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Abstract
This paper is concerned with computationally efficient learning of homogeneous sparse halfspaces in
Rd under noise. Though recent works have established attribute-efficient learning algorithms under
various types of label noise (e.g. bounded noise), it remains an open question of when and how
s-sparse halfspaces can be efficiently learned under the challenging malicious noise model, where
an adversary may corrupt both the unlabeled examples and the labels. We answer this question in
the affirmative by designing a computationally efficient active learning algorithm with near-optimal
label complexity of Õ(s log4 d

ε )1 and noise tolerance η = Ω(ε), where ε ∈ (0, 1) is the target error
rate, under the assumption that the distribution over (uncorrupted) unlabeled examples is isotropic
log-concave. Our algorithm can be straightforwardly tailored to the passive learning setting, and
we show that its sample complexity is Õ( 1

ε s
2 log5 d) which also enjoys attribute efficiency. Our

main techniques include attribute-efficient paradigms for soft outlier removal and for empirical risk
minimization, and a new analysis of uniform concentration for unbounded instances – all of them
crucially take the sparsity structure of the underlying halfspace into account.
Keywords: halfspaces, malicious noise, passive and active learning, attribute efficiency

1. Introduction

This paper investigates the fundamental problem of learning halfspaces under noise (Valiant, 1984,
1985). In the absence of noise, this problem is well understood (Rosenblatt, 1958; Blumer et al.,
1989). However, the premise changes immediately when the unlabeled examples2 or the labels
are corrupted by noise. In the last decades, various types of label noise have been extensively
studied, and a plethora of polynomial-time algorithms have been developed that are resilient to
random classification noise (Blum et al., 1996), bounded noise (Sloan, 1988, 1992; Massart and
Nédélec, 2006), and adversarial noise (Kearns et al., 1992; Kalai et al., 2005). Significant progress
towards optimal noise tolerance is also witnessed in the past few years (Daniely, 2015; Awasthi
et al., 2015; Yan and Zhang, 2017; Diakonikolas et al., 2019, 2020). In this regard, a surge of
recent research interest is concentrated on further improvement of the performance guarantees by
leveraging the structure of the underlying halfspace into algorithmic design. Of central interest
is a property termed attribute efficiency, which proves to be useful when the data lie in a high-
dimensional space (Littlestone, 1987), or even in an infinite-dimensional space but with bounded

1. We use the notation Õ(f) := O(f log f).
2. We will also refer to unlabeled examples as instances in this paper.
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number of effective attributes (Blum, 1990). In the statistics and signal processing community, it is
often referred to as sparsity, dating back to the celebrated Lasso estimator (Tibshirani, 1996; Chen
et al., 1998; Candès and Tao, 2005; Donoho, 2006). Recently, learning of sparse halfspaces in an
attribute-efficient manner was highlighted as an open problem in Feldman (2014), and in a series of
recent works (Plan and Vershynin, 2013b; Awasthi et al., 2016; Zhang, 2018; Zhang et al., 2020),
this property was carefully explored for label-noise-tolerant learning of halfspaces with improved or
even near-optimal sample complexity, label complexity, or generalization error, where the key insight
is that such structural constraint effectively controls the complexity of the hypothesis class (Zhang,
2002; Kakade et al., 2008).

Compared to the rich set of positive results on attribute-efficient learning of sparse halfspaces
under label noise, less is known when both instances and labels are corrupted. Specifically, under the
η-malicious noise model (Valiant, 1985; Kearns and Li, 1988), there is an unknown hypothesisw∗ and
an unknown instance distribution D selected from a certain family by an adversary. Each time with
probability 1− η, the adversary returns an instance x drawn from D and the label y = sign (w∗ · x);
with probability η, it instead is allowed to return an arbitrary pair (x, y) ∈ Rd × {−1, 1} that
may depend on the state of the learning algorithm and the history of its outputs. Since this is
a much more challenging noise model, only recently has an algorithm with near-optimal noise
tolerance been established in Awasthi et al. (2017), although without attribute efficiency. It is worth
noting that the problem of learning sparse halfspaces is also closely related to one-bit compressed
sensing (Boufounos and Baraniuk, 2008) where one is allowed to utilize any distribution D over
measurements for recovering the target hypothesis. However, even with such strong condition,
existing theory therein can only handle label noise (Plan and Vershynin, 2013a; Awasthi et al.,
2016; Baraniuk et al., 2017). This naturally raises two fundamental questions: 1) can we design
attribute-efficient learning algorithms that are capable of tolerating the malicious noise; and 2) can
we still obtain near-optimal performance guarantees on the degree of noise tolerance and on the
sample complexity.

In this paper, we answer the two questions in the affirmative under a mild distributional assump-
tion that D is chosen from the family of isotropic log-concave distributions (Lovász and Vempala,
2007; Vempala, 2010), which covers prominent distributions such as normal distributions, exponential
distributions, and logistic distributions. Moreover, we take label complexity into consideration (Cohn
et al., 1994), for which we show that our bound is near-optimal in that aspect. We build our algorithm
upon the margin-based active learning framework (Balcan et al., 2007), which queries the label of an
instance when it has small “margin” with respect to the currently learned hypothesis.

From a high level, this work can be thought of as extending the best known result of Awasthi
et al. (2017) to the high-dimensional regime. However, even under the low-dimensional setting
where s = d, our bound of label complexity is better than theirs in terms of the dependence on
the dimension d: they have a quadratic dependence whereas we have a linear dependence (up to
logarithmic factors). Moreover, as we will describe in Section 3, obtaining such algorithmic extension
is nontrivial both computationally and statistically. This work can also be viewed as an extension of
Zhang (2018) to the malicious noise model. In fact, our construction of empirical risk minimization
is inspired by that work. However, they considered only label noise which makes their algorithm and
analysis not applicable to our setting: it turns out that when facing malicious noise, a sophisticated
design of outlier removal paradigm is crucial for optimal noise tolerance (Klivans et al., 2009).

Also in line with this work is learning with nasty noise (Diakonikolas et al., 2018) and robust
sparse functional estimation (Balakrishnan et al., 2017). Both works considered more general setting
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in the following sense: Diakonikolas et al. (2018) showed that by properly adapting the techniques in
robust mean estimation, some more general concepts, e.g. low-degree polynomial threshold functions
and intersections of halfspaces, can be efficiently learned with poly

(
d, 1/ε

)
sample complexity;

Balakrishnan et al. (2017) showed that under proper sparsity assumptions, a sample complexity bound
of poly

(
s, log d, 1/ε

)
can be achieved for many sparse estimation problems, such as generalized

linear models with Lipschitz mapping functions and covariance estimation. However, we remark
that neither of them obtained label efficiency. In addition, when adapted to our setting, Theorem 1.5
of Diakonikolas et al. (2018) only handles noise rate η ≤ O(εc) for some constant c that is greater
than one, while as to be shown in Section 4, we obtain the near-optimal noise tolerance η ≤ O(ε).
Balakrishnan et al. (2017) achieved near-optimal noise tolerance but their analysis is restricted to the
Gaussian marginal distribution and Lipschitz mapping functions. In addition to such fundamental
differences, the main techniques we develop are distinct from theirs, which will be described in more
detail in Section 3.3.3.

1.1. Main results

We informally present our main results below; readers are referred to Theorem 4 in Section 4 for a
precise statement.

Theorem 1 (Informal) Consider the malicious noise model with noise rate η. If the unlabeled data
distribution is isotropic log-concave and the underlying halfspace w∗ is s-sparse, then there is an
algorithm that for any given target error rate ε ∈ (0, 1), PAC learns the underlying halfspace in
polynomial time provided that η ≤ O(ε). In addition, the label complexity is Õ

(
s log4 d

ε

)
and the

sample complexity is Õ
(

1
ε s

2 log5 d
)
.

First of all, note that the noise tolerance is near-optimal as Kearns and Li (1988) showed that
a noise rate greater than ε

1+ε cannot be tolerated by any algorithm regardless of the computational
power. The following fact establishes the optimality of our label complexity.

Lemma 2 Active learning of s-sparse halfspaces under isotropic log-concave distributions in the
realizable case has an information-theoretic label complexity lower bound of Ω

(
s(log 1

ε + log d
s )
)
.

To see this lemma, observe that there exist ε-packings of s-sparse halfspaces with sizes (1
ε )

Ω(s) (Long,
1995) and (ds )Ω(s) (Raskutti et al., 2011); applying Theorem 1 of Kulkarni et al. (1993) gives the
lower bound.

1.2. Related works

Kearns and Li (1988) presented a general analysis on efficiently learning halfspaces, showing that
even without any distributional assumptions, it is possible to tolerate the malicious noise at a rate of
Ω(ε/d), but a noise rate greater than ε

1+ε cannot be tolerated. The noise model was further studied by
Schapire (1992); Bshouty (1998); Cesa-Bianchi et al. (1999), and Kalai et al. (2005) obtained a noise
tolerance Ω(ε/d1/4) when D is the uniform distribution. Klivans et al. (2009) improved this result
to Ω(ε2/ log(d/ε)) for the uniform distribution, and showed a noise tolerance Ω(ε3/ log2(d/ε)) for
isotropic log-concave distributions. A near-optimal result of Ω(ε) was established in Awasthi et al.
(2017) for both uniform and isotropic log-concave distributions.
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Achieving attribute efficiency has been a long-standing goal in machine learning and statis-
tics (Blum, 1990; Blum et al., 1995), and has found a variety of applications with strong theoretical
backend. A partial list includes online classification (Littlestone, 1987), learning decision lists (Serve-
dio, 1999; Klivans and Servedio, 2004; Long and Servedio, 2006), compressed sensing (Donoho,
2006; Candès and Wakin, 2008; Tropp and Wright, 2010; Shen and Li, 2018), one-bit compressed
sensing (Boufounos and Baraniuk, 2008; Plan and Vershynin, 2016), and variable selection (Fan and
Li, 2001; Fan and Fan, 2008; Shen and Li, 2017a,b).

Label-efficient learning has also been broadly studied since gathering high quality labels is
often expensive. The prominent approaches include disagreement-based active learning (Hanneke,
2011, 2014), margin-based active learning (Balcan et al., 2007; Balcan and Long, 2013; Yan and
Zhang, 2017), selective sampling (Cavallanti et al., 2011; Dekel et al., 2012), and adaptive one-bit
compressed sensing (Zhang et al., 2014; Baraniuk et al., 2017). There are also a number of interesting
works that appeal to extra information to mitigate the labeling cost, such as comparison (Xu et al.,
2017; Kane et al., 2017) and search (Balcan and Hanneke, 2012; Beygelzimer et al., 2016).

Recent works such as Diakonikolas et al. (2016); Lai et al. (2016) studied mean estimation under
a strong noise model where in addition to returning dirty instances, the adversary has also the power
of eliminating a few clean instances, similar to the nasty noise model in learning halfspaces (Bshouty
et al., 2002). The main technique of robust mean estimation is a novel outlier removal paradigm,
which uses the spectral norm of the covariance matrix to detect dirty instances. This is similar in
spirit to the idea of Klivans et al. (2009); Awasthi et al. (2017) and the current work. However,
there is no direct connection between mean estimation and halfspace learning since the former is
an unsupervised problem while the latter is supervised (although any connection would be very
interesting). Very recently, such technique was extensively investigated in a variety of problems such
as clustering and linear regression; we refer the reader to a comprehensive survey by Diakonikolas
and Kane (2019) for more information.

Roadmap. We collect useful notations and formally define the problem in Section 2. In Section 3,
we describe our algorithms, followed by a theoretical analysis in Section 4. We conclude this paper
in Section 5, and defer all proof details to the appendix.

2. Preliminaries

We study the problem of learning sparse halfspaces in Rd under the malicious noise model with noise
rate η ∈ [0, 1/2) (Valiant, 1985; Kearns and Li, 1988), where an oracle EXη(D,w

∗) (i.e. adversary)
first selects a member D from a family of distributions D and a concept w∗ from a concept class C;
during the learning process, D and w∗ are fixed. Each time the adversary is called, with probability
1−η, a random pair (x, y) is returned to the learner with x ∼ D and y = sign (w∗ · x), referred to as
a clean sample; with probability η, the adversary can return an arbitrary pair (x, y) ∈ Rd × {−1, 1},
referred to as a dirty sample. The adversary is assumed to have unrestricted computational power to
search dirty samples that may depend on, e.g. the states of the learning algorithm and the history of
its outputs. Formally, we make the following distributional assumptions.

Assumption 1 Let D be the family of isotropic log-concave distributions. The underlying distribu-
tion D from which clean instances are drawn is chosen from D by the adversary, and is fixed during
the learning process. The learner is given the knowledge of D but not of D.
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Assumption 2 With probability 1 − η, the adversary returns a pair (x, y) where x ∼ D and
y = sign (w∗ · x); with probability η, it may return an arbitrary pair (x, y) ∈ Rd × {−1, 1}.

Since we are interested in obtaining a label-efficient algorithm, we will consider a natural
extension of such passive learning model. In particular, Awasthi et al. (2017) proposed to consider
the following: when a labeled instance (x, y) is generated, the learner only has access to an instance-
generation oracle EXx

η(D,w∗) which returns x, and must make a separate call to a label revealing
oracle EXy

η(D,w
∗) to obtain y. We refer to the total number of calls to EXx

η(D,w∗) as the sample
complexity of the learning algorithm, and to that of EXy

η(D,w
∗) as the label complexity.

