
Proceedings of Machine Learning Research vol 132:1–19, 2021 32nd International Conference on Algorithmic Learning Theory

Learning with Comparison Feedback:
Online Estimation of Sample Statistics

Michela Meister MEISTER@CS.CORNELL.EDU

Sloan Nietert NIETERT@CS.CORNELL.EDU

Cornell University

Editors: Vitaly Feldman, Katrina Ligett and Sivan Sabato

Abstract
We study an online version of the noisy binary search problem where feedback is generated by
a non-stochastic adversary rather than perturbed by random noise. We reframe this as maintain-
ing an accurate estimate for the median of an adversarial sequence of integers, x1, x2, . . . , in a
model where each number xt can only be accessed through a single threshold query of the form
1(xt ≤ qt). In this online comparison feedback model, we explore estimation of general sample
statistics, providing robust algorithms for median, CDF, and mean estimation with nearly matching
lower bounds. We conclude with several high-dimensional generalizations.
Keywords: online estimation, noisy binary search, partial feedback, pure exploration

1. Introduction

Imagine that we seek to understand an unknown real distribution D but are unable to sample from
D directly. Instead, we are allowed comparison queries of the form: is a sample x ∼ D less
than q? This partial feedback models situations when exact values contain sensitive information
or are expensive to obtain. For example, survey participants might more willingly or accurately
answer yes-or-no questions about personal details like health habits or income compared to similar
questions asking for quantitative values. Likewise, customers frequently answer queries of the form
“is this item worth at least $q to me” (by making purchases) while being unaware of their exact
valuation of the item.

In this setting, perhaps the most natural statistic ofD to estimate is its median. LettingX denote
a random variable with distribution D, the feedback we receive for query q can be expressed as
Aq = 1(X ≤ q). Note that each Aq is a Bernoulli random variable with expectation E[Aq] equal to
Pr(X ≤ q) = FX(q), i.e., the cdf of X evaluated at q. Thus, we have a family of random variables
Aq with means increasing in q from 0 to 1, and finding the median of D amounts to searching for q
such that E[Aq] ≈ 1/2. The discrete case of n Bernoulli random variables was examined as “noisy
binary search” by Karp and Kleinberg (2007), who provided two algorithms to tackle this problem
which both require O(log n/ε2) queries for a natural measure of error ε.

1.1. Problem Description

We now relax this distributional assumption for the samples, considering the following online ex-
tension of the above problem. Suppose that our samples, now taken to be integers between 1 and
n + 1, are generated by an adversary rather than taken i.i.d. from a distribution. At each time t,
the adversary produces a sample xt ∈ [n + 1], and the algorithm A generates a query qt ∈ [n]
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— each ignorant of the other’s choice1. Then, A receives feedback 1(xt ≤ qt) and produces a
median estimate m̂t of x1, . . . , xt, while qt is revealed to the adversary. We consider both oblivious
and adaptive adversaries, where an oblivious adversary commits to the sequence x1, x2, . . . at the
start, while an adaptive adversary may select xt based on the history of the prior t − 1 time steps.
Let Ft defined by Ft(i) = 1

t

∑t
τ=1 1(xτ ≤ i) be the empirical CDF of the sequence x1, . . . , xt,

where Ft(0) = 0. We define the median estimation error of the algorithm at time t as in (Karp and
Kleinberg, 2007) by

E(t) = E(m̂t) = min{ε ≥ 0 | [Ft(m̂t − 1), Ft(m̂t)] ∩ [1/2− ε, 1/2 + ε] 6= ∅} (1)

= dist([Ft(m̂t − 1), Ft(m̂t)], 1/2).

An estimate m̂ is called ε-good if E(m̂) ≤ ε.
We examine the capacity of an algorithm to guarantee low error E(T ) at some evaluation time

T . Both the algorithm and adversary can take either fixed-horizon or anytime forms; a fixed-horizon
agent is provided the evaluation time T in advance, whereas an anytime agent must be prepared to
continue indefinitely without knowledge of T . We always assume a stronger, fixed-horizon adver-
sary, since this is no obstacle to our upper bounds and is proven to be without loss of generality for
lower bounds in Section 2. To quantify an algorithm’s performance against a class of adversaries
B, we more formally write E(T,A,B) to denote the random error of algorithmA at time T against
adversary B ∈ B, where T is given as an initial parameter to B (and A in the fixed-horizon case).
We then define the query complexity of A against B to be the minimum T0 = T0(n, ε) such that,
for all T > T0 and B ∈ B, E(T,A,B) ≤ ε with probability at least 3/42.

Figure 1: Visualization of median estimates m̂ with E(m̂) ≤ ε

We also consider online estimation of the following sample statistics:

• arbitrary quantile estimation, where A maintains an estimate m̂t of the empirical τ -quantile,
for τ ∈ [0, 1], and 1/2 is substituted with τ in (1);

1. We omit n+ 1 from the query set because 1(xt ≤ n+ 1) ≡ 1.
2. We demonstrate in Lemma D that, for the algorithms we present, this confidence probability can be boosted from

3/4 to 1− δ at the cost of a multiplicative factor of log(1/δ), using a median of medians approach.
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• full CDF estimation, where A maintains an estimate F̂t : [n] → [0, 1] of the empirical CDF
and error E(t) is defined as the Kolmogorov–Smirnov distance

‖F̂t − Ft‖∞ := sup
i∈[n]
|F̂t(i)− Ft(i)|;

• mean estimation, where A maintains a mean estimate µ̂t of the empirical mean µt and error
is defined as E(t) = |µ̂t − µt|/n.

1.2. Summary of Contributions

After establishing some preliminaries, Section 3 provides a randomized algorithm for online CDF
estimation with anytime query complexity O(n log(n)/ε2) against even adaptive adversaries. This
procedure is easily modified to obtain a median estimation algorithm with the same guarantees.
Next, we show that both estimation algorithms have essentially optimal query complexities in gen-
eral, with information theoretic lower bounds. We further observe that randomness is essential in
the adversarial setting, proving that any deterministic median estimation algorithm incurs constant
error. In Section 4, we explore the regime of ε = O(1), where potential improvement in still possi-
ble, providing an algorithm for stochastic CDF estimation with query complexity logarithmic in n
that is not addressed by our current lower bounds. Section 5 examines the simpler problem of mean
estimation, giving an algorithm with anytime query complexity 1/ε2 against even an adaptive adver-
sary. Further, we show that no estimation algorithm can obtain lower mean squared error. Finally,
we propose some intriguing generalizations of this online comparison feedback model, considering
graphs, higher-dimensional spaces, and online convex programming.

1.3. Related Work

A generalization of noisy binary search is the “noisy twenty questions” game proposed by Rényi
(1961), where the goal is to identify an element in a set from noisy or otherwise faulty responses to
comparison queries. Numerous variations of this problem, and the noisy binary search problem, are
surveyed by Pelc (2002).

