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Abstract
We study the data deletion problem for convex models. By leveraging techniques from convex op-
timization and reservoir sampling, we give the first data deletion algorithms that are able to handle
an arbitrarily long sequence of adversarial updates while promising both per-deletion run-time and
steady-state error that do not grow with the length of the update sequence. We also introduce several
new conceptual distinctions: for example, we can ask that after a deletion, the entire state main-
tained by the optimization algorithm is statistically indistinguishable from the state that would have
resulted had we retrained, or we can ask for the weaker condition that only the observable output is
statistically indistinguishable from the observable output that would have resulted from retraining.
We are able to give more efficient deletion algorithms under this weaker deletion criterion.

1. Introduction

Users voluntarily provide huge amounts of personal data to online services, such as Facebook,
Google, and Amazon, in exchange for useful services. But a basic principle of data autonomy
asserts that users should be able to revoke access to their data if they no longer find the exchange of
data for services worthwhile. Indeed, each of these organizations provides a way for users to request
that their data be deleted. This is related to, although distinct from the “Right to be Forgotten” from
the European Union’s General Data Protection Act (GPDR). The Right to be Forgotten entails the
right for users, in certain circumstances, to request that negative information concerning them to be
removed. Like basic data autonomy, it sometimes obligates companies to delete data.

But what does it mean to delete data? Typically, user data does not sit siloed in a database,
but rather is used to produce derivatives such as predictive models. Deleting a user’s data from a
database may prevent it from influencing the training of future models, but does not remove the
influence of a user’s data on existing models — and that influence may be significant. For example,
it is possible to extract information about specific data points used for training from models that
have been trained in standard ways (Shokri et al., 2017). So deleting a user’s data naively, by
simply removing it from a database, may not accomplish much: what we really want is to remove
(or at least rigorously limit) the influence that an individual’s data has on the behavior of any part of
the system.

How should we accomplish this? We could retrain all predictive models from scratch every time
a user requests that their data be removed, but this would entail an enormous computational cost.
Ginart et al. (2019) propose a compelling alternative: full retraining is unnecessary if we can design
a deletion operation that produces a (distribution of) model output(s) that is statistically indistin-
guishable from the (distribution of) model output(s) that would have arisen from full retraining.
Ginart et al. (2019) also propose an approximate notion of deletion that uses a differential-privacy
like measure of “approximate” statistical indistinguishability that we adopt in this work.
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1.1. Our Results and Techniques

In this paper, we consider convex models that are trained to some specified accuracy, and then are
deployed while a sequence of requests arrive to delete (or add) additional data points. The deletion
or addition must happen immediately, before the next request comes in, using only a fixed running
time (which we measure in terms of gradient computations) per update. We require that the dis-
tribution on output models be (ε, δ)-indistinguishable from the distribution on output models that
would result from full retraining (see Section 2 for the precise definition: this is a notion of approx-
imate statistical indistinguishability from the differential privacy literature). In a departure from
prior work, we make the distinction between whether the entire internal state of the algorithm must
be indistinguishable from full retraining, or whether we only require statistical indistinguishability
with respect to the observable outputs of the algorithms. If we require indistinguishability with re-
spect to the full internal state, we call these update or unlearning algorithms perfect. This is similar
to the distinction made in the differential privacy literature, which typically only requires indistin-
guishability for the outputs of private algorithms, but which has a strengthening (called pan privacy
Dwork et al. (2010); Amin et al. (2019)) which also requires that the internal state satisfy statisti-
cal indistinguishability. We remark that while unlearning algorithms that are allowed to maintain a
“secret state” that need not satisfy the data deletion notion require additional trust in the security of
the training system, this is orthogonal to privacy. Indeed, Chen et al. (2020) show that even without
secret state, algorithms satisfying standard deletion guarantees can exacerbate membership infer-
ence attacks if the attacker can observe the model both before and after a deletion (because standard
deletion guarantees promise nothing about what can be learned about an individual from two model
outputs). In contrast, although some of our unlearning algorithms maintain a secret state that does
not satisfy the statistical indistinguishability property, our model outputs themselves satisfy (ε, δ)-
differential privacy. This in particular prevents membership inference attacks from observers who
can observe a small number of output models, so long as they cannot observe the secret state. All
prior work has focused on perfect unlearning.

We introduce another novel distinction between strong unlearning algorithms and weak unlearn-
ing algorithms. For an unlearning algorithm to be strong, we require that for a fixed accuracy target,
the run-time of the update operation be constant (or at most logarithmic) in the length of the up-
date sequence. A weak unlearning algorithm may have run-time per update (or equivalently, error)
that grows polynomially with the length of the update sequence. All prior work has given weak
unlearning algorithms.

We give two sets of results. The first, which operates under the most permissive set of assump-
tions, is a simple family of gradient descent algorithms. After each addition or deletion request,
the update algorithm starts from the previous model, and performs a small number of gradient de-
scent updates — sufficient to guarantee that the model parameter is boundedly close to the optimal
model parameter in Euclidean distance. It then perturbs the model parameter with Gaussian noise of
sufficient magnitude to guarantee (ε, δ)-indistinguishability with respect to anything within a small
neighborhood of the optimal model. We prove that this simple approach yields a strong, perfect
unlearning algorithm for loss functions that are strongly convex and smooth. Without the strong
convexity assumption, we can still derive strong unlearning algorithms, but ones which must main-
tain secret state. We can further improve our accuracy guarantees if we are willing to settle for weak
unlearning algorithms. The per-round computation budget and the achievable steady state accuracy
can be smoothly traded off against one another.
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Our second algorithm improves over the straightforward approach above (under slightly stronger
regularity assumptions) when the data dimension is sufficiently large. It first takes a bootstrap sam-
ple from the underlying dataset, and then randomly partitions it into K parts. The initial training
algorithm separately and independently optimizes the loss function on each part, and then averages
the parameter vector from each part, before finally releasing the perturbed average. Zhang et al.
(2012) analyzed this algorithm (absent the final perturbation) and proved accuracy bounds with re-
spect to the underlying distribution (which for us is the dataset from which we draw the bootstrap
sample). Our update operation involves first using a variant of reservoir sampling that maintains the
property that the union of the partitions continue to be distributed as independent samples drawn
with replacement from our current dataset. We then use the simple gradient based update algo-
rithms from our first set of results to update the parameters only from the partitions that have been
modified by the addition or deletion. Because each of these partitions contains only a fraction of
the dataset, we can use our fixed gradient computation budget to perform more iterations of gra-
dient descent on these affected partitions. Because we have maintained the marginal distributions
on partition elements via our reservoir sampling step, the overall accuracy analysis of Zhang et al.
(2012) carries over even after an arbitrary sequence of updates. This is also crucial for our statis-
tical indistinguishability guarantee to hold. The result is a strong unlearning algorithm that yields
an improved tradeoff between per-round run-time and steady state accuracy for sufficiently high
dimensional data.

1.2. Related Work

At a high level, our work differs from prior work in several ways. We call deletion algorithms that
do not maintain secret state perfect. All prior work focuses on perfect deletion algorithms, but we
give improved bounds for several problems by allowing our algorithms to maintain secret state.
Second, we allow arbitrary sequences of updates, which can include additions and deletions (rather
than just deletions). Finally, we distinguish between weak and strong unlearning algorithms, and
give the first strong unlearning algorithms.

Cao and Yang (2015) first considered the problem of efficiently deleting data from a trained
model under a deterministic notion of deletion, and coined the term “machine unlearning”. They
gave efficient deletion methods for certain statistical query algorithms — but in general, their meth-
ods (or indeed, any deterministic notion of deletion) can apply to only very structured problems.
Ginart et al. (2019) gave the first definition of data deletion that can apply to randomized algo-
rithms, in terms of statistical indistinguishability. We adopt the approximate deletion notion they
introduced, which is itself based on differential privacy (Dwork et al., 2006; Dwork and Roth, 2014).
Ginart et al. (2019) gave a deletion algorithm for the k-means problem. Their algorithm is a weak
deletion algorithm in our terminology, because their (amortized) running time per update scales
linearly with the number of updates.

Guo et al. (2019) gave deletion algorithms for linear and logistic regression, using the same no-
tion of approximate statistical indistinguishability that we use. Their algorithm is similar to our first
algorithm: it performs a convex optimization step, followed by a Gaussian perturbation. They use
a second order update (a Newton step) rather than first order updates as we do, and their algorithm
yields error that grows linearly with the number of updates, and so is a weak deletion algorithm.
Izzo et al. (2020) focus on linear regression and show how to improve the run-time per deletion of
the algorithm given in Guo et al. (2019) from quadratic to linear in the dimension.
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Our main result leverages a distributed optimization algorithm that partitions the data, separately
optimizes on each partition, and then averages the parameters, analyzed by Zhang et al. (2012).
Optimizing separately on different partitions of the data, and then aggregating the results is also a
well known general technique in differential privacy known as “Subsample and Aggregate” (Nissim
et al., 2007) which has found applications in private learning (Papernot et al., 2016). Bourtoule et al.
(2019) use a similar technique in the context of machine unlearning that they call “SISA” (Sharded,
Isolated, Sliced, Aggregated). Their goal is more ambitious (to perform deletion for non-convex
models), but they have a weaker deletion criterion (that it simply be possible that the model arrived
at after deletion could have arisen from the retraining process), and they give no error guarantees.
Their algorithm involves full retraining on the affected partitions, a different aggregation function,
no randomization, and does not include the reservoir sampling step that is crucial to our stronger
indistinguishability guarantees. This distributed optimization algorithm also bears similarity to the
well-known FederatedAveraging algorithm of McMahan et al. (2016) used for deep learning in the
federated setting.

Chen et al. (2020) observe that deterministic deletion procedures such as SISA (Bourtoule et al.,
2019) can exacerbate privacy problems when an attacker can observe both the model before and af-
ter the deletion of a particular user’s data point, and show how to perform membership inference
attacks against SISA in this setting. Our method leverages techniques from differential privacy, and
so in addition to being an (ε, δ)-deletion algorithm, a view of the two outputs of our algorithm be-
fore and after a deletion is (2ε, 2δ)-differentially private, which precludes non-trivial membership
inference for reasonable values of ε and δ. This follows because our deletion algorithm is random-
ized: procedures such as the one from Guo et al. (2019) which have randomized training procedure
but deterministic deletion procedure do not share this property.

1.3. Summary of Results

In Table 1, we state bounds for all our unlearning algorithms, and (in the 2nd column) the assump-
tions that they require. The 3rd column of the table states whether our algorithms are weak or strong
update algorithms (whether or not their runtimes grow polynomially with the length of the update
sequence). The 4th column states the steady-state accuracy (α in Definition 6) of the algorithm as
a function of the desired run time I of the first update (each algorithm has a budget of nI gradient
computations per update). The 5th column lists the run-time of the i’th update. The 6th column
measures the run-time of the baseline approach that would fully retrain the model after each update,
to the accuracy achieved by our algorithms in the 4th column. Most of these guarantees are for
algorithms that maintain a secret state. But for strongly convex and smooth functions we can obtain
a perfect unlearning algorithm (i.e. one that satisfies the indistinguishability guarantee not just with
respect to observable outputs, but with respect to the entire saved state) with the same asymptotic
accuracy/runtime tradeoff, so long as the per-update run-time is at least logarithmic in the dimen-
sion. For non strongly convex functions, our techniques do not appear to be able to give perfect
unlearning algorithms for non-trivial parameters; this is an intriguing direction for future work.

