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Abstract

Reinforcement learning competitions have formed the basis for standard research bench-
marks, galvanized advances in the state-of-the-art, and shaped the direction of the field. De-
spite this, a majority of challenges suffer from the same fundamental problems: participant
solutions to the posed challenge are usually domain-specific, biased to maximally exploit
compute resources, and not guaranteed to be reproducible. In this paper, we present a new
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framework of competition design that promotes the development of algorithms that over-
come these barriers. We propose four central mechanisms for achieving this end: submission
retraining, domain randomization, desemantization through domain obfuscation, and the
limitation of competition compute and environment-sample budget. To demonstrate the
efficacy of this design, we proposed, organized, and ran the MineRL 2020 Competition
on Sample-Efficient Reinforcement Learning. In this work, we describe the organizational
outcomes of the competition and show that the resulting participant submissions are repro-
ducible, non-specific to the competition environment, and sample/resource efficient, despite
the difficult competition task.

Keywords: Reinforcement learning competitions, Minecraft, Sample Efficiency, Imitation
Learning

1. Introduction

Deep reinforcement learning has emerged as a compelling solution to a wide range of prob-
lems in machine learning. Techniques from this field have been successfully applied to a
number of difficult domains such as real-time video games (Berner et al., 2019; Vinyals
et al., 2019b), complicated control and scheduling problems, real-world robotic manipu-
lation tasks, and self-driving. The success of deep reinforcement learning (RL) has been
accompanied by an increase in RL competitions spanning a number of domains and diffi-
cult open problems (Guss et al., 2019; Perez-Liebana et al., 2019; Koppejan and Whiteson,
2009). As competitions mature, they form the basis for benchmarks used throughout the
community (Machado et al., 2018; Bellemare et al., 2013). Typically, competitions focus on
a core problem with current RL algorithms or domain(s) not yet readily solved by current
methods, and challenge competitors to train agents (using competitor resources) to solve
domain(s). These agents are then submitted to an evaluation platform and ranked based
on final performance.

Despite this common format for research benchmarks, a number of issues have become
apparent. In competitions where only final trained agents are submitted, the algorithmic
underpinnings of submissions become difficult to reproduce: winning solutions are often
trained with a disproportionately larger compute resource budget to that of other competi-
tors (Guss et al., 2019); competitors often choose to train on a specific set of environment
seeds and benefit greatly from large-scale hyperparameter searches, making reimplementa-
tion and broader use more difficult (Khetarpal et al., 2018); and training code is sometimes
not shared when only inference code is submitted, preventing validation of the algorith-
mic claims of the submission and allowing the submission to be trained using hard-coded,
engineered features or action and reward shaping (Houghton et al., 2020). Furthermore,
competitions tied to a specific unrandomized domain can fail to yield direct algorithmic
advancements, as the most successful methods commonly overfit to and exploit the specific
structure of the problem. Similarly, multi-year competitions reward increases in domain
knowledge exploitation, reducing the role of algorithmic novelty. For domains of specific
real-world importance, such as robotics or self-driving, the task solution has greater utility
than any resulting secondary algorithmic advancements. However, there is a large gap be-
tween domain-specific submissions to RL competitions on video-game or artificial domains
and their downstream utility in the research community.
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To address these problems, we proposed, organized, and ran the MineRL 2020 Compe-
tition on Sample Efficient Reinforcement Learning using Human Priors (Guss et al., 2021).
Our competition utilized several novel mechanisms for yielding robust and domain agnos-
tic submissions, including observation and action space obfuscation, submission retraining,
domain randomization, and environment interaction limits. In this paper, we present the
general methodologies and design principles that comprise the competition structure and
describe the resulting top-performing submissions. Section 2 provides a general background
for the problem settings that motivate the competition. In Section 3, we give an overview
of the competition, including its design, central task, rules, and resources provided. In Sec-
tion 4, the top teams describe the approaches used in their submissions. Thereafter, in Sec-
tion 5 we discuss the organizational outcomes of our competition with respect to our goal of
robust, reproducible, and high quality solutions. Finally, we position the MineRL competi-
tion in the context of other concurrent and past RL competitions in Section 6 and discuss
challenges and opportunities for future work in Section 7.