We will presume that the concept class C consists of homogeneous halfspaces that have unit
`2-norm and are s-sparse, i.e. the number of non-zero elements of any w ∈ C is at most s where
s ∈ {1, 2, . . . , d}. The learning algorithm is given this concept class, that is, the set of homogeneous
s-sparse halfspaces. For a hypothesis w ∈ C, we define its error rate on a distribution D as
errD(w) = Prx∼D

(
sign (w · x) 6= sign (w∗ · x)

)
. The goal of the learner is to find a hypothesis w

in polynomial time such that with probability 1− δ, errD(w) ≤ ε for any given failure confidence
δ ∈ (0, 1) and any error rate ε ∈ (0, 1), with a few calls to EXx

η(D,w∗) and EXy
η(D,w

∗).
For a reference vector u ∈ Rd and a positive scalar b, we call the region Xu,b := {x ∈ Rd :

|u · x| ≤ b} as band, and we denote by Du,b the distribution obtained by conditioning D on the event
x ∈ Xu,b. Given a hypothesis w in Rd, a labeled instance (x, y), and a parameter τ > 0, we define
the τ -hinge loss `τ (w;x, y) = max

{
0, 1 − 1

τ y(w · x)
}

. For a labeled set S = {(xi, yi)}ni=1, we
define `τ (w;S) = 1

n

∑n
i=1 `τ (w;xi, yi).

For p ≥ 1, we denote by Bp(u, r) the `p-ball centering at the point u with radius r > 0, i.e.
Bp(u, r) = {w ∈ Rd : ‖w − u‖p ≤ r}. We will be particularly interested in the cases p = 1, 2,∞.
For a vector u ∈ Rd, the hard thresholding operation Hs(u) keeps its s largest (in absolute value)
elements and sets the remaining to zero. Let u, v ∈ Rd be two vectors; we write θ(u, v) to denote
the angle between them, and write u · v to denote their inner product. For a matrix H , we denote by
‖H‖∗ its trace norm (also known as the nuclear norm), i.e. the sum of its singular values. We will
also use ‖H‖1 to denote the entrywise `1-norm of H , i.e. the sum of absolute values of its entries. If
H is a symmetric matrix, we use H � 0 to denote that it is positive semidefinite.

Throughout this paper, the subscript variants of the lowercase letter c, e.g. c1 and c2, are reserved
for specific absolute constants that are uniquely determined by the distribution D. We also reserve
C1 and C2 for specific constants. We remark that the value of all the constants involved in the paper
does not depend on the underlying distribution D, but rather on the knowledge of D given to the
learner. We collect all the definitions of these constants in Appendix A.

3. Main Algorithm

We first present an overview of our learning algorithm, followed by specifying all the hyper-
parameters used therein. Then we describe in detail the attribute-efficient outlier removal scheme,
which is the core technique in the paper.

3.1. Overview

Our main algorithm, namely Algorithm 1, is based on the celebrated margin-based active learning
framework (Balcan et al., 2007). The key observation is that a good classifier can be learned by
concentrating on fitting only the most informative labeled instances, measured by the closeness to
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the current decision boundary (i.e. the closer the more informative). In our algorithm, the sampling
region is set as Rd at phase k = 1, and is set as the band Xwk−1,bk = {x ∈ Rd : |wk−1 · x| ≤ bk}
at phases k ≥ 2. Once we obtain the instance set T̄ , we perform a pruning step that removes all
instances having large `∞-norm. This is motivated by our analysis that with high probability, all
clean instances in T̄ must have small `∞-norm provided that Assumption 1 is satisfied. Since the
oracle EXx

η(D,w∗) may output dirty instances, we design an attribute-efficient soft outlier removal
procedure, which aims to find proper weights for all instances in T , such that the clean instances (i.e.
those from Dwk−1,bk ) have overwhelming weights compared to dirty instances. Equipped with the
learned weights, it is possible to minimize the reweighted hinge loss to obtain a refined halfspace.
However, this would lead to a suboptimal label complexity since we have to query the label for all
instances in T . Our remedy is to randomly sample a few points from T according to their importance,
which is crucial for us to obtain near-optimal label complexity.

When minimizing the hinge loss, we carefully construct the constraint set Wk with three prop-
erties. First, it has an `2-norm constraint. As a useful fact of isotropic log-concave distributions,
the `2-distance to the underlying halfspace w∗ is of the same order as the error rate. Thus, if we
were able to ensure that the target halfspace w∗ stays in Wk, we would show that the error rate of
wk is as small as O(rk), the radius of the `2-ball. Second, Wk has an `1-norm constraint, which
is well-known for its power to promote sparse solutions and to guarantee attribute-efficient sample
complexity (Tibshirani, 1996; Chen et al., 1998; Candès and Tao, 2005; Plan and Vershynin, 2013b).
Lastly, the `2 and `1 radii of Wk shrinks by a constant factor in each phase; hence, when Algorithm 1
terminates, the radius of the `2-ball will be as small as O(ε). Notably, Zhang (2018) also utilizes
such constraint for active learning of sparse halfspaces, but only under the setting of label noise.

The last step in Algorithm 1 is to perform hard-thresholdingHs on the solution vk followed by
`2-normalization. Roughly speaking, these two steps will produce an iterate wk consistent with the
structure of w∗ (i.e. wk is guaranteed to belong to the concept class C), and more importantly, will
be useful to show that w∗ lies in Wk in all phases.

3.2. Hyper-parameter setting

We elaborate on our hyper-parameter setting that is used in Algorithm 1 and our analysis. Let
g(t) = c2

(
2t exp(−t) + c3π

4 exp
(
− c4t

4π

)
+ 16 exp(−t)

)
, where the constants are specified in Ap-

pendix A. Observe that there exists an absolute constant c̄ ≥ 8π/c4 satisfying g(c̄) ≤ 2−8π, since
the continuous function g(t) → 0 as t → +∞ and all the involved quantities in g(t) are absolute
constants. Given such constant c̄, we set bk = c̄ · 2−k−3, τk = c0κ ·min{bk, 1/9}, δk = δ

(k+1)(k+2) ,

rk =

{
1, k = 1

2−k−3, k ≥ 2
, and ρk =

{√
s, k = 1√
2s · 2−k−3, k ≥ 2

.

We set the constant κ = exp(−c̄), and choose ξk = min
{

1
2 ,

κ2

16

(
1 + 4

√
C2zk/τk

)−2 }. Observe

that all ξk’s are lower bounded by the constant c6 := min
{

1
2 ,

κ2

16

(
1 + 4

c0κc̄

√
C2c̄2 + C2

)−2 }
. Our

theoretical guarantee holds for any noise rate η ≤ c5ε, where the constant c5 := c8
2π c̄c1c6.

We set the total number of phases k0 =
⌈

log
(

π
16c1ε

) ⌉
in Algorithm 1. Consider any phase k ≥ 1.

We use nk = Õ
(
s2 log4 d

bk
·
(
log d+ log3 1

δk

))
as the size of unlabeled instance set T̄ . We will

show that by making Nk = O
(
nk/bk

)
calls to EXx

η(D,w∗), Algorithm 1 is guaranteed to obtain
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Algorithm 1 Attribute and Label-Efficient Algorithm Tolerating Malicious Noise
Require: Error rate ε, failure probability δ, sparsity parameter s, an instance generation oracle

EXx
η(D,w∗), a label revealing oracle EXy

η(D,w
∗).

Ensure: A halfspace wk0 such that errD(wk0) ≤ ε with probability 1− δ.
1: k0 ←

⌈
log
(

π
16c1ε

) ⌉
.

2: Initialize w0 as the zero vector in Rd.
3: for phases k = 1, 2, . . . , k0 do
4: Clear the working set T̄ .
5: If k = 1, independently draw nk instances from EXx

η(D,w∗) and put them into T̄ ; otherwise,
draw nk instances from EXx

η(D,w∗) conditioned on |wk−1 · x| ≤ bk and put into T̄ .
6: Pruning: Remove all instances x in T̄ with ‖x‖∞ > c9 log 48nkd

bkδk
to form a set T .

7: Soft outlier removal: Apply Algorithm 2 to T with u ← wk−1, b ← bk, r ← rk, ρ ← ρk,
ξ ← ξk, C ← 2C2, and let q = {q(x)}x∈T be the returned function. Normalize q to form a
probability distribution p over T .

8: Random sampling: Sk ← Independently draw mk instances (with replacement) from T
according to p and query EXy

η(D,w∗) for their labels.
9: Let Wk = B2(wk−1, rk) ∩B1(wk−1, ρk). Find vk ∈Wk such that

`τk(vk;Sk) ≤ min
w∈Wk

`τk(w;Sk) + κ.

10: wk ← Hs(vk)

‖Hs(vk)‖
2

.

11: end for
12: return wk0 .

such T̄ in each phase with high probability. We set mk = Õ
(
s log2 d

bkδk
· log d

δk

)
as the size of

labeled instance set Sk, which is also the number of calls to EXy
η(D,w

∗). Note that N :=
∑k0

k=1Nk

is the sample complexity of Algorithm 1, and m :=
∑k0

k=1mk is its label complexity.

3.3. Attribute and computationally efficient soft outlier removal

Our soft outlier removal procedure is inspired by Awasthi et al. (2017). We first briefly describe their
main idea. Then we introduce a natural extension of their approach to the high-dimensional regime
and show why it fails. Lastly, we present our novel outlier removal scheme.

To ease our discussion, we decompose T = TC ∪ TD where TC is the set of clean instances in
T and TD consists of all dirty instances. Ideally, we would expect to find a function q : T → [0, 1]
such that q(x) = 1 for all x ∈ TC and q(x) = 0 otherwise. Suppose that ξ is the fraction of dirty
instances in T . Then one would expect that the total weights

∑
x∈T q(x) is as large as (1− ξ) |T |

in order to include such ideal function. On the other hand, we must restrict the weights of dirty
instances; namely, we need to characterize under what conditions TC can be distinguished from
TD. The key observation made in Klivans et al. (2009) and Awasthi et al. (2017) is that if the dirty
instances want to deteriorate the hinge loss (which is the purpose of the adversary), they must lead
to a variance3 of w · x orders of magnitude larger than Ω(b2 + r2) on the direction of a particular

3. We follow Awasthi et al. (2017) and slightly abuse the word “variance” without subtracting the squared mean of w · x.
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Algorithm 2 Attribute-Efficient Localized Soft Outlier Removal
Require: Reference vector u, band width b, radius r for `2-ball, radius ρ for `1-ball, empirical noise

rate ξ, absolute constant C, a set of unlabeled instances T where for all x ∈ T , |u · x| ≤ b.
Ensure: A function q : T → [0, 1].

1: Define the convex set of matricesM =
{
H ∈ Rd×d : H � 0, ‖H‖∗ ≤ r2, ‖H‖1 ≤ ρ2

}
.

2: Find a function q : T → [0, 1] satisfying the following constraints:

1. for all x ∈ T, 0 ≤ q(x) ≤ 1;

2.
∑

x∈T q(x) ≥ (1− ξ) |T |;

3. supH∈M
1
|T |
∑

x∈T q(x)x>Hx ≤ C(b2 + r2).

3: return q.

halfspace. Thus, it suffices to find a proper weight for each instance, such that the reweighted
variance 1

|T |
∑

x∈T q(x)(w · x)2 is as small as O(b2 + r2) for all feasible halfspaces w ∈W . Now it
remains to resolve two questions: 1) how many instances do we need to draw in order to guarantee
the existence of such function q; and 2) how to find a feasible function q in polynomial time.

If label complexity were our only objective, we could have used the soft outlier removal procedure
of Awasthi et al. (2017) directly, i.e. we set W = B2(u, r), which in conjunction with the `1-norm
constrained hinge loss minimization of Zhang (2018) would result in an Õ

(
d2

ε

)
sample complexity

and a poly
(
s, log d, log(1/ε)

)
label complexity. However, as we would also like to optimize for

the learner’s sample complexity by utilizing the sparsity assumption, we need an attribute-efficient
outlier removal procedure.

3.3.1. A NATURAL APPROACH AND WHY IT FAILS

It is well-known that incorporating an `1-norm constraint often leads to a sample complexity sublinear
in the dimension (Zhang, 2002; Kakade et al., 2008). Thus, a natural approach for attribute-efficient
outlier removal is to set W = B2(u, r) ∩B1(u, ρ) for some carefully chosen radius ρ > 0. With the
new localized concept space, it is possible to show that a sample size of poly (s, log d) suffices to
guarantee the existence of a function q such that the reweighted variance is small over all w ∈W .
However, on the computational side, for a given q, we will have to check the reweighted variance for
all w ∈W , which amounts to finding a global optimum of the following program:

max
w∈Rd

1

|T |
∑
x∈T

q(x)(w · x)2, s.t. ‖w − u‖2 ≤ r, ‖w − u‖1 ≤ ρ. (3.1)

The above program is closely related to the problem of sparse principal component analysis (PCA) (Zou
et al., 2006), and unfortunately it is known that finding a global optimum is NP-hard (Steinberg,
2005; Tillmann and Pfetsch, 2014).

