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Abstract

Labeling data is often a tedious and error-prone activity. However, organizing the labeling
experience as a human-machine collaboration has the potential to improve label quality
and reduce human effort. In this paper we describe a semi-automated data labeling system
which employs a predictive model to guide and assist the human labeler. The model
learns by observing labeling decisions, and is used to recommend labels and automate
basic functions in the labeling interface. Agreement between the labeler and the model is
tracked and presented via a system of checkpoints. At each checkpoint the labeler has the
opportunity to delegate the remainder of the labeling task to the model.
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1. Introduction

Labeling data is an important but tedious activity that is necessary during the development
of supervised machine learning systems. The nature of data means that there is generally
a spectrum of difficulty involved with any labeling task. Some instances will be ambiguous
and difficult to label, and may result in mislabeled data. On the other hand more obvious
instances may cause labelers to become bored with the task.

Desmond et al. (2021) studied the effects of AI assistance on labeling performance, and
found that showing labelers the labels predicted by even a minimally trained model, signif-
icantly improved their accuracy and speed on a labeling task. However, the productivity
benefits of labeling assistance are limited because the labeler still needs to consider and
manually label each example.

A natural extension of assisted labeling is semi-automated labeling. In a semi-automated
labeling paradigm the predictive model (the machine labeler) not only assists the human
when deciding on which labels to apply, but is also capable of automating some portion of
the labeling task itself. During assisted labeling, the human labeler implicitly inspects and
corrects the predictions of the machine labeler, which in turn allows the machine labeler to
learn and improve. In the semi-automatic paradigm this process continues until the human
is satisfied with the labeling performance of the machine labeler and delegates labeling of
the remaining data without further intervention.
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Our semi-automated labeling approach relies on several foundational technologies. Ac-
tive Learning (AL) Settles (2009) is a well established framework for minimizing labeling
effort. The idea behind AL is to prioritize the most informative or “valuable” data to be
considered for human labeling. Value is often determined by model uncertainty, that is, if a
model (trained on existing labeled data) is uncertain about an unlabeled instance, it is likely
valuable as a training example. AL is typically executed iteratively to keep the model, and
thus the uncertainty estimations up to date with labeling activity. In our semi-automated
labeling system, AL provides the mechanism which focuses human labeling attention on the
most informative examples, thus maximizing the learning potential of the machine labeler.
The sooner the most uncertain examples are labelled, from the machine’s perspective, the
better its performance, and the more likely automation will be feasible.

To implement a machine labeler we use a semi-supervised learning (SSL) Van Engelen
and Hoos (2020) algorithm. SSL refers to a family of algorithms which specialize in learning
from labeled and unlabeled data, both of which co-exist in the data labeling context. Using
a semi-supervised learning algorithm allows the machine labeler to infer labels from the
structure of unlabeled data, in addition to labeled examples. Combining active learning
with a semi-supervised learning algorithm provides a setting in which the machine labeler
can optimally learn from human labeling decisions, and importantly, human labeling effort
is minimized.

In order for the human labeler to understand the performance of the machine labeler,
and reason about the viability of automation, various measures of agreement are tracked
and presented in a system of checkpoints. Agreement metrics describe the variance between
human labeling decisions and machine predictions over the course of the labeling task. The
goal is to express the performance of the machine labeler. At each checkpoint, the labeler
is given the option to auto-label the remainder of the data, which corresponds to delegating
labeling to the machine labeler.

2. Related Work

2.1. Algorithms & Frameworks

Significant effort has been devoted to the development of algorithms and frameworks to
reduce human labeling effort and improve label quality.

As previously mentioned, Active Learning is a well established approach for minimizing
human labeling effort. A selection heuristic is used to identify only the most informative
unlabeled examples to present to a human for labeling. Popular selection heuristics include
uncertainty, expected error reduction Roy and McCallum (2001) and query by committee
Freund et al. (1997). More advanced approaches use reinforcement learning Fang et al.
(2017) and deep learning Liu et al. (2018) to train custom selection models. Active Learning
is particularly relevant to assisted and semi-automated labeling as it provides a framework
to optimize learning, and to order the labeling task by difficulty.