2. Background

2.1. The sample inefficiency problem

Many of the most celebrated successes of machine learning, such as AlphaStar (Vinyals
et al., 2019a), AlphaGo (Silver et al., 2017), OpenAl Five (Berner et al., 2019), and their
derivative systems (Silver et al., 2018), utilize deep RL to achieve human or super-human
level performance in sequential decision-making tasks. These improvements to the state-of-
the-art have thus far required exponentially increasing computational power (Amodei and
Hernandez, 2018), which is largely due to the number of environment-samples required for
training. These growing computational requirements prohibit many in the Al community
from improving these systems and reproducing state-of-the-art results. Additionally, the
application of many reinforcement learning techniques to real-world challenges, such as
self-driving vehicles, is hindered by the raw number of required samples.

A variety of approaches have been proposed towards the goal of sample efficiency, in-
cluding learning a model of the environment (Buckman et al., 2018), leveraging AutoRL
to perform efficient hyperparameter optimization (Franke et al., 2020), and incorporating
domain information in the form of human priors and demonstrations (Dubey et al., 2018;
Pfeiffer et al., 2018). In our competition we encourage the use of any techniques that
improve the sample efficiency of RL algorithms without using domain-specific hard-coding.

2.2. Generalization

The development of RL algorithms that can generalize is of great importance to the research
community (Zhang et al., 2018; Cobbe et al., 2019; Malik et al., 2021). There are various
notions of generalization, but it is broadly defined as the ability of an agent to learn desired
behavior and perform well in similar environments. Through our competition, we want to
promote the development of algorithms that generalize across different domains and tasks,
such as those with different state and action spaces.
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2.3. Minecraft

The central competition task, ObtainDiamond, is set in the Minecraft domain. Minecraft
is a popular and compelling environment for the development of reinforcement (Oh et al.,
2016; Shu et al., 2017; Tessler et al., 2017) and imitation learning methods because of the
unique challenges it presents. Notably, the procedurally-generated world is composed of
discrete blocks that allow modification. Over the course of gameplay, players change their
surroundings by gathering resources and constructing structures. Since Minecraft is a 3D,
first-person, embodied domain and the agent’s surroundings are varied and dynamic, it
presents many of the same challenges as real-world robotics domains, like determining a
good representation of the environment and planning over long time horizons.

3. Competition Overview

In line with its previous iteration (Guss et al., 2019; Milani et al., 2020), the MineRL
2020 Competition challenges teams to submit reproducible (Houghton et al., 2020) train-
ing code for an agent that can solve a complex, long time-horizon task with robustness to
environment domain-shift under a strict sample and computational budget. We describe
the competition design in Section 3.1, including the mechanisms we implemented to ensure
the development of robust and sample efficient learning algorithms. The primary competi-
tion task is the MineRL ObtainDiamond environment, which we detail in Section 3.2. We
summarize the rules of the competition in Section 3.3. Our methodology for evaluating sub-
mitted algorithms is explained in Section 3.4. To assist participants with developing their
learning algorithms, we provide them with a number of important resources, including a set
of reinforcement learning and imitation learning baselines, which we describe in Section 3.5.

3.1. Competition Design

The MineRL Competition is designed to promote the development of robust, domain ag-
nostic, and sample efficient algorithms for solving complex, long time-horizon tasks with
sparse rewards using human priors.

Reproducibility and Sample Efficiency. To yield sample efficient algorithms, we pro-
vide participants with the 60 million frame MineRL-v0 human demonstration dataset (Guss™
et al., 2019) of the competition task. These samples allow the use of imitation learning tech-
niques, which can drastically reduce the number of resources and samples required to solve
complex tasks. Gathering expert demonstrations is practical for many RL environments,
so this approach can be applied in many competitions.