Our work is inspired by the particular noisy binary search problem explored by Karp and
Kleinberg (2007), where there is a sequence of n Bernoulli random variables with unknown, non-
decreasing means p1, . . . , pn. At each time step, an algorithm samples from one of the random
variables, and the objective is to find the index of the random variable with mean closest to 1/2.
The naive solution is essentially binary search, where the algorithm draws sufficient samples from
pn/2 to determine whether pn/2 < 1/2, and then recurses on the appropriate interval. This sim-
ple procedure requires O(log(n) log log(n)/ε2) samples in expectation, and Karp and Kleinberg
give two more efficient algorithms, one via multiplicative weights and one via backtracking binary
search, which each require only O(log(n)/ε2) samples.

Later work by Ben-Or and Hassidim (2008) and Braverman and Mossel (2008) explores the
related problems of searching and sorting when comparisons are faulty with some fixed probability.
Additionally, Nowak (2009) extends the search problem to the so-called generalized binary search
setting, where feedback is of the form h(qt) plus noise for some h in a hypothesis class H, and the
goal is to determine h with as few queries as possible.

In general, one can draw parallels between our setting and various pure exploration problems
explored within the multi-armed bandit and experimental design communities. Particularly relevant
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is work on so-called monotone thresholding bandits explored by Garivier et al. (2017), where bandit
arms have increasing means and one must identify that with mean closest to a desired threshold. Our
setup can be viewed within this framework, as well as that of Karp and Kleinberg (2007), although
we reject the stochastic assumptions for rewards/samples. Instead we suppose that an adversary
selects monotone {0, 1}-valued reward/sample realizations at each time step, and the algorithm is
still restricted to viewing only the realization for its selected arm/query.

Computation with noisy comparison feedback has also been studied on decision trees and in
the context of searching on a binary tree by Feige et al. (1994). Emamjomeh-Zadeh et al. (2016)
examine the query complexity of noisy search on graphs, where the goal is to identify a target
vertex v. In this model, an agent is allowed to make a vertex query q at each time step, and if q 6= v
the feedback received is a neighbor of q along the shortest path to v, which may be perturbed by
some noise. Working with this same model, Dereniowski et al. (2020) improve the computational
complexity of selecting a vertex to query by approximating the graph median, an object that we
briefly discuss in Section 6.

2. Preliminaries

Before presenting the main results, we introduce two useful lemmas which simplify our exploration
of the online comparison feedback landscape, with proofs reserved for Appendix A. First, we estab-
lish that arbitrary quantile estimation is no harder than median estimation, in much the same way as
Karp and Kleinberg (2007).

Lemma 1 (Reduction to τ = 1/2) Let A be an online median estimation algorithm with query
complexity T0(n, ε) against some class of adversaries in the comparison feedback model. Then,
for any τ ∈ [0, 1], there exists a modified algorithm A′ which maintains a τ -quantile estimate with
query complexity max{T0(n, ε/2),Θ(1/ε2)} in the same setting.

Next, we justify our restriction to fixed-horizon adversaries, demonstrating that they can be
modified to provide similar lower bounds without advanced knowledge of the time horizon.

Lemma 2 (Reduction to Fixed-Horizon Adversaries) Let B be a fixed-horizon online adversary
which forces an online median, CDF, or mean estimation algorithm A to admit error E(T ) > ε
with probability greater than 1/4 for an infinite sequence of time horizons T beginning at T0. Then,
there exists a modified anytime adversary B′ which does the same (where the sequence of horizons,
while still beginning at T0, may be distinct from that of B).

3. Online CDF and Median Estimation

We first examine online estimation of CDFs and medians within our model, providing both algo-
rithms and lower bounds.

3.1. Upper Bounds

The presented algorithms succeed against even an adaptive adversary and have error bounds guar-
anteed to hold at every round, not just at the time horizon. Their behavior is quite simple – both
query uniformly at random – though we pay for this with a linear dependence on n.

4



ONLINE ESTIMATION OF SAMPLE STATISTICS WITH COMPARISON FEEDBACK

As stated, our algorithm CDFEST generates i.i.d. queries q1, q2, . . . sampled uniformly from
[n]. At each time t, with cumulative feedback 1(x1 ≤ q1), . . . , 1(xt ≤ qt), CDFEST computes the
CDF estimate F̂t defined by

F̂t(i) =
n

t

∑
τ∈[t]
qτ=i

1(xτ ≤ qτ ) =
n

t

∑
τ∈[t]
qτ=i

1(xτ ≤ i), ∀i ∈ [n], (2)

with F̂t(n + 1) = 1. Recall that we defined query complexity for CDF estimation in terms of the
Kolmogorov-Smirnov distance ‖F̂t − Ft‖∞ = supi∈[n+1] |F̂t(i)− Ft(i)|.

Theorem 3 In the online comparison feedback model, CDFEST achieves anytime query complexity
O(n log(n)/ε2) against even an adaptive adversary. Furthermore, at each time t, the CDF estimate
F̂t returned by CDFEST satisfies E(F̂t(i)− Ft(i))2 ≤ n/t for all i ∈ [n].

Proof For τ = 1, . . . , t, let yτ (i) = 1(xτ ≤ i) denote the threshold function associated with xτ ,
and let ŷτ denote the estimate of yτ defined by ŷτ (i) = n1(qτ = i)1(xτ ≤ i), with E[ŷτ | yτ ] = yτ .
Observe that

Var(ŷτ (i) | xτ ) = n2 1(xτ ≤ i) Var(1(qτ = i)) = (n− 1) 1(xτ ≤ i).

We can now rewrite the algorithm’s CDF estimate as F̂t = 1
t

∑t
τ=1 ŷτ , with E[F̂t | x1, . . . , xt] =

1
t

∑t
τ=1 yτ = Ft. Since the estimate is correct in expectation, we have

E(F̂t(i)− Ft(i))2 =
1

t2

t∑
τ=1

E [Var(ŷτ (i) | xτ )] =
n− 1

t
Ft(i) ≤

n

t

for each i ∈ [n]. Furthermore, using Bernstein’s inequality (or, in the case of an adaptive adversary,
its martingale variant proved in Freedman (1975)), we obtain for any fixed i ∈ [n] that

Pr
[∣∣∣F̂t(i)− Ft(i)∣∣∣ > ε

]
≤ 2 exp

(
− t2ε2

2(n− 1)tFt(i) + 2
3ntε

)
≤ 2 exp

(
− tε

2

3n

)
,

which is less than 1/(4n) for t ≥ 3n log(8n)/ε2. Taking a union bound over i gives the desired
conclusion.

Remark 4 Assuming that queries are made uniformly at random, it is simple to verify that ŷτ is
the unique unbiased estimate of yτ computable from the feedback at time τ .