Semi-supervised learning is an extension of supervised learning where algorithms si-
multaneously learn from both labeled and unlabeled data. A popular approach is pseudo-
labeling Lee et al. (2013) which involves using the predictions of a supervised model to
create more labeled data by treating predictions themselves as labels, known as pseudo-
labels. The model is retrained using the original labeled data and pseudo-labeled data.
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Refinements of the basic algorithm include the use of confidence thresholds and soft labels
Arazo et al. (2020). Transductive semi-supervised learning describes a sub-family of graph
based algorithms based on propagation of label signals within an affinity graph constructed
from both labeled and unlabeled data. Label propagation Zhu and Ghahramani (2002)
and label spreading Zhou et al. (2004) are two popular implementations. Label spreading
being more robust to label noise via soft clamping of labeled nodes in the graph during
convergence. Semi-supervised learning is particularly relevant to labeling assistance due
to the co-existence of labeled and unlabeled examples, and graph based approaches are
appropriate due to the capability of handling large amounts of unlabeled data.

Zhang et al. (2014) introduced the notion of cooperative learning which combines active
learning and semi supervised learning. The idea of cooperative learning is to share the label-
ing work between human labelers and a machine so that examples predicted with insufficient
confidence are subject to human labeling, and those with high confidence values are auto-
matically labeled. Baur et al. (2020), in the context of social signal annotation, reported
a reduction of manual labeling to 5/8 of data, corresponding to a saving of 2.5h of human
effort, when using a cooperative learning system. Our work is complimentary to cooperative
learning. However, we focus on the use of labeling difficulty and human-machine agreement
as reasoning tools, rather than model confidence. Our work also considers delegation of the
labeling task to the machine labeler.

2.2. Interactive Machine Learning

Semi-automated labeling falls into the larger category of interactive machine learning or
human-in-the-loop systems, in which human users are integrated into the machine learning
system Amershi et al. (2014). More specifically, our semi-automated labeling approach
involves interactive labeling or interactive annotation Knaeble et al. (2019). Interactive
annotation using active learning has shown to perform better than manual annotation
Schreiner et al. (2007); Benato et al. (2021).

From a feature perspective, Sun et al. (2017) studied visualizations of the learning pro-
cess during interactive labeling, and found that visual representations of model performance,
such as model predictions and an agreement graph tracking the human labeling decision
vs. a classifier’s prediction, improved users’ understanding and motivation, and helped to
avoid redundant labeling. Rosenthal and Dey (2010) found that model predictions and
uncertainty scores helped to improve labeling accuracy.

In a study of human-machine decision making, Lai and Tan (2019) demonstrated that
providing humans with machine predictions significantly improved human decision-making
performance in a deception-detection task. They found that showing predictions of a model
resulted in a 21% accuracy improvement and showing the predictions along with confidence
scores resulted in a 46% relative improvement. In a similar study, Zhang et al. (2020)
measured improvement in users’ trust when provided with prediction and confidence scores
but found no significant improvement in accuracy. The authors attributed the insignificant
accuracy gain to the human and AI having little performance divergence on the task. Finally
Desmond et al. (2021) studied the effect of AI assistance on data labeling performance,
discovering significant improvements in accuracy and labeling speed when labelers were
assisted by a predictive model.
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2.3. Commercial Tools

In recent years the idea of using a predictive model to either assist or automate labeling
is becoming more prevalent, even in commercial offerings. Examples of such systems are
Clarifai1, Labellerr2, Amazon Sage Maker Ground Truth3 and IBM Cloud Annotations4.
Our work differs in that we treat the labeling process as an ongoing collaboration between
human and machine, rather than a discrete function applied at some fixed point in the
labeling task.

3. Semi-Automated Data Labeling

Semi-automated data labeling frames the labeling problem as a collaboration between a hu-
man labeler and a machine labeler (implemented as a predictive model). Figure 1 presents
a high level overview of the semi-automatic labeling flow. At the core of the approach is
a human-in-the-loop process driven by a semi-supervised predictive model (Label Spread-
ing) and an active learning selector (Min-margin). The active learning selector prioritizes
the most informative (uncertain) examples to present to the labeler at each iteration, as
defined by the predictions of the model. This strategy provides a predictable difficulty gra-
dient throughout the labeling task. The agreement between Human decisions and machine
predictions are tracked and presented via a system of checkpoints which keep the labeler
aware of how the machine is performing on the labeling task. When the labeler is satisfied
with the performance of the machine, they can proceed to delegate the remainder of the
labeling task to the machine (Auto Labeling).

In the following sections, we describe our semi-automated labeling system alongside
experimental evaluation results, and interface design discussion. Experimental evaluation
was performed on a set of four datasets. Details are provided in Table 1. Text datasets
were encoded using the Universal Sentence Encoder Cer et al. (2018).

