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NeurIPS 2020 Procgen Benchmark

Abstract

The NeurIPS 2020 Procgen Competition was designed as a centralized benchmark with
clearly defined tasks for measuring Sample Efficiency and Generalization in Reinforcement
Learning. Generalization remains one of the most fundamental challenges in deep rein-
forcement learning, and yet we do not have enough benchmarks to measure the progress
of the community on Generalization in Reinforcement Learning. We present the design
of a centralized benchmark for Reinforcement Learning which can help measure Sample
Efficiency and Generalization in Reinforcement Learning by doing end to end evaluation
of the training and rollout phases of thousands of user submitted code bases in a scalable
way. We designed the benchmark on top of the already existing Procgen Benchmark by
defining clear tasks and standardizing the end to end evaluation setups. The design aims
to maximize the flexibility available for researchers who wish to design future iterations of
such benchmarks, and yet imposes necessary practical constraints to allow for a system like
this to scale. This paper presents the competition setup and the details and analysis of the
top solutions identified through this setup in context of 2020 iteration of the competition
at NeurIPS.

Keywords: generalization in reinforcement learning, sample efficiency in reinforcement
learning

1. Introduction

Procgen Benchmark is a collection of 16 procedurally generated environments designed to
benchmark sample efficiency and generalization in reinforcement learning (Cobbe et al.,
2020a). Since all content is procedurally generated, each Procgen environment intrinsically
requires agents to generalize to never-before-seen situations. Critical elements like level
difficulty, level layout, and in-game assets are randomized at the start of every episode.
These environments therefore provide a robust test of an agents ability to learn in many
diverse settings. By aggregating performance across so many diverse environments, Procgen
Benchmark provides high quality metrics to judge RL algorithms. Furthermore, Procgen
environments are easy to use1 and the environments are computationally lightweight. Indi-
viduals with limited computational resources can easily reproduce baseline results and run
new experiments, and this ability to iterate quickly can help accelerate research.

In this paper, we present the competition design and results of the NeurIPS 2020 Proc-
gen Benchmark. The goal of this competition was to demonstrate the feasibility of using
Procgen Benchmark to collectively measure progress on sample efficiency and generalization
in Reinforcement Learning. Prior to our competition, reinforcement learning competitions
have focused on the development of policies or meta-policies which perform well on a com-
plex domain or across a select set of tasks (Kidziński et al., 2018; Nichol et al., 2018; Guss
et al., 2019a). However, to the best of our knowledge, our competition is the first to di-
rectly isolate and focus on generalization in reinforcement learning across a broad set of
procedural generated tasks. Additionally while the recent MineRL competition utilizes a
procedurally generated environment, the competition is more restricted in its procedural
generation engine than Procgen and focuses on algorithmic invariance to domain shift as
opposed to true generalization across a task distribution (Guss et al., 2019a).

1. All environments are open-source and can be found at https://github.com/openai/procgen
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2. Competition

2.1. Environments

This competition builds upon 16 procedurally generated environments which were publicly
released as a part of the Procgen Benchmark (Cobbe et al., 2020a). 4 hold-out test envi-
ronments were created for the evaluations of this competition and were used for the end to
end evaluation of the submissions in the competition. Although other environments such as
MineRL (Guss et al., 2019b), Malmo (Johnson et al., 2016), and Jelly Bean World (Platan-
ios et al., 2020) make use of procedural generation, Procgen’s novelty is in including many
diverse procedurally generated environments. Further, the Arcade Learning Environment
(Bellemare et al., 2013) is very widely used to judge RL algorithms, but it doesn’t require
agents to meaningfully generalize. This is a significant flaw as generalization is critical in
many real world tasks, and it’s important that RL benchmarks reflect this reality.

In all environments, procedural generation controls the selection of game assets and
backgrounds, though some environments include a more diverse pool of assets and back-
grounds than others. When procedural generation must place entities, it generally samples
from the uniform distribution over valid locations, occasionally subject to game-specific
constraints. Several environments use cellular automata (Johnson et al., 2010) to generate
diverse level layouts.

2.2. Metrics

To compare submissions based on a single score across multiple Procgen environments, we
calculate the mean normalized return. Following the original Procgen paper, we define the
normalized return to be Rnorm = (R−Rmin)/(Rmax−Rmin), where R is the raw expected
return and Rmin and Rmax are constants chosen (per environment) to approximately bound
R. As each of the Procgen environments have a clear score ceiling, it was possible to establish
these constants. Using this definition, the normalized return is (almost) guaranteed to fall
between 0 and 1. Since Procgen environments are designed to have similar difficulties, it’s
unlikely that a small subset of environments will dominate this signal. We use the mean
normalized return since it offers a better signal than the median, and since we do not need
to be robust to outliers.