Our “Distributed PGD” algorithm is somewhat more complex (see Section 4), but has the ad-
vantage that it obtains improved accuracy/run-time tradeoffs for sufficiently high dimensional data.
It divides the same gradient computation budget nI into different numbers of iterations on different
parts of the dataset. See Remark 15 for the exact conditions on when it yields an improvement over
our simpler algorithms.
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summary of tradeoffs for (ε, δ)-unlearning

method
loss function

properties
unlearning accuracy

iterations
for

ith update
baseline iterations

PGD
SC, smooth

strong
(Thm. 9)

de−I

ε2n2 I I + log
(
εn√
d

)
SC, smooth

strong, perfect
(Thm. 28)

de−I

ε2n2

log i · I
I ≥ log (d/ε)

I + log
(
εn√
d

)
Regularized

PGD

C, smooth
strong

(Thm. 10)

( √
d

εnI

) 2
5 I

(
εnI√
d

) 2
5

C, smooth
weak

(Thm. 30)

√ √
d

εn
√
I i2 · I

√
εn
√
I√
d

Distributed
PGD

SC, smooth,
Lipschitz

and bounded
Hessian

strong
(Thm. 14)

de−In
4−3ξ

2

ε2n2

+ 1
nξ

log i · I
min

{
log n,

In
4−3ξ

2 + log
(
εn√
d

)}

Table 1: (S)C: (strongly) convex, n: training dataset size, d: dimension, ξ ∈ [1, 4/3] is a parameter.

2. Model and Preliminaries

We write Z to denote the data domain. A dataset D is a multi-set of elements from Z . Datasets can
be modified by updates which are requests to either add or remove one element from the dataset.

Definition 1 (Update) An update u is a pair (z, •) where z ∈ Z is a data point and • ∈ T =
{′add′, ′delete′} determines the type of the update. An update sequence U is a sequence (u1, u2, . . .)
where ui ∈ Z × T for all i. Given a dataset D and an update u = (z, •), the update operation is
defined as follows.

D ◦ u ,

{
D ∪ {z} if • = ′add′

D \ {z} if • = ′delete′

We use Θ to denote the space of models. In our setting, a learning or training algorithm is a
mapping A : Z∗ → Θ that maps datasets to models. An unlearning or update algorithm for A is
a mapping RA : Z∗ × (Z × T ) × Θ → Θ that takes as input a dataset accompanied by a single
update, and a model, and outputs an updated model. Some of our update algorithms will also take
as input auxiliary information, that we elide here but will be clear from context. The output of the
unlearning algorithm itself will not be made public: before any model is made public, it must pass
through a publishing function. A publishing function is a mapping fpublish : Θ → Θ that maps a
(secret) model to the model that will be made publicly available. Our unlearning guarantee will
informally require that there should be no way to distinguish whether the published model resulted
from full retraining, or an arbitrary sequence of updates via the unlearning algorithm. Depending
on whether we demand perfect unlearning or not (to be defined shortly), we may save either the
(secret) output of the unlearning algorithm as persistent state, or save only the (public) output of the
publishing function.

5



DESCENT-TO-DELETE

Definition 2 (Di, θi, θ̂i, θ̃i) Fix any (A,RA) of learning and unlearning algorithms, any publish-
ing function fpublish, any dataset D, and any update sequence U = (u1, u2, . . .). We write D0 = D
and for any i ≥ 1, Di = Di−1 ◦ ui. For any i ≥ 1, we write θi for the model input to the unlearning
algorithm RA on round i. We write θ̂0 = A (D0), and for any i ≥ 1, θ̂i = RA (Di−1, ui, θi). For
any i ≥ 0, we define θ̃i = fpublish(θ̂i). In other words, whenever A, RA, fpublish, D, and U are
clear from context, we write {Di}i≥0 to represent the sequence of updated datasets, {θi}i≥1 for the
sequence of input models to RA, {θ̂i}i≥0 to denote the (secret) output models of A and RA, and
{θ̃i}i≥0 to denote their corresponding sequence of published models.

Our (ε, δ)-unlearning notion is similar to the deletion notion proposed in Ginart et al. (2019) but
generalizes it to an update sequence consisting of both additions and deletions.

Definition 3 ((ε, δ)-indistinguishability) Let X and Y be random variables over some domain Ω.

We say X and Y are (ε, δ)-indistinguishable and write X
ε,δ
≈ Y , if for all S ⊆ Ω,

Pr [X ∈ S] ≤ eε Pr [Y ∈ S] + δ, Pr [Y ∈ S] ≤ eε Pr [X ∈ S] + δ

Definition 4 ((ε, δ)-unlearning) We say that RA is an (ε, δ)-unlearning algorithm for A with re-
spect to a publishing function fpublish, if for all data sets D and all update sequences U = (ui)i, the
following condition holds. For every update step i ≥ 1, for θi = θ̂i−1

fpublish (RA (Di−1, ui, θi))
ε,δ
≈ fpublish (A (Di))

If the above condition holds for θi = θ̃i−1,RA is an (ε, δ)-perfect unlearning algorithm for A.

Remark 5 Observe that an unlearning algorithm takes as input the model output by the previous
round’s unlearning algorithm, whereas a perfect unlearning algorithm takes as input the model
output by the previous round’s publishing algorithm. Since we require that the published outputs
satisfy (ε, δ)-indistinguishability, this means that unlearning algorithms may need to maintain secret
state that does not satisfy the indistinguishability guarantee, but that perfect unlearning algorithms
do not need to.

2.1. Learning Framework: ERM

We consider an Empirical Risk Minimization (ERM) setting in this paper where models are (pa-
rameter) vectors in d-dimensional space Rd equipped with the (Euclidean) `2-norm which will be
denoted by ‖·‖2. Let Θ ⊆ Rd be a convex and closed subset of Rd, and let D = supθ,θ′∈Θ ‖θ−θ′‖2
be the diameter of Θ. We denote a loss function by a mapping f : Θ×Z → R that takes as input a
parameter θ ∈ Θ and a data point z ∈ Z , and outputs the loss of θ on z, f(θ, z) — which we may
also denote by fz(θ). Given a dataset D = {zi}ni=1 ∈ Zn, with slight abuse of notation, let fD(θ)
denote the empirical loss of θ on the dataset D: fD (θ) , 1

n

∑n
i=1 fzi(θ).

Definition 6 ((α, β)-accuracy) A pair (A,RA) of learning and unlearning algorithms is (α, β)-
accurate with respect to a publishing function fpublish, if for every dataset D and every update

sequence U , the following condition holds: ∀ i ≥ 0, Pr
[
fDi(θ̃i)−minθ∈Θ fDi(θ) > α

]
< β.
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Definition 7 (strong vs. weak unlearning) Fix any pair (A,RA) of learning and unlearning al-
gorithms that satisfy (α, β)-accuracy with respect to some publishing function fpublish. Let Ci repre-
sent the overall computational cost of the unlearning algorithm at step i of the update. We say RA
is a “strong” unlearning algorithm for A if (1) α and β are independent of the length of the update
sequence, and (2) For every i ≥ 1, Ci/C1 = O (log(i)), i.e., the computation cost of the unlearning
algorithm must grow at most logarithmically with i. If (1) holds and ∀i ≥ 1, Ci/C1 = Ω (poly(i)),
we sayRA is a “weak” unlearning algorithm for A.

We remark that we have defined update sequences as if they are non-adaptively chosen, but that our
basic algorithms in Section 3 have guarantees also for adaptively chosen update sequences.

Additional details of this section appear in Appendix A and Appendix B.

2.2. Strong Convexity and Sensitivity

Throughout the paper we will leverage the fact that the optimizers of strongly convex functions have
low sensitivity to individual data points. We state this fact below and defer its proof to Appendix D.

Lemma 8 (Sensitivity) Suppose for any z ∈ Z , fz is L-Lipschitz and m-strongly convex. For any
dataset D, let θ∗D , argminθ∈Θ fD (θ). We have that for any integer n, any data set D of size n,
and any update u, ‖θ∗D − θ∗D◦u‖2≤

2L
mn .

3. Basic Perturbed Gradient Descent

A key building block for our main result (and a simple and effective deletion scheme in its own right,
that requires fewer assumptions than our main result) is perturbed gradient descent. The basic idea
is as follows, for both the training algorithm and the deletion algorithm: we will perform gradient
descent updates until we are guaranteed that we have found a θ̂t which is within Euclidean distance
α of the optimizer, for some small α. Our publishing algorithm fpublish adds Gaussian noise scaled
as a function of α to every coordinate. This guarantees (ε, δ)-indistinguishability with respect to
any other parameter that is within distance α of the optimizer — and hence between the outcomes
of full retraining and updating. Depending on whether we want a perfect deletion algorithm or not,
we save either the perturbed or unperturbed parameter as our initialization point for the next update.

Our update algorithm will be the same as our training algorithm — except that it will be ini-
tialized at the learned parameter from the previous round, which will guarantee faster convergence.
This is because — if we allow secret state — the initialization parameter will be within α of the
optimizer before the update, and if f is strongly convex, withinO(α+ 1

mn) of the optimal parameter
after the update by the sensitivity Lemma 8. If we require a perfect deletion algorithm, we will nec-
essarily need to start further from the optimizer, because our saved state will have been additionally
perturbed with Gaussian noise. Here we leverage the fact that gradient descent converges quickly
when its initialization point is near the optimal solution.

This algorithm relies crucially on leveraging strong convexity, which guarantees us that updates
only change the empirical risk minimizer by a small amounts in parameter space. In Section 3.1 we
solve the non-strongly-convex case by adding a strongly convex regularizer.

We parameterize our results by the computational cost of the update operations, and we can trade
off run-time for accuracy. We measure computational cost by gradient computations. In this section,
we parameterize our strong unlearning algorithms by the number of iterations I that they run for,
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Algorithm 1 A: Learning for Perturbed Gradient Descent
Input: dataset D
Initialize θ′0 ∈ Θ
for t = 1, 2, . . . T do

θ′t = ProjΘ
(
θ′t−1 − ηt∇fD(θ′t−1)

)
Output: θ̂0 = θ′T ; // Secret output

Algorithm 2RA: ith Unlearning for Perturbed Gradient Descent
Input: dataset Di−1, update ui, model θi
Update dataset Di = Di−1 ◦ ui
Initialize θ′0 = θi
for t = 1, 2, . . . Ti do

θ′t = ProjΘ
(
θ′t−1 − ηt∇fDi(θ′t−1)

)
Output: θ̂i = θ′Ti ; // Secret output

which corresponds to a budget of ≈ nI gradient computations per update. For weak unlearning
algorithms, this is the number of iterations they run for at their first update.