To further ensure reproducibility and sample efficiency, we retrain participant submis-
sions during Round 2. In addition, to directly address the problem of disproportionate and
limited access to computing resources across the Al research community, we deliberately
limit the hardware available for training; this further enables the democratization of Al
research and the development of novel Al techniques with a low-barrier to reproduction. In
Round 1, participants develop and train a learning algorithm on the environment using a
fixed hardware and compute budget (1 NVIDIA P100 GPU for 4 days) and a fixed num-
ber of environment samples (8,000,000 frames or approximately 114 hours of game time).
This compute budget was chosen as it represents an upper bound on consumer hardware;
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Private Evaluation Code

MineRLNavigate-v0 Data MineRLNavigate-v0 Env

Competitor Code

Figure 1: The action and observation space obfuscation mechanism; a randomized autoencoder
trained to encode the entire mixed discrete-continuous observation and action space into
a compact ball with which participants’ models interact. This obfuscation prevents action
shaping and feature engineering and enables domain randomization during Round 2.

to democratize access to reinforcement and imitation learning research, constraining com-
pute to within a reasonable consumer range is crucial. The competitors then submit their
trained agent to the competition evaluator, where it is evaluated with a fixed set of holdout
seeds and compared to other submissions. All participants with a non-zero score progress
to Round 2. In this round, competitors submit only their training code to the evaluator,
after which it is run from scratch using the hardware, compute, and sample limits. This
retraining procedure ensures that the submissions obey the competition limits on compute
and samples.

Robustness and Domain Agnosticism. Preventing domain specific solutions is a dif-
ficult task. As in the previous iteration of the MineRL Competition , during Round 2, the
environment and dataset is randomized (textures are remapped, action effects are random-
ized, and game dynamics are changed), thus penalizing submissions which rely on domain
specific strategies and feature engineering. Despite this mechanism in last year’s competi-
tion, participants leveraged small, shaped subpolicies. These subpolicies were not robust to
domain shifts because they depended on the semantics of the environment.

In this year’s competition, we introduce a novel obfuscation scheme that prevents do-
main specific hard-coding. Specifically, we learn a random, volume-preserving embedding
that takes semantically-labeled actions and observations (e.g., crafting or inventory items)
and obfuscates them into feature vectors. This scheme is agnostic to the environment, as
algorithms trained to solve environments with this vector observation and action space can
be immediately retrained against a different environment given a corresponding embedding
of the new environment’s action and state spaces.

Shown in Figure 1, we obtain this embedding with careful considerations of injectivity
and surjectivity. Let X C A be some bounded action/observation space (discrete or con-
tinuous), Px be the default sampling distribution for that space (often uniform). Let Z be
some bounded subset of R™ into which we wish to obfuscate X. In the MineRL Compe-
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tition, Z = [—1,1]™ where n is the length of the obfuscated feature vector. Let dx(u,v)
be a natural reconstruction metric for X (normed difference squared for continuous X,
and cross entropy for discrete X). Let gy : A — R™ and fy : R® — A be encoder and
decoder networks. We train these maps to encode the original observation/action space
X respecting the bounds of the space by minimizing reconstruction loss while maintaining
that go(X) C Z and fy(Z) C X; that is, we define our reconstruction loss as

Lx(0) = Ey~py [dx (fo(90(y)), y) + Hinge(go(y), Z)]
+ ]EZNUnif(Z) [Hinge(fg (Z)> X)]

where Hinge(u, V') is a hinge loss which is zero when u is in V' and piecewise linear, increasing
otherwise. For example, for Z, a simple box space, Hinge(z, [—1,1]") = >_7" | ReLu(|z;| —1).
This loss accomplishes two goals: when the competitors use Z as an action space, they
are approximately guaranteed to have a valid action fy(z) in X when sampling within
the bounds of Z. Furthermore, the reconstruction loss ensures that all possible actions
in X can be taken by finding a point in Z. Likewise, when using Z as an observation
space, all observations in the unobfuscated action space X are approximately guaranteed
to be contained inside of Z. Therefore, competitors can appropriately normalize their
observations in Z. It is important that Z is of the same or higher dimensionality than X
so there is certain to be a minimizer #*. In the MineRL Competition, both action and
observation space embeddings were trained with dim(Z) = 64 to an error of at most 1e-12;
we chose this space as it was of high enough dimension to embed the observation and action
space but of low enough dimension that reinforcement learning algorithms converge within
the compute budget.

