∩ Ecnt, which holds with probability at least 1− δ.
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Appendix E. Analysis in the Stationary Case

In the stationary case, the transition kernel doesn’t depend on time, that is ph(s′|s, a) = p(s′|s, a) for
all h ∈ [H]. In that case, the upper bounds used in the algorithms can take into account the number
of visits to (s, a) in any step, nt(s, a) =

∑
h∈[H] n

t
h(s, a). More precisely, in that case, the Eth(s, a)

are replaced by the tighter upper bounds

Ẽth(s, a) = min

{
γσH−h; γσH−h

√
2β(nt(s, a), δ)

nt(s, a)
+ γ

∑
s′

p̂t(s′|s, a) max
b
Ẽth+1(s

′, b)

}

where p̂t(s′|s, a) =
∑t
i=1

∑H
h=1 1(sih=s,a

i
h=a,s

i
h+1=s

′)
nt(s,a) .

Letting Ẽ be the event

Ẽ =

(
∀t ∈ N∗,∀(s, a) ∈ S ×A, ‖p̂t(·|s, a)− p(·|s, a)‖1 ≤

√
2β(nt(s, a), δ)

nt(s, a)

)
,

with Pinsker’s inequality and Lemma 8, one can prove that P(Ẽ) ≥ 1− δ/2 for the choice β(n, δ) =
log
(
2SA/δ

)
+(S−1) log

(
e(1+n/(S−1))

)
. RF-UCRL based on the alternative bounds Ẽth(s, a)

is correct on Ẽ , and we can upper bound its sample complexity on the event Ẽ ∩ Ecnt following the
same approach as before. Letting

q̃th =
∑
(s,a)

pt+1
h (s, a)Ẽth(s, a),

one can establish a similar inductive relationship as that of Lemma 6 which yields

q̃t1 ≤ 3
H∑
h=1

∑
(s,a)

γh−1σH−hp
t+1
h (s, a)

[√
β(nt(s, a), δ)

nt(s, a)
∧ 1

]
.

Hence, for every T < τ , as q̃t1 ≥ ε/2 for all t ≤ T , one can write

ε(T + 1) ≤ 6
T∑
t=0

H∑
h=1

∑
(s,a)

γh−1σH−hp
t+1
h (s, a)

[√
β(nt(s, a), δ)

nt(s, a)
∧ 1

]

≤ 6σH
∑
(s,a)

T∑
t=0

H∑
h=1

pt+1
h (s, a)

[√
β(nt(s, a), δ)

nt(s, a)
∧ 1

]

Letting nt(s, a) =
∑H

h=1

∑t
i=1 p

i
h(s, a), observe that

∑H
h=1 p

t+1
h (s, a) = nt+1(s, a)−nt(s, a) and

a similar reasoning than that in the proof of Lemma 7 yields

ε(T + 1) ≤ 12σH
∑
(s,a)

T∑
t=0

(
nt+1(s, a)− nt(s, a)

)√β(nt(s, a), δ)

nt(s, a) ∨ 1
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Using Lemma 19 in Jaksch et al. (2010) and the Cauchy-Schwarz inequality yields

ε(T + 1) ≤ 12(1 +
√

2)σH
∑
(s,a)

√
nT+1(s, a)

√
β(nT+1(s, a), δ)

≤ 12(1 +
√

2)σH
√
β(H(T + 1), δ)

√
SA

√∑
s,a

nT+1(s, a)

= 12(1 +
√

2)σH
√
β(H(T + 1), δ)

√
SA
√
H(T + 1).

Hence, τ is finite and satisfies

τ ≤ CSAH
3

ε2
β(Hτ, δ)

for C = 144(1 +
√

2)2. By Lemma 15, it follows that

τ ≤ CSAH
3

ε2

[
log

(
2SA

δ

)
+ 2(S−1)log

(
CSAH3

√
H

ε2

(
log

(
2SA

δ

)
+ (S−1)

(
√
e+

√
He

S − 1

)))
+ (S−1)

]
.

Appendix F. Conversion of UCB-VI to Best Policy Identification

We present here an alternative conversion from UCB-VI to a (ε, δ)-PAC BPI algorithm, which
improves over the one discussed by Jin et al. (2018) and presented in Section 5.

Let A(ε) be an algorithm that after a deterministic number Kε of trajectories starting from s0
outputs a policy π̂ satisfying

P
(
V ?(s0)− V π̂(s0) ≥ ε

)
≤ 1

2
.