Theorem 9 (Accuracy, Unlearning, and Computation Tradeoffs) Suppose for all z ∈ Z , the
loss function fz ism-strongly convex, L-Lipschitz, andM -smooth. Define γ , (M−m)/(M+m)
and η , 2/(M + m). Let the learning algorithm A (Algorithm 1) run with ηt = η and T ≥
I + log(Dmn2L )/ log (1/γ) where n is the size of the input dataset, and let the unlearning algorithm
RA (Algorithm 2) run with input models θi ≡ θ̂i−1 and ηt = η and Ti = I iterations, for all i ≥ 1.
Let the unlearning parameters ε and δ be such that ε = O (log (1/δ)), and let

σ =
4
√

2LγI

mn (1− γI)
(√

log (1/δ) + ε−
√

log (1/δ)
)

in fpublish (Algorithm 3). We have thatRA is a strong (ε, δ)-unlearning algorithm forA with respect
to fpublish. Furthermore, for any β, (A,RA) is (α, β)-accurate with respect to fpublish where

α = O

(
ML2γ2Id log (1/δ) log2 (d/β)

(1− γI)2m2ε2n2

)

A formal proof of Theorem 9 can be found in Appendix E. We note that the same algorithm
can be analyzed as a perfect unlearning algorithm (i.e. without maintaining secret state). It obtains
the same asymptotic tradeoff between running time and accuracy, under the condition that the per-
update run-time is at least logarithmic in the relevant parameters. Intuitively, this run-time lower
bound is required so that the update algorithm can “recover” from the effect of the added noise in
previous rounds. See Appendix F for details.

3.1. Convex Loss: Regularized Perturbed GD

If our loss function is not strongly convex, we can regularize it to enforce strong convexity, and
apply our algorithms to the regularized loss function. When we do this, we must manage a basic
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Algorithm 3 fpublish: Publishing function

Input: θ̂ ∈ Rd
Draw Z ∼ N

(
0, σ2Id

)
Output: θ̃ = θ̂ + Z ; // Public output

tradeoff: the more aggressively we regularize the loss function, the less sensitive it will be, and so
the less noise we will need to add in our fpublish routine. This reduced noise will increase accuracy.
On the other hand, the more aggressively we regularize, the less well the optimizer of the regularized
loss function will optimize the original loss function of interest, which will decrease accuracy. More
aggressive regularization will also degrade the Lipschitz/smoothness guarantees of the loss function.
We choose our regularization parameter carefully to trade off these various sources of error.

Suppose in this section, without loss of generality, that Θ contains the origin: 0 ∈ Θ. This will
imply that supθ∈Θ ‖θ‖2 ≤ D where D is the diameter of Θ, as before. Our strategy is to regularize
f so as to make it strongly convex, and have our learning and unlearning algorithms run on the
regularized version of f : gz(θ) , fz(θ) + m

2 ‖θ‖
2
2 for some m > 0.

Theorem 10 (Accuracy, Unlearning, and Computation Tradeoffs) Suppose for all z ∈ Z , the
loss function fz is convex, L-Lipschitz, and M -smooth, and let gz be defined as above for some
m specified later. Define γ , M/(M + 2m) and η , 2/(M + 2m). Let the learning algorithm
A (Algorithm 1) run on the regularized g with ηt = η and T ≥ I + log(Dmn2L )/ log (1/γ) where
n is the size of the input dataset, and let the unlearning algorithm RA (Algorithm 2) run on the
regularized g with input models θi ≡ θ̂i−1 and ηt = η and Ti = I iterations for all i ≥ 1. Let the
unlearning parameters ε and δ be such that ε = O (log (1/δ)), and let

σ =
4
√

2 (L+mD) γI

mn (1− γI)
(√

log (1/δ) + ε−
√

log (1/δ)
) , m =

(
LM

3
2

√
d log (1/δ)

DεnI

) 2
5

We have thatRA is a strong (ε, δ)-unlearning algorithm forA with respect to fpublish. Furthermore,
for any β, (A,RA) is (α, β)-accurate with respect to fpublish where

α = O

(M 3
2LD4

√
d log (1/δ)

εnI

) 2
5

log2 (d/β)

+O
(
n−

4
5

)
+O

(
n−

6
5

)
See Appendix G for the proof. If our goal is to satisfy only weak unlearning (i.e. to allow

run-time to grow with the length of the update sequence i), we can obtain error bounds that have a
better dependence on n. Details are in Appendix H.

4. Perturbed Distributed Descent

Our next algorithm obtains additional running time improvements for sufficiently high dimensional
data. The basic idea is as follows: we randomly partition the dataset into K parts, separately
optimize to find a model that approximates the empirical risk minimizer on each part, and then take
the average of each of the K models. Zhang et al. (2012) analyze this algorithm and show that its
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out of sample guarantees match the out of sample guarantees of non-distributed gradient descent,
whenever K ≤

√
n. For us, this algorithm has a key advantage: the element involved in an update

will only appear in a small number of the partitions, and we only need to update the parameters
corresponding to those partitions. Our algorithm will improve over basic gradient descent because
those partitions are smaller in size than the entire dataset by a factor of K, and hence our run-
time budget of nI gradient computations will allow us to perform more than I gradient descent
operations per modified partition. We provide deletion guarantees by using a publishing function
that adds noise to the average of the K parameters.

There are several difficulties that we must overcome. Primary among these is that the analysis
of Zhang et al. (2012) provides out of sample guarantees for a dataset that is drawn i.i.d. from
some fixed distribution. In our case (because our dataset results from an arbitrary and possibly
adversarial sequence of additions and deletions), there is no distribution from which the dataset is
drawn. To deal with this, our initial training algorithm does not directly partition the dataset, but
instead draws a bootstrap sample (i.e. a sample with replacement) from the empirical distribution
defined by the dataset, so that the “out of sample” guarantees of Zhang et al. (2012) correspond
to empirical risk bounds in our case. Because the accuracy analysis depends on this distributional
property, as updates come in, before we use gradient descent to update the models corresponding
to the appropriate partitions, we must apply a form of reservoir sampling to guarantee that each
partition continues to be distributed as a set of samples drawn i.i.d. from the empirical distribution
defined by the current dataset (i.e. after the update). This is also crucial to our unlearning guarantee.
Finally, the basic instantiation of this algorithm only gives guarantees on the expected error of the
learned model Zhang et al. (2012), and we want high probability guarantees. To achieve these, we
run C = O(log(1/β)) copies of the algorithm in parallel, and at every round, only publish a noisy
version of the parameter achieving the lowest loss among all C candidates. We now go into more
detail. To facilitate the technical development in this section, we introduce some notation:

Definition 11 Fix any update round i ≥ 0. In this section we use Si = (Sij)Kj=1 for the partitioned
dataset at round i. We use Si (unbold) to denote the union of partitions in Si and Di for the unique
data points in Si (i..e Di removes the duplicates in Si which results from our sampling scheme).
We use θ̂i = (θ̂ij)

K
j=1 for the learned parameters in each partition. θ̃i = fpublish(θ̂i) represents the

published model of round i. In this section, the unlearning algorithm for update i takes as input the
partitioned dataset of previous round Si−1, an update ui, and the learned models of previous round
θ̂i−1, and outputs the updated models θ̂i and the updated datasets Si for use in the next update.

Throughout we denote the distribution on datasets of size B sampled with replacement from
D by PB(D). We need to maintain the condition that the marginal distribution of the sampled
dataset Si at round i is PB(Di). To do this, at each update, we iteratively update each partition
using a technique called reservoir sampling with replacement (that we need to extend to handle both
additions and deletions). The algorithm SBrep is detailed in Algorithm 5.

Lemma 12 Fix any training dataset D and any non-adaptively chosen update sequence U . Let
S0 ∼ PB(D) (as in the learning algorithm) and for every i ≥ 1, Si ∼ SBrep(Si−1, ui) (as in the
unlearning algorithm). We have that for all i ≥ 0: Si ∼ PB(Di).

Lemma 13 shows that the reservoir sampling modifies at most si = Õ(B/n) data points; hence,
at most si partitions containing a modified data point. Thus we can divide our budget of nTi gradient
computations at round i, into (KnTi)/(Bsi) gradient computations per modified partition.

10
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Algorithm 4 A: Learning for Perturbed Distributed Gradient Descent
Input: dataset D
for l = 1, 2, . . . , C do

Draw S ∼ PB(D) ; // Bootstrap B data points.
Partition S randomly into K equally-sized datasets: S0,l = (Sj)Kj=1.
for j = 1, 2, . . . ,K do

Initialize θ′0 ∈ Θ
for t = 1, 2, . . . T do

θ′t = ProjΘ
(
θ′t−1 − ηt∇fSj (θ′t−1)

)
θ̂j = θ′T

θ̂0,l = (θ̂j)
K
j=1 ; // l’th set of models.

Call fpublish(θ̂0,l∗) where l∗ = argminl fD(avg(θ̂0,l)) ; // Publish the best model.

Output: θ̂0 = (θ̂0,l)
C
l=1,S0 = (S0,l)

C
l=1 ; // For use in first update.

Algorithm 5 SBrep: Reservoir Sampling with Replacement for ith update

Input: Subsample Si−1, update ui = (zi, •i)
Si = Si−1

if •i = ′add′ then
Draw N ∼ Binomial(B,n−1

i ) ; // ni: size of Di.
Pick distinct indices i1, . . . , iN at random from [B].
for k = 1, 2, . . . , N do

Replace zik with zi in Si.
else

for zk ∈ Si : zk = zi do
Replace zk with z ∼ P(Di) in Si ; // P(Di): Di’s empirical distribution

Output: Si

Lemma 13 Fix any training dataset D and any update sequence U , and suppose B ≥ n. Let si
denote the number of data points modified by the update of round i, namely, ui. In other words,
si = |{zl : zl ∈ Si, zl /∈ Si−1}|. We have that for any update step i and any δ′ ≤ e−1, with
probability at least 1− δ′, si ≤ 10B

n log (1/δ′) .

We now state the accuracy and unlearning bounds for perturbed distributed gradient descent.
The convergence analysis on each partition is similar to the analysis in the proof of Theorem 9, with
the added complexity of handling the number of partitions updated at each round, and the number
of duplicated points (that could possibly be removed) in each partition. In order to obtain accuracy
bounds we need to leverage an accuracy bound for the averaged parameter in a distributed setting,
which we take from Zhang et al. (2012) (see Appendix I and J for details and proofs of this section).

Theorem 14 (Accuracy, Unlearning, and Computation Tradeoffs) Suppose for all z ∈ Z , the
loss function fz is m-strongly convex, L-Lipschitz, M -smooth, and that its Hessian is G-Lipschitz
and bounded by H (with respect to `2-operator norm of matrices). Define γ , (M −m)/(M +
m) and η , 2/(M + m). Fix any 1 ≤ ξ ≤ 4/3, and let B = nξ and K =

√
B. Let the

learning algorithm A (Algorithm 4) run with ηt = η and T iterations on every partition, and

11
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Algorithm 6RA: ith Unlearning for Perturbed Distributed Gradient Descent

Input: datasets Si−1 = (Si−1,l)
C
l=1, update ui, models θ̂i−1 = (θ̂i−1,l)

C
l=1

Update Di = Di−1 ◦ ui.
for l = 1, 2, . . . , C do

Draw Si,l ∼ SBrep(Si−1,l, ui) ; // Reservoir update + similar partition.