3.3.2. CONVEX RELAXATION OF SPARSE PRINCIPAL COMPONENT ANALYSIS

Our goal is to find a function q such that the objective value in (3.1) is less than O
(
b2 + r2

)
for

all w ∈ W . To circumvent the computational intractability caused by the non-convexity of the
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objective function, we consider an alternative formulation using semidefinite programming (SDP),
similar to the approach of d’Aspremont et al. (2007). First, let v = w − u. It is not hard to see that
(w · x)2 ≤ 2(u · x)2 + 2(v · x)2. Due to our localized sampling scheme, we have (u · x)2 ≤ b2 with
probability 1. Thus, we only need to examine the maximum value of 1

|T |
∑

x∈T q(x)(v · x)2 over
v ∈ B2(0, r) ∩B1(0, ρ). Now the technique of d’Aspremont et al. (2007) comes in: the rank-one
symmetric matrix vv> is replaced by a new variable H ∈ Rd×d which is positive semidefinite,
and the vector `2 and `1-norm constraints are relaxed to the matrix trace and `1-norm constraints
respectively as follows:

max
H∈Rd×d

1

|T |
∑
x∈T

q(x)x>Hx, s.t. H � 0, ‖H‖∗ ≤ r
2, ‖H‖1 ≤ ρ

2. (3.2)

The program (3.2) has two salient features: first, it is a semidefinite program that can be optimized
efficiently (Boyd and Vandenberghe, 2004); second, if its objective value is upper bounded by
O
(
b2 + r2

)
, we immediately obtain that the reweighted variance is well controlled. This is the

theme of the following lemma.

Lemma 3 Suppose that Assumption 1 and 2 are satisfied, and that η ≤ c5ε. There exists a constant
C2 > 2 such that the following holds. For any phase k of Algorithm 1 with 1 ≤ k ≤ k0, write
Mk = {H ∈ Rd×d : H � 0, ‖H‖∗ ≤ r2

k, ‖H‖1 ≤ ρ2
k}. Then with probability 1 − δk

24 over the
draw of TC, we have

sup
H∈Mk

1

|TC|
∑
x∈TC

x>Hx ≤ 2C2(b2k + r2
k),

provided that |TC| ≥ Õ
(
s2 log4 d

bk
·
(
log d+ log2 1

δk

))
.

Recall that Algorithm 1 sets nk = Õ
(
s2 log4 d

bk
·
(
log d+ log3 1

δk

))
, which suffices to guarantee

the condition on |TC| holds (see Appendix D.2); therefore, the above concentration bound holds with
high probability. As a result, it is not hard to verify that the function q : T → [0, 1], where q(x) = 1
for all x ∈ TC and q(x) = 0 for all x ∈ TD, satisfies all three constraints in Algorithm 2. In other
words, Lemma 3 establishes the existence of a feasible function q to Algorithm 2. Furthermore,
observe that the optimization problem of finding a feasible q in Algorithm 2 is a semi-infinite linear
program. For a given candidate q, we can construct an efficient oracle as follows: it checks if q
violates the first two constraints; if not, it checks the last constraint by invoking a polynomial-time
SDP solver to find the maximum objective value of (3.2). It is well-known that equipped with such
separation oracle, Algorithm 2 will return a desired function q in polynomial time by the ellipsoid
method (Grötschel et al., 2012, Chapter 3).

3.3.3. COMPARISON TO PRIOR WORKS

We remark that the setting of nk results in a sample complexity of Õ
(
s2

bk

)
for phase k (see a formal

statement in Lemma 6), which implies a total sample complexity of Õ
(
s2

ε

)
. When s � d, this

substantially improves upon the sample complexity of Õ
(
d2

ε

)
when naively applying the soft outlier

removal procedure in Awasthi et al. (2017).
We remark three crucial technical differences from Diakonikolas et al. (2018) and Balakrishnan

et al. (2017). First, we progressively restrict the variance to identify dirty instances, i.e. the variance

9
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upper bound is set as O(1) at the beginning of Algorithm 1 and progressively decreases to O(ε2)
(see our setting of bk and rk), while in Diakonikolas et al. (2018); Balakrishnan et al. (2017) and
many of their follow-up works it is typically fixed to O(ε). Second, we control the variance locally,
i.e. we only require a small variance over a localized instance space Dwk−1,bk and a localized
concept spaceMk. Third, the small variance is used to robustly estimate the hinge loss in our work,
while in Diakonikolas et al. (2018) it was utilized to approximate the Chow parameters. All these
problem-specific design of outlier removal are vital for us to obtain the first near-optimal guarantee
on attribute efficiency and label efficiency for learning sparse halfspaces.

4. Performance Guarantee

In the following, we always presume that the underlying halfspace is parameterized by w∗, which is
s-sparse and has unit `2-norm. This condition may not be explicitly stated in our analysis.

Our main theorem is as follows. We note that there are two sources of randomness in Algorithm 1:
the random draw of instances from EXx

η(D,w∗), and the random sampling step (i.e. Step 8); the
probability is taken over all the randomness in the algorithm.

Theorem 4 Suppose that Assumptions 1 and 2 are satisfied. There exists an absolute constant
c5 such that for any ε ∈ (0, 1) and δ ∈ (0, 1), if η ≤ c5ε, then with probability at least 1 − δ,
errD(wk0) ≤ ε where wk0 is the output of Algorithm 1. Furthermore, Algorithm 1 has a sample
complexity of Õ

(
1
ε s

2 log4 d ·
(
log d+ log3 1

δ

) )
, and a label complexity of Õ

(
s log2 d

εδ · log d
δ · log 1

ε

)
,

and has running time poly
(
d, 1/ε, 1/δ

)
.

Algorithm 1 can be straightforwardly modified to work in the passive learning setting, where the
learner has direct access to the labeled instance oracle EXη(D,w

∗). The modified algorithm works
as follows: it calls EXη(D,w

∗) to obtain a pair of instance and the label whenever Algorithm 1 calls
EXx

η(D,w∗). In particular, for the passive learning algorithm, the working set T̄ is always a labeled
instance set, and there is no need for it to query EXy

η(D,w
∗) in the random sampling step.

We have the following simple corollary which is an immediate result from Theorem 4.

Corollary 5 Suppose that Assumptions 1 and 2 are satisfied. There exists a polynomial-time
algorithm (that has access to only EXη(D,w

∗)) and an absolute constant c5 such that for any
ε ∈ (0, 1) and δ ∈ (0, 1), if η ≤ c5ε, then with probability at least 1 − δ, the algorithm outputs a
hypothesis with error at most ε, using Õ

(
1
ε s

2 log4 d ·
(
log d+ log3 1

δ

) )
labeled instances.

We need an ensemble of new results to prove Theorem 4. Specifically, we propose new techniques
to control the sample and computational complexity of soft outlier removal, and a new analysis
of label complexity by making full use of the localization in the instance and concept spaces. We
elaborate on them in the following, and sketch the proof of Theorem 4 at the end of this section.

4.1. Localized sampling in the instance space

Localized sampling, also known as margin-based active learning, is a useful technique proposed in
Balcan et al. (2007). Interestingly, under isotropic log-concave distributions, Balcan and Long (2013)
showed that if the band width b is large enough, the region outside the band, i.e. {x ∈ Rd : |w · x| >
b}, can be safely “ignored”, in the sense that, if w is close enough to w∗, it is guaranteed to incur
a small error rate therein. Motivated by this elegant finding, theoretical analyses in the literature
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are often dedicated to bounding the error rate within the band, and it is now well understood that
a constant error rate within the band suffices to ensure significant progress in each phase (Awasthi
et al., 2015, 2017; Zhang, 2018). We follow this line of reasoning and our technical contribution is to
show how to obtain such constant error rate with near-optimal label complexity and noise tolerance.

Our analysis will rely on the condition that T̄ has sufficiently many instances. Specifically, in
order to collect nk instances to form the working set T̄ , we need to call EXx

η(D,w∗) enough number
of times since our sampling is localized within the band Xk := {x : |wk−1 · x| ≤ bk}. The following
lemma characterizes the sample complexity at phase k.

Lemma 6 Suppose that Assumption 1 and 2 are satisfied. Further assume η < 1
2 . With probability

1− δk
4 , we will obtain nk instances that fall into the band Xk = {x : |wk−1 · x| ≤ bk} by making a

number of Nk = O
(

1
bk

(
nk + log 1

δk

))
calls to the instance generation oracle EXx

η(D,w∗).

4.2. Attribute and computationally efficient soft outlier removal

We summarize the performance guarantee of Algorithm 2 in the following proposition.

Proposition 7 Consider phase k of Algorithm 1 for any 1 ≤ k ≤ k0. Suppose that Assumption 1
and 2 are satisfied, and that η ≤ c5ε. With the setting of nk, with probability 1− δk

8 over the draw of
T̄ , Algorithm 2 will output a function q : T → [0, 1] in polynomial time with the following properties:
(1) 1
|T |
∑

x∈T q(x) ≥ 1− ξk; (2) for all w ∈Wk, 1
|T |
∑

x∈T q(x)(w · x)2 ≤ 5C2

(
b2k + r2

k

)
.

Again, we remind that the key difference between our algorithm and that of Awasthi et al.
(2017) is in Constraint 3 of Algorithm 2: we require that the “variance proxy”

∑
x∈T q(x)x>Hx

of the reweighted instances are small for all positive semidefinite H that lies in an intersection
of a trace-norm ball and an `1-norm ball. On the statistical side, this favorable constraint set of
H , in conjunction with Adamczak’s bound in empirical processes literature (Adamczak, 2008),
results in sufficient uniform concentration of the variance proxy x>Hx with a sample complexity of
poly (s, log d). This significantly improves the sample complexity of poly (d) established in Awasthi
et al. (2017). The detailed proof can be found in Appendix D.3.

Remark 8 While in some standard settings, a proper `1-norm constraint suffices to guarantee a
desired bound of sample complexity in the high-dimensional regime (Wainwright, 2009; Kakade
et al., 2008), we note that in order to establish near-optimal noise tolerance, the `2-norm constraint
of w (hence the trace-norm of H) is vital as well. Though eliminating it eases the search of a
feasible function q, this leads to a suboptimal noise tolerance η ≤ Ω(ε/s). Informally speaking, the
per-phase error rate, expected to be a constant, is inherently proportional to the variance (w · x)2

times ξk, the noise rate within the band. Now without the trace-norm constraint, the variance would
be s times larger than before (since we now have to use ρ2

k = O(sr2
k) as a proxy for the constraint

set’s radius, measured in trace norm). This implies that we need to set ξk a factor 1/s of before,
which in turn indicates that the noise tolerance η becomes a factor 1/s of before since η/ε ≈ ξk. We
refer the reader to Proposition 33 and Lemma 39 for details.

Remark 9 The quantity nk has a quadratic dependence on the sparsity parameter s. This cannot
be improved in some sparse PCA related problems (Berthet and Rigollet, 2013), but it is not clear
whether such dependence is optimal in our case. We leave this investigation to future work.
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Next, we describe the statistical property of the distribution p (obtained by normalizing q returned
by Algorithm 2). Observe that the noise rate within the band is at most η/bk ≤ O(η/ε) ≤ ξk since the
probability mass of the band is Θ(bk) – an important property of isotropic log-concave distributions.
Also, it is possible to show that the variance of clean instances on directions H ∈Mk is O(b2k + r2

k)
(see Lemma 18). Therefore, Algorithm 2 is essentially searching for a weighting such that clean
instances have overwhelming weights over dirty instances, and that the variance of the weighted
instances is similar to that of the clean instances. Recall that TC ⊂ T is the set of clean instances in
T . Let T̃C = {(x, yx)}x∈TC be the unrevealed labeled set where each instance is correctly annotated
by w∗. The following proposition, which is similar to Lemma 4.7 of Awasthi et al. (2017) but with
refinement, states that the reweighted hinge loss `τk(w; p) :=

∑
x∈T p(x)`τk(w;x, yx), is a good

proxy for the hinge loss evaluated exclusively on clean labeled instances T̃C.

Proposition 10 Suppose Assumption 1 and 2 are satisfied, and η ≤ c5ε. For any phase k of Algo-
rithm 1, with probability 1− δk

4 over the draw of T̄ , we have supw∈Wk

∣∣`τk(w; T̃C)− `τk(w; p)
∣∣ ≤ κ.

Note that though this proposition is phrased in terms of the hinge loss on pairs (x, yx), it is only
used in the analysis and our algorithm does not require the knowledge of the labels yx – the algorithm
even does not need to exactly identify the set of clean instances TC. As a result, the size of TC does
not count towards our label complexity. Proposition 7 together with Proposition 10 implies that with
high probability, Algorithm 2 produces a desired probability distribution in polynomial time, which
justifies its computational and statistical efficiency.

In addition, let Lτk(w) := Ex∼Dwk−1,bk

[
`τk
(
w;x, sign (w∗ · x)

)]
be the expected loss on

Dwk−1,bk . The following result links Lτk(w) to the empirical hinge loss on clean instances.

Proposition 11 Under Assumption 1 and 2, and η ≤ c5ε, for any phase k of Algorithm 1, with
probability 1− δk

4 over the draw of T̄ , we have supw∈Wk

∣∣Lτk(w)− `τk(w; T̃C)
∣∣ ≤ κ.

4.3. Attribute and label-efficient empirical risk minimization

In light of Proposition 10, one may want to find an iterate by minimizing its reweighted hinge loss
`τk(w; p). This requires collecting labels for all instances in T , which leads to a suboptimal label
complexity O

(
s2 · polylog

(
d, 1/ε

))
. As a remedy, we perform a random sampling process, which

draws mk instances from T according to the distribution p and then query their labels, resulting
in the labeled instance set Sk. By standard uniform convergence arguments, it is expected that
`τk(w;Sk) ≈ `τk(w; p) provided that mk is large enough, as is shown in the following proposition.

Proposition 12 Suppose that Assumption 1 and 2 are satisfied. For any phase k of Algorithm 1,
with probability 1− δk

4 , we have supw∈Wk

∣∣`τk(w; p)− `τk(w;Sk)
∣∣ ≤ κ.