The score computation in Round-1 uses a weighted metric on top of the mean normalized
returns. When computing the cumulative round-1 score, same weight is provided to the
normalized return from the evaluations of the single test environment as that is provided
to the normalized return from the evaluations of all the 16 public environments. This is
intentionally designed to incentivize participants to submit their training phase code while
they experiment independently with the publicly released Procgen environments.

As mentioned in Section 2.3.1.2, considerations around sample-efficiency are imposed
(when necessary) by limiting the total number of timesteps during the training phase to
8M timesteps. And considerations around generalizability are imposed (when necessary)
by limiting the total number of levels an agent has access to during the training phase.
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2.3. Tasks

The competition was divided into four separate rounds : Warm-Up Round, Round-1,
Round-2, Final Exhaustive Evaluation. The evaluation of the submissions for this com-
petition was done across two independent phases : Training Phase and Rollout Phase.

2.3.1. Training Phase and Rollout Phase

2.3.1.1. Rollout Phase
The rollout phase focuses on evaluating a trained model (a checkpoint) against a set of

Procgen environments. The trained model used in this phase, was a carry-forward asset
generated after the successful execution of the corresponding Training Phase (2.3.1.2). The
environments in each evaluation set were drawn from either the 16 publicly released envi-
ronments or the 4 hold-out test environments created specifically for this competition.
Whenever the hold-out test environments were used for the evaluation, the corresponding
Training Phase (2.3.1.2) had to be invoked by design - as the hold-out test environments
were not accessible to participants in advance.

2.3.1.2. Training Phase
The training phase focuses on orchestrating the user submitted code to train against one of

the Procgen environments. The training phase always generated a model checkpoint which
was subsequently used in the corresponding rollout phase (2.3.1.1). The authors would like
to re-iterate the fact that, whenever a hold-out test environment is used in the rollout phase,
the corresponding training phase has to be invoked by design.

Two key things that are taken into consideration during the training phase are sample
efficiency and generalizability.

As was shown by the MineRL Competition, limiting the number of environment steps
in training yields resource- and sample-efficient submissions that perform well despite this
limitation. We likewise address considerations around sample efficiency by limiting the
number of timesteps allowed during the training phase to the same 8M timesteps (Guss
et al., 2019a).

Considerations around generalizability are addressed by limiting the number of levels
(of a particular Procgen environment) that the submitted solutions have access to during
the training phase, to 200 Levels.

2.3.2. Rounds

2.3.2.1. Warm Up Round

The goal of the Warm Up Round was to encourage participants to explore the resources
(environments, starter kit, tutorials, baselines) released as a part of the competition. This
round only considered only the coinrun environment.

The submission repository structure (included in the starter kit) required the partici-
pants to include the code for their training phase and rollout phase. Pre-agreed entrypoints
for both the phases were specified in the submission repository structure. Participants were
not allowed to include any trained checkpoints in their submissions. Files larger than a
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Figure 1: Evaluation workflow for the warm up round

threshold size were automatically scrubbed from the submission repository by the AIcrowd
evaluators.

On receipt of the submissions, the AIcrowd evaluators orchestrate the submitted code
for the training phase on the coinrun environment. Considerations for Sample Efficiency
are imposed by limiting the available training timesteps to 8M timesteps. Considerations
for Generalization were not taken into account in this round. After the successful execution
of the training phase, the trained model was carry-forwarded to the corresponding rollout
phase of the submitted code, which was evaluated on the coinrun environment on 1000
randomly sampled levels to aggregate the final scores. Figure 1 illustrates the evaluation
workflow for Warm-Up Round.

2.3.2.2. Round-1

Figure 2: Evaluation workflow for the Round 1. Caterpillar is a hold-out test environment
that participants did not have access to throughout the competition

Round-1 extends the problem setting of the Warm-Up Round by introducing parallel
evaluations across multiple Procgen environments.

All the submissions were evaluated against 3 public Procgen environments (coinrun,
bigifsh, miner) and one 1 hold-out test environment (caterpillar), which participants did
not have access to throughout the duration of the competition.

The normalized score for a single submission-environment pair was computed as de-
scribed in Section 2.2.
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The cumulative score of each submission in this round was determined by the mean
normalized score of the submission across all the 4 Procgen environments used in the Rollout
phase. For reference, the normalized score for a single submission-environment pair was
computed as described in Section 2.2.

Score =
1

6
·Rcoinrun

norm +
1

6
·Rbigfish

norm +
1

6
·Rminer

norm +
1

2
·Rcaterpillar

norm

Similar to Warm-Up Round, considerations for Sample Efficiency are imposed by lim-
iting the available training timesteps to 8M timesteps. Considerations for Generalization
were not taken into account in this round.

2.3.2.3. Round-2

Figure 3: Evaluation setup for the Round 2. caterpillar, gemjourney, hovercraft, safezone
are hold-out test environments that participants did not have access to throughout
the competition.