Let (Si,j)Kj=1 ≡ Si,l, (Si−1,j)
K
j=1 ≡ Si−1,l, (θ̂i−1,j)

K
j=1 ≡ θ̂i−1,l.

Let ind = {j : Si−1,j 6= Si,j} ; // Modified partitions.
for j = 1, 2, . . . ,K do

if j ∈ ind then
Initialize θ′0 = θ̂i−1,j

for t = 1, 2, . . . , T = KnTi
B|ind| do

θ′t = ProjΘ
(
θ′t−1 − ηt∇fSi,j (θ′t−1)

)
θ̂i,j = θ′T

else
θ̂i,j = θ̂i−1,j

θ̂i,l = (θ̂i,j)
K
j=1 ; // l’th set of models.

Call fpublish(θ̂i,l∗) where l∗ = argminl fDi(avg(θ̂i,l)) ; // Publish the best model.

Output: θ̂i = (θ̂i,l)
C
l=1,Si = (Si,l)

C
l=1 ; // For use in next update.

Algorithm 7 fpublish: publishing function

Input: θ̂ = (θ̂j)
K
j=1

Draw Z ∼ N
(
0, σ2Id

)
Output: θ̃ = avg(θ̂) + Z ; // avg(·) averages input models.

for any update i ≥ 1, let the unlearning algorithm RA (Algorithm 6) run with ηt = η and total
Ti iterations per copy (i.e. total nTi gradient computations per copy), where for any I, T ≥

In
4−3ξ

2 +
log(DmL−1nξ(1+10 log(2/δ)))

log(1/γ) , and Ti = 10 log (2i/δ)

(
I + 1

n
4−3ξ

2

· log(1+10i log(2i/δ))
log(1/γ)

)
.

Let the unlearning parameters ε and δ be such that ε = O (log (1/δ)) and δ = O(B−1), and let

σ =
4
√

2LγIn
4−3ξ

2

mn

(
1− γIn

4−3ξ
2

)(√
log (2/δ) + ε−

√
log (2/δ)

)
in fpublish (Algorithm 7). We have thatRA is a strong (ε, δ)-unlearning algorithm forA with respect
to fpublish. Furthermore, for any β, letting C = log (2/β) / log 2, we get that (A,RA) is (α, β)-
accurate with respect to fpublish where

α = O

ML2γ2In
4−3ξ

2 d log (1/δ) log2 (d/β)

m2(1− γ)2ε2n2

+O
(

log d

nξ

)
+O

(
1

n
3ξ
2

)

Remark 15 This improves over the bound of Theorem 9, whenever d = Ω̃

(
ε2n2−ξ

γI−γIn
4−3ξ

2

)
.
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Appendix A. Supplement for Model and Preliminaries

Assumption 16 For notational simplicity (so that we can state asymptotic bounds in terms of n)
We assume throughout that over the course of an update sequence, the size of the updated datasets
never drops below n/2 where n is the size of the original training dataset: ∀ i, ni ≥ n/2 where ni
is the size of Di. Note that this is consistent with update sequences being of arbitrary length, since
we allow additions as well as deletions. This assumption is not necessary, but otherwise bounds
would have to be stated in terms of ni.

Definition 17 (Strong Convexity) A function h : Θ→ R is said to be m-strongly convex for some
m ≥ 0, if for any θ1, θ2 ∈ Θ, and any t ∈ (0, 1),

h (tθ1 + (1− t)θ2) ≤ th(θ1) + (1− t)h(θ2)− m

2
t(1− t) ‖θ1 − θ2‖22

if the above condition holds for m = 0, we say h is convex.

Definition 18 (Lipschitzness) A function h : Θ→ R is said to be L-Lipschitz if for all θ1, θ2 ∈ Θ,

|h(θ1)− h(θ2)| ≤ L ‖θ1 − θ2‖2

Definition 19 (Smoothness) A function h : Θ → R is said to be M -smooth, if it is differentiable
and for all θ1, θ2 ∈ Θ,

‖∇h(θ1)−∇h(θ2)‖2 ≤M ‖θ1 − θ2‖2

14
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Appendix B. Convergence Results for Gradient Descent

We make use of projected gradient descent extensively throughout this paper. Here, we state two
convergence results for gradient descent that we will use. A crucial feature of these bounds (and
one not shared by all bounds for gradient descent and its variants) is that they improve as a function
of how close our initial parameter is to the optimal parameter.

Let h : Θ → R where Θ ⊆ Rd is convex, closed, and bounded. Our goal is to approximate
minθ∈Θ h(θ). The Gradient Descent (GD) algorithm starts with an initial point θ0 ∈ Θ and proceeds
as follows:

∀ t ≥ 1 : θt = ProjΘ (θt−1 − ηt∇h(θt−1))

ProjΘ(θ) = argminθ′∈Θ ‖θ − θ′‖2 is a projection onto Θ, and ηt is the step size used in round t.

Theorem 20 (Strongly Convex and Smooth Chen (2019)) Let h be m-strongly convex and M -
smooth, and let θ∗ = argminθ∈Θ h(θ). We have that after T steps of GD with step size ηt = 2

m+M ,

‖θT − θ∗‖2 ≤
(
M −m
M +m

)T
‖θ0 − θ∗‖2

Theorem 21 (Convex and Smooth Aravkin et al. (2017)) Let h be convex and M -smooth, and
let θ∗ ∈ argminθ∈Θ h(θ). We have that after T steps of GD with step size ηt = 1

M ,

h(θT )−min
θ∈Θ

h(θ) ≤
M ‖θ0 − θ∗‖22

2T

Appendix C. Probabilistic Tools

Lemma 22 SupposeX,Y are random variables over the same domain Ω, and letZ be any random

variable. If with probability at least 1− δ over Z, we have X|Z
ε,δ
≈ Y |Z, then X

ε,2δ
≈ Y .

Proof Define for any z, the following (good) event:

G(z) =

{
z : X| (Z = z)

ε,δ
≈ Y | (Z = z)

}
and note that Prz∼Z [z /∈ G(Z)] ≤ δ. We have that for any S ⊆ Ω,

Pr [X ∈ S] = Ez∼Z [Pr [X ∈ S|Z = z]]

= Ez∼Z [Pr [X ∈ S|Z = z]1 (z ∈ G(z)) + Pr [X ∈ S|Z = z]1 (z /∈ G(z))]

≤ Ez∼Z [eε Pr [Y ∈ S|Z = z] + δ] + Pr
z∼Z

[z /∈ G(z)]

≤ eεEz∼Z [Pr [Y ∈ S|Z = z]] + 2δ

= eε Pr [Y ∈ S] + 2δ

where 1(A) is the indicator function of event A, for any A. This completes the proof because we
can similarly show,

Pr [Y ∈ S] ≤ eε Pr [X ∈ S] + 2δ

15
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Lemma 23 (Gaussian Tail Bound) Let Z ∼ N (0, σ2Id). We have that for any β > 0,

Pr
[
‖Z‖2 ≥ σ

√
2d log(2d/β)

]
≤ β

Lemma 24 (Gaussian Mechanism Bun and Steinke (2016)) Let X ∼ N (µ, σ2Id) and Y ∼
N (µ′, σ2Id). Suppose ‖µ− µ′‖2 ≤ ∆. We have that for any δ > 0, X

ε,δ
≈ Y , where

ε =
∆2

2σ2
+

∆

σ

√
2 log (1/δ)

Lemma 25 LetX ≥ 0 be any random variable drawn from a distributionP , with finite expectation
µ = EX∼P [X]. Let X1, . . . XN

iid∼ P . Then if Xmin , minj Xj , for N ≥ log(1/δ)
log 2 , with probability

at least 1− δ: Xmin < 2µ.

Proof By Markov’s inequality, for any Xj ,Pr [Xj ≥ 2µ] ≤ 1
2 . Hence,

Pr [Xmin ≥ 2µ] =
N∏
j=1

Pr [Xj ≥ 2µ] ≤
(

1

2

)N
≤
(

1

2

) log(1/δ)
log 2

= δ

as desired.

Lemma 26 (Chernoff Bound) Let X ∼ Binomial (m, p), and let µ = mp. Then for any δ′ ≥ 0,

Pr
[
X ≥ (1 + δ′)µ

]
≤ e−

µδ′2
2+δ′

Appendix D. Proof of Sensitivity Lemma 8

To prove Lemma 8, we will need the following claim.

Claim 27 Suppose h : Θ → R is m-strongly convex and let θ∗ = argminθ∈Θ h(θ). We have that
for any θ ∈ Θ, h(θ) ≥ h(θ∗) + m

2 ‖θ − θ
∗‖22.

Proof First, recall the definition of m-strong convexity: for any θ1, θ2 ∈ Θ, and any t ∈ (0, 1),

h(tθ1 + (1− t)θ2) ≤ th(θ1) + (1− t)h(θ2)− m

2
t(1− t) ‖θ1 − θ2‖22

Now fix some θ ∈ Θ. We have that for any t ∈ (0, 1),

h(θ∗) ≤ h(tθ + (1− t)θ∗) ≤ th(θ) + (1− t)h(θ∗)− m

2
t(1− t) ‖θ − θ∗‖22

where the first inequality follows because θ∗ is the minimizer of h, and the second is due to m-
strong convexity of h. Rearranging the above inequality and dividing both sides by t, we get that
for any t ∈ (0, 1),

h(θ) ≥ h(θ∗) +
m

2
(1− t) ‖θ − θ∗‖22
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We therefore have that

h(θ) ≥ h(θ∗) +
m

2
sup
t∈(0,1)

(1− t) ‖θ − θ∗‖22 = h(θ∗) +
m

2
‖θ − θ∗‖22

Proof [Proof of Lemma 8] Fix n, a data set D = {zi}ni=1, and an update u = (z, •), and let
D′ = D ◦ u. Assume • = ′delete′. If z /∈ D, then the claim immediately follows; so suppose
z ∈ D. We have that

fD (θ∗D′) =
n− 1

n
fD′ (θ

∗
D′) +

1

n
fz (θ∗D′)

≤ n− 1

n
fD′ (θ

∗
D) +

1

n
fz (θ∗D′)

= fD (θ∗D) +
1

n
fz (θ∗D′)−

1

n
fz (θ∗D)

≤ fD (θ∗D) +
L

n
‖θ∗D′ − θ∗D‖2

(1)

where the first inequality follows by optimality of θ∗D′ forD′, and the second follows byL-Lipschitzness
of fz . Note that since fD is m-strongly convex, Claim 27 implies

fD (θ∗D′) ≥ fD (θ∗D) +
m

2
‖θ∗D′ − θ∗D‖

2
2 (2)

Combining Equations (1) and (2) completes the proof for the case when • = ′delete′. Note that
when • = ′add′, one can take u′ , (z, ′delete′), and use the bound for deletion to conclude that

‖θ∗D − θ∗D◦u‖2 =
∥∥∥θ∗D◦u − θ∗(D◦u)◦u′

∥∥∥
2
≤ 2L

mn

Appendix E. Proof of Theorem 9

Proof [Proof of Theorem 9] We first prove the unlearning guarantee. Fix a training dataset D of
size n and an update sequence U = (ui)i. Recall from Definition 2 the notation we use: {Di}i≥0

for the sequence of updated datasets according to the update sequence U , {θ̂i}i≥0 for the sequence
of secret non-noisy parameters, and {θ̃i}i≥0 for the sequence of published noisy parameters. We
also use ni to denote the size of Di. Note that n0 = n and that by Assumption 16, ni ≥ n/2 for all
i. Let θ∗i , argminθ fDi(θ) denote the optimizer of fDi , for any i ≥ 0.