With this CDF estimate, the algorithm can extract a median estimate in the natural way, setting
m̂t = min{i : F̂t(i) > 1/2}. Noting that

E(m̂t) ≤ dist([F̂t(m̂t − 1), F̂t(m̂t)], 1/2) + ‖F̂t − Ft‖∞ = ‖F̂t − Ft‖∞,

we obtain an immediate corollary.

Corollary 5 The median estimate m̂t obtained from CDFEST achieves anytime query complexity
O(n log(n)/ε2) against even an adaptive adversary.

Given that these algorithms fail to incorporate the information feedback 1(xt ≤ qt) reveals
about other potential queries, the lower bounds which follow are somewhat surprising.
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3.2. Lower Bounds

Although the performance of our algorithm for online median estimation is significantly worse than
its stochastic counterpart, we show now that this degradation cannot be avoided in general. Our
result builds upon a simpler lower bound for CDF estimation, matching the upper bound up to
constant factors, by exploiting behavior that emerges in a regime of small ε.

Theorem 6 (Online CDF Estimation Lower Bound) In the online comparison feedback model,
no CDF estimation algorithm admits fixed-horizon query complexity o(n log(n)/ε2) against even a
stochastic adversary.

Proof For any ε ≤ 1/(n + 1), consider the family of distributions Fε indexed by σ ∈ {−1,+1}n
admitting CDFs of the form

Fσ(i) =
i

n+ 1
+ σε, ∀i ∈ [n], Fσ(n+ 1) = 1,

where the bound on ε guarantees that these CDFs are monotonic and hence well-defined. Next,
we observe that simultaneously determining the biases of n independent coins with probability at
least 2/3, where coin i has bias i/(n + 1) ± ε, requires Ω(n log(n)/ε2) samples by standard KL
divergence arguments. Hopefully, the direction of the reduction is now clear.

Given such a testing setup, with unknown coin biases given by σ ∈ {−1,+1}n, and an on-
line CDF estimation algorithm A, we can return a flip of coin i as feedback whenever A queries i.
By design, this feedback is indistinguishable from that given by the stochastic adversary which
samples from the distribution with CDF Fσ. Thus, at a time horizon T , if we determine the
bias of coin i by rounding F̂T (i) to the closest of i/(n + 1) ± ε, all of our determinations are
correct when ‖F̂T − Fσ‖∞ < ε. If A has query complexity T0(n, ε) = o(n log(n)/ε2), then
setting T = max{T0(n, ε/3), 15/ε2} = o(n log(n)/ε2) at the start and applying the Dvoret-
zky–Kiefer–Wolfowitz inequality (see Appendix Claim 17) gives

‖F̂T − Fσ‖∞ ≤ ‖F̂T − FT ‖∞ + ‖F̂T − Fσ‖∞ ≤ ε/3 + ε/3 < ε

with probability at least 2/3, violating the Ω(n log(n)/ε2) testing lower bound.

Remark 7 While this hardness result does not apply if we exclude the ε = O(1/n) regime, it can
be extended slightly if we force the algorithm to learn O(1/ε) CDF values instead – a more refined
lower bound of Ω(min{n, 1/ε}/ε2) is achievable with minor changes.

Next, we construct a two-phase adversary which essentially forces any median estimation al-
gorithm to perform full CDF estimation, implying a similar lower bound that matches the upper
bound up to a log(n) factor. The precise details require some care, so we leave a full proof for the
Appendix B.

Theorem 8 (Online Median Estimation Lower Bound) In the online comparison feedback model,
no median estimation algorithm admits fixed-horizon query complexity o(n/ε2) against even an
oblivious adversary.
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Proof Sketch At a high level, we show that online median estimation algorithms must simulta-
neously learn many quantiles (rather than just the median), which implies the strong lower bound.
For a fixed time horizon T , we consider an oblivious adversary which returns samples from a dis-
tribution D for the first T/2 steps. This distribution is selected from a family such that learning
ε-good estimates for many of its quantiles from 0 to 1, in increments of 1/n, mirrors the situation
in Theorem 6 and requires Ω(n/ε2) samples. We will again require ε = O(1/n) so that this family
is well-defined.

For the remaining T/2 steps, the adversary produces k samples equal to 1 and T/2− k equal to
n for some random k between 1 and T/2. Practically, this means that the algorithm’s final median
estimation error is actually its estimation error for a random quantile of the samples produced during
the first phase. Hence, if the algorithm performs well, it has actually learned many of the said
quantiles, and the previously mentioned hardness result kicks in. There are slight nuances expanded
upon in the full proof which require that T be sufficiently large (but still much smaller than n/ε2).
However, because query complexity guarantees hold for all T greater than some T0, this does not
present an obstacle to proving the hardness result.

Since these lower bounds only pertain to the ε = O(1/n) regime, it is reasonable to verify that
algorithms like CDFEST cannot perform better for larger ε. A simple argument reveals that a lower
bound of Ω(n) is unavoidable for all algorithms with the same querying behavior, for all ε.

Claim 9 In the online comparison feedback model, any median estimation algorithm which pro-
duces i.i.d. queries sampled uniformly from [n] must have fixed-horizon query complexity Ω(n)
against even a stochastic adversary.

Proof Consider an adversary which decides to always return xt = 1 or xt = 2 based on a fair
coin flip before the rounds begin. Since the adversary’s samples are constant, producing an ε-good
median (for any non-trivial ε) is the same as correctly guessing 1 or 2. However, it is impossible for
the algorithm to guess correctly with probability greater than 1/2 unless it queries qt = 1 for some
t. The probability that the algorithm fails to query 1 after T rounds is(

1− 1

n

)T
≥ exp

(
−T 1/n

1− 1/n

)
= exp

(
− T

n− 1

)
,

since 1 − x ≥ exp(−x/(1 − x)) for x < 1. Bounding this error probability below 1/4 requires
T ≥ T0 = log(4)(n− 1).

3.3. A Lower Bound for Deterministic Algorithms

We now show that any deterministic median estimation algorithm (and hence any such CDF esti-
mation algorithm) incurs constant error in the non-stochastic setting, motivating our examination of
randomized algorithms in the previous section.

Proposition 10 In the online comparison feedback model, no deterministic median estimation al-
gorithm admits fixed-horizon error o(1) against oblivious adversaries.

Fixing a deterministic median estimation algorithm A, we will construct two oblivious adver-
saries, each represented as a sequence of elements in [n], such that one forces A to admit constant
error. For ease of exposition, these adversaries are presented as adaptive, but they can easily be
converted into oblivious adversaries via simulation of A, due to its deterministic nature.
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Proof Sketch Suppose there are two adversarial sequences L = l1, . . . , lT and R = r1, . . . , rT ,
such that the feedbackA receives from L is identical to the feedback it receives from R. That is, for
all t ∈ [T ], 1(lt ≤ qt) = 1(rt ≤ qt). Because A cannot distinguish between the two, it must output
the same median estimate m̂ against both adversaries. With this in mind, we construct L and R
so that no element is a 1/32-good median estimate for both sequences, thereby forcing A to admit
constant error against at least one sequence. For ease of exposition, we assume that n is even.