We remark that when establishing the performance guarantee, the `1-norm constraint on the
hypothesis space, together with an `∞-norm upper bound on the localized instance space, leads to
a Rademacher complexity that has a linear dependence on the sparsity (up to a logarithmic factor).
Technically speaking, our analysis is more involved than that of Awasthi et al. (2017): applying their
analysis to the setting of learning sparse halfspaces along with the fact that the VC dimension of the
class of s-sparse halfspaces is O(s log(d/s)) would give a label complexity quadratic in s.
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4.4. Uniform concentration for unbounded data

Our analysis involves building uniform concentration bounds. The primary issue of applying standard
concentration results, e.g. Theorem 1 of Kakade et al. (2008), is that the instances are not contained
in a pre-specified `∞-ball with probability 1 under isotropic log-concave distribution. Awasthi et al.
(2017); Zhang (2018) construct a conditional distribution, on which the data are all bounded from
above, and then measure the difference between this conditional distribution and the original one.
We circumvent such technical complication by using the Adamczak’s bound (Adamczak, 2008) in
the empirical process literature, which provides a generic way to analyze concentration inequalities
for well-behaved distributions with unbounded support. See Appendix C for a concrete treatment.

4.5. Proof sketch of Theorem 4

Proof We first show that error rate of vk on Dwk−1,bk is a constant, and that of wk follows since hard
thresholding and `2-norm projection can only deviate the error rate by a constant factor. Observe that
in light of Proposition 10, Proposition 11, and Proposition 12, we have

∣∣`τk(w;Sk)− Lτk(w)
∣∣ ≤ 3κ

for all w ∈Wk. Therefore, if w∗ ∈Wk, by the optimality of vk, we have Lτk(vk) ≤ `τk(vk;Sk) +
3κ ≤ `τk(w∗;Sk)+4κ ≤ Lτk(w∗)+7κ ≤ 8κ, where the last inequality is by Lemma 3.7 of Awasthi
et al. (2017). Since Lτk(vk) always serves as an upper bound of errDwk−1,bk

(vk), the constant error
rate on Dwk−1,bk follows. Next we can use the analysis framework of margin-based active learning to
show that such constant error rate ensures that the angle between wk and w∗ is as small as O(2−k),
which in turn implies w∗ ∈ Wk+1. It remains to show w∗ ∈ W1; this can be easily seen by the
definition of W1: W1 = B2(0, 1) ∩ B1(0,

√
s). Hence, we conclude w∗ ∈ Wk for all 1 ≤ k ≤ k0.

Observe that the radius of `2-ball of Wk0 is as small as ε, which, by a basic property of isotropic
log-concave distributions, implies the error rate of wk0 on D is less than ε.

The sample and label complexity bounds follow from our setting of Nk and mk, and the fact that
bk ∈ [ε, c̄/16] for all k ≤ k0. See Appendix D.5 for the full proof.

5. Conclusion and Open Questions

We have presented a computationally efficient algorithm for learning sparse halfspaces under the
challenging malicious noise model. Our algorithm leverages the well-established margin-based
active learning framework, with a particular treatment on attribute efficiency, label complexity, and
noise tolerance. We have shown that our theoretical guarantees for label complexity and noise
tolerance are near-optimal, and the sample complexity of a passive learning variant of our algorithm
is attribute-efficient, thanks to the set of new techniques proposed in this paper.

We raise three open questions for further investigation. First, as we discussed in Section 4.2,
the sample complexity for concentration of x>Hx has a quadratic dependence on s. It would be
interesting to study whether this is a fundamental limit of learning under isotropic log-concave
distributions, or it can be improved by a more sophisticated localization scheme in the instance and
the concept spaces. Second, while isotropic log-concave distributions bear favorable properties that fit
perfectly in the margin-based framework, it would be interesting to examine whether the established
results can be extended to heavy-tailed distributions. This may lead to a large error rate within the
band that cannot be controlled at a constant level, and new techniques must be developed. Finally, it
would be interesting to design computationally more efficient algorithms, e.g. stochastic gradient
descent-type algorithms similar to Dasgupta et al. (2005), with comparable statistical guarantees.
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Appendix A. Detailed Choices of Reserved Constants and Additional Notations

Constants. The absolute constants c0, c1 and c2 are specified in Lemma 14, and c3 and c4 are
specified in Lemma 15. c5 and c6 were clarified in Section 3.2. The definition of c7, c8, c9 can be
found in Lemma 16, Lemma 19, and Lemma 20 respectively. The absolute constant C1 acts as an
upper bound of all bk’s, and by our choice in Section 3.2, C1 = c̄/16. The absolute constant C2 is
defined in Lemma 18. Other absolute constants, such as C3, C4 are not quite crucial to our analysis
or algorithmic design. Therefore, we do not track their definitions. The subscript variants of K, e.g.
K1 and K2, are also absolute constants but their values may change from appearance to appearance.
We remark that the value of all these constants does not depend on the underlying distribution D
chosen by the adversary, but rather depends on the knowledge of D.

Pruning. Consider Algorithm 1. For each phase k, we sample a working set T̄ and remove all
instances that have large `∞-norm to obtain T (Step 6), which is equivalent to intersecting it with the

`∞-ball B∞(0, νk) := {x : ‖x‖∞ ≤ νk} where νk = c9 log
48|T̄ |d
bkδk

. This is motivated by Lemma 20,
which states that with high probability, all clean instances in T̄ are inB∞(0, νk). Specifically, Denote
by T̄C (respectively T̄D) the set of clean (respectively dirty) instances in T̄ . Lemma 20 implies that
with probability 1− δk

48 , T̄C ⊂ B∞(0, νk). Therefore, with high probability, all the instances in T̄C

are kept in this step and only instances in T̄D may be removed. Denote by TC = T̄C ∩ B∞(0, νk)
and TD = T̄D ∩ B∞(0, νk); we therefore also have the decomposition T = TC ∪ TD. We finally
denote by T̂C the unrevealed labeled set that corresponds to T̄C.

Table 1: Summary of useful notations associated with the working set T̄ at each phase k.

T̄ instance set obtained by calling EXx
η(D,w∗) conditioned on |wk−1 · x| ≤ bk

T̄C set of instances in T̄ that EXx
η(D,w∗) draws from the distribution D

T̄D set of dirty instances in T̄ , i.e. T̄\T̄C

T set of instances in T̄ that lie in B∞(0, νk)
TC set of instances in T̄C that lie in B∞(0, νk)
TD set of instances in T̄D that lie in B∞(0, νk)

T̂C unrevealed labeled set of T̄C

T̃C unrevealed labeled set of TC

Regularity condition on Du,b. We will frequently work with the conditional distribution Du,b

obtained by conditioning D on the event that x is in the band {x ∈ Rd : |u · x| ≤ b}. We give the
following regularity condition to ease our terminology.

Definition 13 A conditional distribution Du,b is said to satisfy the regularity condition if one of the
following holds: 1) the vector u ∈ Rd has unit `2-norm and 0 < b ≤ C1; 2) the vector u is the zero
vector and b = C1.

In particular, at each phase k of Algorithm 1, u is set to wk−1 and b is set to bk. For k = 1, u = w0

is a zero vector, b = b1 = C1, satisfying the regularity condition. It is worth mentioning that at phase
1 the conditional distribution Du,b boils down to D. For all k ≥ 2, u is a unit vector and b ∈ (0, C1]
in view of our construction of bk. Therefore, for all k ≥ 1, Dwk−1,bk satisfy the regularity condition.
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Appendix B. Useful Properties of Isotropic Log-Concave Distributions

We record some useful properties of isotropic log-concave distributions.

Lemma 14 There are absolute constants c0, c1, c2 > 0, such that the following holds for all
isotropic log-concave distributions D ∈ D. Let fD be the density function. We have

1. Orthogonal projections of D onto subspaces of Rd are isotropic log-concave;

2. If d = 1, then Prx∼D(a ≤ x ≤ b) ≤ |b− a|;

3. If d = 1, then fD(x) ≥ c0 for all x ∈ [−1/9, 1/9];

4. For any two vectors u, v ∈ Rd,

c1 ·Prx∼D
(
sign (u · x) 6= sign (v · x)

)
≤ θ(u, v) ≤ c2 ·Prx∼D

(
sign (u · x) 6= sign (v · x)

)
;

5. Prx∼D
(
‖x‖2 ≥ t

√
d
)
≤ exp(−t+ 1).

We remark that Parts 1, 2, 3, and 5 are due to Lovász and Vempala (2007), and Part 4 is from
Vempala (2010); Balcan and Long (2013).

The following lemma is implied by the proof of Theorem 21 of Balcan and Long (2013), which
shows that if we choose a proper band width b > 0, the error outside the band will be small.
This observation is crucial for controlling the error over the distribution D, and has been broadly
recognized in the literature (Awasthi et al., 2017; Zhang, 2018).

Lemma 15 (Theorem 21 of Balcan and Long (2013)) There are absolute constants c3, c4 > 0
such that the following holds for all isotropic log-concave distributions D ∈ D. Let u and v be two
unit vectors in Rd and assume that θ(u, v) = α < π/2. Then for any b ≥ 4

c4
α, we have

Prx∼D(sign (u · x) 6= sign (v · x) and |v · x| ≥ b) ≤ c3α exp

(
−c4b

2α

)
.

Lemma 16 (Lemma 20 of Awasthi et al. (2016)) There is an absolute constant c7 > 0 such that
the following holds for all isotropic log-concave distributions D ∈ D. Draw n i.i.d. instances from
D to form a set S. Then

PrS∼Dn

(
max
x∈S
‖x‖∞ ≥ c7 log

|S| d
δ

)
≤ δ.

Lemma 17 There is an absolute constant C̄2 ≥ 1 such that the following holds for all isotropic
log-concave distributions D ∈ D and all Du,b that satisfy the regularity condition:

sup
w∈B2(u,r)

Ex∼Du,b
[
(w · x)2

]
≤ C̄2(b2 + r2).

Proof When u is a unit vector, Lemma 3.4 of Awasthi et al. (2017) shows that there exists a constant
K1 such that

sup
w∈B2(u,r)

Ex∼Du,b
[
(w · x)2

]
≤ K1(b2 + r2).
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When u is a zero vector, Du,b reduces to D and the constraint w ∈ B2(u, r) reads as ‖w‖2 ≤ r.
Thus we have

Ex∼Du,b
[
(w · x)2

]
= ‖w‖22 ≤ r

2 < b2 + r2.

The proof is complete by choosing C̄2 = K1 + 1.

Lemma 18 There is an absolute constant C2 ≥ 2 such that the following holds for all isotropic
log-concave distributions D ∈ D and all Du,b that satisfy the regularity condition:

sup
H∈M

Ex∼Du,b
[
x>Hx

]
≤ C2(b2 + r2),

whereM := {H ∈ Rd×d : H � 0, ‖H‖∗ ≤ r2, ‖H‖1 ≤ ρ2}.

Proof Since H ∈ M is a positive semidefinite matrix with trace norm at most r2, it has eigende-
composition H =

∑d
i=1 λiviv

>
i , where λi ≥ 0 are the eigenvalues such that

∑d
i=1 λi ≤ r2, and vi’s

are orthonormal vectors in Rd. Thus,

x>Hx =
1

r2

d∑
i=1

λi(rvi · x)2 ≤ 2

r2
·

d∑
i=1

λi

[(
(rvi + u) · x

)2
+ (u · x)2

]
.

Since x is drawn from Du,b, we have (u · x)2 ≤ b2. Moreover, applying Lemma 17 with the setting
of w = rv + u implies that

sup
v∈B2(0,1)

Ex∼Du,b
[(

(rv + u) · x
)2] ≤ C̄2(b2 + r2).

Therefore,

sup
H∈M

Ex∼Du,b
[
x>Hx

]
≤ 2

r2
·

d∑
i=1

λi

(
C̄2(b2 + r2) + b2

)
≤ 2(C̄2 + 1)(b2 + r2).

The proof is complete by choosing C2 = 2(C̄2 + 1).

Lemma 19 Let c8 = min
{

2c0,
2c0
9C1

, 1
C1

}
. Then for all isotropic log-concave distributions D ∈ D

and all Du,b satisfying the regularity condition,

1. Prx∼D
(
|u · x| ≤ b

)
≥ c8 · b;

2. Prx∼Du,b(E) ≤ 1
c8b

Prx∼D(E) for any event E.

Proof We first consider the case that u is a unit vector.
For the lower bound, Part 3 of Lemma 14 shows that the density function of the random variable

u · x is lower bounded by c0 when |u · x| ≤ 1/9. Thus

Prx∼D
(
|u · x| ≤ b

)
≥ Prx∼D

(
|u · x| ≤ min{b, 1/9}

)
≥ 2c0 min{b, 1/9} ≥ 2c0 min

{
1,

1

9C1

}
· b
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where in the last inequality we use the condition b ≤ C1.
For any event E, we always have

Prx∼Du,b(E) ≤ Prx∼D(E)

Prx∼D(|u · x| ≤ b)
≤ 1

c8b
Prx∼D(E).

Now we consider the case that u is the zero vector and b = C1. Then Prx∼D
(
|u · x| ≤ b

)
=

1 ≥ c8 · b in view of the choice c8. Thus Part 2 still follows. The proof is complete.

Lemma 20 There exists an absolute constant c9 > 0 such that the following holds for all isotropic
log-concave distributions D ∈ D and all Du,b that satisfy the regularity condition. Let S be a set of
i.i.d. instances drawn from Du,b. Then

PrS∼Dnu,b

(
max
x∈S
‖x‖∞ ≥ c9 log

|S| d
bδ

)
≤ δ.