We have that for any i ≥ 0, fpublish(A (Di)) ∼ N
(
µi, σ

2Id
)
, where it follows by the conver-

gence guarantee of Theorem 20 that

‖µi − θ∗i ‖2 ≤ γ
T
∥∥θ′0 − θ∗i ∥∥2

=
2LγI ‖θ′0 − θ∗i ‖2

Dmni
≤ 4L

mn
· γI (3)

We also have that for any i ≥ 1, fpublish(RA (Di−1, ui, θi)) ∼ N
(
µ′i, σ

2Id
)

where

∥∥µ′i − θ∗i ∥∥2
≤ 4L

mn
· γI

1− γI
(4)
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We use induction on i to prove this claim. Let’s focus on the base case i = 1. We have that∥∥µ′1 − θ∗1∥∥2
≤ γI

∥∥∥θ̂0 − θ∗1
∥∥∥

2

≤ γI
(∥∥∥θ̂0 − θ∗0

∥∥∥
2

+ ‖θ∗0 − θ∗1‖2
)

≤ γI
(

4L

mn
· γI

1− γI
+

4L

mn

)
=

4L

mn
· γI

1− γI

The first inequality follows from Theorem 20 and the fact that when running Algorithm 2 for the first
update i = 1, the initial point θ′0 = θ1 ≡ θ̂0 saved by the training algorithm. The second inequality
is a simple triangle inequality, and the third follows from Equation (3) (noting that θ̂0 ≡ µ0) and the
sensitivity Lemma 8. Let’s move on to the induction step of the argument. Suppose Equation (4)
holds for some i ≥ 1. We will show that it holds for (i+ 1) as well. We have that∥∥µ′i+1 − θ∗i+1

∥∥
2
≤ γI

∥∥∥θ̂i − θ∗i+1

∥∥∥
2

≤ γI
(∥∥∥θ̂i − θ∗i ∥∥∥

2
+
∥∥θ∗i − θ∗i+1

∥∥
2

)
≤ γI

(
4L

mn
· γI

1− γI
+

4L

mn

)
=

4L

mn
· γI

1− γI

The first inequality follows from Theorem 20 and the fact that when running Algorithm 2 for the
(i + 1)th update, the initial point θ′0 = θi+1 = θ̂i saved by the previous run of the unlearning
algorithm. The second inequality is a simple triangle inequality, and the third follows from the
induction assumption for i (noting that θ̂i ≡ µ′i), the sensitivity Lemma 8, and the assumption that
ni ≥ n/2.

We therefore have shown that for any i ≥ 1, for θi ≡ θ̂i−1

fpublish (A (Di)) ∼ N
(
µi, σ

2Id
)
, fpublish (RA (Di−1, ui, θi)) ∼ N

(
µ′i, σ

2Id
)

where Equations (3) and (4) imply∥∥µi − µ′i∥∥2
≤ ∆ ,

8L

mn
· γI

1− γI

It follows from Lemma 24 that RA is a ( ∆2

2σ2 + ∆
σ

√
2 log (1/δ), δ)-unlearning algorithm for A,

where, with σ specified in the theorem statement, we get (ε, δ)-unlearning guarantee.
Now let’s prove the accuracy statement of the theorem. We will make use of Equations (3) and

(4) and a Gaussian tail bound (see Lemma 23). Recall that for any i ≥ 0, the published output
θ̃i = θ̂i +Z, and that θ̂0 ≡ µ0 and θ̂i ≡ µ′i for i ≥ 1. We therefore have that, for any β, and for any
update step i ≥ 0,

Pr

[∥∥∥θ̃i − θ∗i ∥∥∥
2
≥ 4L

mn
· γI

1− γI
+ σ
√

2d log (2d/β)

]
≤ β
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The choice of σ in the theorem and the fact that for ε = O (log (1/δ)), we have
√

log (1/δ) + ε −√
log (1/δ) = Ω(ε/

√
log (1/δ)), imply that for any i ≥ 0, with probability at least 1− β,

∥∥∥θ̃i − θ∗i ∥∥∥
2

= O

(
LγI

√
d log (1/δ) log (d/β)

(1− γI) εmn

)
(5)

Finally, since fz is M -smooth for all z, we get that for any update step i ≥ 0, with probability at
least 1− β,

fDi(θ̃i)− fDi(θ∗i ) ≤
M

2

∥∥∥θ̃i − θ∗i ∥∥∥2

2
= O

(
ML2γ2Id log (1/δ) log2 (d/β)

(1− γI)2m2ε2n2

)

Appendix F. Perfect Unlearning

Theorem 28 (Perfect Unlearning) Suppose for all z ∈ Z , the loss function fz is m-strongly
convex, L-Lipschitz, and M -smooth. Define γ , (M −m)/(M + m) and η , 2/(M + m). Let
the unlearning parameters ε and δ be such that ε = O (log (1/δ)). Let the learning algorithm A
(Algorithm 1) run with ηt = η and T ≥ I + log(Dmn2L )/ log (1/γ) where n is the size of the input
dataset, and let the unlearning algorithm RA (Algorithm 2) run with input models θi ≡ θ̃i−1 and
ηt = η and Ti = I + log (log (4di/δ)) / log (1/γ) iterations for all i ≥ 1 where

I ≥
log

( √
2d (1−γ)−1√

2 log(2/δ)+ε−
√

2 log(2/δ)

)
log (1/γ)

, and σ =
8LγI

(
1− γI

)−1

mn
(√

2 log (2/δ) + 3ε−
√

2 log (2/δ) + 2ε
)

in fpublish (Algorithm 3). We have that

1. Unlearning: RA is a strong (ε, δ)-perfect unlearning for A with respect to fpublish.

2. Accuracy: for any β, (A,RA) is (α, β + δ)-accurate with respect to fpublish where

α = O

(
ML2γ2Id log (1/δ) log2 (d/β)

(1− γI)2m2ε2n2

)

Proof [Proof of Theorem 28] We first prove the unlearning guarantee. Fix a training dataset D
of size n and an update sequence U = (ui)i. Similar to the proof of Theorem 9, we first recall
a few notations from Definition 2: {Di}i≥0 for the sequence of updated datasets according to the
update sequence U , {θ̂i}i≥0 for the sequence of secret non-noisy parameters, and {θ̃i}i≥0 for the
sequence of published noisy parameters. Let Zi denote the Gaussian noise added by fpublish on
round i of update, and recall that θ̃i = θ̂i + Zi. We use ni (≥ n/2) to denote the size of Di. Let
θ∗i , argminθ fDi(θ) denote the optimizer of fDi .
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We have that for any i ≥ 0, fpublish(A (Di)) ∼ N
(
µi, σ

2Id
)
, where it follows by the conver-

gence guarantee of Theorem 20 that,

‖µi − θ∗i ‖2 ≤ γ
T
∥∥θ′0 − θ∗i ∥∥2

=
2LγI ‖θ′0 − θ∗i ‖2

Dmni
≤ 4L

mn
· γI (6)

We also have that for any update step i ≥ 1, conditioned on the noise of previous rounds {Z0, . . . , Zi−1},
fpublish (RA (Di−1, ui, θi)) ∼ N

(
µ′i, σ

2Id
)
, where for any β′ > 0,

Pr
Z0,...,Zi−1

[∥∥µ′i − θ∗i ∥∥2
≥ γTi

1− γI

(
4L

mn
+ σ
√

2d log
(
2d/β′

))]
≤ iβ′ (7)

We use induction on i to prove this claim. Fix any β′. Let’s focus on the base case i = 1. We have
that ∥∥µ′1 − θ∗1∥∥2

≤ γT1
∥∥∥θ̃0 − θ∗1

∥∥∥
2

≤ γT1
(
‖Z0‖2 +

∥∥∥θ̂0 − θ∗0
∥∥∥

2
+ ‖θ∗0 − θ∗1‖2

)
≤ γT1

(
4L

mn
γI +

4L

mn
+ σ
√

2d log
(
2d/β′

))
≤ γT1

(
γI

1− γI

(
4L

mn
+ σ
√

2d log
(
2d/β′

))
+

4L

mn
+ σ
√

2d log
(
2d/β′

))
=

γT1

1− γI

(
4L

mn
+ σ
√

2d log
(
2d/β′

))
The first inequality follows from Theorem 20 and the fact that when running Algorithm 2 for the
first update i = 1, the initial point of the algorithm θ′0 = θ1 ≡ θ̃0. The second inequality is a simple
triangle inequality, and the third holds with probability at least 1−β′ and follows from Equation (6)
(noting that θ̂0 ≡ µ0), the sensitivity Lemma 8, and a Gaussian tail bound for Z0 (Lemma 23). Let’s
move on to the induction step of the argument. Suppose Equation (7) holds for some i ≥ 1. We will
show that it holds for (i+ 1) as well. We have that∥∥µ′i+1 − θ∗i+1

∥∥
2
≤ γTi+1

∥∥∥θ̃i − θ∗i+1

∥∥∥
2

≤ γTi+1

(
‖Zi‖2 +

∥∥∥θ̂i − θ∗i ∥∥∥
2

+
∥∥θ∗i − θ∗i+1

∥∥
2

)
≤ γTi+1

(
γI

1− γI

(
4L

mn
+ σ
√

2d log
(
2d/β′

))
+

4L

mn
+ σ
√

2d log
(
2d/β′

))
=

γTi+1

1− γI

(
4L

mn
+ σ
√

2d log
(
2d/β′

))
The first inequality follows from Theorem 20 and the fact that when running Algorithm 2 for the
(i+1)th update, the initial point of the algorithm θ′0 = θi+1 ≡ θ̃i. The second inequality is a simple
triangle inequality, and the third holds with probability at least 1 − (i + 1)β′ and follows from the
induction assumption for i (note θ̂i ≡ µ′i and Ti ≥ I), the sensitivity Lemma 8 (note ni ≥ n/2),
and a Gaussian tail bound for Zi (Lemma 23). Now with the choice of β′ = δ/(2i), Equation (7)
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implies with probability at least 1− δ/2 over the Gaussian noise draws {Z0, . . . , Zi−1},

∥∥µ′i − θ∗i ∥∥2
≤ γI

1− γI

(
4L

mn
+ σ
√

2d

)
(8)

because γTi ≤ (log (4di/δ))−1 γI . We therefore have shown that for any i ≥ 1, conditioned on
{Z0, . . . , Zi−1}

fpublish (A (Di)) ∼ N
(
µi, σ

2Id
)
, fpublish (RA (Di−1, ui, θi)) ∼ N

(
µ′i, σ

2Id
)

where Equations (6) and (8) imply, with probability 1− δ/2 over {Z0, . . . , Zi−1},