To construct L and R with identical feedback, we must choose lt and rt at each step t so that
either both are at most qt, or both are strictly greater than qt. This is only feasible with knowledge
of qt; however, because A is deterministic, we can compute qt before selecting lt and rt by simu-
lating A on the prior history through time t − 1. Having precomputed qt, we consider the two sets
{1, . . . , qt} and {qt+1, . . . , n}, and, selecting the set with larger cardinality, we assign lt as its min-
imum element and rt as its maximum element. (In the case that qt = n/2, we select {1, . . . , n/2}.)
Observe that any two elements belonging to the same set have identical feedback with respect to qt,
so 1(lt ≤ qt) = 1(rt ≤ qt). Additionally, since the cardinality of the larger set is always at least
n/2, the support of L lies entirely in {1, . . . , n/2}, the “left half” of the support, and the support
of R lies entirely in {n/2, . . . , n}, the “right half” of the support. Thus, the only element that is
in both the support of L and the support of R is n/2. Moreover, any estimate outside the support
of a sequence incurs error 1/2, so A must output m̂ = n/2 or suffer error 1/2 for one of the two
adversaries. We address the remaining issue of support overlap at n/2 in Appendix C.

4. Stochastic CDF Estimation

The linear lower bounds in Section 3 require that ε = O(1/n) in order for the distributions employed
by the adversary to be well-defined. An open question is whether similar linear lower bounds exist
in the case that ε is constant. We examine CDF estimation for constant ε in the stochastic setting,
where the samples x1, . . . , xt are drawn i.i.d. from some fixed distributionD on [n] with CDFF . Via
simple reductions to noisy binary search, we show a logarithmic upper bound for CDF estimation
in the stochastic setting. This suggests that an adversary such as the one presented in Theorem 6
cannot induce a linear lower bound for CDF estimation in the constant-ε regime; the lower bound
may truly be sub-linear, or perhaps a more adaptive adversary is required.

For ease of exposition, we adjust our benchmark in the stochastic setting to define error with
respect to the population CDF F , instead of the empirical CDF as in Section 3. A CDF estimate F̂
is evaluated with respect to the error

E(F̂ ) = ‖F̂ − F‖∞.

A key component in our algorithm for stochastic CDF estimation is stochastic quantile esti-
mation, which reduces to the noisy binary search problem studied by Karp and Kleinberg (2007),
rephrased below.

Theorem 11 (Noisy Binary Search, rephrased Karp and Kleinberg (2007)) Suppose there are
n Bernoulli random variables with unknown, non-decreasing means p1 ≤ · · · ≤ pn. Additionally,
define p0 = 0 and pn+1 = 1. At each time step t, an algorithm chooses an index i ∈ [n] and
observes yt ∼ Ber(pi). For any τ ∈ [0, 1], there is an algorithm that makes O(log(n)) queries
in expectation and outputs an estimate m such that dist([pm, pm+1], τ) ≤ 1/8 with probability at
least 3/4.
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Combining noisy binary search with a simple confidence boosting procedure, we can estimate
any τ -quantile with a logarithmic number of queries.

Lemma 12 For any τ ∈ [0, 1], there is an algorithmA(τ) which makes at most O(log(n)) queries
in the stochastic comparison feedback model and outputs an estimate wτ ∈ [n] such that

dist([F (wτ − 1), F (wτ )], τ ]) ≤ 1/8

with probability at least .99.

Proof As described in Section 1, stochastic median estimation reduces to the noisy binary search
problem, because Aq = 1(x ≤ q) is a Bernoulli random variable with mean E[Aq] = F (q).
So querying an element q is equivalent to flipping a coin with bias F (q), and since the CDF is a
monotone increasing function, F (1) ≤ · · · ≤ F (n). While the O(log(n)) bound on the number of
queries made by the algorithm in Theorem 11 is only in expectation, we can convert this algorithm
into a deterministic algorithm with the same probabilistic guarantees, by running it for a constant
number of trials and halting each trial before O(log(n)) steps. By a median-of-medians procedure
similar to Lemma 21, we can boost the confidence of the resulting algorithm to achieve success with
probability at least .99 while paying only a constant multiplicative factor in the number of queries.

We are now equipped to present our CDF estimation procedure. For each τ ∈ {1/8, 2/8, . . . , 1},
the algorithm STOCHASTICCDF computes the quantile estimate wτ = A(τ), where A(τ) is the
algorithm from Lemma 12, and then for all j ∈ [n], it assigns

F̂ (j) = max{τ : wτ ≤ j}. (3)

Theorem 13 With O(log(n)) queries, STOCHASTICCDF produces a CDF estimate F̂ such that
E(F̂ ) ≤ 1/4 with probability at least 3/4.

Proof Condition on the event that wτ is an 1/8-good estimate for each τ ∈ {1/8, 2/8 . . . , 1}
simultaneously. Since each individual estimate is 1/8-good with probability at least .99, this event
occurs with probability at least 3/4. Then for all τ , dist([F (wτ −1), F (wτ )], τ ]) ≤ 1/8. Therefore,
F (wτ − 1) ≤ τ + 1/8 and F (wτ ) ≥ τ − 1/8.

Next consider the assignment of F̂ (j). For any j ∈ [n], if F̂ (j) = τ < 1, then by definition,
wτ ≤ j. Additionally, since τ is the largest index such thatwτ ≤ j, we have j < wτ+1/8. Therefore,
F (j) ≤ F (wτ+1/8−1) ≤ τ+1/4 and F (j) ≥ F (wτ ) ≥ τ−1/8. Thus τ−1/8 ≤ F (j) ≤ τ+1/4,
so |F̂ (j) − F (j)| ≤ 1/4. If F̂ (j) = τ = 1, then w1 ≤ j, so 1 ≥ F (j) ≥ F (w1) ≥ 1 − 1/8, and
|F̂ (j)− F (j)| ≤ 1/4.

Each quantile estimate requires a call to A(τ), which, by Lemma 12, takes O(log(n)) time, so
computing the quantiles w1/8, w2/8, . . . , w1 requires at most O(log(n)) queries in total.
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5. Mean Estimation

Next, we examine the simpler problem of mean estimation. Our algorithm is similar to the CDF
case, querying uniformly at random to collect unbiased estimates and returning their average. This
procedure works against even adaptive adversaries while still achieving near-optimal performance
across the board.

Formally, our mean estimation algorithm MEANEST generates i.i.d. queries q1, q2, . . . sampled
uniformly from [n], and maintains mean estimate

µ̂t = 1 +
n

t

t∑
τ=1

1(xτ > qτ ). (4)

Recall that our error is measured as E(T ) = |µ̂t − µt|/n, where µt is the empirical mean of
x1, . . . , xt.