3.2. Task

The primary task of the competition is ObtainDiamond. Agents begin at a random position
on a randomly-generated Minecraft map with no items in their inventory. Completing
the task consists of controlling an embodied agent to obtain a single diamond, which can
only be accomplished by navigating the complex item hierarchy of Minecraft. The learning
algorithm has direct access to a 64x64 pixel point-of-view observation from the perspective
of the embodied agent, as well as a set of discrete observations of the agent’s inventory for
every item required for obtaining a diamond. The action space is the Cartesian product of
continuous view adjustment (turning and pitching), binary movement commands (left /right,
forward /backward), and discrete actions for placing blocks, crafting items, smelting items,
and mining/hitting enemies. An agent receives reward once per episode for reaching a set of
milestones of increasing difficulty that form a set of prerequisites for the full task. Table 1
depicts the full reward structure.

Progress towards solving the ObtainDiamond environment under strict sample com-
plexity constraints lends itself to the development of sample-efficient—and therefore more
computationally accessible—sequential decision-making algorithms. In particular, because
we maintain multiple versions of the dataset and environment for development, validation,
and evaluation, it is difficult to engineer domain-specific solutions to the competition chal-
lenge. The best performing techniques must explicitly implement strategies that efficiently
leverage human priors across general domains.
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3.3. Rules

Due to the unique competition paradigm, we provide a strict set of rules to ensure high-
quality submissions. We prohibit teams from manually engineering the reward function,
action space, and observation space. For example, we permit curiosity rewards but not bonus
rewards for encountering specific objects; we allow a learned hierarchical controller but not
one that switches between policies based on manually-specified conditions; we allow agents
to act every even-numbered timestep based on the previous two observations but prohibit
the application of manually specified edge detectors to the observation. Furthermore, we
require that competitors’ code make no semantic reference to the environment. To encourage
reproducible submissions, we require entries to the competition to be open: teams must
reveal most details of their method, including the source code. Moreover, the competition
features two sets of tracks, each of which have distinct rules. The RL + IL Track features
methods that leverage both samples from the environment and human demonstrations,
while algorithms in the IL-only Track must only use imitation learning with no access to
the environment — except for during evaluation.

3.4. Evaluation

Submission Platform. The submissions for the competition were evaluated using Alcrowd,
which has been used in numerous RL benchmarks (?Juliani et al., 2019; Mohanty et al.,
2020), and allows for the much needed flexibility when designing complex benchmarks. Par-
ticipating teams independently develop their solutions using Git repositories provided by
Alcrowd. The repositories include simple configurations specifying the expected software
runtime. They also have a prescribed structure to enable clear specifications of code entry
points for different phases of evaluation. Participants submit to the benchmark by releasing
Git tags, which trigger the evaluation workflow. The workflow then builds a Docker im-
age with the submitted code repository, which is automatically orchestrated on a scalable
Kubernetes cluster. During evaluation, the evaluators provide real-time feedback on the
progress of the evaluation and submission-specific metrics to the participants. If a submis-
sion fails, participants can debug their submission using the readily-available logs. To avoid
data leak, care is taken to ensure that logs are not made available for sensitive phases of
the evaluation. On successful completion of the evaluation workflow, the evaluators update
the scores, and any generated assets on the competition leaderboard.

Metrics. When models are submitted in Round 1 Milestone Reward | Milestone  Reward
and after they are trained by organizers in Round log ! furnace 32
L. planks 2 stone_pickaxe 32
2, participants are evaluated on the average score of stick 1 iron_ore 64
. . rafting_table 4 iron_ingot 128
their model over 200 episodes. Scores are computed e picke ronpidkne 256
16 diamond 1024

as the sum of the milestone rewards (shown in Ta- stone
ble 1) achieved by the agent in a given episode. Ties Table 1: Rewards for sub-goals and
are broken by the number of episodes required to main  goal  (diamond)  for
achieve the last milestone. Obtain Diamond.

239



MINERL 2020: ROBUST AND DOMAIN AGNOSTIC REINFORCEMENT LEARNING

cit-ec.de " " " " " " H ’
HelloWorld .
michal_op icz .
NoActionWasted . .
RS @

MajiManji _‘

Figure 2: Maximum item score for each team over the evaluation episodes in Round 2.