Proof Using Lemma 16 we have

PrS∼Dn

(
max
x∈S
‖x‖∞ ≥ c7 log

|S| d
δ

)
≤ δ.

Thus, using Part 2 of Lemma 19 gives

PrS∼Dnu,b

(
max
x∈S
‖x‖∞ ≥ c7 log

|S| d
δ

)
≤ δ

c8b
.

The proof is complete by changing δ to δ′ = δ
c8b

.

Appendix C. Orlicz Norm and Concentration Results using Adamczak’s Bound

The following notion of Orlicz norm (van de Geer and Lederer, 2013; Dudley, 2014) is useful in
handling random variables that have tails of the form exp(−tα) for general α’s beyond α = 2
(subgaussian) and α = 1 (subexponential).

Definition 21 (Orlicz norm) For any z ∈ R, let ψα : z 7→ exp(zα) − 1. Furthermore, for a
random variable Z ∈ R and α > 0, define ‖Z‖ψα , the Orlicz norm of Z with respect to ψα, as:

‖Z‖ψα = inf
{
t > 0 : EZ

[
ψα
(
|Z|/t

)]
≤ 1
}
.

We collect some basic facts about Orlicz norms in the following lemma; they can be found in
Section 1.3 of Van Der Vaart and Wellner (1996).

Lemma 22 Let Z, Z1, Z2 be real-valued random variables. Consider the Orlicz norm with respect
to ψα. We have the following:

1. ‖·‖ψα is a norm. For any a ∈ R, ‖aZ‖ψα = |a| · ‖Z‖ψα; ‖Z1 + Z2‖ψα ≤ ‖Z1‖ψα + ‖Z2‖ψα .
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2. ‖Z‖p ≤ ‖Z‖ψp ≤ p! ‖Z‖ψ1
where ‖Z‖p :=

(
E
[
|Z|p

])1/p
.

3. For any p, α > 0, ‖Z‖αψp = ‖Zα‖ψ
p/α

.

4. If Pr
(
|Z| ≥ t

)
≤ K1 exp (−K2t

α) for any t ≥ 0, then ‖Z‖ψα ≤
(

2(lnK1+1)
K2

)1/α
.

5. If ‖Z‖ψα ≤ K, then for all t ≥ 0, Pr
(
|Z| ≥ t

)
≤ 2 exp

(
−( t

K )α
)
.

The following auxiliary results, tailored to the localized sampling scheme in Algorithm 1, will
also be useful in our analysis.

Lemma 23 There exists an absolute constant C3 > 0 such that the following holds for all isotropic
log-concave distributions D ∈ D and all Du,b that satisfy the regularity condition. Let S =
{x1, . . . , xn} be a set of n instances drawn from Du,b. Then∥∥∥∥max

x∈S
‖x‖∞

∥∥∥∥
ψ1

≤ C3 log
nd

b
.

Consequently,

ES∼Dnu,b
[
max
x∈S
‖x‖∞

]
≤ C3 log

nd

b
.

Proof Let Z be isotropic log-concave random variable in R. Part 5 of Lemma 14 shows that for all
t > 0,

Pr(|Z| > t) ≤ exp(−t+ 1).

Fix i ∈ {1, . . . , n} and fix j ∈ {1, . . . , d}. Denote by x(j)
i the j-th coordinate of xi. Part 1 of

Lemma 14 suggests that x(j)
i is isotropic log-concave. Thus, by Part 2 of Lemma 19,

Prx∼Du,b

(∣∣x(j)
i

∣∣ > t
)
≤ 1

c8b
Prx∼D

(∣∣x(j)
i

∣∣ > t
)
≤ 1

c8b
exp(−t+ 1).

Taking the union bound over i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, we have for all t > 0

Prx∼Du,b

(
max
x∈S
‖x‖∞ > t

)
≤ nd

c8b
exp(−t+ 1).

Now Part 4 of Lemma 22 immediately implies that∥∥∥∥max
x∈S
‖x‖∞

∥∥∥∥
ψ1

≤ C3 log
nd

b

for some constant C3 > 0. The second inequality of the lemma is an immediate result by combining
the above and Part 2 of Lemma 22.
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C.1. Adamczak’s bound

In this section, we establish the key concentration results that will be used to analyze the performance
of soft outlier removal and random sampling in Algorithm 1. Since we are considering the isotropic
log-concave distribution, any unlabeled instance x is unbounded. This prevents us from using
standard concentration bounds, e.g. Kakade et al. (2008). We henceforth appeal to the following
generalization of Talagrand’s inequality, due to Adamczak (2008).

Lemma 24 (Adamczak’s bound) For any α ∈ (0, 1], there exists a constant Λα > 0, such that
the following holds. Given any function class F , and a function F such that for any f ∈ F ,∣∣f(x)

∣∣ ≤ F (x), we have with probability at least 1− δ over the draw of a set S = {x1, . . . , xn} of
i.i.d. instances from D,

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(xi)− Ex∼D
[
f(x)

]∣∣∣∣ ≤ Λα

ES∼Dn
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(xi)− Ex∼D
[
f(x)

]∣∣∣∣]

+

√
supf∈F Ex∼D

[
(f(x))2

]
ln 1

δ

n
+

(ln 1
δ )1/α

n

∥∥∥∥max
1≤i≤n

F (xi)

∥∥∥∥
ψα

 .

We first establish the following result that upper bounds the expected value of Rademacher
complexity of linear classes by the Orlicz norm of the random instances.

Lemma 25 There exists an absolute constant C5 > 0 such that the following holds for all isotropic
log-concave distributions D ∈ D and all Du,b that satisfy the regularity condition. Let S =
{x1, . . . , xn} be a set of n i.i.d. unlabeled instances drawn from Du,b. Denote W = B2(u, r) ∩
B1(u, ρ). Let a sequence of random variables Z = {z1, . . . , zn} be drawn from a distribution
supported on a bounded interval [−λ, λ] for some λ > 0. Let σ = {σ1, . . . , σn}, where the σi’s are
i.i.d. Rademacher random variables independent of S and Z. We have:

ES,Z,σ
[

sup
w∈W

∣∣∣∣ n∑
i=1

σizi(w · xi)
∣∣∣∣] ≤ λb√n+ C5ρλ

√
n log d · log

nd

b
.

Proof Let V = B2(0, r) ∩ B1(0, ρ) so that any w ∈ W can be expressed as w = u+ v for some
v ∈ V . First, conditioned on S and Z, we have that

Eσ
[
sup
v∈V

∣∣∣∣ n∑
i=1

σizi(v · xi)
∣∣∣∣] ≤ ρ√2n log(2d) · max

1≤i≤n
‖zixi‖∞ ≤ ρλ

√
2n log(2d) · max

1≤i≤n
‖xi‖∞ .

Thus,

ES,Z,σ
[
sup
v∈V

∣∣∣∣ n∑
i=1

σizi(v · xi)
∣∣∣∣] ≤ ρλ√2n log(2d) · ES

[
max

1≤i≤n
‖xi‖∞

]
≤ C5ρλ

√
n log d · log

nd

b
, (C.1)

where the second inequality follows from Lemma 23.
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On the other side, using the fact that for any random variable A, E[A] ≤
(
E[A2]

)1/2, we have

ES,Z,σ
[∣∣∣∣ n∑

i=1

σizi(u · xi)
∣∣∣∣] ≤

√√√√ES,Z,σ

[( n∑
i=1

σizi(u · xi)
)2]

=

√√√√ES,Z

[
n∑
i=1

z2
i (u · xi)2

]
≤
√
nb2λ2,

where in the equality we use the observation that ES,Z,σ
[
σiσjzizj(u · xi)(u · xj)

]
= 0 when i 6= j,

and in the last inequality we used the condition that xi is drawn from Du,b. Combining the above
with (C.1) we obtain the desired result.

C.2. Uniform concentration of hinge loss

Proposition 26 There exists an absolute constant C6 > 0 such that the following holds for all
isotropic log-concave distributions D ∈ D and all Du,b that satisfy the regularity condition. Let
S = {x1, . . . , xn} be a set of n i.i.d. unlabeled instances drawn from Du,b which satisfies the
regularity condition. Let yx = sign (w∗ · x) for any x ∼ Du,b. Denote W = B2(u, r) ∩ B1(u, ρ)
and let G(w) = 1

n

∑n
i=1 `τ (w;xi, yxi)− Ex∼Du,b

[
`τ (w;x, yx)

]
. Then with probability 1− δ,

sup
w∈W

∣∣G(w)
∣∣ ≤ C6

(
b+ ρ

√
log d log nd

b

τ
√
n

+
b+ r

τ
√
n

√
log

1

δ
+
b+ ρ log nd

b

τn
log

1

δ

)
.

In particular, suppose b = O(r), ρ = O(
√
sr) and τ = Ω(r). Then we have: for any t > 0, a sample

size n = Õ
(

1
t2
s log2 d

b · log d
δ

)
suffices to guarantee that with probability 1−δ, supw∈W

∣∣G(w)
∣∣ ≤ t.

Proof We will use Lemma 24 with function class F = {(x, y) 7→ `τ (w;x, y) : w ∈ W} and the
Orlicz norm with respect to ψ1. We define F (x, y) = 1 + b

τ + ρ
τ ‖x‖∞. It can be seen that for every

w ∈W ,∣∣`τ (w;x, y)
∣∣ ≤ 1 +

|w · x|
τ
≤ 1 +

u · x
τ

+
(w − u) · x

τ
≤ 1 +

b

τ
+
ρ

τ
‖x‖∞ = F (x, y).

That is, for every f in F ,
∣∣f(x, y)

∣∣ ≤ F (x, y).

Step 1. We upper bound
∥∥max1≤i≤n F (xi, yxi)

∥∥
ψ1

. Since ‖·‖ψ1
is a norm, we have∥∥∥∥max

1≤i≤n
F (xi, yxi)

∥∥∥∥
ψ1

≤
∥∥∥∥1 +

b

τ

∥∥∥∥
ψ1

+

∥∥∥∥ρτ · max
1≤i≤n

‖xi‖∞

∥∥∥∥
ψ1

= 1 +
b

τ
+
ρ

τ
·
∥∥∥∥max

1≤i≤n
‖xi‖∞

∥∥∥∥
ψ1

≤ 1 +
b

τ
+
C3ρ

τ
log

nd

b
, (C.2)

where we applied Lemma 23 in the last inequality.
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Step 2. Next, we upper bound supw∈W Ex∼Du,b
[
(`τ (w;x, yx))2

]
. For all w in W , we have

sup
w∈W

Ex∼Du,b
[
(`τ (w;x, yx))2

]
≤ 2 · sup

w∈W
Ex∼Du,b

[
1 +

(w · x)2

τ2

]
≤ 2 + 2C̄2 ·

r2 + b2

τ2
(C.3)

where the last inequality uses Lemma 17.

Step 3. Finally, we upper bound ES∼Dnu,b
[
supw∈W

∣∣G(w)
∣∣]. Let σ = {σ1, . . . , σn} where each σi

is an i.i.d. draw from the Rademacher distribution. We have

ES
[

sup
w∈W

∣∣G(w)
∣∣] ≤ 2

n
ES,σ

[
sup
w∈W

∣∣∣∣ n∑
i=1

σi`τ
(
w;xi, yxi

)∣∣∣∣]

≤ 2

τn
ES,σ

[
sup
w∈W

∣∣∣∣ n∑
i=1

σiyxi(w · xi)
∣∣∣∣]

≤ 2b

τ
√
n

+
2C5ρ

τ
·
√

log d

n
· log

nd

b
. (C.4)

In the above, the first inequality used standard symmetrization arguments; see, for example,
Lemma 26.2 of Shalev-Shwartz and Ben-David (2014). In the second inequality, we used the
contraction property of Rademacher complexity and the fact that `τ (w;x, y) can be seen as a 1

τ -
Lipschitz function φ(a) = max

{
0, 1− a

τ

}
applied on input a = yw · x. In the last inequality, we

applied Lemma 25 with the fact that
∣∣yxi∣∣ ≤ 1.

Putting together. The first inequality of the proposition follows from combining (C.2), (C.3), and
(C.4), and using Lemma 24 with F and ψ1. Under our choice of (b, r, ρ, τ), with some calculation
we obtain the bound of n.

C.3. Uniform concentration of relaxed sparse PCA

Proposition 27 There exists an absolute constant C7 > 0 such that the following holds for all
isotropic log-concave distributions D ∈ D and all Du,b that satisfy the regularity condition. Let
S = {x1, . . . , xn} be a set of n i.i.d. unlabeled instances drawn from Du,b. Denote G(H) =
1
n

∑n
i=1 x

>
i Hxi − Ex∼Du,b

[
x>Hx

]
. Then with probability 1− δ,

sup
H∈M

∣∣G(H)
∣∣ ≤ C7ρ

2 log2 nd

b

(√
log d

n
+

√
log(1/δ)

n
+

log2 1
δ

n

)
.