Theorem 14 (Online Mean Estimation Upper Bound) In the online comparison feedback model,
the mean estimate µ̂t returned by MEANEST incurs mean squared error E[(µ̂t−µt)2/n2] ≤ 1/(4t)
at each time t. Hence, MEANEST has anytime query complexity 1/ε2 against even an adaptive
adversary.

Proof The following observation motivates our choice of µ̂t:

µt =
1

t

t∑
τ=1

xτ = 1 +
1

t

t∑
τ=1

Pr(xτ > qτ ).

Indeed, we can view µ̂t as the average of t estimates of the form x̂τ = 1 + n1(xτ > qτ ), where
E[x̂τ | xτ ] = xτ and Var(x̂τ | xτ ) ≤ n2/4. Consequently, the mean squared error E[(µ̂t−µt)2/n2]
is at most 1/(4t). Markov’s inequality then gives that |µ̂t − µ|/n ≤

√
1/t with probability at least

3/4, implying the desired query complexity.

Remark 15 Similarly to Remark 4, if we assume that queries are made uniformly at random, one
can verify that x̂τ has minimum variance among all unbiased estimates of xτ computable from the
feedback at time τ .

Next, we prove that the mean squared error guarantee of MEANEST is tight up to constant
factors, via a lower bound on conditional variance.

Proposition 16 (Online Mean Estimation Lower Bound) In the online comparison feedback model,
there exists a stochastic adversary which forces even fixed-horizon mean estimation algorithms to
admit mean squared error E[(µ̂T − µT )2/n2] = Ω(1/T ).

Proof Consider the adversary which returns i.i.d. samples xt ∼ Unif([n]) for t ∈ [T ], and let
bt = 1(xt ≤ qt) denote the feedback revealed to the algorithm during round t. Next, consider the
event At that xt lies within the larger of two intervals determined by qt, i.e., #{x ∈ [n] : 1(x ≤
qt) = bt} ≥ n/2. Now, the variance of a random variable distributed uniformly on the integers
within an interval of size at least n/2 is at least (n2 − 4)/48, so Var(xt | bt, At) = Ω(n2) for all

10
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t ∈ [T ]. Noting that each event At occurs with probability at least 1/2, the law of total variance and
independence of samples give that

Var(µT | b1, . . . , bT ) =
1

T 2

T∑
t=1

Var(xt | bt) ≥
2

T 2

T∑
t=1

Var(xt | bt, At) = Ω(n2/T ).

Finally, the law of total expectation and the bias-variance decomposition for estimators imply

E
[
(µ̂T − µT )2/n2

]
≥ E

[
Var(xT | b1, . . . , bT )

]
/n2 = Ω(1/T ),

as desired.

As a final note, we observe that the choice of empirical versus distributional benchmark is not
a triviality when analyzing online mean estimation against a stochastic adversary. Indeed, we can
easily obtain a stronger Ω(1/ε2) query complexity lower bound against a distributional benchmark
by noting that distinguishing between the two distributions which place equal mass on 1 and n
except for a ±εn bias requires Ω(1/ε2) queries. (This holds even in the full-feedback setting, by
standard KL arguments.) The issue in this setting is that the empirical mean is only ε-close to the
true mean after Ω(1/ε2) samples, which is the same magnitude as our desired lower bound.

6. Generalizations and Future Work

An immediate extension of these results is to the continuous setting, where queries and samples
are selected from [0, 1]. In this case, we need to specify some resolution δ of interest and can
examine the complexity of maintaining a value within distance δ of an ε-good estimate. However,
by choosing δ = Ω(1/n), it is straightforward to transition between this setting and ours, so we
opted to present discrete results for ease of exposition. More interestingly, there are several high-
dimensional analogs of our online estimation problem.

6.1. Graph Medians, Geometric Medians, and Online Convex Programming

We start with a discrete example, fixing some graph G on n nodes. In this case, we can imagine that
each sample xt and query qt are nodes of G, where an edge leaving qt along a shortest path to xt is
given as feedback, mirroring the setup for graph binary search. The natural analog of an empirical
median is a minimizer of the potential Φ(m) =

∑
t d(xt,m), where d is the shortest path distance

on G. When samples are distributed uniformly over the vertex set, this corresponds to the standard
notion of a graph median, as examined in Dereniowski et al. (2020). Our results apply directly to
this setting when G is taken to be a path.

Similarly, we can extend our sample and query space to [0, 1]d, where a unit vector in the
direction xt − qt is given as feedback. The natural object of estimation is now a minimizer of the
potential Φ(m) =

∑
t ‖xt −m‖, commonly known as the geometric median. Generalizing further,

we can connect this to the following online convex programming problem. At each time t, the
adversary produces a convex function ft : [0, 1]d → [0, 1], the algorithm queries a point qt ∈ [0, 1]d,
and a subgradient gt ∈ ∂ft(qt) is given as feedback. We observe that this matches the previous
setting upon taking ft(q) = ‖xt − q‖. In this case, we hope to maintain an estimate m̂ such that
the function F (m) =

∑
t ft(m) has a small subgradient within the subdifferential set ∂F (m̂). To

11
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make this connection concrete, we note that upon taking d = 1 and ft(q) = |xt − q|, the estimation
error of a median estimate m̂ for x1, . . . , xT can be expressed as

E(m̂) = dist

(
[FT (m̂− 1), FT (m̂)] ,

1

2

)
=

1

2T
min

g∈∂
∑T
t=1 ft(m̂)

|g|.

6.2. Intermediate Adversaries

In these generalized frameworks, we expect that algorithms which maintain good estimates in the
non-stochastic adversarial setting, across parameter regimes, will also exhibit the uniform querying
behavior that appeared in this work. Thus, as an avenue for future research, we propose analyzing
these online estimation problems against intermediate adversaries which sample from nearly sta-
tionary distributions, i.e., with some bound on the statistical distance between the distributions at
time t and t+ 1.
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Appendix A. Preliminaries

Proof of Lemma 1 Fix such an algorithm A and suppose that τ > 1/2. Then, consider the
modified algorithm A′ which simulates A but replaces each bit of feedback of the form 1(xt ≤ qt)
with 1(xt ≤ qt)Bt, where Bt ∼ Ber(1/(2τ)) are iid. In the stochastic case, if xt ∼ D and
1(xt ≤ q) ∼ Ber(αq) for αq = PrX∼D[X ≤ q], then the modified feedback has distribution
Ber(αq/(2τ)). Searching for m such that αm/(2τ) = 1/2 corresponds to finding m such that
Pr[X ≤ m] = τ , as desired, with error scaled by a factor of 2τ ∈ (1, 2].