Round-2 extends the problem setting as described in Round-1 by introducing 3 addi-
tional hold out test environments that participants did not have access to, throughout the
competition. All the submissions in Round-2 were evaluated on 6 public environments (coin-
run, bigfish, miner, starpilot, chaser, plunder) and 4 hold out test environments (caterpillar,
gemjourney, hovercraft, safezone) for both the Training Phase and the Rollout Phase.

This round continued to impose Sample Efficiency considerations by limiting the training
phase to 8M timesteps. Considerations for Generalization were introduced in this round,
where the training phase was limited to 200 levels for each of the environments, while the
trained models were evaluated on 1000 randomly sampled levels during the Rollout phase.

The cumulative score of each submission in this round was determined by the mean
normalized score of the submissions in the rollout phase across 6 public environments (coin-
run, bigfish, miner, starpilot, chaser, plunder) and 4 hold out test environments (cater-
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Figure 4: Evaluation workflow for sample efficiency and generalization tracks

pillar, gemjourney, hovercraft, safezone). For reference, the normalized score for a single
submission-environment pair was computed as described in Section 2.2.

Score =
1

12
·
PublicEnvs∑

Env

REnv
norm +

1

8
·
Hold−outEnvs∑

Env

REnv
norm

2.3.2.4. Final Exhaustive Evaluation

The top-10 teams from Round-2 were subject to a final exhaustive evaluation. The
final exhaustive evaluation is an extended and robust version of the problem formulation of
Round-2.

The top-10 teams had the option to specify separate submissions for both the Sample
Efficiency and Generalization tracks.

All eligible submissions were evaluated on all the 16 public environments and 4 hold
out test environments for both the Training Phase and the Rollout Phase. The submissions
were evaluated separately for Sample Efficiency and for Generalization. When measuring
Generalization, the constraints of 8M timesteps from Sample Efficiency were implicitly
added for operational reasons. Considerations around Generalization were imposed by
limiting the number of levels during the training phase to 200 levels for each of the 20
procgen environments. During the rollouts phase the trained models for each environment
were evaluated on 1000 randomly sampled levels.

All eligible submissions were evaluated over 3 trials for the Sample Efficiency Track
and 3 trials for the Generalization Track. In the Sample Efficiency track, no limits on the
number of levels were imposed during the training phase, while in the Generalization track
limited the number of levels during the training phase to 200 levels.

The score for each trial was determined by the mean normalized score of the submissions
in the rollout phase across all the 20 procgen environments.

scoretrialn =
1

20
·
All Envs∑

Env

REnv
norm
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The final score for each of the tracks were determined by the maximum score across the
three task specific trials for both the Sample Efficiency and the Generalization track.

scoregeneralization = max
1≤n≤3

{scoregeneralizationtrailn
}

scoresample efficiency = max
1≤n≤3

{scoresample efficiency
trailn

}

2.4. Competition Statistics

Throughout the competition, a total of 545 individual participants, spread across 44 coun-
tries, registered for the competition. After round 1, 50 teams (83 individual participants)
were eligible to participate in the round 2. Finally, 10 teams containing 18 individual par-
ticipants qualified for the final exhaustive evaluation. Across the whole competition, we
evaluated a total of 4805 submissions resulting in over 172,000 trained checkpoints through-
out the competition and across different evaluation configurations.

3. Methods

The methods used by the top-10 teams can be broadly cateogorized into a set of “base
algorithms“. The list of “base algorithms“ used by the participants is shown in Table 3. The
competitors were limited to using a single NVIDIA V100 GPU and 2 hours of training for
their models with 8M steps. We used the mean normalized return to compare submissions
based on a single score across multiple Procgen environments. The mean normalized rewards
across multiple rollouts per environment for the top ten submission for sample-efficiency and
generalization tracks are shown in Figure 5 and Figure 6. In both tracks, the trends for the
mean normalized rewards for rollouts were similar for jumper, caveflyer, maze and fruitbot
for most of the top ten submissions while the final normalized rewards varied significantly
in leaper and dodgeball for several competitors.

In the following, we provide the key implementation details and modifications for each of
the top-10 teams. We grouped the participants’ methods into three categories based on the
base algorithm: 1) Phasic Policy Gradient (PPG) (Cobbe et al., 2020b), 2) Proximal Policy
Optimization (PPO) (Schulman et al., 2017), and 3) other, including Policy-on Policy-off
Policy Optimization (P3O) (Fakoor et al., 2020), Reactor (Gruslys et al., 2017), and Soft
Actor-Critic (SAC) (Haarnoja et al., 2018).

3.1. Base Algorithm: Phasic Policy Gradient

The top two teams in generalization category used variations of PPG (Cobbe et al., 2020b).
Their PPG-based methods also improved sample-efficiency, ranking both teams among the
top three. PPG is an extension of PPO that, among other improvements, allows for greater
sample reuse by (partially) separating policy and value-function learning into separate
phases (Cobbe et al., 2020b).

3.1.1. Team: Gamma

We used the value function from the latest PPO iteration is better instead of the older
value targets in the auxiliary phase. We discovered that recalculating the value targets on
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Figure 5: The mean normalized rewards across training per environment for top ten teams
in sample-efficiency track.