In particular, suppose ρ = O(
√
sr) and r = O(b). Then we have: for any t > 0, a sample size

n = Õ

(
1

t2
s2b4 log4 d

b
·
(

log d+ log2 1

δ

))

suffices to guarantee that with probability 1− δ, supH∈M
∣∣G(H)

∣∣ ≤ t.
Proof Recall thatM = {H ∈ Rd×d : H � 0, ‖H‖ ≤ r2, ‖H‖1 ≤ ρ2}. For any matrix H , we
denote by Hij the (i, j)-th entry of the matrix H . For any vector x, we denote by x(i) the i-th
coordinate of x.
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We will use Lemma 24 with function class F = {x 7→ x>Hx : H ∈M} and the Orlicz norm
with respect to ψ0.5. Consider the function f(x) := x>Hx parameterized by H ∈ M. First, we
wish to find a function F (x) that upper bounds

∣∣f(x)
∣∣. It is easy to see that∣∣∣x>Hx∣∣∣ =

∣∣∣∑
i,j

Hijx
(i)x(j)

∣∣∣ ≤ ‖x‖2∞∑
i,j

∣∣Hij

∣∣ ≤ ρ2 ‖x‖2∞ . (C.5)

Thus it suffices to choose F (x) = ρ2 ‖x‖2∞.

Step 1. We first bound
∥∥∥√max1≤i≤n F (xi)

∥∥∥
ψ1

=
∥∥ρ ·max1≤i≤n ‖xi‖∞

∥∥
ψ1
≤ C3ρ log nd

b by

Lemma 23. By Part 3 of Lemma 22,
∥∥max1≤i≤n F (x)

∥∥
ψ0.5

equals
∥∥∥√max1≤i≤n F (x)

∥∥∥2

ψ1

. Thus∥∥∥∥max
1≤i≤n

F (x)

∥∥∥∥
ψ0.5

≤
(
C3ρ log

nd

b

)2

. (C.6)

Step 2. Next we upper bound supf∈F Ex∼Du,b
[
(f(x))2

]
where we remark that taking the superum

over f ∈ F is equivalent to taking that over H ∈M. Since
∣∣f(x)

∣∣ ≤ F (x), we have

(f(x))2 ≤ (F (x))2 ≤ ρ4 ‖x‖4∞ .

In view of Part 2 of Lemma 22, we have(
Ex∼Du,b

[
‖x‖4∞

])1/4

≤ 24
∥∥‖x‖∞∥∥ψ1

≤ 24C3 log
d

b
, (C.7)

where the last inequality follows from Lemma 23. Hence,

sup
f∈F

Ex∼Du,b
[
(f(x))2

]
≤ K1ρ

4 log4 d

b
(C.8)

for some absolute constant K1 > 0.

Step 3. Finally, we upper bound ES∼Dn
[
supf∈F

∣∣∣ 1
n

∑n
i=1 f(xi)− Ex∼Du,b

[
f(x)

]∣∣∣]. Let σ =

{σ1, . . . , σn} where σi’s are independent draw from the Rademacher distribution. By standard
symmetrization arguments (see e.g. Lemma 26.2 of Shalev-Shwartz and Ben-David (2014)), we have

ES
[

sup
f∈F

∣∣G(v,H)
∣∣] ≤ 2

n
ES,σ

[
sup
f∈F

∣∣∣∣ n∑
i=1

σif(xi)

∣∣∣∣] =
2

n
ES,σ

[
sup
H∈M

∣∣∣∣ n∑
i=1

σix
>
i Hxi

∣∣∣∣] . (C.9)

We first condition on S and consider the expectation over σ. For a matrix H , we use vec(H) to
denote the vector obtained by concatenating all of the columns of H; likewise for xix>i . It is crucial
to observe that with this notation, for any H ∈ M, we have

∥∥vec(H)
∥∥

1
= ‖H‖1 ≤ ρ2. It follows

that

Eσ

[∣∣∣∣ sup
H∈M

n∑
i=1

σix
>
i Hxi

∣∣∣∣
]
≤ Eσ

[
sup

H:‖vec(H)‖
1
≤ρ2

∣∣∣∣ n∑
i=1

σi

〈
vec(H), vec(xix

>
i )
〉∣∣∣∣
]

≤ ρ2
√
n ln(2d2) · max

1≤i≤n

∥∥∥vec(xix
>
i )
∥∥∥
∞
·

= ρ2
√
n ln(2d2) · max

1≤i≤n
‖xi‖2∞ .
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where the second inequality is from Lemma 43, and the equality is from the observation that
‖ vec(xix

>
i )‖∞ = ‖xi‖2∞. Therefore,

ES,σ

[∣∣∣∣ sup
H∈M

n∑
i=1

σix
>
i Hxi

∣∣∣∣
]
≤ ρ2

√
n ln(2d2) · ES

[
max

1≤i≤n
‖xi‖2∞

]

≤ ρ2
√

2n ln(2d) · 2
∥∥∥∥max

1≤i≤n
‖xi‖∞

∥∥∥∥2

ψ1

≤ ρ2
√

2n ln(2d) · C2
3 log2 nd

b
,

where the second inequality follows from Part 2 of Lemma 22, and the last inequality follows from
Lemma 23. In summary,

ES,σ

[
sup
f∈F

∣∣∣∣ n∑
i=1

σix
>
i Hxi

∣∣∣∣
]
≤ K2

√
n ln d · ρ2 log2 nd

b
(C.10)

for some constant K2 > 0.
Combining (C.9) and (C.10), we have

ES
[

sup
f∈F

∣∣G(H)
∣∣] ≤ K3

√
log d√
n

· ρ2 log2 nd

b
. (C.11)

Putting together. Combining (C.6), (C.8), (C.11), and using Lemma 24 gives the first inequality of
the proposition. Under our setting of (b, r, ρ), by some calculation we obtain the bound of n. The
proof is complete.

Appendix D. Performance Guarantee of Algorithm 1

In this section, we leverage all the tools from previous sections to establish the performance guarantee
of Algorithm 1. Our main theorem, Theorem 4, follows from the analysis of each step of the algorithm,
as we describe below.

D.1. Analysis of sample complexity

Recall that we refer to the number of calls to EXx
η(D,w∗) as the sample complexity of Algorithm 1.

In order to obtain nk instances residing the band Xk := {x : |wk−1 · x| ≤ bk}, we have to call
EXx

η(D,w∗) sufficient times.

Lemma 28 (Restatement of Lemma 6) Consider phase k of Algorithm 1 for any k ≥ 1. Sup-
pose that Assumption 1 and 2 are satisfied. Further assume η < 1

2 . By making a number of

Nk = O
(

1
bk

(
nk + log 1

δk

))
calls to the instance generation oracle EXx

η(D,w∗), we will obtain nk

instances that fall into Xk with probability 1− δk
4 .
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Proof By Lemma 19
Prx∼D(x ∈ Xk) ≥ c8bk.

This implies that

Prx∼EXxη(D,w∗)(x ∈ Xk and x is clean)

= Prx∼EXxη(D,w∗)(x ∈ Xk | x is clean) · Prx∼EXxη(D,w∗)(x is clean)

≥ c8bk(1− η).

We want to ensure that by drawing Nk instances from EXx
η(D,w∗), with probability at least

1− δk
4 , nk out of them fall into the band Xk. We apply the second inequality of Lemma 42 by letting

Zi = 1{xi∈Xk and xi is clean} and α = 1/2, and obtain

Pr

(∣∣T̄C

∣∣ ≤ c8bk(1− η)

2
Nk

)
≤ exp

(
−c8bk(1− η)Nk

8

)
,

where the probability is taken over the event that we make a number ofNk calls to EXx
η(D,w∗). Thus,

when Nk ≥ 8
c8bk(1−η)

(
nk + ln 4

δk

)
, we are guaranteed that at least nk samples from EXx

η(D,w∗)

fall into the band Xk with probability 1− δk
4 . The lemma follows by observing η < 1

2 .

D.2. Analysis of pruning and the structure of T̄

With the instance set T̄ on hand, we estimate the empirical noise rate after applying pruning (Step 6)
in Algorithm 1. Recall that nk =

∣∣T̄ ∣∣, i.e. the number of unlabeled instances before pruning.

Lemma 29 Suppose that Assumption 1 and Assumption 2 are satisfied. Further assume η < 1
2 . If

Du,b satisfies the regularity condition, we have

Prx∼EXxη(D,w∗)

(
x is dirty | x ∈ Xu,b

)
≤ 2η

c8b

where c8 was defined in Lemma 19 and Xu,b := {x ∈ Rd : |u · x| ≤ b}.

Proof For an instance x, we use tagx = 1 to denote that x is drawn from D, and use tagx = −1 to
denote that x is adversarially generated.

We first calculate the probability that an instance returned by EXx
η(D,w∗) falls into the band

Xu,b as follows:

Prx∼EXxη(D,w∗)

(
x ∈ Xu,b

)
= Prx∼EXxη(D,w∗)

(
x ∈ Xu,b and tagx = 1

)
+ Prx∼EXxη(D,w∗)

(
x ∈ Xu,b and tagx = −1

)
≥ Prx∼EXxη(D,w∗)

(
x ∈ Xu,b and tagx = 1

)
= Prx∼EXxη(D,w∗)

(
x ∈ Xu,b | tagx = 1

)
· Prx∼EXxη(D,w∗) (tagx = 1)

= Prx∼D
(
x ∈ Xu,b

)
· Prx∼EXxη(D,w∗) (tagx = 1)

ζ
≥ c8b · (1− η)

≥ 1

2
c8b,
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where in the inequality ζ we applied Part 1 of Lemma 19. It is thus easy to see that

Prx∼EXxη(D,w∗)

(
tagx = −1 | x ∈ Xu,b

)
≤

Prx∼EXxη(D,w∗)

(
tagx = −1

)
Prx∼EXxη(D,w∗)

(
x ∈ Xu,b

) ≤ 2η

c8b
,

which is the desired result.

Lemma 30 Suppose that Assumptions 1 and 2 are satisfied. Further assume η ≤ c5ε. For any
1 ≤ k ≤ k0, if nk ≥ 6

ξk
ln 48

δk
, then with probability 1− δk

24 over the draw of T̄ , the following results
hold simultaneously:

1. TC = T̄C and hence T̃C = T̂C, i.e. all clean instances in T̄ are intact after pruning;

2. |TD||T | ≤ ξk, i.e. the empirical noise rate after pruning is upper bounded by ξk;

3. |TC| ≥ (1− ξk)nk.

In particular, with the hyper-parameter setting in Section 3.2, |TC| ≥ 1
2nk.

Proof Let us write events E1 := {TC = T̄C}, E2 := {
∣∣T̄D

∣∣ ≤ ξknk}. We bound the probability of
the two events over the draw of T̄ .

Recall that Lemma 20 implies that with probability 1− δk
48 , all instances in T̄C are in the `∞-ball

B∞(0, νk) for νk = c9 log
48|T̄ |d
bkδk

, which implies Pr(E1) ≥ 1− δk
48 .

We next calculate the noise rate within the band Xk := {x : |wk−1 · x| ≤ bk} by Lemma 29:

Prx∼EXxη(D,w∗)(x is dirty | x ∈ Xk) ≤
2η

c8bk
=

2η

c8c̄ · 2−k−3
≤ π

c8c̄c1
· η
ε
≤ πc5

c8c̄c1
≤ ξk

2
,

where the equality applies our setting on bk, the second inequality uses the condition k ≤ k0 and the
setting k0 = log

(
π

16c1ε

)
, and the last inequality is guaranteed by our choice of c5. Now we apply the

first inequality of Lemma 42 by specifying Zi = 1{xi is dirty}, α = 1 therein, which gives

Pr
(∣∣T̄D

∣∣ ≥ ξknk) ≤ exp

(
−ξknk

6

)
,

where the probability is taken over the draw of T̄ . This implies Pr(E2) ≥ 1 − δk
48 provided that

nk ≥ 6
ξk

ln 48
δk

.

By union bound, we have Pr(E1∩E2) ≥ 1− δk
24 . We show that on the event E1∩E2, the second

and third parts of the lemma follow. To see this, we note that it trivially holds that |TD||T | ≤
|T̄D|
nk

since
only dirty instances have chance to be removed. This proves the second part. Also, it is easy to see
that |TC| =

∣∣T̄C

∣∣ =
∣∣T̄ ∣∣− ∣∣T̄D

∣∣ ≥ (1− ξk)
∣∣T̄ ∣∣, which is exactly the third part.
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D.3. Analysis of Algorithm 2

Lemma 31 (Restatement of Lemma 3) Suppose that Assumption 1 and 2 are satisfied, and that
η ≤ c5ε. There exists a constant C2 > 2 such that the following holds. Consider phase k
of Algorithm 1 for any 1 ≤ k ≤ k0. Denote by Mk the constraint set of (3.2). If |TC| =

Õ
(
s2 log4 d

bk
·
(
log d+ log2 1

δk

))
, then with probability 1− δk

24 over the draw of TC, we have

1. supH∈Mk

1
|TC|

∑
x∈TC x

>Hx ≤ 2C2(b2k + r2
k);

2. supw∈Wk

1
|TC|

∑
x∈TC(w · x)2 ≤ 5C2

(
b2k + r2

k

)
.

Proof The first part is an immediate result by combining Proposition 27 and Lemma 18, and
recognizing our setting of bk and rk.

To see the second part, for any w ∈Wk, we can upper bound (w · x)2 as follows:

(w · x)2 ≤ 2(wk−1 · x)2 + 2(v · x)2 ≤ 2b2k + 2x>(vv>)x,

where v = w − wk−1 ∈ B2(0, rk) ∩ B1(0, ρk). Hence it is easy to see that vv> lies inMk. This
indicates that for any w ∈Wk, there exists an H ∈Mk such that

(w · x)2 ≤ 2
[
b2k + x>Hx

]
. (D.1)

Thus,

sup
w∈Wk

1

|TC|
∑
x∈TC

(w · x)2 ≤ 2b2k + 2 sup
H∈Mk

1

|TC|
∑
x∈TC

x>Hx ≤ 5C2(b2k + r2
k),

where the last inequality follows from the fact C2 ≥ 2.