From Jin et al. (2018), UCB-VI run for Kε = O
(
H2SA
ε2

)
and outputing a policy uniformly at

random among the one used satisfies this property.
Now consider the following algorithm, that depends on three parameters, ε0, M and N :

1. Run M independent instances of A(ε0) and denote by π1, . . . , πM the M policies returned by
these algorithms.

2. For each m ∈ [M ], generate N trajectories starting from s0 under the policy πm and define
V̂m to be the average cumulative return of those trajectories.

3. Output the policy π̂ = πm̂ where m̂ = argmax
m=1,...,M

V̂m.

Proposition 12 Choosing ε0, M and N = H2

2(ε′)2 log
(
M
δ′

)
with

ε0 + 2ε′ ≤ ε and δ′ +

(
1

2

)M
≤ δ,

the above strategy outputs an ε-optimal policy with probability larger than 1− δ.
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Clearly, the (deterministic) sample complexity of this algorithm is MKε +MN , hence with the
choices in Proposition 12, the sample complexity becomes

O
(
H2SA

ε2
log

(
1

δ

)
+
H2

ε2
log2

(
1

δ

))
.

Proof First, it is easy to upper bound the probability that the best of the M policies returned is ε0
sub-optimal, using that the different instances are independent.

Lemma 13 Letting m̃ = argmax
m∈[M ]

V πm(s0), we have P (V ?(s0)− V πm̃(s0) ≥ ε0) ≤
(
1
2

)M .

Of course, the algorithm does not know the values exactly and does not have access to πm̃.
However, the estimated values are not too far from these values if N is chosen carefully. More
precisely, Hoeffding’s inequality and a union bound tell us the following.

Lemma 14 If N = H2

2(ε′)2 log
(
M
δ′

)
then P

(
∃m ∈ [M ] : |V̂m − V π̂m(s0)| ≥ ε′

)
≤ δ′.

Using the above lemmas, the event

E =
(
∀m ∈ [M ], |V̂m − V π̂m(s0)| ≤ ε′

)
∩ (V ?(s0)− V πm̃(s0) ≤ ε0)

is of probability at least 1 − δ′ −
(
1
2

)M . Moreover, on the event E , letting m̂ = argmax
m∈M

V̂m and

π̂ = πm̂ the policy returned by algorithm, it holds that

V ?(s0)− V π̂(s0) = V ?(s0)− V πm̃(s0) + V πm̃(s0)− V̂m̃ + V̂m̃ − V̂m̂︸ ︷︷ ︸
≤0

+V̂m̂ − V πm̂(s0)

≤ ε0 + 2ε′.

The conditions stated in Proposition 12 guarantee that P(E) ≥ 1−δ and that on E , V ?(s0)−V π̂(s0) ≤
ε, which proves Proposition 12.

Appendix G. Technical Lemmas

Lemma 15 Let n ≥ 1 and a, b, c, d > 0. If n∆2 ≤ a+ b log(c+ dn) then

n ≤ 1

∆2

[
a+ b log

(
c+

d

∆4
(a+ b(

√
c+
√
d))2

)]
.

Proof Since log(x) ≤ √x and
√
x+ y ≤ √x+

√
y for all x, y > 0, we have

n∆2 ≤ a+ b
√
c+ dn ≤ a+ b

√
c+ b

√
d
√
n

=⇒ √
n∆2 ≤ a+ b

√
c√

n
+ b
√
d ≤ a+ b(

√
c+
√
d)

=⇒ n ≤ 1

∆4

(
a+ b(

√
c+
√
d)
)2
.

26



ADAPTIVE REWARD-FREE EXPLORATION

Hence,

n∆2 ≤ a+ b log(c+ dn)

=⇒ n∆2 ≤ a+ b log(c+ dn) and n ≤ 1

∆4

(
a+ b(

√
c+
√
d)
)2

=⇒ n∆2 ≤ a+ b log

(
c+

d

∆4

(
a+ b(

√
c+
√
d)
)2)

.

We recall for completeness Lemma 19 in Jaksch et al. (2010) which is used in our sample
complexity analysis.

Lemma 16 (Lemma 19 in Jaksch et al. (2010)) For any sequence of numbers z1, . . . , zn with 0 ≤
zk ≤ Zk−1 = max

[
1;
∑k−1

i=1 zi

]
n∑
k=1

zk√
Zk−1

≤
(

1 +
√

2
)√

Zn .
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