∥∥µi − µ′i∥∥2
≤ γI

1− γI

(
4L

mn
+ σ
√

2d

)
+

4L

mn
· γI ≤ 2γI

1− γI

(
4L

mn
+ σ
√

2d

)
, ∆

It then follows from Lemma 24, as well as the choice of σ and the assumption on I in the theorem
statement, that for any i ≥ 1, with probability 1− δ/2 over {Z0, . . . , Zi−1},

fpublish (A (Di))
ε,δ/2
≈ fpublish (RA (Di−1, ui, θi))

Now we can apply Lemma 22 to conclude that for any i ≥ 1,

fpublish (A (Di))
ε,δ
≈ fpublish (RA (Di−1, ui, θi))

And this showsRA is an (ε, δ)-unlearning algorithm for A, as desired.
Now let’s prove the accuracy statement of the theorem. We will make use of Equations (6) and

(8) and a Gaussian tail bound (see Lemma 23). Recall that for any i ≥ 0, the published output
θ̃i = θ̂i +Z, and that θ̂0 ≡ µ0 and θ̂i ≡ µ′i for i ≥ 1. We therefore have that, for any β, and for any
update step i ≥ 0,

Pr
Z0,...,Zi

[∥∥∥θ̃i − θ∗i ∥∥∥
2
≥ γI

1− γI

(
4L

mn
+ σ
√

2d

)
+ σ
√

2d log (2d/β)

]
≤ β +

δ

2

The choice of σ in the theorem and the fact that for ε = O (log (1/δ)), we have
√

log (1/δ) + ε −√
log (1/δ) = Ω(ε/

√
log (1/δ)), imply for any update step i ≥ 0, with probability at least 1− β−

δ/2, ∥∥∥θ̃i − θ∗i ∥∥∥
2

= O

(
LγI

√
d log (1/δ) log (d/β)

(1− γI) εmn

)
(9)

Finally, since fz is M -smooth for all z, we get that for any update step i ≥ 0, with probability at
least 1− β − δ/2,

fDi(θ̃i)− fDi(θ∗i ) ≤
M

2

∥∥∥θ̃i − θ∗i ∥∥∥2

2
= O

(
ML2γ2Id log (1/δ) log2 (d/β)

(1− γI)2m2ε2n2

)
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Appendix G. Proof of Theorem 10

First note that:

Claim 29 If fz is convex, L-Lipschitz, and M -smooth, then gz is m-strongly convex, (L + mD)-
Lipschitz, and (M +m)-smooth.

Proof [Proof of Theorem 10] The unlearning guarantee of the theorem holds for any m > 0, and
follows from Theorem 9 by the choice of σ in the theorem statement. Let’s prove the accuracy
statement. Let θ∗ri = argminθ∈Θ gDi(θ) denote the optimizer of the regularized gDi , for all i ≥ 0.
It follows from the proof of Theorem 9 (see Equation (5)) that for any update step i ≥ 0, with
probability 1− β, ∥∥∥θ̃i − θ∗ri ∥∥∥

2
= O

(
(L+mD) γI

√
d log (1/δ) log (d/β)

(1− γI) εmn

)
(10)

Also note that
γI

1− γI
=

1

(1 + 2 (m/M))I − 1
≤ M

mI
(11)

Now let θ∗i ∈ argminθ∈Θ fDi(θ) denote an optimizer of the original loss function fDi , for any i ≥ 0.
We have that, for any i ≥ 0,

fDi(θ̃i)− fDi(θ∗i ) = fDi(θ̃i)− fDi(θ∗ri ) + fDi(θ
∗r
i )− fDi(θ∗i )

(1)

≤ ∇fDi(θ∗ri )>
(
θ̃i − θ∗ri

)
+
M

2

∥∥∥θ̃i − θ∗ri ∥∥∥2

2
+ fDi(θ

∗r
i )− fDi(θ∗i )

(2)
=
M

2

∥∥∥θ̃i − θ∗ri ∥∥∥2

2
+mθ∗r>i

(
θ∗ri − θ̃i

)
+ fDi(θ

∗r
i )− fDi(θ∗i )

(3)

≤ M

2

∥∥∥θ̃i − θ∗ri ∥∥∥2

2
+mD2 + fDi(θ

∗r
i )− fDi(θ∗i )

=
M

2

∥∥∥θ̃i − θ∗ri ∥∥∥2

2
+mD2 + gDi(θ

∗r
i )− m

2
‖θ∗ri ‖

2
2 − fDi(θ

∗
i )

(4)

≤ M

2

∥∥∥θ̃i − θ∗ri ∥∥∥2

2
+mD2 + gDi(θ

∗
i )−

m

2
‖θ∗ri ‖

2
2 − fDi(θ

∗
i )

=
M

2

∥∥∥θ̃i − θ∗ri ∥∥∥2

2
+mD2 +

m

2

(
‖θ∗i ‖

2
2 − ‖θ

∗r
i ‖

2
2

)
(5)
= O

(
M3 (L+mD)2 d log (1/δ) log2 (d/β)

m4ε2n2I2
+mD2

)

(12)

where inequality (1) follows from fDi being M -smooth. (2) follows from the fact that for all
θ, ∇fDi(θ) = ∇gDi(θ) − mθ and that by optimality of θ∗ri for gDi , we have ∇gDi(θ∗ri ) = 0.
(3) follows from a simple application of Cauchy-Schwarz: for all θ1, θ2 ∈ Θ, we have θ>1 θ2 ≤
‖θ1‖2‖θ2‖2 ≤ D2. (4) follows from the optimality of θ∗ri for gDi , and (5) is implied by Equa-
tions (10) and (11), and it holds with probability 1−β. Now for the choice of m in the theorem, we
conclude that for any i ≥ 0, with probability 1− β,

fDi(θ̃i)− fDi(θ∗i ) = O

(M 3
2LD4

√
d log (1/δ)

εnI

) 2
5

log2 (d/β)

+O
(
n−

4
5

)
+O

(
n−

6
5

)
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Appendix H. Weak Unlearning for Convex Loss

Theorem 30 (Accuracy, Unlearning, and Computation Tradeoffs) Suppose for all z ∈ Z , the
loss function fz is convex, L-Lipschitz, and M -smooth, and let gz(·) = fz(·) + m

2 ‖·‖
2
2 for some

m specified later. Define γ , M/(M + 2m) and η , 2/(M + 2m). Let the learning algorithm
A (Algorithm 1) run on the regularized g with ηt = η and T ≥ I + log(Dmn2L )/ log (1/γ) where
n is the size of the input dataset, and let the unlearning algorithm RA (Algorithm 2) run on the
regularized g with input model θi ≡ θ̂i−1 and ηt = η and Ti = i2 · I iterations, for the ith update.
Let the unlearning parameters ε and δ be such that ε = O (log (1/δ)), and let

σ =
2
√

2M (L+mD)

m
√
mIn

(√
log (1/δ) + ε−

√
log (1/δ)

) , m =

√
LM

√
d log (1/δ)

Dεn
√
I

where σ is the noise level in fpublish. We have that

1. Unlearning: RA is a weak (ε, δ)-unlearning algorithm for A with respect to fpublish.

2. Accuracy: for any β, (A,RA) is (α, β)-accurate with respect to fpublish where

α = O

√MLD3
√
d log (1/δ)

εn
√
I

log2 (d/β)

+O
(
n−1

)
+O

(
n−

3
2

)
Remark 31 We remark that we can further explore the tradeoff between each update’s runtime Ti
and dependence on sample size n. Let ξ ≥ 1 be any constant (Theorem 30 corresponds to ξ = 1).
We have that under the setting of Theorem 30, with Ti = i2ξ · I iterations, and

σ =
2
√

2M
1
2ξ (L+mD)

m(mI)
1
2ξn

(√
log (1/δ) + ε−

√
log (1/δ)

) , m =

(
L2M

1+ξ
ξ d log (1/δ)

D2ε2n2I
1
ξ

) ξ
3ξ+1

1. Unlearning: RA is a weak (ε, δ)-unlearning algorithm for A with respect to fpublish.

2. Accuracy: for any β, (A,RA) is (α, β)-accurate with respect to fpublish where

α = O

(M 1+ξ
ξ L2D

2+4ξ
ξ d log (1/δ)

ε2n2I
1
ξ

) ξ
3ξ+1

log2 (d/β)

+O
(
n
− 4ξ

3ξ+1

)
+O

(
n
− 6ξ

3ξ+1

)

Proof [Proof of Theorem 30] We first prove the unlearning guarantee. Fix a training dataset D of
size n and an update sequence U = (ui)i. Recall from Definition 2 the notation we use: {Di}i≥0

for the sequence of updated datasets according to the update sequence U , {θ̂i}i≥0 for the sequence
of secret non-noisy parameters, and {θ̃i}i≥0 for the sequence of published noisy parameters. We
also use ni to denote the size of Di. Note that n0 = n and that by Assumption 16, ni ≥ n/2 for all
i. Let θ∗i ∈ argminθ fDi(θ) denote an optimizer of fDi . Let θ∗ri = argminθ∈Θ gDi(θ) denote the
optimizer of the regularized loss gDi .
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Fact 32 Note that for any positive integer T ′,

γT
′

=

(
1

1 + 2 (m/M)

)T ′
≤ 1

1 + 2 (m/M)T ′
≤
√

M

mT ′
(13)

where the last inequality follows because for all x ≥ 0, 1 + x ≥ 2
√
x.

Fact 33 (Generalizing Fact 32) In general, for any constant ξ ≥ 1 and any integer T ′, we have

γT
′

=
(
γξT

′
) 1
ξ ≤

(
M

mT ′

) 1
2ξ

(14)

We will use Fact 32 later on in the proof and we note that Remark 31 follows by using the
more general Fact 33. of Let L′ , L+mD which is the Lipschitz constant of the regularized loss
function g. We have that for any i ≥ 0, fpublish(A (Di)) ∼ N

(
µi, σ

2Id
)
, where it follows by the

convergence guarantee of Theorem 20 that

‖µi − θ∗ri ‖2 ≤ γ
T
∥∥θ′0 − θ∗ri ∥∥2

≤
2L′γI ‖θ′0 − θ∗ri ‖2

Dmni
≤ 2L′

mni
· γI (15)

We also have that for any i ≥ 1, fpublish(RA (Di−1, ui, θi)) ∼ N
(
µ′i, σ

2Id
)

where

∥∥µ′i − θ∗ri ∥∥2
≤ 4L′

mn
· i · γi2I (16)

We use induction on i to prove this claim. Let’s focus on the base case i = 1. We have that∥∥µ′1 − θ∗r1

∥∥
2
≤ γI

∥∥∥θ̂0 − θ∗r1

∥∥∥
2

≤ γI
(∥∥∥θ̂0 − θ∗r0

∥∥∥
2

+ ‖θ∗r0 − θ∗r1 ‖2
)

≤ γI
(

2L′

mn
· γI +

2L′

mn

)
≤ 4L′

mn
· γI

The first inequality follows from Theorem 20 and the fact that when running Algorithm 2 for the first
update i = 1, the initial point θ′0 = θ1 ≡ θ̂0 saved by the training algorithm. The second inequality
is a simple triangle inequality, and the third follows from Equation (15) (noting that θ̂0 ≡ µ0) and
the sensitivity Lemma 8. Let’s move on to the induction step of the argument. Suppose Equation (4)
holds for some i ≥ 1. We will show that it holds for (i+ 1) as well. We have that∥∥µ′i+1 − θ∗ri+1

∥∥
2
≤ γ(i+1)2I

∥∥∥θ̂i − θ∗ri+1

∥∥∥
2

≤ γ(i+1)2I
(∥∥∥θ̂i − θ∗ri ∥∥∥

2
+
∥∥θ∗ri − θ∗ri+1

∥∥
2

)
≤ γ(i+1)2I

(
4L′

mn
· i · γi2I +

4L′

mn

)
≤ 4L′

mn
· (i+ 1) · γ(i+1)2I
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The first inequality follows from Theorem 20 and the fact that when running Algorithm 2 for the
(i + 1)th update, the initial point θ′0 = θi+1 ≡ θ̂i saved by the previous run of the unlearning
algorithm. The second inequality is a simple triangle inequality, and the third follows from the
induction assumption for i (noting that θ̂i ≡ µ′i), the sensitivity Lemma 8, and the assumption that
ni ≥ n/2.