Dataset Examples Labels Description

stack-exchange-5k 5000 15 A subset of the stack exchange dataset 5

chatbot 2159 107 A customer assistance chat bot dataset
spam 5572 2 SMS Spam Collection Data Set6

mnist-5k 5000 10 A subset of the MNIST dataset

Table 1: Details of evaluation datasets.

1. https://www.clarifai.com/
2. https://www.labellerr.com/
3. https://aws.amazon.com/sagemaker/groundtruth/
4. https://cloud.annotations.ai/
5. The stack exchange dataset is attributed to the Stack Exchange Network. https://stackexchange.com
6. https://archive.ics.uci.edu/ml/datasets/sms+spam+collection#
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Assisted Data Labeling.png

Figure 1: An abstract representation of the semi-automated data labeling flow.

3.1. Bootstrapping

At the core of semi-automated labeling process is a model that predicts labels, but this
model requires an initial set of labeled data to begin making the predictions. In some cases
the labeler may have access to an initial set of labeled data, but in the absence of existing
labeled data, the system needs to be bootstrapped.

The role of bootstrapping is to find a minimal set of representative examples from the
unlabeled data for an initial round of labeling. The set should be minimal to reduce the
human effort involved, but representative to express the nature of the labeling task and
thus maximize the quality of the label predictions.

Relying on the cluster assumption Chapelle and Zien (2005) our bootstrapping algorithm
partitions the data using K-means clustering. K is provided by the labeler and is interpreted
as an approximation of the number of labels appropriate for the labeling problem. K may be
increased to improve the likelihood that all latent classes will be discovered. Representative
examples are selected based on closest proximity to the K cluster centers discovered in
the cluster stage. Typically, a single example closest to each cluster center is sufficient for
label spreading to work well. Table 2 presents a comparison of the K-means bootstrapping
algorithm versus a random approach (where a set of examples are randomly selected). A
label spreading model trained using the representative examples selected by the K-means
algorithm provide better predictive performance than a random selection, consistent across
all datasets.

From an interface point of view, boostrap examples are presented to the labeler without
assistance from the machine labeler. Figure 2 shows the “unassisted” labeling interface used
during bootstrapping.

3.2. Iterative Refinement

After bootstrapping, the remainder of the labeling process occurs as a human-machine label-
ing loop, where the machine labeler learns from the labeling decisions made by the human
labeler. At the beginning of each iteration, the machine labeler predicts label distributions
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Figure 2: The unassisted labeling interface used for bootstrap labeling. The example is
presented to the left of the screen, and the set of labels are presented in an
alphabetical list to the right. The interface also provides progress information.

Dataset Sample size (K) Random K-means center

stack-exchange-5k 15 0.293 0.558
chatbot 107 0.28 0.415
spam 10 0.892 0.934
mnist-5k 10 0.416 0.582

Table 2: Prediction accuracy of the label spreading algorithm on remaining unlabeled data
after initial bootstrapping using random selection vs. the K-means center algo-
rithm. The bootstrap parameter K is set to the number of labels in the original
dataset (except for the spam dataset where it is set to 10). Results are averaged
over 3 random shuffles of the data.
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Figure 3: The assisted data labeling interface used during iterative refinement.

for all remaining unlabeled data. The active learning heuristic is then applied, selecting
a batch of the most uncertain predictions. The batch of unlabeled data, along with the
corresponding predicted labels, are presented to the human labeler for “assisted” labeling.
Showing predictions helps the human labeler to decide on the correct label by narrowing
their focus to the most probable subset.

Figure 3 shows the assisted labeling interface that is used during iterative refinement.
Label predictions are displayed in a dedicated “Recommended Labels” list, limited to the
top 3 predictions. This allows the labeler to very quickly understand and access the top
predictions of the machine sorted by confidence (prediction probability). In addition, an
alphabetical list of all labels is provided, annotated with the predicted label distribution
(purple bars overlaid on the list of labels). The full label display is provided so that the
labeler can fall back on spatial memory to find labels, in the event that the desired label is
not recommended by the machine labeler. The top predicted label is always pre-selected in
the interface, so that as the performance of machine labeler improves, the mechanical task of
labeling becomes more fluent for the human labeler. We consider this a form of automation
within the labeling interface itself, and an intermediate step towards automation.