Baselines Round 1 Round 2

Name | Score Team Name Score Team Name Score
SQIL 2.94 HelloWorld 19.84 cit-ec.de 72.51
DQFD 2.39 NoActionWasted 16.48 HelloWorld 39.55
Rainbow 0.42 || michal _opanowicz 9.29 || michal _opanowicz 13.29
PDDDQN 0.11 CU-SF 6.47 NoActionWasted 12.79
cit-ec.de 6.40 Rabbits 5.16
NuclearWeapon 4.34 MajiManji 2.49
murarinCraft 3.61 BeepBoop 1.97

RLALYFE 3.39

porcupines 3.35

Table 2: Scores of the baselines (left) and the best-performing submissions from Round 1 (middle)
and Round 2 (right).

3.5. Resources

In addition to providing the MineRL-v0 dataset (Guss™ et al., 2019), we give participants
an open-source Github repository with starting code, including an OpenAl Gym template
interface, a data-loader, a Docker container, and the code for the solutions created by last
year’s top participants. We also provide participants with a set of four state-of-the-art
baselines that they could readily submit. Implemented by the organizers from Preferred
Networks, these baselines consist of Soft-Q Imitation Learning, (SQIL) (Reddy et al.,
2020), Deep-Q From Demonstrations (DQfD) (Hester et al., 2018), Rainbow Deep-Q Net-
works (Rainbow) (Hessel et al., 2018), and Prioritized Dueling Double Deep Q-Networks
(PDDDQN) (Schaul et al., 2015; Van Hasselt et al., 2016; Wang et al., 2016). The baselines
all used K-means clustering (MacQueen et al., 1967; Lloyd, 1982) to discretize the action
space.

4. Solutions

We provide an overview of the submissions made by the participants of our competition.
In Section 4.1, we describe the performance of the submissions and how they compare to the
performance of submissions to the 2019 competition. The remaining sections summarize
the techniques used by the competitors in their submissions.
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4.1. Submission Performance Overview

The conditions surrounding the competition and the changes to the competition itself proved
to make the competition more challenging for the competitors compared to last year. Al-
though this year’s competition enjoyed participation from more teams than last year’s (95
vs. 47), there were fewer submissions overall (513 vs. 662). We believe that this de-
crease in submissions is in part due to the global pandemic. Teams still performed well:
in Round 1, 36 teams achieved a non-zero score, and 17 of these teams outperformed the
best-performing baseline, SQIL. In Round 2, seven teams achieved a non-zero score and
some teams performed even better than they did in Round 1.

Table 2 shows the scores of the best-performing submissions from both rounds of the
2020 competition. The average scores of the top nine competitors in the 2020 competition
were 8.13 for Round 1 and 16.42 for Round 2. In contrast, the average scores of the top
nine competitors in the 2019 competition were 31.77 for Round 1 and 25.84 for Round
2. Surprisingly, the standard deviation of the top nine scores from Round 1 of 2020 was
smaller than the standard deviation of the top nine scores from Round 1 of 2019 (5.72
and 10.22, respectively). This finding may be due to the overlap of techniques used by the
competitors: at least four of the top nine competitors in the 2020 competition leveraged
a similar K-means clustering of the action space. Figure 2 depicts the maximum item
score for each team over the evaluation episodes in Round 2. Although no team obtained a
diamond, many of the top teams progressed quite far along the item hierarchy.

4.2. Team 1: cit-ec.de

Overall, team cit-ec.de placed fifth in Round 1 (score of 6.40) and first in Round 2 (score
of 72.510). They also placed first in the RL + IL track. In Round 1, they competed in
the IL-only track, but they switched to the RL + IL Track in Round 2. Inspired by the
recent success of cognitive science research (Melnik et al., 2018b; Konig et al., 2018) and
its applications in artificial intelligence systems (Melnik et al., 2019; Konen et al., 2019;
Bach et al., 2020; Melnik et al., 2018a; Harter et al., 2020; Schilling and Melnik, 2018),
their approach aims to learn to detect object-centric representations from pixels (Simonyan
et al., 2013) using rewarding signals of interaction with the environment.