Proposition 32 (Formal statement of Proposition 7) Consider phase k of Algorithm 1 for any
1 ≤ k ≤ k0. Suppose that Assumption 1 and 2 are satisfied, and that η ≤ c5ε. With probability
1 − δk

8 (over the draw of T̄ ), Algorithm 2 will output a function q : T → [0, 1] with the following
properties:

1. for all x ∈ T, q(x) ∈ [0, 1];

2. 1
|T |
∑

x∈T q(x) ≥ 1− ξk;

3. for all w ∈Wk, 1
|T |
∑

x∈T q(x)(w · x)2 ≤ 5C2

(
b2k + r2

k

)
.

Furthermore, such function q can be found in polynomial time.

Proof Our choice on nk satisfies the condition nk ≥ 6
ξk

ln 48
δk

since ξk is lower bounded by a

constant (see Section 3.2 for our parameter setting). Thus by Lemma 30, with probability 1− δk
24 ,

|TC| ≥ (1− ξk)nk. We henceforth condition on this happening.
On the other side, Lemma 3 and Proposition 27 together implies that with probability 1− δk

24 , for
all H ∈Mk, we have

1

|TC|
∑
x∈TC

x>Hx ≤ 2C2(b2k + r2
k) (D.2)
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provided that

|TC| = Õ
(
s2 log4 d

bk
·
(

log d+ log2 1

δk

))
. (D.3)

Note that (D.3) is satisfied in view of the aforementioned event |TC| ≥ (1− ξk)nk along with the
setting of nk and ξk. By union bound, the events (D.2) and |TC| ≥ (1− ξk) |T | hold simultaneously
with probability at least 1− δk

8 .
Now we show that these two events together implies the existence of a feasible function q(x) to

Algorithm 2. Consider a particular function q(x) with q(x) = 0 for all x ∈ TD and q(x) = 1 for all
x ∈ TC. We immediately have

1

|T |
∑
x∈T

q(x) =
|TC|
|T |
≥ 1− ξk.

In addition, for all H ∈Mk,
1

|T |
∑
x∈T

q(x)x>Hx =
1

|T |
∑
x∈TC

x>Hx ≤ 1

|TC|
∑
x∈TC

x>Hx ≤ 2C2(b2k + r2
k), (D.4)

where the first inequality follows from the fact |T | ≥ |TC| and the second inequality follows from
(D.2). Namely, such function q(x) satisfies all the constraints in Algorithm 2. Finally, combining
(D.1) and (D.4) gives Part 3.

It remains to show that for a given candidate function q, a separation oracle for Algorithm 2
can be constructed in polynomial time. First, it is straightforward to check whether the first two
constraints q(x) ∈ [0, 1] and

∑
x∈T q(x) ≥ (1− ξ) |T | are violated. If not, we just need to further

check if there exists an H ∈Mk such that 1
|T |
∑

x∈T q(x)x>Hx > 2C2(b2k + r2
k). To this end, we

appeal to solving the following program:

max
H∈Mk

1

|T |
∑
x∈T

q(x)x>Hx.

This is a semidefinite program that can be solved in polynomial time (Boyd and Vandenberghe, 2004).
If the maximum objective value is greater than 2C2(b2k + r2

k), then we conclude that q is not feasible;
otherwise we would have found a desired function.

The analysis of the following proposition closely follows Awasthi et al. (2017) with a refined
treatment. Let `τk(w; p) :=

∑
x∈T p(x)`τk(w;x, yx) where yx is the unrevealed label of x that the

adversary has committed to.

Proposition 33 (Formal statement of Proposition 10) Consider phase k of Algorithm 1. Suppose
that Assumption 1 and 2 are satisfied. Assume that η ≤ c5ε. Set Nk and ξk as in Section 3.2. Denote

zk :=
√
b2k + r2

k =
√
c̄2 + 1 · 2−k−3. With probability 1− δk

4 over the draw of T̄ , for all w ∈Wk

`τk(w; T̃C) ≤ `τk(w; p) + 2ξk

(
1 +

√
10C2 ·

zk
τk

)
+
√

10C2ξk ·
zk
τk
,

`τk(w; p) ≤ `τk(w; T̃C) + 2ξk +
√

20C2ξk ·
zk
τk
.

In particular, with our hyper-parameter setting,∣∣∣`τk(w; T̃C)− `τk(w; p)
∣∣∣ ≤ κ.
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Proof The choice of nk guarantees that Lemma 30 and Proposition 32 hold simultaneously with
probability 1− δk

4 . We thus have for all w ∈Wk

1

|T |
∑
x∈T

q(x)(w · x)2 ≤ 5C2z
2
k, (D.5)

1

|TC|
∑
x∈TC

(w · x)2 ≤ 5C2z
2
k, (D.6)

|TD|
|T |
≤ ξk. (D.7)

In the above expression, (D.5) and (D.6) follow from Part 3 and Part 2 of Lemma 31 respectively,
(D.7) follows from Lemma 30. It follows from Eq. (D.7) and ξk ≤ 1/2 that

|T |
|TC|

=
|T |

|T | − |TD|
=

1

1− |TD| / |T |
≤ 1

1− ξk
≤ 2. (D.8)

In the following, we condition on the event that all these inequalities are satisfied.

Step 1. First we upper bound `τk(w; T̃C) by `τk(w; p).

|TC| · `τk(w; T̃C) =
∑
x∈TC

`(w;x, yx)

=
∑
x∈T

[
q(x)`(w;x, yx) +

(
1{x∈TC} − q(x)

)
`(w;x, yx)

]
ζ1
≤
∑
x∈T

q(x)`(w;x, yx) +
∑
x∈TC

(1− q(x))`(w;x, yx)

ζ2
≤
∑
x∈T

q(x)`(w;x, yx) +
∑
x∈TC

(1− q(x))

(
1 +
|w · x|
τk

)
ζ3
≤
∑
x∈T

q(x)`(w;x, yx) + ξk |T |+
1

τk

∑
x∈TC

(1− q(x)) |w · x|

ζ4
≤
∑
x∈T

q(x)`(w;x, yx) + ξk |T |+
1

τk

√∑
x∈TC

(1− q(x))2 ·
√∑
x∈TC

(w · x)2

ζ5
≤
∑
x∈T

q(x)`(w;x, yx) + ξk |T |+
1

τk

√
ξk |T | ·

√
5C2 |TC| · zk, (D.9)

where ζ1 follows from the simple fact that∑
x∈T

(
1{x∈TC} − q(x)

)
`(w;x, yx) =

∑
x∈TC

(1− q(x))`(w;x, yx) +
∑
x∈TD

(−q(x))`(w;x, yx)

≤
∑
x∈TC

(1− q(x))`(w;x, yx),

ζ2 explores the fact that the hinge loss is always upper bounded by 1+ |w·x|τk
and that 1−q(x) ≥ 0, ζ3

follows from Part 2 of Proposition 32, ζ4 applies Cauchy-Schwarz inequality, and ζ5 uses Eq. (D.6).
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In view of Eq. (D.8), we have |T ||TC| ≤ 2. Continuing Eq. (D.9), we obtain

`τk(w; T̃C) ≤ 1

|TC|
∑
x∈T

q(x)`(w;x, yx) + 2ξk +
√

10C2ξk ·
zk
τk

=

∑
x∈T q(x)

|TC|
∑
x∈T

p(x)`(w;x, yx) + 2ξk +
√

10C2ξk ·
zk
τk

= `τk(w; p) +

(∑
x∈T q(x)

|TC|
− 1

)∑
x∈T

p(x)`(w;x, yx) + 2ξk +
√

10C2ξk ·
zk
τk

≤ `τk(w; p) +

(
|T |
|TC|

− 1

)∑
x∈T

p(x)`(w;x, yx) + 2ξk +
√

10C2ξk ·
zk
τk

≤ `τk(w; p) + 2ξk
∑
x∈T

p(x)`(w;x, yx) + 2ξk +
√

10C2ξk ·
zk
τk
, (D.10)

where in the last inequality we use |T | / |TC| − 1 = |TD|/|T |
1−|TD|/|T | ≤ 2 |TD| / |T |. On the other hand,

we have the following result which will be proved later on.

Claim 34
∑

x∈T p(x)`(w;x, yx) ≤ 1 +
√

10C2 · zkτk .

Therefore, continuing Eq. (D.10) we have

`τk(w; T̃C) ≤ `τk(w; p) + 2ξk

(
1 +

√
10C2 ·

zk
τk

)
+
√

10C2ξk ·
zk
τk
.

which proves the first inequality of the proposition.

Step 2. We move on to prove the second inequality of the theorem, i.e. using `τk(w; T̃C) to upper
bound `τk(w; p). Let us denote by pD =

∑
x∈TD p(x) the probability mass on dirty instances. Then

pD =

∑
x∈TD q(x)∑
x∈T q(x)

≤ |TD|
(1− ξk) |T |

≤ ξk
1− ξk

≤ 2ξk, (D.11)

where the first inequality follows from q(x) ≤ 1 and Part 2 of Proposition 32, the second inequality
follows from (D.7), and the last inequality is by our choice ξk ≤ 1/2.

Note that by Part 2 of Proposition 32 and the choice ξk ≤ 1/2, we have
∑

x∈T q(x) ≥ (1 −
ξk) |T | ≥ |T | /2. Hence∑

x∈T
p(x)(w · x)2 =

1∑
x∈T q(x)

∑
x∈T

q(x)(w · x)2 ≤ 2

|T |
∑
x∈T

q(x)(w · x)2 ≤ 10C2z
2
k (D.12)
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where the last inequality holds because of (D.5). Thus,∑
x∈TD

p(x)`(w;x, yx) ≤
∑
x∈TD

p(x)

(
1 +
|w · x|
τk

)
= pD +

1

τk

∑
x∈TD

p(x) |w · x|

= pD +
1

τk

∑
x∈T

(
1{x∈TD}

√
p(x)

)
·
(√

p(x) |w · x|
)

≤ pD +
1

τk

√∑
x∈T

1{x∈TD}p(x) ·
√∑
x∈T

p(x)(w · x)2

(D.12)
≤ pD +

√
pD ·

√
10C2 ·

zk
τk
.

With the result on hand, we bound `τk(w; p) as follows:

`τk(w; p) =
∑
x∈TC

p(x)`(w;x, yx) +
∑
x∈TD

p(x)`(w;x, yx)

≤
∑
x∈TC

`(w;x, yx) +
∑
x∈TD

p(x)`(w;x, yx)

= `τk(w; T̃C) +
∑
x∈TD

p(x)`(w;x, yx)

≤ `τk(w; T̃C) + pD +
√
pD ·

√
10C2 ·

zk
τk

(D.11)
≤ `τk(w; T̃C) + 2ξk +

√
20C2ξk ·

zk
τk
,

which proves the second inequality of the proposition.

Putting together. We would like to show
∣∣∣`τk(w; p)− `τk(w; T̃C)

∣∣∣ ≤ κ. Indeed, this is guaranteed
by our setting of ξk in Section 3.2 which ensures that ξk simultaneously fulfills the following three
constraints:

2ξk

(
1 +

√
10C2 ·

zk
τk

)
+
√

10C2ξk ·
zk
τk
≤ κ,

2ξk +
√

20C2ξk ·
zk
τk
≤ κ, and ξk ≤

1

2
.

This completes the proof.
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Proof [Proof of Claim 34] Since `(w;x, yx) ≤ 1 + |w·x|
τk

, it follows that

∑
x∈T

p(x)`(w;x, yx) ≤
∑
x∈T

p(x)

(
1 +
|w · x|
τk

)
= 1 +

1

τk

∑
x∈T

p(x) |w · x|

≤ 1 +
1

τk

√∑
x∈T

p(x)(w · x)2

(D.12)
≤ 1 +

√
10C2 ·

zk
τk
,

which completes the proof of Claim 34.

The following result is a simple application of Proposition 26. It shows that the loss evaluated on
clean instances concentrates around the expected loss.

Proposition 35 (Restatement of Proposition 11) Consider phase k of Algorithm 1. Suppose that
Assumption 1 and 2 are satisfied, and assume η ≤ c5ε. Then with probability 1− δk

4 over the draw
of T̄ , for all w ∈Wk we have ∣∣∣Lτk(w)− `τk(w; T̃C)

∣∣∣ ≤ κ.
where Lτk(w) := Ex∼Dwk−1,bk

[
`τk(w;x, sign (w∗ · x))

]
.

Proof The choice of nk, i.e. the size of
∣∣T̄ ∣∣, ensures that with probability 1 − δk

8 , |TC| is at least
ζ log ζ where ζ = K · s log2 d

bk
· log d

δk
for some constant K > 0 in view of Lemma 30. This

observation in allusion to Proposition 26 and union bound, immediately gives the desired result.

D.4. Analysis of random sampling

Proposition 36 (Restatement of Proposition 12) Consider phase k Algorithm 1. Suppose that
Assumption 1 and 2 are satisfied, and assume η ≤ c5ε. Set nk and mk as in Section 3.2. Then with
probability 1− δk

4 over the draw of Sk, for all w ∈Wk we have∣∣`τk(w; p)− `τk(w;Sk)
∣∣ ≤ κ.

Proof
Since we applied pruning to remove all instances with large `∞-norm, this proposition can

be proved by a standard concentration argument for uniform convergence of linear classes under
distributions with `∞ bounded support. We include the proof for completeness.