Table 1: Ranking of participants for generalization and sample efficiency and their base
algorithms. The Baseline provided by the organizers replicated the PPO imple-
mentation as described in (Cobbe et al., 2020a)

Team or
Individual

General.
Rank

Sample
Eff.
Rank

General.
Mean
Norm.
Reward

Sample
Eff.
Mean
Norm.
Reward

Base Algorithm

TRI 1 1 0.6083 0.7680 Phasic Policy Gradient

MSRL 2 7 0.5290 0.6700 Proximal Policy Opt.

Alpha 3 4 0.5193 0.7071 -

ttom 4 9 0.4939 0.6386 Proximal Policy Opt.

Gamma 5 3 0.4898 0.7231 Phasic Policy Gradient

zero 6 8 0.4699 0.6431 Soft Actor-Critic

Xiaocheng
Tang

7 5 0.4523 0.6918 Proximal Policy Opt.

Joao
Schapke

8 2 0.4447 0.7342 Policy-on Policy-off Policy
Opt.

Paseul 9 10 0.3963 0.5847 -

three thirds 10 6 0.3694 0.6916 Reactor & Soft-Actor Critic

Baseline 11 11 0.2002 0.3695 Proximal Policy Opt.
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Figure 6: The mean normalized rewards during training phase across rollouts per environ-
ment for Team MSRL in generalization track. Note that training score are for
the 200 levels, not for the entire distribution of the environment.
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the entire replay buffer using GAE (Schulman et al., 2016) boosts sample efficiency. We
augment the observations in the replay buffer during the auxiliary phase. Crucially, we
found that keeping a decent percentage of frames un-augmented is important for policy
stability. We used random translate, and colored cutout augmentations from (Laskin et al.,
2020) and apply them consistently across frame stacks. Using highest probability action
during inference led to the agent getting stuck in one place when a wrong action led to the
same state. However, we thought that the stochastically choosing actions in unseen envi-
ronments led to too much randomness and premature death. Thus, we reduced the softmax
temperature during inference which led to improvements in the scores for all environments.
Hyperparameter tuning played a very crucial role in the competition. The performance of
the final submission is shown in Figure 17.

3.1.2. Team: TRI

For computational reasons, we elected to use the single-network variant of PPG, though
unlike the original paper we left the value head of the network attached during the policy
phase, and used a smaller loss coefficient for the value objective. We adapted PPO and
PPG to use data augmentation. We evaluated a subset of the augmentations such as
translation, vertical and horizontal flipping, rotation, conversion to grayscale, and color
cutout, finding that random translation worked most consistently across environments. We
found that augmentation during the auxiliary phase worked best, and used that. We used
a reward shaping penalty. Reward normalization, which involves transforming the rewards
of the agent with the goal of normalizing the learning targets of the value network, had a
significant impact on performance. Finally, we performed coarse grid searches for a subset
of hyperparameters. The generalization and sample-efficiency results of the final submission
are shown in Figure 8 and Figure 18 respectively.

3.2. Base Algorithm: Proximal Policy Optimization

One third of the top ten winners used PPO (Schulman et al., 2017) with modifications to
the original IMPALA network along with variations on exploration and regularization. All
the participants used some form of hyperparameter tuning.

3.2.1. Team:MSRL

Our approach focused on improving the performance of the basic PPO with the IMPALA
agent architecture, as described in the original Procgen paper (Cobbe et al., 2020a), purely
using data augmentation, L2 regularization of the agent network parameters, and hyperpa-
rameter tuning. We didn’t find data augmentation, as well as batchnorm and dropout, to
be helpful in improving performance. However, L2 regularization and careful hyperparam-
eter choice improved PPO’s performance significantly. They allowed our agent to vastly
outperform the competition’s PPO baseline and to approach the performance of more so-
phisticated techniques without any changes to the basic PPO algorithm. We tuned all
hyperparameters of the rllib’s PPO implementation, the number and size of the IMPALA
architecture’s residual blocks, and the L2 regularization coefficient via a series of hyperpa-
rameter searches using the Distributed Grid Descent algorithm (Loynd et al., 2020) running
on Microsoft Azure Batch service (AZB). The best-performing parameter combination we
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discovered is in Appendix A.3.3. Tuning the discount factor γ, GAE λ, L2 regularization
coefficient, and the learning rate for a given architecture was particularly important. The
performance of the final submission is shown in Figure 20.