For the non-stochastic case, the desired conclusion follows upon noting that the modified feed-
back is equal to 1(x′t ≤ qt) for x′t = xtBt + (n + 1)(1 − Bt). Indeed, an empirical median of
x′1, . . . , x

′
T is an approximate τ -quantile for x1, . . . , xT , with error scaled by the same 2τ factor, so

long as
∑T

t=1 1(x′t ≤ qt) does not deviate too much from
∑T

t=1 1(xt ≤ qt)/2τ . A query complex-
ity lower bound of Ω(1/ε2) ensures that any deviations are sufficiently small via an application of
the Azuma-Hoeffding inequality for martingale increments. Of course, it is essential here that each
sample xt produced by the adversary is independent of the coin flipBt. The case of τ < 1/2 follows
in the same way with modified feedback 1(xt ≤ qt)Bt + (1−Bt), where Bt ∼ Ber(1/(2(1− τ)))
are again iid.

Proof of Lemma 2 Consider any online median or CDF estimation algorithm A. By the definition
of B, for some T0, there exists a sequence x1, . . . , xT0 forcing A to admit error E(T0) ≥ 1/16, so
in the same way, for T1 = 32T0, there exists a sequence xT0+1, . . . , xT0+T1 forcingA to admit error
at least 1/16 on that sequence and error E(T0 +T1) ≥ 1/16−T0/(T0 +T1) ≥ 1/32 overall on the
sequence x1, . . . , xT0+T1 .

Now consider any online mean estimation algorithm A. By the same argument, for some T0,
there exists a sequence x1, . . . , xT0 forcing A to admit error E(T0) ≥ 1/16, and for T1 = 32T0,
there exists a sequence xT0+1, . . . , xT0+T1 forcing A to admit error at least 1/16 on that sequence
and error E(T0 + T1) ≥ 1/16 · (T1/(T0 + T1)) − T0/(T0 + T1) ≥ 1/16 · 32/33 − 1/33 > 1/32
overall on the sequence x1, . . . , xT0+T1 .

In both of the above cases, we can repeat the process ad infinitimum to produce a sequence
x1, x2, . . . such that E(

∑k
j=0 T032j) ≥ 1/32 for all k ∈ N, concluding the proof.
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Appendix B. Online Median Estimation Lower Bound

Our lower bound for online median estimation is built above several claims. First, we simply state
the well-known Dvoretzky–Kiefer–Wolfowitz inequality.

Claim 17 If x1, . . . , xT are iid samples from a distribution D on [n] with cdf F , then

‖FT − F‖∞ = max
i
|FT (i)− F (i)| ≤

√
ln(2/δ)/2T = O

(√
log(1/δ)/T

)
with probability 1− δ.

Next, we present an initial information-theoretic lower bound.

Claim 18 Fix n = 4k for some positive, even integer k, and fix ε ≤ 1/(2n). Suppose that A is an
algorithm in the comparison feedback model which makes T queries against a stochastic adversary
and learns estimates for quantiles (k+ 1)/n, (k+ 3)/n, . . . (3k− 1)/n of its distribution such that
at least 2/3 are ε-good with probability greater than 3/4. Then T = Ω(n/ε2).

Proof Assume for ease of exposition that n = 4k for some positive, even integer k. We define Fε
to be the family of distributions indexed by σ ∈ {−1,+1}k with CDFs of the form

Fσ(i) =

{
i
n i even, i ≤ k, or i ≥ 3k,
i
n + σ(i−k+1)/2 αi ε otherwise,

where αi = 2 − 4
∣∣ i
n −

1
2

∣∣ ∈ [1, 2] for k < i < 3k. That is, Fσ corresponds to a distribution
which, for j = 1, . . . , k, places mass 1/n+ σjΘ(ε) on element k+ 2j− 1 and mass 1/n− σjΘ(ε)
on element k + 2j, while placing uniform mass 1/n on the remaining elements. We require that
ε ≤ 1/(2n) so that all of these masses are positive.

First, we observe that testing whether k independent coins have bias 1/2 + 2ε or bias 1/2− 2ε,
each with probability strictly greater than 1/2, requires Ω(n/ε2) samples by standard KL divergence
arguments. If A performs as claimed against all distributions in Fε, we will see that it can perform
this testing procedure with T samples, implying the desired lower bound. Indeed, given a set of
such coins with the signs of their biases given by an unknown σ ∈ {−1,+1}k, sample a random
permutation π ∈ Sk uniformly at random. Then, if A queries an element i = k + 2j − 1 in the
region of interest, use coin π(j) and the procedure outlined in proof of Lemma 1 to return the flip of
a coin with bias i/n+ σπ(j)αiε. Importantly, this can be done without knowledge of σj , and the αi
values were chosen precisely with this procedure in mind. Otherwise, if A queries i which is even
or outside of the region of interest, return the flip of a coin with bias i/n as feedback. By design,
this feedback is indistinguishable to the algorithm from that which it would receive in the offline
comparison feedback setting against the distribution with CDF Fσ.

Now, to determine the bias of coin j, we examine the algorithm’s estimate mτ for quantile
τ = (k + 2π−1(j) − 1)/n. If mτ is ε-good, then one can show that mτ = k + 2π−1(j) − 1 +
(1 − σj)/2, from which we can extract the value of σj . By the algorithm’s estimation guarantee,
at least proportion 1/2 of the quantiles of interest are ε-good with constant probability. Since π
was sampled uniformly at random, this implies that each of these bias determinations is correct
with probability greater than 2/3 · 3/4 = 1/2. Hence, the KL lower bound kicks in and requires
T = Ω(n/ε2).
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Claim 19 Let B1, . . . , Bm be random events and take U ∼ Unif([m]) to be an independently
selected index. If Pr[BU ] ≤ 1/15, then the probability that more than 1/3 of the events occur is
less than 1/5.

Proof Let α be the random variable denoting the fraction of events which occur. Then,

1

15
≥ Pr [BU ] ≥ Pr

[
BU and α >

1

3

]
= Pr

[
BU

∣∣∣∣α > 1

3

]
Pr

[
α >

1

3

]
>

1

3
Pr

[
α >

1

3

]
,

implying the desired result.

Claim 20 Fix n = 4k for some positive, even integer k, and fix ε ≤ 1/(2n). Suppose that A is
an algorithm in the online comparison feedback model which, for any fixed time horizon T ≥ T0,
produces estimates for quantiles (k+ 1)/n, (k+ 3)/n, . . . (3k− 1)/n of FT , such that an estimate
selected uniformly at random is ε-good with probability at least 14/15. Then, T0 = Ω(n/ε2).

Proof If the algorithm performs as stated, then Claim 19 implies that at least proportion 2/3 of
the estimates are ε-good with probability at least 4/5, whenever T ≥ T0. Further, we know by
17 that ‖F − FT ‖∞ ≤ ε with probability at least 24/25 whenever T ≥ 3/ε2. Hence, if T ≥
max{T0, 2/ε2}, we have that at least 2/3 of the estimates are (2ε)-good for F with probability at
least 19/25 > 3/4. Thus Claim 18 forces T0 + 2/ε2 ≥ max{T0, 2/ε2} = Ω(n/ε2), implying the
desired lower bound.