Depicted in Figure 3 (top), they train a U-Net model to generate masks over reward-
related objects in images. This approach enables the training of the U-Net model without
explicit label information. Instead, they perform this training in a contrastive fashion with
image pairs using an adversarial scheme employing the critic score gradient with respect to
the mask operation. The pair consists of two images, where the first has a high and the
second a low critic value. Training with such pairs enables the U-Net to produce masks that
decrease the critic value in the first image and increase the critic value in the second image
when transferring pixels in the masked segment from the first to the second image. The
critic learns to estimate the expected-reward value of an image observation using experience
replay buffer collected from human player demonstrations. As shown in Figure 3 (bottom),
this approach of training the U-Net model showed encouraging results of segmentation of
rewarding objects in the competition (Melnik et al., 2021).

4.3. Team 2: HelloWorld

241



MINERL 2020: ROBUST AND DOMAIN AGNOSTIC REINFORCEMENT LEARNING

Merging
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» Encoder
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M: U-Net mask

of img. A
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critic values for
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Figure 3:

cit-ec.de’s method. Top: First phase (highlighted in red): Image A (high critic value)

passes through the U-Net, forming a mask M. Second phase: the mask M is used to merge
image A (high critic value) with image B (low critic value) resulting in image X (masked
parts of A replaced with B) and image Y (masked parts of A injected in B). Images
A, B, X, and Y are then passed through the encoder and critic. The losses penalize
differences in critic values for image pairs A : Y, and B : X. Mask-size loss prevents a
trivial solution when M takes the full image. Bottom: Segmentation results: The U-Net
model learns to segment tree trunks without any label information but only from reward
signals. It generalizes well between different positive and negative reward scenarios. The
first row shows the input images, the second row shows the masked segments of the input
images, and the third row shows the U-Net generated masks.

stage 1

stage 2 stage 3 H

demonstrations

subpolicy 1

subpolicy 2

=

best of BC, BCQ, SQIL, DQfD, POD, Rainbow

Team HelloWorld placed first in Round 1 (score of
19.840) and second in Round 2 (score of 39.55). They
competed in the RL + IL track. Shown in Figure 4, their
approach splits each episode into several stages based on
accumulated rewards. They train one policy for each
stage of the episode to enable each subpolicy to capture

Higssntidigtholiest dswactibadterent goals. They train a meta-policy to select a subpolicy

for execution at each timestep. For each subpolicy, they select the best algorithm from
all of the tested ones, including behavioral cloning, BCQ (Fujimoto et al., 2019), SQIL,
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DQID, POfD (Kang et al., 2018), and Rainbow. They find that SQIL incorporated with
self-imitation avoids performance drop during training. Finally, their solution consists of
other key components to make their approach more robust and generalizable, including pre-
training agents on simpler environments, leveraging auxiliary tasks (e.g., predicting future
state), and applying state augmentation (Yarats et al., 2021).

4.4. Team 3: michal_opanowicz

Team michal opanowicz achieved third

place in Round 1 (score of 9.290) and Round 0
2 (score of 13.290). However, this team
achieved first place overall in the IL-only

track. They use imitation learning, in which w©
the problem is framed as a classification

task where the agent predicts the human
player’s action at each environment step.

To produce discrete labels for this task, they
quantize the actions using K-means with

120 clusters. During evaluation, they ran- Figure 5: The percentage of runs in which
domly sample the actions from the cluster michal_opanowicz’s agent col-
means with the network’s prediction used lected a given item.

as a probability distribution.

For visual processing, they use the ResNet (He et al., 2015) architecture with FixUp
initialization (Zhang et al., 2019), that was proposed for this task in a MineRL 2019 sub-
mission (Amiranashvili et al., 2020). They process non-visual observations with a fully
connected layer with ReLLU activation and concatenate it with the ResNet outputs. They
are then processed by a LSTM (Hochreiter and Schmidhuber, 1997) and two fully con-
nected layers to produce the final prediction. Notably, they add the LSTM inputs to its
outputs to form a residual connection similar to ResNets. They train the network on 100-
step sequences of observation-action pairs, with the final LSTM state in a sequence used
as the initial state for the next sequence. Figure 5 shows an analysis of their algorithm’s
performance. In most runs, their agent obtains either a crafting table or a stick.