3.2.2. Individual:ttom

The biggest single improvement to performance came from modifying the model. The base-
line IMPALA CNN used residual blocks with 16, 32, and 32 channels each. Increasing
this width to 32, 64, and 64 channels drastically improved performance. Average pooling
the final convolutional layer before flattening and passing into a fully connected layer also
improved performance and drastically reduced the number of network parameters. A good
learning rate and an approximate one-cycle (Smith and Topin, 2018) schedule greatly sped
up early training, getting the algorithm to a reasonable level of performance (close to the
final level) after 4M timesteps for all environments. Each algorithm and model variation
had parameters tuned individually. Adding an intrinsic reward signal (Random Network
Distillation, (Burda et al., 2018)) did result in marginally faster training but performance re-
mained approximately the same. The implementation of RND did not apply across episode
boundaries, as originally implemented, which may have negatively affected the results. The
performance of the final submission is shown in Figure 23.

3.2.3. Individual:Xiaocheng

We used Random Network Distillation (RND) bonus to encourage exploration. We observed
better performance when the intrinsic reward is treated as a life-long novelty computed in
a non-episodic setting regardless of the episodic nature of the tasks. Similar to the Never-
Give-Up (NGU) agent, we used separate parameterizations to learn varied degrees of ex-
ploration and exploitation policies, such that the exploitative policy focuses on maximizing
the extrinsic reward and the exploratory ones seek for novelty bonus. We implemented this
family of policies under the PPO framework. We apply the mixup regularization proposed
for supervised learning in the context of reinforcement learning to increase data diversity
and to induce a smoother policy which can generalize better. In particular, we augment the
training data by sampling new observations from the convex hull of distinct observations
and the corresponding training targets. We added an auxiliary loss term. The auxiliary
loss for training the value function can be derived in the similar fashion. To adaptively
adjust the agent’s behavior accordingly, we employed a meta-controller implemented as a
multi-arm UCB bandit with εUCB-greedy exploration to adapt to the changes of the reward
through time. The performance of the final submission is shown in Figure 24.

3.3. Base Algorithm: Policy-on Policy-off Policy, Reactor, or Soft Actor-Critic

A modified version of the the Policy-on Policy-off Policy Optimization (P3O) (Fakoor et al.,
2020) algorithm ranked second in sample-efficiency. P3O has an off-policy optimization
phase in which samples are used with an policy gradient objective modulated by a clipped
importance sampling term, hence, resulting in a more sample-efficient approach. The two
other base algorithms used were Reactor (Gruslys et al., 2017) and Soft Actor-Critic (SAC)
(Haarnoja et al., 2018).
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3.3.1. Team:Three-thirds

Reactor (Gruslys et al., 2017) combines the best of PPO and Rainbow and improves on
them: it is an Actor-Critic architecture that uses a multi-step off-policy Q-learning, dis-
tributional Q-learning in the critic, and a prioritized experience replay for sequences. We
modified the vanilla Reactor slightly. Instead of using LSTM, we stacked the last two im-
ages. We passed the total reward the agent had accumulated in the current episode as
an additional input channel to provide additional information about the game state to the
initial convolutional layers. We modified the IMPALA encoder, [24, 40, 48] channels in the
convolutional layers, tuned for the competition resource constraints. We used a second Q-
network head as in SAC (Haarnoja et al., 2018), which helped decrease the overestimation
of the Q-value. Unlike SAC, both Q-networks shared the encoder due to limited compu-
tational resources. Sampling from the experience buffer using a mixture of prioritized and
uniform distributions as in Reactor, because vanilla prioritized sampling turned out unsta-
ble. We used dynamic rescaling of the entropy coefficient τ as in SAC so that the desired
entropy level is maintained. The performance of the final submission is shown in Figure 21.

3.3.2. Individual:Joao Schapke

P3O is a synchronous algorithm and its two phases increases the compute time of standard
policy gradients. Due to the time constraints of the competition this was a limitation to the
performance of the algorithm. In order to improve the compute efficiency we implemented
a distributed adaptation of the original algorithm inspired by the IMPALA (Espeholt et al.,
2018a) algorithm: many actors with a single learner, and additionally, a single replay buffer.
In the final distributed approach we removed the on-policy phase of the algorithm, making
it an off-policy policy gradient algorithm. Used prioritised sampling to draw samples with
a strong signal. The Procgen environment, similarly to Atari, does not have the Markov
property. The partial observation obtained of the environment does not contain all the
information needed to make optimal actions, and past observations may contain information
(e.g. speed and direction of projectiles or opponents) needed for good performance. We
implemented an approach that squishes past frames into a single frame. This is done by
adding the weighted 1-lag difference of the past grayscaled frames. The performance of the
final submission is shown in Figure 22.

3.3.3. Team: Zero

First, we adapted SAC for discrete action space and refine it with several improvements
on DQN (Mnih et al., 2015). We then introduced a new convolutional neural network that
not only performed better than the network from IMPALA (Espeholt et al., 2018b) but
used fewer resources. We observed that each environment contains some redundant actions
never used in practice. We used a shared network and allow only gradients from the Q
function back propagate to the encoder which worked best. We used IQN (Dabney et al.,
2018), distributional RL algorithm that learns a mapping from probabilities to returns, to
replace the Q function in SAC. We used adaptive multi-step improves multi-step learning
to allow adaptively select the multi-step target based on the quality of the experiences. We
modified IMPALA CNN by adding a channel-wise module (Hu et al., 2020; Woo et al.,
2018) to the residual block and replacing all MaxPool with MaxBlurPool (Zhang, 2019).
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This architecture had only a quarter of the parameters compared to IMPALA CNN and
empirically performed much better because of the channel-wise attention module. The
performance of the final submission is shown in Figure 25.