At last, we are prepared to give a full proof of the theorem.
Proof of Theorem 8 Suppose that a fixed-horizon online median estimation algorithm A admits
error

E(T ) = dist

(
[FT (m̂T − 1), FT (m̂T )],

1

2

)
≤ f(T, n)

with probability at least 14/15, for any time horizon T and support size n. Here we have increased
the query complexity success probability from 3/4 to 14/15 to allow for a cleaner presentation,
though this is not necessary. We will essentially show that f(T, n) = Ω(

√
n/T ) for all n ≥ n0 =

O(1) and T ≥ T0 = Ω(n3), proving the theorem. For convenience, we restrict the parameters
a bit further (without sacrificing the conclusion), requiring that n = 4k for some positive integer
k ≥ 3 and that T = 2nm for some positive integer m ≥ 8n2. Using a carefully selected class of
adversaries, we will reduce this instance of median estimation to the quantile estimation of Claim
20 and obtain our lower bound. This conclusion already holds if f(T, n) > 1/(4n), so we will
assume that the algorithm has good performance, with f(T, n) ≤ 1/(4n).

For any distribution D on [n] with cdf F , consider the following oblivious adversary, which
starts by selecting an integer j from the set {k+1, k+3, . . . 3k−1} uniformly at random. For times
1, . . . , T/2, this opponent returns independent samples from D. For times T/2 + 1, . . . , T/2 + jm,
the adversary returns n, and for times T/2 + jm + 1, . . . , T , the adversary returns 1. With these
choices, the empirical cdf FT is given by

FT (i) =
1

2
FT

2
(i) +

(
1

2
− j

2n

)
+

j

2n
1(i = n).
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Thus, if m̂T < n, we have

E(T ) = dist

([
1

2
FT

2
(m̂T − 1) +

1

2
− j

2n
,
1

2
FT

2
(m̂T ) +

1

2
− j

2n

]
,
1

2

)
=

1

2
dist

([
FT

2
(m̂T − 1), FT

2
(m̂T )

]
,
j

n

)
.

This is nearing the desired quantile estimation problem. The case of m̂T = n is less pleasant but
can be avoided since we are considering a reasonable algorithm. To see this, we first note that our
lower bound on T implies ‖FT/2−F‖∞ ≤ 1/n with probability at least 3/4. Furthermore, we take
into account that the relevant distributions D will all be selected from the the family Fε introduced
in the previous claim, for some ε ≤ 1/(2n), so F (n− 1) = n−1

n . Lastly, j ≤ 3n/4 ≤ n− 3 by our
choice of n. With these bounds, we can rule out the possibility that m̂T = n, since this implies

1/(4n) ≥ f(T, n) ≥ E(T ) = dist

([
1

2
FT

2
(n− 1) +

1

2
− j

2n
,
1

2
FT

2
(n) +

1

2

]
,
1

2

)
=

1

2
max

{
FT

2
(n− 1)− j

n
, 0

}
≥ 1

2
max

{
n− 1

n
− n− 3

n
, 0

}
− 1/n =

1

n

with positive probability, a contradiction. Hence, m̂T < n, and we have

dist

([
FT/2(m̂T − 1), FT/2(m̂T )

]
,
j

n

)
≤ 2f(T, n) ≤ 1/(2n)

with probability at least 14/15. That is, our algorithm has the quantile estimation power assumed
in Claim 20 (at least for the relevant family of distributions) for the choice of ε = 2f(T, n), so it
follows that f(T, δ, n) = Ω(

√
n/T ), as desired.

Appendix C. Lower Bound for Deterministic Algorithms

Proof of Proposition 10 Following the intuition of Section 3.3, for a fixed algorithm A, we wish
to construct two sequences L = l1, . . . , lT and R = r1, . . . , rT with identical feedback such that no
element is a 1/32-good median estimate of both sequences. The construction presented in Section 3
is almost sufficient, however it fails against an algorithm that makes an equal number of queries to
n/2 as to n/2 + 1; in this case, n/2 is the median estimate of both sequences. To address this, we
construct two-phase adversaries, echoing the strategy from Theorem 6. For the first T/2 time steps,
lt and rt are assigned exactly as in Section 3.3. After time T/2, L and R output the same sequence
w = w1, . . . , wT/2, made up of 1’s and n’s, which artificially “shifts” the medians of L and R in
the case that n/2 is a good median for both sequences in the first phase.

For ease of presentation, let n be even, and let T be divisible by 16. To construct L and R,
for all t ∈ [T/2], consider the two sets, {1, . . . , qt} and {qt + 1, . . . , n}, and, fixing the set with
larger cardinality, assign lt the minimum element and rt the maximum element. Observe that any
two elements belonging to the same set have identical feedback with respect to qt, so 1(lt ≤ qt) =

1(rt ≤ qt). To choose w, let p = (T/2)
∑T/2

t=1 1(1 ≤ qt ≤ n/2− 1); if |1/2− p| > 1/8, let w be a
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sequence of T/4 1’s followed by T/4 n’s, and if |1/2 − p| ≤ 1/8, let w be a sequence of T/8 1’s
followed by 3T/8 n’s. Then for all T/2 + 1 ≤ t ≤ T , set lt = rt = wt−T/2.

We now examine two cases — the first where p is far from 1/2 and the second where p is close
to 1/2 — and show that in both situations A incurs error at least 1/16 against at least one of L or
R.

First consider the case that |1/2 − p| > 1/8. In this case, w contains an equal number of 1’s
and n’s, so for both sequences L and R the median of the first T/2 elements is equal to the median
of the entire sequence. Observe that l1, . . . , lT/2 is supported on {j ∈ [n] : 1 ≤ j ≤ n/2} and
r1, . . . , rT/2 is supported on {j ∈ [n] : n/2 ≤ j ≤ n}, so the only elements of L that are at least
n/2 + 1 are the T/4 n’s from w, and the only elements of R that are at most n/2 − 1 are the T/4
1’s from w. As in case 1, because the feedback from L and R is indistinguishable to A, A must
output the same estimate m̂ against both adversaries. If m̂ < n/2, then A incurs error at least 1/4
with respect to R, and if m̂ > n/2, A incurs error at least 1/4 with respect to L. Therefore A must
output m̂ = n/2.

However, by the bound on p for this case, we see that n/2 cannot be a 1/16-good median for
both L and R. By the definitions of p, R, and L, at least pT/2 of the elements in r1, . . . , rT/2 are n,
and at least (1− p)T/2 of the elements in l1, . . . , lT/2 are 1. Since |1/2− p| > 1/8, either p > 5/8
or p < 3/8. If p > 5/8, then strictly more than 5T/16 of the elements in r1, . . . , rT/2 are n, and
since w contains T/4 n’s, R contains strictly more than 9T/16 n’s in total, so the median of R is n,
and any m̂ 6= n is not a 1/16-good median for R. If p < 3/8, then strictly more than 5T/16 of the
elements in l1, . . . , lT/2 are 1, and since w contains T/4 1’s, L contains strictly more than 9T/16
1’s in total, so 1 is the median of L and any m̂ 6= 1 is not a 1/16-good median for L. So A incurs
error at least 1/16 for one of L or R if |p− 1/2| > 1/8.