60

20

wood planks crafting crafting  wooden stone stone
table/stick table+stick pickaxe pickaxe

4.5. Team 4: NoActionWasted

Team NoActionWasted competed in the IL- hia Action
only track. Overall, they achieved second ' P
place in Round 1 and fourth in Round 2 e “
(scores of 16.48 and 12.79, respectively). FlesNet ,t ooy

Depicted in Figure 6, their system con-
sists of a ResNet-LSTM network (Espeholt
et al., 2018) trained to predict human ac-
tions. They found that directly training
agents on the obfuscated actions was not successful, so they discretized the action space into
150 clusters with K-means. This step was crucial to obtain good initial behavior. When
using a lower amount of clusters, some rare but important actions are not represented. In-

Figure 6: NoActionWasted’s architecture.
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stead of fixing the frame-skip parameter, they train the network to predict it as an action
parameter , which provides significant benefit for agents in the Minecraft domain, as many
tasks require repeating the same action multiple times, and it reduces the perceived episode
length.

They filter the dataset to only include successful games, which consistently improved the
performance. They fine-tune the system with IMPALA (Espeholt et al., 2018). Following
their submission last year (Scheller et al., 2020), they pair this algorithm with extensive
experience replay (Lin, 1992), clipping advantages to promote exploitation of good behavior,
and CLEAR (Rolnick et al., 2018) to combat catastrophic forgetting. Crucially, they find
that large batch sizes were crucial for stability during the RL fine tuning.

4.6. Team 5: Rabbits

Team Rabbits achieved fifth place in Round 2 (score of 5.16). Although they competed in
both tracks, their highest-performing submission was from their RL 4 IL track submission.
For their approach in both tracks, they split the overall task into 10 subtasks based on
reward, transforming it into a hierarchical learning problem. They use a task-classification
network to determine which of the 10 reward stages the agent is currently in. The task-
classification network only takes the state vector as input. To learn the subtasks, they
use 10 separate Q networks. For the IL-only track submission(s), they employ Regularized
Behavior Cloning (RBC) (Piot et al., 2014) on the demonstration data. They train each
Q network separately, stopping when the TD error no longer decreases. For their RL + IL
submission(s), they apply RBC as the starting point for RL. The RL algorithm they use is
a variant of SQIL: they set the reward in expert replay buffer to be half of the reward of
the corresponding task, except for the steps that obtain the sparse reward.

4.7. Team 6: MajiManji

Team MajiManji achieved sixth place in Round 2
(score: 5.16). They participated in the RL + IL
track. Their approach uses hierarchical offline rein-
forcement learning. Outlined in Figure 7, they de-
compose the high-level task of mining a diamond
into a set of subtasks, and train a separate CQL
agent (Kumar et al., 2020) for each subtask. To
determine these subtasks, they use a label encoder
that maps cumulative reward to a label. The high-
level policy leverages the subtask label to select the
low-level policies. In the environments ending with
“VectorObf”, which have both POV images and vec-
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Figure 7: Overview of MajiManji’s
architecture.

tors as states, they use ATC (Stooke et al., 2020) to
extract features only from the POV images.

They apply a K-means algorithm to the action space for each subtask. In addition, they
construct a “necessary action space”. An action is added to this action space when the
total number of times it is performed is few, but it is performed in most episodes. Since the
low-level policies may not learn to do these necessary actions, the high-level policy chooses
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a necessary action randomly with low probability €. In the future, they plan to find how to
weight important demonstrations with no reward and few samples.

4.8. Team 7: BeepBoop

Team BeepBoop achieved twelfth place in Round 1 (score: 3.110) and seventh in Round 2
(score: 1.970). In Round 1, they participated in the RL + IL track, where they simply used
the SQIL baseline. For Round 2, they participated in both tracks. Their RL + IL track
submission was designed with the goal of improving the DQfD baseline. First, they improved
data preparation: since their agent never reached the later stages of the challenge, they
only use the data from the earlier stages of the ObtainDiamond and ObtainIronPickaxe
environments, as measured by cumulative rewards. They also included the full TreeChop
dataset. Second, they focused on improving the action space representation. They use
K-means clustering with a large number of clusters to cluster the action space to ensure
that the agent could access all necessary actions. For their IL-only track submission, they
used behavioral cloning with the ResNet-50 network architecture (He et al., 2015). For
the labels, they used the centroids of K-means clustered obfuscated actions. They apply
the same data preparation and action space modification techniques as in the RL+IL track
submission.