Note that the randomness is taken over the i.i.d. draw of mk samples from T according to
the distribution p over T . Thus, for any (x, y) ∈ Sk, E[`τk(w;x, y)] = `τk(w; p). Moreover, let
Rk = maxx∈T ‖x‖∞. Any instance x drawn from T satisfies ‖x‖∞ ≤ Rk with probability 1. It is
also easy to verify that

`τk(w;x, y) ≤ 1 +
|w · x|
τk

≤ 1 +
(w − wk−1) · x

τk
+
|wk−1 · x|

τk
≤ 1 +

ρkRk
τk

+
bk
τk
.
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By Theorem 8 of Bartlett and Mendelson (2002) along with standard symmetrization arguments, we
have that with probability at least 1− δk

4 ,

∣∣`τk(w; p)− `τk(w;Sk)
∣∣ ≤ (1 +

ρkRk
τk

+
bk
τk

)√
ln(4/δk)

2mk
+R(F ;Sk) (D.13)

whereR(F ;Sk) denotes the Rademacher complexity of function class F on the labeled set Sk, and
F := {`τk(w;x, y) : w ∈ Wk}. In order to calculate R(F ;Sk), we observe that each function
`τk(w;x, y) is a composition of φ(a) = max{0, 1 − 1

τk
ya} and function class G := {x 7→ w · x :

w ∈Wk}. Since φ(a) is 1
τk

-Lipschitz, by contraction property of Rademacher complexity, we have

R(F ;Sk) ≤
1

τk
R(G;Sk). (D.14)

Let σ = {σ1, . . . , σmk} where the σi’s are i.i.d. draw from the Rademacher distribution, and let
Vk = B2(0, rk) ∩B1(0, ρk). We computeR(G;Sk) as follows:

R(G;Sk) =
1

mk
Eσ
[

sup
w∈Wk

w ·
(mk∑
i=1

σixi

)]

=
1

mk
Eσ
[
wk−1 ·

(mk∑
i=1

σixi

)]
+

1

mk
Eσ
[

sup
w∈Wk

(w − wk−1) ·
(mk∑
i=1

σixi

)]

=
1

mk
Eσ
[

sup
v∈Vk

v ·
(mk∑
i=1

σixi

)]

≤ ρkRk

√
2 log(2d)

mk
,

where the first equality is by the definition of Rademacher complexity, the second equality simply
decompose w as a sum of wk−1 and w−wk−1, the third equality is by the fact that every σi has zero
mean, and the inequality applies Lemma 43. We combine the above result with (D.13) and (D.14),
and obtain that with probability 1− δk

4 ,

∣∣`τk(w; p)− `τk(w;Sk)
∣∣ ≤ (1 +

ρkRk
τk

+
bk
τk

)√
ln(4/δk)

mk
+
ρkRk
τk

√
2 log(2d)

mk
. (D.15)

Recall that we remove all instances with large `∞-norm in the pruning step of Algorithm 1. In
particular, we have

Rk ≤ c9 log
48nkd

bkδk
.

Plugging this upper bound into (D.15) and using our hyper-parameter setting gives

∣∣`τk(w; p)− `τk(w;Sk)
∣∣ ≤ K1 ·

√
s log

nkd

bkδk

√ log(1/δk)

mk
+

√
log d

mk


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for some constant K1 > 0. Hence,

mk = O

(
s log2 nkd

bkδk
· log

d

δk

)
= Õ

(
s log2 d

bkδk
· log

d

δk

)
suffices to ensure

∣∣`τk(w; p)− `τk(w;Sk)
∣∣ ≤ κ with probability 1− δk

4 .

D.5. Analysis of Per-Phase Progress

Let Lτk(w) = Ex∼Dwk−1,bk

[
`τk(w;x, sign (w∗ · x))

]
.

Lemma 37 (Lemma 3.7 of Awasthi et al. (2017)) Suppose Assumption 1 is satisfied. Then

Lτk(w∗) ≤ τk
c0 min{bk, 1/9}

.

In particular, by our choice of τk
Lτk(w∗) ≤ κ.

Lemma 38 For any 1 ≤ k ≤ k0, if w∗ ∈Wk, then with probability 1− δk, errDwk−1,bk
(vk) ≤ 8κ.

Proof Observe that with the setting of Nk, we have with probability 1− δk over all the randomness
in phase k, Lemma 28, Proposition 33, Proposition 35 and Proposition 36 hold simultaneously. Now
we condition on the event that all of these properties are satisfied, which implies for all w ∈Wk,∣∣Lτk(w)− `τk(w;Sk)

∣∣ ≤ 3κ. (D.16)

We have

errDwk−1,bk
(vk) ≤ Lτk(vk)

ζ1
≤ `τk(vk;Sk) + 3κ

ζ2
≤ min

w∈Wk

`τk(w;Sk) + 4κ
ζ3
≤ `τk(w∗;Sk) + 4κ

≤ Lτk(w∗) + 7κ.

In the above, the first inequality follows from the fact that hinge loss upper bounds the 0/1 loss, ζ1

and the last inequality applies (C.1), ζ2 is by the definition of vk (see Algorithm 1), and ζ3 is by our
assumption that w∗ is feasible. The proof is complete in view of Lemma 37.

Lemma 39 For any 1 ≤ k ≤ k0, if w∗ ∈Wk, then with probability 1− δk, θ(vk, w∗) ≤ 2−k−8π.

Proof
For k = 1, by Lemma 38 and that we actually sample from D, we have

Prx∼D

(
sign (v1 · x) 6= sign

(
w∗ · x

))
≤ 8κ.

Hence Part 4 of Lemma 14 indicates that

θ(v1, w
∗) ≤ 8c2κ = 16c2κ · 2−1. (D.17)
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Now we consider 2 ≤ k ≤ k0. Denote Xk = {x : |wk−1 · x| ≤ bk}, and X̄k = {x :

|wk−1 · x| > bk}. We will show that the error of vk on both Xk and X̄k is small, hence vk is a good
approximation to w∗.

First, we consider the error on Xk, which is given by

Prx∼D

(
sign (vk · x) 6= sign

(
w∗ · x

)
, x ∈ Xk

)
= Prx∼D

(
sign (vk · x) 6= sign

(
w∗ · x

)
| x ∈ Xk

)
· Prx∼D(x ∈ Xk)

= errDwk−1,bk
(vk) · Prx∼D(x ∈ Xk)

≤ 8κ · 2bk
= 16κbk, (D.18)

where the inequality is due to Lemma 38 and Lemma 19. Note that the inequality holds with
probability 1− δk.

Next we derive the error on X̄k. Note that Lemma 10 of Zhang (2018) states for any unit vector
u, and any general vector v, θ(v, u) ≤ π ‖v − u‖2. Hence,

θ(vk, w
∗) ≤ π

∥∥vk − w∗∥∥2
≤ π(‖vk − wk−1‖2 +

∥∥w∗ − wk−1

∥∥
2
) ≤ 2πrk.

Recall that we set rk = 2−k−3 < 1/4 in our algorithm and choose bk = c̄ · rk where c̄ ≥ 8π/c4,
which allows us to apply Lemma 15 and obtain

Prx∼D

(
sign (vk · x) 6= sign

(
w∗ · x

)
, x /∈ Xk

)
≤ c3 · 2πrk · exp

(
− c4c̄ · rk

2 · 2πrk

)
= 2−k · c3π

4
exp

(
−c4c̄

4π

)
.

This in allusion to (D.18) gives

errD(vk) ≤ 16κ · c̄ · rk + 2−k · c3π

4
exp

(
−c4c̄

4π

)
=

(
2κc̄+

c3π

4
exp

(
−c4c̄

4π

))
· 2−k.

Recall that we set κ = exp(−c̄) and denote by f(c̄) the coefficient of 2−k in the above expression.
By Part 4 of Lemma 14

θ(vk, w
∗) ≤ c2 errD(vk) ≤ c2f(c̄) · 2−k. (D.19)

Now let g(c̄) = c2f(c̄) + 16c2 exp(−c̄). By our choice of c̄, g(c̄) ≤ 2−8π. This ensures that for
both (D.17) and (D.19), θ(vk, w∗) ≤ 2−k−8π for any k ≥ 1.

Lemma 40 For any 1 ≤ k ≤ k0, if θ(vk, w∗) ≤ 2−k−8π, then w∗ ∈Wk+1.
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Proof We first show that ‖wk − w∗‖2 ≤ rk+1. Let v̂k = vk/ ‖vk‖2. By algebra ‖v̂k − w∗‖2 =

2 sin θ(vk,w
∗)

2 ≤ θ(vk, w∗) ≤ 2−k−8π ≤ 2−k−6. Now we have∥∥wk − w∗∥∥2
=
∥∥∥Hs(vk)/ ∥∥Hs(vk)∥∥2

− w∗
∥∥∥

2

=
∥∥∥Hs(v̂k)/ ∥∥Hs(v̂k)∥∥2

− w∗
∥∥∥

2

≤ 2
∥∥Hs(v̂k)− w∗∥∥2

≤ 4
∥∥v̂k − w∗∥∥2

≤ 2−k−4

= rk+1.

By the sparsity of wk and w∗, and our choice ρk+1 =
√

2srk+1, we always have∥∥wk − w∗∥∥1
≤
√

2s
∥∥wk − w∗∥∥2

≤
√

2srk+1 = ρk+1.

The proof is complete.

D.6. Proof of Theorem 4

Proof We will prove the theorem with the following claim.

Claim 41 For any 1 ≤ k ≤ k0, with probability at least 1−
∑k

i=1 δi, w
∗ is in Wk+1.

Based on the claim, we immediately have that with probability at least 1−
∑k0

k=1 δk ≥ 1− δ,
w∗ is in Wk0+1. By our construction of Wk0+1, we have∥∥w∗ − wk0∥∥2

≤ 2−k0−4.

This, together with Part 4 of Lemma 14 and the fact that θ(w∗, wk0) ≤ π
∥∥w∗ − wk0∥∥2

(see
Lemma 10 of Zhang (2018)), implies

errD(wk0) ≤ π

c1
· 2−k0−4 = ε.

Finally, we derive the sample complexity and label complexity. Recall that nk was involved in
Proposition 32, i.e. the quantity |T |, where we required

nk = Õ

(
s2 log4 d

bk
·
(

log d+ log2 1

δk

)
+ log

1

δk

)
= Õ

(
s2 log4 d

bk
·
(

log d+ log2 1

δk

))
.

It is also involved in Proposition 36, where we need

mk = O

(
s log2 nkd

bkδk
· log

d

δk

)
and nk ≥ mk since Sk is a labeled subset of T . As mk has a cubic dependence on log 1

δk
, our final

choice of nk is given by

nk = Õ

(
s2 log4 d

bk
·
(

log d+ log3 1

δk

))
. (D.20)
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This in turn gives

mk = Õ

(
s log2 d

bkδk
· log

d

δk

)
. (D.21)

Therefore, by Lemma 28 we obtain an upper bound of the sample size Nk at phase k as follows:

Nk = Õ

(
s2

bk
log4 d

bk
·
(

log d+ log3 1

δk

))
≤ Õ

(
s2

ε
log4 d

(
log d+ log3 1

δ

))
,

where the last inequality follows from bk = Ω(ε) for all k ≤ k0 and our choice of δk. Consequently,
the total sample complexity

N =

k0∑
k=1

Nk ≤ k0 · Õ
(
s2

ε
log4 d

(
log d+ log3 1

δ

))
= Õ

(
s2

ε
log4 d

(
log d+ log3 1

δ

))
.

Likewise, we can show that the total label complexity

m =

k0∑
k=1

mk ≤ k0 · Õ
(
s log2 d

εδ
· log

d

δ

)
= Õ

(
s log2 d

εδ
· log

d

δ
· log

1

ε

)
.

It remains to prove Claim 41 by induction. First, for k = 1, W1 = B2(0, 1) ∩ B1(0,
√
s).

Therefore, w∗ ∈ W1 with probability 1. Now suppose that Claim 41 holds for some k ≥ 2, that
is, there is an event Ek−1 that happens with probability 1−

∑k−1
i δi, and on this event w∗ ∈ Wk.

By Lemma 39 we know that there is an event Fk that happens with probability 1 − δk, on which
θ(vk, w

∗) ≤ 2−k−8π. This further implies that w∗ ∈ Wk+1 in view of Lemma 40. Therefore,
consider the event Ek−1 ∩ Fk, on which w∗ ∈Wk+1 with probability Pr(Ek−1) · Pr(Fk | Ek−1) =
(1−

∑k−1
i δi)(1− δk) ≥ 1−

∑k
i=1 δi.

Appendix E. Miscellaneous Lemmas

Lemma 42 (Chernoff bound) Let Z1, Z2, . . . , Zn be n independent random variables that take
value in {0, 1}. Let Z =

∑n
i=1 Zi. For each Zi, suppose that Pr(Zi = 1) ≤ η. Then for any

α ∈ [0, 1]

Pr
(
Z ≥ (1 + α)ηn

)
≤ e−

α2ηn
3 .

When Pr(Zi = 1) ≥ η, for any α ∈ [0, 1]

Pr
(
Z ≤ (1− α)ηn

)
≤ e−

α2ηn
2 .

Lemma 43 (Theorem 1 of Kakade et al. (2008)) Let σ = (σ1, . . . , σn) where σi’s are indepen-
dent draws from the Rademacher distribution and let x1, . . . , xn be given instances in Rd. Then

Eσ
[

sup
w∈B1(0,ρ)

n∑
i=1

σiw · xi
]
≤ ρ
√

2n log(2d) max
1≤i≤n

‖xi‖∞ .
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