4. Discussion

There were several key commonalities across the methods which resulted in significant
improvements in generalization or sample-efficiency:

• Hyper-parameter tuning : Almost all participants applied hyper-parameter tuning
which resulted in significant improvements in the performance. The methods re-
quire a lot of tuning in order to get good performance, and this consumes a great deal
of time and is a dull task. A more critical evaluation of improving hyper-parameter
tuning for reinforcement learning algorithms would be beneficial for practitioners.

• Data augmentation: Many participants used data augmentation for generalization
while trying to balance the variations without degrading the sample efficiency. For
PPG, keeping a decent percentage of frames un-augmented was important for policy
stability.

• Neural Network : Modifying the IMPALA neural network from (Cobbe et al., 2020a)
also resulted in significant performance changes. Several teams made the IMPALA
neural network’s CNN layers wider. Another modification was to add channel-wise
module to the residual block and replacing all MaxPool with MaxBlurPool which
resulted in fewer parameters yet achieved higher rewards.

• Reward shaping and normalization: One team found out that the reward normaliza-
tion, which involves transforming the rewards of the agent with the goal of normalizing
the learning targets of the value network, had a significant impact on performance.

We also list a few methods that have not resulted in anticipated performance improve-
ments:

• Adding an intrinsic reward signal (Burda et al., 2018) did result in marginally faster
training but performance remained approximately the same.

• Not all data augmentation techniques worked as well and not for all methods. In
some cases, after optimizing for the neural network and algorithm parameters, the
performance improvement from data augmentation was not significant.

• Using recurrent neural networks slowed the performance too much. A more effective
method was to use framestacking.

• DQN worked on some environments but required a lot more experience and resulted
in very slow training (e.g., large target network update interval, small learning rate).

• Noisy nets (Fortunato et al., 2019) for exploration did not result in improvements.
One reason may be that the PPO update implicitly constrains the policy to not change
to much, the additional change due to the noise makes the policy update less efficient.
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• Approaches based on auxiliary tasks such as contrastive learning (Srinivas et al., 2020)
and deepMDP (Gelada et al., 2019) degraded performance. This may be due the
overhead these methods introduce, which significantly reduces the number of training
steps, leading to an undertrained model.

5. Conclusion

We ran the NeurIPS 2021 Procgen Competition for measuring Sample Efficiency and Gen-
eralization in Reinforcement Learning. We describe the design of a Reinforcement Learning
competition using the Procgen Benchmark, which enables end to end training and eval-
uation of thousands of user submitted code repositories. The end to end training and
evaluation framework allows us to add interesting layers of complexities to the benchmark
design, like the ability to enforce and measure generalization and the ability to enforce sam-
ple efficiency constraints. We summarized the performance and described the submissions
of the top teams for both the Sample Efficiency Track and the Generalization Track.
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Appendix A. Supplementary Material

A.1. Generalization Track Graphs

0 2 4 6 8
1e6

0

2

4

6

8

10

chaser

0 2 4 6 8
1e6

0

10

20

30

bigfish

0 2 4 6 8
1e6

0

1

2

3

4

safezone

0 2 4 6 8
1e6

2

4

6

8
caveflyer

0 2 4 6 8
1e6

4

6

8

10

heist

0 2 4 6 8
1e6

0

5

10

15

hovercraft

0 2 4 6 8
1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

gemjourney

0 2 4 6 8
1e6

2

4

6

8

jumper

0 2 4 6 8
1e6

4

5

6

7

8

9

10
coinrun

0 2 4 6 8
1e6

5

10

15

plunder

0 2 4 6 8
1e6

5

10

15

20

caterpillar

0 2 4 6 8
1e6

5

6

7

8

9

10

maze

0 2 4 6 8
1e6

0

10

20

30

40

50

60

starpilot

0 2 4 6 8
1e6

2

4

6

8

10

12

miner

0 2 4 6 8
1e6

0

10

20

30

fruitbot

0 2 4 6 8
1e6

0.0

2.5

5.0

7.5

10.0

12.5

dodgeball

0 2 4 6 8
1e6

0

2

4

6

8

10

bossfight

0 2 4 6 8
1e6

2

4

6

8

10
climber

0 2 4 6 8
1e6

2

4

6

8

10
leaper

0 2 4 6 8
1e6

2

4

6

8

ninja

Timesteps

R
ew

ar
ds

Baseline Training Phase Rewards
Gamma Training Phase Rewards
Baseline Rollout Phase Reward
Gamma Rollout Phase Reward

Figure 7: The mean normalized rewards during training phase across rollouts per environ-
ment for Team Gamma in generalization track. Note that training score are for
the 200 levels, not for the entire distribution of the environment.
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Figure 8: The mean normalized rewards during training phase across rollouts per environ-
ment for Team TRI in generalization track. Note that training score are for the
200 levels, not for the entire distribution of the environment.