Now that we can apply Equation (13) to Equations (15) and (16) to conclude

∀ i ≥ 0, ‖µi − θ∗ri ‖2 ≤
4L′
√
M

m
√
mIn

, ∀ i ≥ 1,
∥∥µ′i − θ∗ri ∥∥2

≤ 4L′
√
M

m
√
mIn

(17)

We therefore have shown that for any i ≥ 1,

fpublish (A (Di)) ∼ N
(
µi, σ

2Id
)
, fpublish (RA (Di−1, ui, θi)) ∼ N

(
µ′i, σ

2Id
)

where Equation (17) implies ∥∥µi − µ′i∥∥2
≤ 8L′

√
M

m
√
mIn

, ∆

It then follows from Lemma 24 thatRA is a ( ∆2

2σ2 + ∆
σ

√
2 log (1/δ), δ)-unlearning algorithm forA,

where, with σ specified in the theorem statement, we get (ε, δ)-unlearning guarantee.
Now let’s focus on the accuracy statement of the theorem. Note, similar to the proof of Theo-

rem 9, the convergence bounds in Equation (17), the choice of σ in the theorem statement, as well
as a Gaussian tail bound (Lemma 23), imply that for any update step i ≥ 0, with probability at least
1− β, ∥∥∥θ̃i − θ∗ri ∥∥∥

2
= O

(√
M (L+mD)

√
d log (1/δ) log (d/β)

εm
√
mIn

)
(18)

We therefore have that, using a similar analysis as in the proof of Theorem 10 (see Equation (12)),
for any update step i ≥ 0, with probability 1− β,

fDi(θ̃i)− fDi(θ∗i ) = O

(
M2 (L+mD)2 d log (1/δ) log2 (d/β)

m3ε2n2I
+mD2

)

Finally, with the choice of m in the theorem,

fDi(θ̃i)− fDi(θ∗i ) = O

√MLD3
√
d log (1/δ)

εn
√
I

log2 (d/β)

+O
(
n−1

)
+O

(
n−

3
2

)

Appendix I. Proofs of Lemmas in Section 4

Proof [Proof of Lemma 12] We prove the claim by induction on i. For i = 0, S0 is explicitly drawn
from PB(D0) and so the claim holds. Now assume the claim holds for i−1. In the case of addition,
where ui = (zi,

′add′) this is exactly what is known as “Reservoir Sampling with Replacement” and
we refer the reader to Vitter (1985). So we need only establish the claim for deletion updates. Let
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us perform an update ui = (zi,
′delete′). We show that after conditioning on ui, after the deletion

update, each element of Si is independent and has marginal distribution P(Di−1 ◦ ui) = P(Di),
which will establish the claim. Conditioning on ui, let hui : Z → Z be the randomized function:

hui(z) =

{
z z 6= zi

z′ ∼ P(Di) z = zi

Then for any data point zl ∈ Si−1, the corresponding element in Si is hui(zl). Since by as-
sumption the {zl} = Si−1 are independent, since hui is a fixed randomized function conditioned on
ui, the {hui(zl)} = Si are conditionally independent given ui. It remains to show that the marginal
distribution of any z′l = hui(zl) is P(Di−1 ◦ui) ≡ P(Di). If zl = zi, then z′l ∼ P(Di) by design. If
zl 6= zi, then z′l = zl, and the distribution of z′l is zl|zl 6= zi, ui. Since U is a non-adaptive sequence
of updates, zl|zl 6= zi, ui ∼ zl|zl 6= zi. Then by inductive assumption zl ∼ P(Di−1), and so the
distribution of zl|zl 6= zi for zi ∈ Di−1 is uniform over Di−1 \ {zi} = Di−1 ◦ ui = Di, which is
exactly P(Di), as desired. This establishes the induction.

Proof [Proof of Lemma 13] At any round i of update, by Lemma 12, we know Si ∼ PB(Di). By
Assumption 16, ni ≥ n/2 where ni is the size of datasetDi. Hence for any data point z, the number
of copies of z subsampled in Si is distributed as Binomial(B, p), where p ≤ 2/n. Let µ = (2B)/n
and note that µ ≥ 1. Now by a Chernoff bound (see Lemma 26) for a Bernoulli random variable,
we get that for any i, the number of repeated points of any one type in Si (including the ones subject
to update) satisfies, with probability 1− δ′:

si ≤ µ+

√
log2 (1/δ′) + 8µ log (1/δ′)

= µ

1 +

√
log2 (1/δ′)

µ2
+

8 log (1/δ′)

µ


≤ µ

(
1 +

√
log2 (1/δ′) + 8 log (1/δ′)

)
≤ 5µ log

(
1/δ′

)
as desired. Note the last inequality follows because log (1/δ′) ≥ 1 by assumption.

Appendix J. Proof of Theorem 14

We first quote an accuracy bound for the averaged parameter from Zhang et al. (2012). They re-
mark that the required assumptions hold in most common settings, including in linear and logistic
regression as long as the data distribution satisfies standard regularity conditions.

Theorem 34 (Corollary 2 of Zhang et al. (2012)) Let θ∗avg = K−1
∑K

j=1 θ
∗
j , where θ∗j are the

empirical risk minimizers on partition j of a dataset of size B sampled i.i.d. from some distribution
P . Let θ∗ = argminθ∈Θ Ez∼P [fz(θ)]. Then under the assumption that fz is m-strongly convex for
all z, and satisfies the following smoothness conditions for all θ ∈ Θ:

Ez∼P
[
‖∇fz(θ)‖82

]
≤ L8, Ez∼P

[∣∣∣∣∣∣∇2fz(θ)−∇2Ez∼P [fz(θ)]
∣∣∣∣∣∣8

2

]
≤ H8,
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and the Hessian matrix∇2fz(·) is G-Lipschitz continuous for all z, then, for some constant c:

E
[∥∥θ∗avg − θ∗

∥∥2

2

]
≤ 2L2

m2B
+
cK2L2

m4B2

(
H2 log d+

L2G2

m2

)
+O

(
K

B2

)
+O

(
K3

B3

)
Proof [Proof of Theorem 14] We first prove the unlearning guarantee. We note that the boosting of
our algorithms (running multiple copies of algorithms and picking the best model for publishing)
won’t matter in our unlearning bounds. In fact, the unlearning guarantee holds for any set l of
models learned by the algorithms because they have all sufficiently come close to their respective
optimizers in each chunk. Hence, until we get to the proof of accuracy statement, we imagine the
algorithms are run once. We will see how this boosting will be helpful to recover high probability
accuracy guarantees from the accuracy bounds of Zhang et al. (2012) which are in expectation.

Fix a training dataset D of size n and a non-adaptively chosen update sequence U = (ui)i.
Similar to our previous proofs, we first recall a few notations (from Definition 11), as well as some
new notations for our proof:

• {Di}i≥0 for the sequence of updated datasets. We use ni (≥ n/2) to denote the size of Di.

• {Si = (Sij)Kj=1}i≥0 for the sequence of partitioned subsampled datasets.

• {θ̂i = (θ̂ij)
K
j=1}i≥0 for the sequence of learned parameters in each partition.

• {θ̂i,avg}i≥0 for the sequence of averaged learned parameters: θ̂i,avg = K−1
∑K

j=1 θ̂ij .

• {θ̃i = fpublish(θ̂i) = θ̂i,avg + Zi}i≥0 for the sequence of published parameters.

• {θ∗i }i≥0 is the sequence of target optimizers: θ∗i , argminθ fDi(θ).

• {θ∗i = (θ∗ij)
K
j=1}i≥0 is the sequence of optimizers for partitions: θ∗ij , argminθ fSij (θ).

• {θ∗i,avg}i≥0 is the average of optimizers for partitions: θ∗i,avg = K−1
∑K

j=1 θ
∗
ij .

• {si}i≥1 for the sequence of number of affected data points in the whole dataset, i.e., si shows
how many points differ between Si and Si−1. We will also make use of notation sij which
shows how many points differ between Sij and Si−1,j . Note that si =

∑K
j=1 sij .

Fact 35 Let s̃i , maxl≤i sl. We have by Lemma 13 that for any i, with probability at least 1− δ/2
over the sampling randomness up to round i, s̃i ≤ 10B

n log (2i/δ). We condition on this high
probability event throughout the proof.

Fact 36 We also work with general K and B for now and eventually we use the ones stated in the
theorem. We note that for general K and B, we can write

T ≥ Kn2I
B2

+
log
(
DmL−1B (1 + 10 log (2/δ))

)
log (1/γ)

and

Ti = 10 log (2i/δ)

(
I +

B2

Kn2
· log (1 + 10i log (2i/δ))

log (1/γ)

)
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Let T ′i be the number of iterations in affected partitions on round i. We have that with probability at
least 1− δ/2, by Fact 35,

T ′i ≥
Kn

Bsi
Ti ≥

Kn2

10B2 log (2i/δ)
Ti ≥

log (1 + 10i log (2i/δ))

log (1/γ)
+
Kn2I
B2

(19)

Fact 37 We have that B ≥ n, and Kn2 ≥ B2 (note these are justified by the setting of these
parameters in theorem statement). We will use these later on in the proof.