3.2.1. Label Spreading

Label predictions are computed using label spreading. As mentioned in 2.1 label spreading
is a transductive graph based semi-supervised learning algorithm. The algorithm works
by propagating label signals through an affinity graph derived from both the labeled and
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unlabeled data. This is essentially a graph weighted by similarity. At each step in the
algorithm convergence process the graph laplacian matrix is used to propagate label signals.
A system of soft clamping is applied to retain ground truth on labeled examples, which may
otherwise be lost as the algorithm converges.

The output of the label spreading algorithm7 is a label probability distribution for
each remaining unlabeled example. Label spreading is particularly well suited for the data
labeling context as it works reliably even with a very small set of labeled examples, and
scales to large data sets.

3.2.2. Active learning

A key aspect of the semi-automated labeling workflow is to maintaining a descending gra-
dient of labeling difficulty. Having the human labeler focus on the most difficult examples
upfront, improves the performance of the machine labeler as soon as possible. This is fun-
damental principle of uncertainty based active learning. The gradient also helps the labeler
to reason about delegation of the remaining labeling task. If the remaining labeling task is
relatively easier, then the observed performance on the completed labeling tasks provides an
approximate lower bound expectation of what to expect upon delegation. Put another way,
if the label prediction model is performing well on earlier iterations, it is likely to do as well
or better in subsequent iterations and the human labeler can feel confident in delegating
the remainder of examples.

A min-margin active learning selector is used at each iteration of the labeling loop to
select a batch of examples from the remaining unlabeled pool. The min-margin heuristic
prioritizes examples with the smallest probability margin between the top two predicted
labels. Figure 4 demonstrates the performance (accuracy on the remaining unlabeled data)
of a min-margin selector versus a random selector across 150 simulated labeling iterations.
In all scenarios the min margin selector achieves higher accuracy at predicting the correct
labels on the remaining unlabeled data in each iteration, when compared to a random
selector.

3.3. Checkpoints

An important question in a semi-automated labeling system is when to automate the la-
beling task. After each refinement iteration (the size of which is configurable per labeling
problem) the labeler is presented with a checkpoint (Figure 5). The checkpoint is designed
to allow the human labeler to consider the current performance of the machine labeler and
decide if the remainder of the unlabeled data should be automatically labeled (delegated),
or if further refinement is necessary. Research has shown that in order for humans to trust
automation, they need high ‘temporal specificity’, which means that they need to be up-
dated frequently on the performance of the system Lee and See (2004). By ensuring that
the labeler is regularly updated on the performance of the model, the checkpoints provide
‘temporal specificity’ and manage user expectations throughout the interaction, a guiding
design principle for interactive machine learning Dudley and Kristensson (2018).

Checkpoints also address improved user engagement by breaking up the otherwise
monotonous task of data labeling. Research on crowd work has shown that ‘micro-diversions’

7. https://scikit-learn.org/stable/modules/generated/sklearn.semi supervised.LabelSpreading.html
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(a) (b)

(c) (d)

Figure 4: Comparing the performance of a min margin active learning selector (blue) vs.
a random selector (orange) over the course of 150 labeling iterations. Labeling
simulated using an oracle. (a) chatbot dataset, (b) stack exchange 5k dataset,
(c) spam dataset, (d) mnist 5k dataset.

have been helpful in user engagement in other types of crowd work Dai et al. (2015); Rzes-
zotarski et al. (2013).

3.3.1. Metrics

At each checkpoint three metrics are tracked via the “Agreement Trend” graph shown in
Figure 5. The metrics are calculated and presented per iteration of the labeling loop prior
to the checkpoint. The chart plots the human-machine labeling agreement, human-machine
agreement similarity, and labeling task difficulty. Each of the metrics play a role in the
delegation decision.

Agreement Agreement simply counts the number of times the human and machine la-
beler agree on the correct label, aggregated per refinement iteration. The top predicted label
is taken as the machine labelers choice. The agreement metric helps the human labeler to
understand the performance of the machine labeler relative to their own labeling decisions.
In the checkpoint in Figure 5, agreement between human and machine labeler increases over
the span of 14 iterations, and is consistently 100% over the last three refinement iterations.
This would be a scenario where delegation may be an option.
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Figure 5: A checkpoint displaying the state of the labeling task. In this example the size
of each labeling refinement iteration is 10 examples. The labeler has the option
to delegate the remainder of the labeling task (444 examples) or continue to the
next refinement step.