379



NeurIPS 2020 Procgen Benchmark

0 2 4 6 8
1e6

0

2

4

6

8

10

12
chaser

0 2 4 6 8
1e6

0

5

10

15

20

25

bigfish

0 2 4 6 8
1e6

0.0

0.5

1.0

1.5

2.0

2.5

safezone

0 2 4 6 8
1e6

2

3

4

5

6

7

caveflyer

0 2 4 6 8
1e6

4

6

8

10

heist

0 2 4 6 8
1e6

0

5

10

15

hovercraft

0 2 4 6 8
1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

gemjourney

0 2 4 6 8
1e6

4

6

8

jumper

0 2 4 6 8
1e6

0

2

4

6

8

10
coinrun

0 2 4 6 8
1e6

1

2

3

4

5

plunder

0 2 4 6 8
1e6

5

10

15

20

25
caterpillar

0 2 4 6 8
1e6

5

6

7

8

9

10

maze

0 2 4 6 8
1e6

0

20

40

60

starpilot

0 2 4 6 8
1e6

0

2

4

6

8

10

12

miner

0 2 4 6 8
1e6

0

10

20

30

fruitbot

0 2 4 6 8
1e6

0

5

10

15

dodgeball

0 2 4 6 8
1e6

0

2

4

6

8

10
bossfight

0 2 4 6 8
1e6

2

4

6

8

climber

0 2 4 6 8
1e6

4

6

8

10
leaper

0 2 4 6 8
1e6

2

4

6

8

ninja

Timesteps

R
ew

ar
ds

Baseline Training Phase Rewards
Alpha Training Phase Rewards
Baseline Rollout Phase Reward
Alpha Rollout Phase Reward

Figure 9: The mean normalized rewards during training phase across rollouts per environ-
ment for Team Alpha in generalization track. Note that training score are for the
200 levels, not for the entire distribution of the environment.
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Figure 10: The mean normalized rewards during training phase across rollouts per environ-
ment for Team MSRL in generalization track. Note that training score are for
the 200 levels, not for the entire distribution of the environment.
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Figure 11: The mean normalized rewards during training phase across rollouts per environ-
ment for Team ThreeThirds in generalization track. Note that training score
are for the 200 levels, not for the entire distribution of the environment.

382



NeurIPS 2020 Procgen Benchmark

0 2 4 6 8
1e6

2

4

6

8

10

chaser

0 2 4 6 8
1e6

0

5

10

15

bigfish

0 2 4 6 8
1e6

0

1

2

3

safezone

0 2 4 6 8
1e6

2

3

4

5

6

7

caveflyer

0 2 4 6 8
1e6

2

4

6

8

10

heist

0 2 4 6 8
1e6

0

5

10

15

hovercraft

0 2 4 6 8
1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

gemjourney

0 2 4 6 8
1e6

4

6

8

jumper

0 2 4 6 8
1e6

4

5

6

7

8

9

10

coinrun

0 2 4 6 8
1e6

2

4

6

8

plunder

0 2 4 6 8
1e6

5

10

15

20

caterpillar

0 2 4 6 8
1e6

4

5

6

7

8

9

10

maze

0 2 4 6 8
1e6

0

10

20

30

40

50

starpilot

0 2 4 6 8
1e6

0

2

4

6

8

10

12

miner

0 2 4 6 8
1e6

0

10

20

30

fruitbot

0 2 4 6 8
1e6

1

2

3

4

5

6
dodgeball

0 2 4 6 8
1e6

0

2

4

6

8

10

12

bossfight

0 2 4 6 8
1e6

2

3

4

5

6

7

climber

0 2 4 6 8
1e6

2

3

4

5
leaper

0 2 4 6 8
1e6

2

4

6

8

10
ninja

Timesteps

R
ew

ar
ds

Baseline Training Phase Rewards
joao_schapke Training Phase Rewards
Baseline Rollout Phase Reward
joao_schapke Rollout Phase Reward

Figure 12: The mean normalized rewards during training phase across rollouts per envi-
ronment for Individual Joao Schapke in generalization track. Note that training
score are for the 200 levels, not for the entire distribution of the environment.
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Figure 13: The mean normalized rewards during training phase across rollouts per environ-
ment for Individual ttom in generalization track. Note that training score are
for the 200 levels, not for the entire distribution of the environment.
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Figure 14: The mean normalized rewards during training phase across rollouts per environ-
ment for Individual Xiaocheng Tang in generalization track. Note that training
score are for the 200 levels, not for the entire distribution of the environment.
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Figure 15: The mean normalized rewards during training phase across rollouts per environ-
ment for Team Zero in generalization track. Note that training score are for the
200 levels, not for the entire distribution of the environment.
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Figure 16: The mean normalized rewards during training phase across rollouts per environ-
ment for Team Paseul in generalization track. Note that training score are for
the 200 levels, not for the entire distribution of the environment.
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Figure 17: The mean normalized rewards across rollouts per environment for Team Gamma
in sample-efficiency track.