Next consider the case that |1/2 − p| ≤ 1/8. In this case, w is a string with T/8 1’s followed
by 3T/8 n’s. For every t ∈ [T/2] such that 1 ≤ qt ≤ n/2 − 1, rt = n, so n occurs pT/2
times in the sequence r1, . . . , rT/2, and by the setting of w, n occurs 3T/8 times in the sequence
rT/2+1, . . . , rT . Since p ≥ 3/8, n occurs at least 9T/16 times throughout the entire sequence
r1, . . . , rT , and therefore n is the median of R. Moreover, because 9/16 ≥ 1/2 + 1/16, any
estimate m̂ 6= n incurs error at least 1/16 against R.

Next we show that n is not an 1/16-good median estimate for L. Let FL be the CDF of the
sequence L, and observe that lt 6= n for all t ∈ [T/2]. Thus, the only n’s that occur in L are
the 3T/8 n’s in the second half of the sequence. Therefore, FL(n − 1) = 10/16, so [FL(n −
1), FL(n)] ∩ [7/16, 9/16] = ∅, and thus n is not a 1/16-good median estimate for L. Because the
feedback from L and R is indistinguishable to A, A must output the same estimate m̂ against both
sequences. However, if m̂ 6= n, A incurs error at least 1/16 with respect to R, and if m̂ = n, A
incurs error at least 1/16 with respect to L. So A incurs error at least 1/16 against either L or R if
|p− 1/2| ≤ 1/8.

Since in both cases A incurs error at least 1/16 against either L or R, there is no deterministic
median estimation algorithm admitting error E(T ) < 1/16.

Appendix D. Confidence Boosting

Finally, we motivate our restriction to constant confidence probability 3/4 in the definition of query
complexity, at least for the purposes of upper bounds. Note that the algorithms we provide in
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Sections 3 and 5 have query complexities which are well-suited for the somewhat awkward maxima
present in this statement.

Lemma 21 (Confidence Boosting) Let A be an online median, CDF, or mean estimation algo-
rithm with fixed-horizon or anytime query complexity T0(n, ε) against some class of adversaries in
the comparison feedback model. Then, for any δ > 0, there exists a modified algorithm A′ admit-
ting query complexity O(max{T0(ε/2)Θ(log(1/δ)),Θ(n polylog(1/δ)/ε2)}) (in the median/CDF
case) or O(max{T0(ε/2)Θ(log(1/δ)),Θ(polylog(1/δ)/ε2)}) (in the mean case) with confidence
probability 1− δ in the same setting.

Proof of Proposition 10 Let A be the original algorithm and denote the evaluation time by T . Our
modified procedure instantiates k = O(log(1/δ)) independent copies A1, . . . ,Ak of A to run in
parallel, choosing one copy uniformly at random to use for each round. After sufficiently many
rounds, it simply returns the median of the current estimates maintained by the copies.

To begin our analysis, let it ∼ Unif([k]) denote the index of the copy used at time t, and, for
each i ∈ [k], take Si = {t ∈ [T ] : it = i} to be the set of times for which copy i is chosen.
Further, let F (i)

T denote the empirical cdf of the samples from the times in Si. Now, we note that
each |Si| ≈ T/k for sufficiently large T . In particular, a Chernoff bound gives

Pr

[∣∣∣∣|Si| − T

k

∣∣∣∣ > η
T

k

]
≤ 2 exp

(
−η

2T

3k

)
≤ δ

4k
(5)

for T ≥ 3k log(8k/δ)/η2. Next, we will show that the means and CDFs of the Si samples are
both close to those for the full set of T samples, since even an adaptive adversary has no hope of
predicting the randomly chosen indices.

We fully describe the case of mean estimation, letting x(i)T denote the mean of the samples seen
by copy i. In the case of an oblivious adversary, it is easy to check that E

[∑
t∈Si xt

]
= T

k xT . Thus,
we can apply Chernoff once more to obtain

Pr

∣∣∣∣∣∣
∑
t∈Si

xt −
T

k
xT

∣∣∣∣∣∣ > η
T

k

 = Pr

∣∣∣∣∣∣
∑
t∈Si

xt −
T

k
xT

∣∣∣∣∣∣ > η

xT

T

k
xT


≤ 2 exp

(
− η2T

3nk xT

)
≤ 2 exp

(
− η2T

3n2k

)
≤ δ

4k
(6)

for T ≥ 3kn2 log(8k/δ)/η2. In the adaptive case, the values xt chosen by the adversary are depen-
dent on previous queries, but we can reach an identical bound by considering martingale increments
and applying the multiplicative version of Azuma’s inequality for martingale increments.

Next, we exploit the relative smoothness of (x, y) 7→ x/y, noting that, for a, b ≥ 0,∣∣∣∣AB − a

b

∣∣∣∣ ≤ b|A− a|+ a|B − b|
b2 − b|B − b|

.

Setting A =
∑

t∈Si xi, a = T
k xT ≤

Tn
k , B = |Si|, b = T

k , and substituting η = ε
6 for (5) and

η = εn
6 for (6), we obtain∣∣∣x(i)T − xT ∣∣∣ ≤ T

k

(
nε
6
T
k

)
+ Tn

k

(
ε
6
T
k

)(
T
k

)2 − T
k

(
ε
6
T
k

) =
εn
6 + εn

6

1− ε
6

≤ εn

2
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for all i ∈ [k], conditioned on an event with probability at least 1 − 2k δ
4k = 1 − δ/2, so long

as T ≥ 108k log(8k/δ)/ε2. Now, recall that the mean estimate µ̂(i)T produced by copy i is within
nε/2 of x(i)T with probability at least 3/4, so long as |Si| ≥ T0(n, ε/2), which occurs under the
same conditioning when, for example, T ≥ 2kT0(n, ε/2). In this case, fixing k = Θ(log(1/δ))
ensures that the median of these estimates is ε-good with respect to the entire sample set with
probability at least 1 − δ/2. Unrolling the conditioning and examining all of our lower bounds
on T , we find that an ε-good mean is produced with probability at least 1 − δ so long as T ≥
max{T0(n, ε/2)Θ(log(1/δ)),Θ(polylog(1/δ)/ε2)}.

The case of CDF estimation (which implies the result for median estimation) follows in much
the same way, where we must show that each F (i)

T ≈ FT with high probability for sufficiently large
T . Specifically, one can show that T ≥ max{T0(n, ε/2)Θ(log(1/δ)),Θ(n polylog(1/δ)/ε2) is
sufficient, where the factor of n appears because of a union bound over the n values of the CDF
function.
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