Agreement similarity Agreement similarity is also intended to indicate agreement.
However, unlike the simple agreement metric which only considers the top predicted la-
bel, agreement similarity considers the overall distribution of the machine prediction. The
metric is calculated as the inverse Jensen-Shannon distance 8 between the predicted label
distribution of the machine labeler and the human selected label, one hot encoded as a
distribution. Intuitively the agreement similarity provides a smoother representation of
agreement, regardless of the actual correctness of the machine labelers prediction. In the
checkpoint in Figure 5, the agreement similarity is trending upwards suggesting increasing
performance of the machine labeler.

Labeling Difficulty The “difficulty” of each labeling iteration is calculated as the mean
scaled entropy 9 of the predicted label distributions for all examples in the iteration. This
metric is expected to trend downwards as the machine labeler learns and improves at the
task. This downward trend is shown in the checkpoint in Figure 5. Tracking and presenting
difficulty is important to demonstrate to the human labeler that future labeling work tends
to be easier and more predictable due to the uncertainty based data prioritization in use.

4. User Evaluation

Our semi-automated labeling system was made available as an online web application for
audience use at the NeurIPS 2020 demonstration track. Over the course of the conference
and the subsequent month a total of 191 people used the system. Of the 191 users, 52

8. https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.jensenshannon.html
9. Scaled entropy refers to dividing calculated entropy by log k, so that results then fall within the unit

interval 0-1
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Figure 6: Number of users who reached each checkpoint

(27.2%) completed the full semi-automated labeling experience. This involved labeling a
total set of 600 short text examples, using 21 labels, with the help of a machine labeler.

We wanted to understand when users chose to auto-label the remaining unlabeled data
(delegate to the machine) and found that users who completed the experience on average
labeled 48 of the 600 data points manually (SD = 41). Most participants chose to auto-label
after manually reviewing 10-30 items (1-3 checkpoints), as shown in Figure 6.

A short survey at the completion of the experience focused on understanding users’
choices about when to auto-label. Of the 52 users who finished the experience, 21 filled out
our short survey at the conclusion of the labeling tasks. The most popular way users chose
when to auto-label was based on their agreement with the model from the checkpoint (11/21
users). Several participants used the suggested labels for examples during labeling and the
model’s certainty presented in the checkpoint (2/21 users and 3/21 users, respectively).
One participant wrote that “agreement rate stopped increasing,” indicating that they were
keeping track of the changes in performance over time.

The data collected from the conference demo has several limitations. Conference at-
tendees are not necessarily motivated to perform labeling to the best of their abilities. As
expected for usage during a conference demo, 4 of the 21 participants reported just wanting
to be done labeling. One of these participants noted that “for production use would have
reached for higher confidence.” Furthermore, we chose to use a subset of the stack-exchange
dataset for the demo in part because the model confidence and accuracy increased with a
reasonable amount of manual labeling. Different datasets and tasks would impact the users’
experience, as the speed of improvement of the machine labeler would differ. Regardless,
the demo participants’ data does provide early information on how people might use this
type of system, in particular when people might choose to allow a system to complete the
remaining data labeling tasks for a dataset.
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5. Conclusion

In this paper we have described a semi-automated data labeling workflow and tool. We
discussed the algorithmic components of the system, and the corresponding user experience.
We also presented some experimental validation of the work, and shared some initial user
evaluation based on a live demo deployed at the NeurIPS 2020 conference. Our work
builds upon interactive machine learning techniques and presents a novel structure for
semi-automatic data labeling. The system is designed to keep users informed about the
machine labelers progress and enable them to defer the remaining labeling to the system,
without inspecting the data or assigned labels. We expect that this system structure will
encourage humans to label the more challenging items and offload the easy items entirely
to the machine, reducing overall labeling effort.

Going forward our plan is to further evaluate semi-automated labeling as a working
paradigm, focusing on measuring the utility of the approach across various datasets and
tasks, and understanding how users perceive and interact with such a system. We also
believe that cooperative human-machine labeling may have particular value in collaborative
settings, involving a team of labelers. The assistance of a machine labeler in such a setting,
may help the team to converge on a consistent interpretation of the labeling space, increasing
inter rater reliability and overall label quality.

References

Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. Power to the
people: The role of humans in interactive machine learning. AI Magazine, 35(4):105–120,
2014.

Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuinness. Pseudo-
labeling and confirmation bias in deep semi-supervised learning. In 2020 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2020.

Tobias Baur, Alexander Heimerl, Florian Lingenfelser, Johannes Wagner, Michel F Valstar,
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