Figure 18: The mean normalized rewards across rollouts per environment for Team TRI in
sample-efficiency track.
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Figure 19: The mean normalized rewards across rollouts per environment for Team Alpha
in sample-efficiency track.

Figure 20: The mean normalized rewards across rollouts per environment for Team MSRL
in sample-efficiency track.
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Figure 21: The mean normalized rewards across rollouts per environment for Team Three-
Thirds in sample-efficiency track.

Figure 22: The mean normalized rewards across rollouts per environment for Individual
Joao Schapke in sample-efficiency track.
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Figure 23: The mean normalized rewards across rollouts per environment for Individual
ttom in sample-efficiency track.

Figure 24: The mean normalized rewards across rollouts per environment for Individual
Xiaocheng Tang in sample-efficiency track.
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Figure 25: The mean normalized rewards across rollouts per environment for Team Zero in
sample-efficiency track.

Figure 26: The mean normalized rewards across rollouts per environment for Team Paseul
in sample-efficiency track.
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A.2. Sample-Efficiency Track Graphs

A.3. Hyper-parameters

A.3.1. Team: Gamma

Number of Parallel Envs 112

Truncated Rollout Length 256

Updates per epoch 8

PPO Minibatch size 3584

Frame Stack 2

Aux Phase Frequency 18

Replay buffer size 500k

γ 0.996

λ 0.95

Reward Normalization Yes

Replay buffer sampling Uniform Random 2

Impala CNN Depths [32, 64, 64]

Last Dense Layer 512

Preprocessing Divide by 255

Optimizer Adam

Gradient Clipping None

Auxiliary Epochs 7

Aux Minibatch size 2048

Optimizer Epsilon 1× 10−8

Learning rate 5× 10−4

Learning rate Schedule Linear

Final learning rate 5× 10−5

A.3.2. Team: TRI

Hyperparameter Value

Impala Layer Sizes 32, 48, 64

Rollout Fragment Length 16

Number of Workers 7

Number of Envs Per Worker 125

Minibatch Size 1750

PPG Auxiliary Phase Frequency 32

PPG Auxiliary Phase Number of Epochs 2

Value Loss Coefficient 0.25

Framestack 2

Dropout Probability (Auxiliary Phase Only) 0.1

No-op Penalty -0.1
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A.3.3. Team: MSRL

PPO hyperparameter Value

Impala layer sizes 32, 64, 64, 128, 128

Rollout fragment length 256

Number of workers 2

Number of environments per worker 64

Number of CPUs per worker 5

Number of GPUs per worker 0.1

Number of training GPUs 0.3

Discount factor γ 0.995

SGD minibatch size 2048

Batch size 2048

Number of SGD iterations 3

SGD learning rate 0.0006

Framestacking off

Truncate episodes true

Value function clip parameter 1.0

Value function loss coefficient 0.5

Value function share layers true

KL-div. coefficient 0

KL-div. target 0.1

Entropy regularization coefficient 0.005

PPO clip parameter 0.1

Gradient norm clip value 1

GAE λ 0.8

L2 regularization coefficient 0.00001

A.3.4. Team: ThreeThirds

Environment steps 8M

Generalization training levels 200

Steps trained/sampled 7x

Rollout length (steps) 32

Batch size (steps) 512

γ 0.995

λ 1

Adam learning rate, momentum 1.5× 10−4, 0

Target network update freq. (batches) 500

Replay buffer size 400k

Replay prioritization ε 0.25

Reward prediction loss coeff. 0.1

Entropy target: initial, final 2.3, 1.0

Temperature learning rate 2.5× 10−4

Random exploration ε 0.01
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A.3.5. Individual: Joao Schapke

Hyperparameter Value

Learning rate 0.007

entropy coeff 0.0

vf coeff 0.5

gamma 0.995

gae lambda 0.85

grad clip 1

rollout fragment length 32

train batch size 2048

Hyperparameter (P3O) Value

buffer size 20000

learning starts 5000

prioritized replay alpha 2

prioritized replay beta 1

prioritized replay eps 0.0000001

A.3.6. Individual: ttom

Hyperparameter Value

Truncated Rollout Length 200

Updates per epoch 3

PPO Minibatch size 1024

Frame Stack 2 (modified)

γ 0.99

λ 0.9

Reward Normalization No

Impala CNN Depths [32, 64, 64]

Last Dense Layer 256

Preprocessing Subtract 128, divide by 255

Optimizer Adam

Gradient Clipping None

Learning rate 1E-4->3E-5

Learning rate schedule Cosine
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