5. Discussion

Promoting the development of sample-efficient, domain agnostic, and reproducible RL al-
gorithms is crucial in translating the research advances of RL into complex, real-world
settings. In this section, we discuss the extent to which the design principles behind the
MineRL competition have accomplished this goal.

Successes. As the results of Section 4 illustrate, the submissions to the competition
are general and successful in the face of the competition constraints. Competitors sub-
mitted sample-efficient algorithms that made substantial progress towards the difficult
ObtainDiamond task with a mere 8,000,000 frames from the environment. Further, de-
spite the domain randomization in Round 2, many of the top algorithms from Round 1 also
achieved impressive scores in Round 2. The submissions that performed well in Round 2
were those which were robust to domain-shift, and because the organizers retrained sub-
missions from scratch in Round 2, those successful submissions were also certifiably repro-
ducible and resource-efficient. Unlike the previous iteration of the MineRL Competition,
the addition of the action/observation obfuscation technique completely prevented teams
from action shaping and feature engineering, leading to the emergence of a very common
action-simplification technique: K-means clustering of the expert action space.

Limitations. In its current form, the competition is limited to the Minecraft domain.
Although domain randomization and action space obfuscation prevent the introduction of
some inductive biases into the participants’ algorithms, competitors still expect to be faced
with the broader game mechanics of Minecraft. This domain knowledge ultimately manifests
itself in the particular algorithmic structure of participants’ submissions (e.g., in the choice
of hierarchical methods). A natural next step to promote more domain agnostic methods
is to expand the scope of the competition to include a training step against a different
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domain using the autoencoder-based technique proposed in Section 3.1. This step would
ensure submissions developed for the ObtainDiamond task could succeed in an auxiliary
domain. An additional limitation of the competition design is that the obfuscation of the
observation space does not include the pixel observation subspace. Although this choice
decreases the scope of research outcomes in the competition, it directly promotes research
towards algorithms that learn from pixels, a current and crucial challenge in deep RL.

6. Related Work

Previous competitions (Juliani et al., 2019) focused on a variety of aspects of RL, such
as the multi-agent setting (Gao et al., 2019; Perez-Liebana et al., 2019; Mohanty et al.,
2020) or practical applications (Marot et al., 2020). In most of these competitions, the
focus is not on generalization. Instead, the goal is to develop a trained agent that performs
well on a given domain. Consequently, winning submissions often relied on hand-engineered
features and stemmed from the use of large amounts of computational resources to optimize
the submission for the specific task. Competitions that have promoted the development of
general RL algorithms do not perform action or observation obfuscation and either focus on
generalization across a variety of tasks with shared objects, textures, and actions (Nichol
et al., 2018) or utilize the approach of having hold-out test tasks (Cartoni et al., 2020).
To our knowledge, no previous competition has explicitly encouraged the use of imitation
learning alongside RL. Previous imitation learning competitions (Diodato et al., 2019) con-
centrate on the prediction setting (e.g., predicting a vehicle’s speed given sensor inputs),
which is reflected in their evaluation metrics. However, our evaluation metrics are more
reflective of the sequential decision-making setting in which our competition takes place.
Although some top solutions to previous competitions leveraged imitation learning (Meish-
eri et al., 2019), the use of imitation learning alongside reinforcement learning was not
explicitly promoted. In contrast, we encourage the use of imitation learning by providing
participants with a large dataset of human demonstrations and introducing a second track
to the competition where competitors must only use the dataset to train their algorithms.

7. Conclusion

We ran the 2020 MineRL Competition on Sample Efficient Reinforcement Learning Using
Human Priors in order to promote the development of general, sample efficient reinforcement
learning and imitation learning algorithms. We described the competition, highlighting
changes to the rules and structure from the 2019 version of the competition. We summarized
the performance of the submissions and contrasted this performance with the performance
from last year. We described the approaches of the top seven teams from Round 2. We
concluded by discussing the benefits and limitations of our approach.
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