For every i ≥ 1, let S ′i be the partitioned dataset we would have had we retrained (using
our learning algorithm A) on dataset Di, and note that by Lemma 12, S ′i and Si are distributed
identically. To apply Lemma 12 we have used the fact that U is a non-adaptive sequence of updates
selected independently of any internal randomness of RA. Now let Ci be a coupling of the pair
(S ′i,Si) such that S ′i = Si with probability one. Throughout the proof when we condition on any
of S ′i or Si being drawn from their distribution, we will think of these datasets being drawn from the
coupling Ci so that we are always guaranteed S ′i = Si. Let’s start proving the unlearning guarantees.
For any i ≥ 0, conditioned on the draw of S ′i, we have that fpublish(A (Di)) ∼ N

(
µi, σ

2Id
)
, where

µi = K−1
∑K

j=1 µij and that it follows by the convergence guarantee of Theorem 20 that, for all
partitions j,

∥∥µij − θ∗ij∥∥2
≤ γT

∥∥θ′0 − θ∗ij∥∥2
≤

4Lγ
Kn2I
B2

∥∥∥θ′0 − θ∗ij∥∥∥
2

DmB (1 + 10 log (2/δ))
≤ 4L

mB (1 + 10 log (2/δ))
· γ

Kn2I
B2

(20)

We also have that for any update step i ≥ 1, with probability at least 1 − δ/2 over the randomness
up to step i (draws of all S l for all l ≤ i), fpublish (RA (Si−1, ui,θi)) ∼ N

(
µ′i, σ

2Id
)
, where we

first observe that µ′i = θ̂i,avg = K−1
∑K

j=1 θ̂ij , and furthermore,

∀ j;
∥∥∥θ̂ij − θ∗ij∥∥∥

2
≤

4LK
(
K−1 +

∑
l≤i slj

)
mB (1 + 10i log (2i/δ))

· γ
Kn2I
B2

1− γ
Kn2I
B2

(21)

We use induction on i to prove this claim. Let’s focus on the base case i = 1. For any partition j
such that s1j = 0, because the update algorithm doesn’t make any updates, we have∥∥∥θ̂1j − θ∗1j

∥∥∥
2

=
∥∥∥θ̂0j − θ∗0j

∥∥∥
2

≤ 4L

mB (1 + 10 log (2/δ))
· γ

Kn2I
B2

≤
4LK

(
K−1 + s1j

)
mB (1 + 10 log (2/δ))

· γ
Kn2I
B2

1− γ
Kn2I
B2

because note that θ̂0j ≡ µ0j and therefore, we can use Equation (20) for i = 0. For any partition j
such that s1j 6= 0, the update algorithm makes update, and in particular runs for T ′1 iterations. We
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therefore have that ∥∥∥θ̂1j − θ∗1j
∥∥∥

2
≤ γT ′1

∥∥∥θ̂0j − θ∗1j
∥∥∥

2

≤ γT ′1
(∥∥∥θ̂0j − θ∗0j

∥∥∥
2

+
∥∥θ∗0j − θ∗1j∥∥2

)
≤ γT ′1

 4L

mB
· γ

Kn2I
B2

1− γ
Kn2I
B2

+
4LKs1j

mB


≤

4LK
(
K−1 + s1j

)
mB (1 + 10 log (2/δ))

· γ
Kn2I
B2

1− γ
Kn2I
B2

The first inequality follows from the convergence guarantee of Theorem 20 and the fact that on
round i+ 1 of update, the gradient descent of chunk j is initialized at θ̂0j . The second inequality is
a triangle inequality and the third follows from Equation (20) for i = 0 (note θ̂0j ≡ µ0j), and the
sensitivity Lemma 8 (note that we apply this Lemma 2s1j times and that the size of each chunk is
B/K). The last inequality follows from Equation (19). Now let’s focus on the induction step of the
argument. Suppose Equation (21) holds for some i ≥ 1. We will show that it holds for i+1 as well.
For any partition j such that si+1,j = 0, we have ‖θ̂i+1,j − θ∗i+1,j‖2 = ‖θ̂i,j − θ∗i,j‖2 and the claim
holds by induction assumption. Now suppose si+1,j 6= 0 which implies the update algorithm runs
T ′i+1 iterations of gradient descent on chunk j. We therefore have that, similar to how we proceed
for i = 1 case above,∥∥∥θ̂i+1,j − θ∗i+1,j

∥∥∥
2
≤ γT ′i+1

∥∥∥θ̂ij − θ∗i+1,j

∥∥∥
2

≤ γT ′i+1

(∥∥∥θ̂ij − θ∗ij∥∥∥
2

+
∥∥θ∗ij − θ∗i+1,j

∥∥
2

)
≤ γT ′i+1

4LK
(
K−1 +

∑
l≤i slj

)
mB

· γ
Kn2I
B2

1− γ
Kn2I
B2

+
4LKsi+1,j

mB


≤

4LK
(
K−1 +

∑
l≤i+1 slj

)
mB (1 + 10(i+ 1) log (2(i+ 1)/δ))

· γ
Kn2I
B2

1− γ
Kn2I
B2

where the third inequality follows from induction assumption for i and applying the sensitivity
Lemma 8 2si+1,j times, and the last inequality follows from Equation (19). This completes the
induction proof. Now we can use Equations (20) and (21) to conclude that for all i ≥ 0,

∥∥µi − θ∗i,avg
∥∥ ≤ 1

K

K∑
j=1

∥∥µij − θ∗ij∥∥2
≤ 4L

mB (1 + 10 log (2/δ))
· γ

Kn2I
B2 ≤ 4L

mn
· γ

Kn2I
B2 (22)
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where we use the fact that B ≥ n. And with probability at least 1− δ/2, for all i ≥ 1,

∥∥µ′i − θ∗i,avg
∥∥ ≤ 1

K

K∑
j=1

∥∥∥θ̂ij − θ∗ij∥∥∥
2

≤ 4L

mB (1 + 10i log (2i/δ))
· γ

Kn2I
B2

1− γ
Kn2I
B2

K∑
j=1

K−1 +
∑
l≤i

slj


=

4L

mB (1 + 10i log (2i/δ))
· γ

Kn2I
B2

1− γ
Kn2I
B2

1 +
∑
l≤i

sl

 (because
∑
j

slj = sl)

≤ 4L

mB (1 + 10i log (2i/δ))
· γ

Kn2I
B2

1− γ
Kn2I
B2

(1 + is̃i) (recall s̃i = max
l≤i

sl)

≤ 4L

mB (1 + 10i log (2i/δ))
· γ

Kn2I
B2

1− γ
Kn2I
B2

(
1 + i

10B

n
log (2i/δ)

)

=
4L

mn (1 + 10i log (2i/δ))
· γ

Kn2I
B2

1− γ
Kn2I
B2

( n
B

+ 10i log (2i/δ)
)

≤ 4L

mn (1 + 10i log (2i/δ))
· γ

Kn2I
B2

1− γ
Kn2I
B2

(1 + 10i log (2i/δ)) (because B ≥ n)

=
4L

mn
· γ

Kn2I
B2

1− γ
Kn2I
B2

(23)

implying that for any i ≥ 1, conditioned on the event that
{
s̃i ≤ 10Bn−1 log (2i/δ)

}
which holds

with probability at least 1− δ/2 (by Fact 35),

∥∥µi − µ′i∥∥2
≤ 8L

mn
· γ

Kn2I
B2

1− γ
Kn2I
B2

, ∆ (24)

It then follows from Lemma 24, as well as the choice of

σ =
4
√

2Lγ
Kn2I
B2

mn

(
1− γ

Kn2I
B2

)(√
log (2/δ) + ε−

√
log (2/δ)

)
in the theorem statement, that for any i ≥ 1, with probability at least 1− δ/2, fpublish (A (Di))

ε,δ/2
≈

fpublish (RA (Si−1, ui,θi)). Now we can apply Lemma 22 to conclude that for any i ≥ 1,

fpublish (A (Di))
ε,δ
≈ fpublish (RA (Si−1, ui,θi))
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And this showsRA is an (ε, δ)-unlearning algorithm for A, as desired.
Now let’s prove the accuracy statement of the theorem for which we will make use of Equations

(22) and (23) (which holds with probability 1 − δ). Recall that θ̂0,avg ≡ µ0 and θ̂i,avg ≡ µ′i for
i ≥ 1. We first state the accuracy in expectation and then finally will turn those into high probability
accuracy guarantees. First, we have that by a simple application of Cauchy-Schwarz inequality,

E
∥∥∥θ̂i,avg − θ∗i

∥∥∥2

2
= E

∥∥∥θ̂i,avg − θ∗i,avg + θ∗i,avg − θ∗i
∥∥∥2

2

= E
∥∥∥θ̂i,avg − θ∗i,avg

∥∥∥2

2
+ E

∥∥θ∗i,avg − θ∗i
∥∥2

2
+ 2E

(
θ̂i,avg − θ∗i,avg

)> (
θ∗i,avg − θ∗i

)
≤ E

∥∥∥θ̂i,avg − θ∗i,avg

∥∥∥2

2
+ E

∥∥θ∗i,avg − θ∗i
∥∥2

2
+

√
E
∥∥∥θ̂i,avg − θ∗i,avg

∥∥∥2

2
E
∥∥∥θ∗i,avg − θ∗i

∥∥∥2

2

(25)

but, by an application of law of total expectation (to turn the high probability guarantees into bounds
in expectation),

E
∥∥∥θ̂i,avg − θ∗i,avg

∥∥∥2

2
≤ 16L2

m2n2
· γ

2Kn2I
B2(

1− γ
Kn2I
B2

)2 + δD2 (26)

and we also know by Theorem 34 that, for some constant c, and for the choice of K =
√
B,

E
∥∥θ∗i,avg − θ∗i

∥∥2

2
≤ 2L2

m2B
+
cL2K2

m4B2

(
H2 log d+

L2G2

m2

)
+O

(
K

B2

)
+O

(
K3

B3

)
=

2L2

m2B
+

cL2

m4B

(
H2 log d+

L2G2

m2

)
+O

(
B−

3
2

)
=

1

B

(
2L2

m2
+
cL2

m4

(
H2 log d+

L2G2

m2

))
+O

(
B−

3
2

) (27)

Putting together Equations (25) and (26) (withK =
√
B) and (27), and noting that for δ = O(B−1)

andB ≥ n we have
√
E‖θ̂i,avg − θ∗i,avg‖22 · E‖θ∗i,avg − θ∗i ‖22 = O(log d/B), and hiding all constants

under the O notation, we have

E
∥∥∥θ̂i,avg − θ∗i

∥∥∥2

2
= O

 γ
n2I
B
√
B

n2

(
1− γ

n2I
B
√
B

)2

+O
(

log d

B

)
+O

(
1

B
3
2

)

Now by Lemma 25, we have that by running the algorithm for C = log (2/β) / log 2 times and
picking the best model with smallest loss (note by strong convexity, the smaller the loss of a model
is, the closer the model parameter is to the optimizer. Also for notational convenience, we still use
θ̂i,avg for the best model), with probability at least 1− β/2,

∥∥∥θ̂i,avg − θ∗i
∥∥∥2

2
= O

 γ
n2I
B
√
B

n2

(
1− γ

n2I
B
√
B

)2

+O
(

log d

B

)
+O

(
1

B
3
2

)
(28)
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Recall that at any given round i ≥ 0, the published model θ̃i = θ̂i,avg + Zi. We therefore have that
by Equation (28), a Gaussian tail bound (Lemma 23), choice of σ in the theorem statement, and the
fact that for ε = O (log (1/δ)), we have

√
log (1/δ) + ε −

√
log (1/δ) = Ω(ε/

√
log (1/δ)), with

probability at least 1− β,

∥∥∥θ̃i − θ∗i ∥∥∥2

2
= O

L2γ
2n2I
B
√
B d log (1/δ) log2 (d/β)

m2ε2n2

(
1− γ

Kn2I
B2

)2

+O
(

log d

B

)
+O

(
1

B
3
2

)
(29)

Note that (1−γa)−1 ≤ (1−γ)−1 for any a ≥ 1 (in our case a = Kn2I
B2 ≥ 1). The proof is complete

by the choice of B = nξ and M -smoothness of f :

fDi(θ̃i)− fDi(θ∗i ) ≤
M

2

∥∥∥θ̃i − θ∗i ∥∥∥2

2
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