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Abstract
In this paper we consider the problem of computing the likelihood of the profile of a discrete
distribution, i.e., the probability of observing the multiset of element frequencies, and computing
a profile maximum likelihood (PML) distribution, i.e., a distribution with the maximum profile
likelihood. For each problem we provide polynomial time algorithms that given n i.i.d. samples from
a discrete distribution, achieve an approximation factor of exp (−O(

√
n log n)), improving upon

the previous best-known bound achievable in polynomial time of exp(−O(n2/3 log n)) (Charikar,
Shiragur and Sidford, 2019). Through the work of Acharya, Das, Orlitsky and Suresh (2016), this
implies a polynomial time universal estimator for symmetric properties of discrete distributions in a
broader range of error parameter.

To obtain our results on PML we establish new connections between PML and the well-studied
Bethe and Sinkhorn approximations to the permanent (Vontobel, 2012 and 2014). It is known that
the PML objective is proportional to the permanent of a certain Vandermonde matrix (Vontobel,
2012) with

√
n distinct columns, i.e. with non-negative rank at most

√
n. This allows us to show

that the convex approximation to computing PML distributions studied in (Charikar, Shiragur and
Sidford, 2019) is governed, in part, by the quality of Sinkhorn approximations to the permanent.
We show that both Bethe and Sinkhorn permanents are exp(O(k log(N/k))) approximations to the
permanent of N ×N matrices with non-negative rank at most k. This improves upon the previous
known bounds of exp(O(N)) and combining these insights with careful rounding of the convex
relaxation yields our results.
Keywords: symmetric property estimation, profile maximum likelihood, permanent approximation

1. Introduction

Symmetric property estimation is an important and well-studied problem in statistics and theoretical
computer science. Given access to n i.i.d samples from a hidden discrete distribution p, the goal is to
estimate f(p), for a symmetric property f(·). Formally, a property is symmetric if it is invariant to
permutating the labels, i.e. it is a function of the multiset of probabilities and does not depend on
the symbol labels. There are many well-known well-studied such properties, including support size
and coverage, entropy, distance to uniformity, Renyi entropy, and sorted `1 distance. Understanding
the computational and sample complexity for estimating these symmetric properties has led to an
extensive line of interesting research over the past decade.
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Symmetric property estimation spans applications in many different fields. For instance, entropy
estimation has found applications in neuroscience Rieke et al. (1999), physics Vinck et al. (2012)
and others Plotkin and Wyner (1996); Porta et al. (2001). Support size and coverage estimation
were initially used in estimating ecological diversity Chao (1984); Chao and Lee (1992); Bunge and
Fitzpatrick (1993); Colwell et al. (2012) and subsequently applied to many different applications
Efron and Thisted (1976); Thisted and Efron (1987); Fürnkranz (2005); Kroes et al. (1999); Paster
et al. (2001); Daley and Smith (2013); Robins et al. (2009); Gao et al. (2007); Hughes et al. (2001).
For applications of other symmetric properties we refer the reader to Han et al. (2017b,a); Acharya
et al. (2014); Raghunathan et al. (2017); Zou et al. (2016); Wu and Yang (2016); Raskhodnikova
et al. (2007); Wu and Yang (2015); Orlitsky et al. (2016); Valiant and Valiant (2011b); Wu and Yang
(2016); Jiao et al. (2015, 2016); Valiant and Valiant (2011a).

Universal estimators: Early work on symmetric property estimation developed estimators tailored
to the particular property of interest. Consequently, a fundamental and important open question was
to come up with an estimator that is universal, i.e. the same estimator could be used for all symmetric
properties. A natural approach for constructing universal estimators is a plug-in approach, where
given samples we first compute a distribution independent of the property and later we output the
(value of this) property for the computed distribution as our estimate.

Recently, Acharya et al. (2016) provided an approach for constructing universal plug-in estimators.
This approach leveraged the observation that a sufficient statistic for estimating a symmetric property
from a sequence of samples is the profile, i.e. the multiset of frequencies of symbols in the sequence,
e.g. the profile of sequence abbc is {2, 1, 1}. In their approach, they used the profile maximum
likelihood (PML) distribution introduced by Orlitsky et al. (2004) as a plug-in distribution: given a
sequence of n samples, PML is the distribution that maximizes the likelihood of the observed profile.
The authors in Acharya et al. (2016) showed that a plug-in estimator using a optimal PML distribution
is universal in estimating various symmetric properties of distributions. In fact it suffices to compute
a β-approximate PML distribution (i.e. a distribution that approximates the PML objective to within
a factor of β) for β > exp(−n1−δ) for constant δ > 0. The parameter β in β-approximate PML
effects the error parameter regime under which the estimator is sample complexity optimal. Larger
values of β yield a universal estimator that is sample optimal over broader parameter regime.

Previous work of the authors in Charikar et al. (2019a), gave the first polynomial time algorithm
to compute a β-approximate PML for some non-trivial β. In particular, Charikar et al. (2019a)
gave a nearly linear running time algorithm to compute an exp(−O(n2/3 log n))-approximate PML
distribution. Leveraging Acharya et al. (2016), this yields a universal estimator that is sample
complexity optimal for estimating certain symmetric properties within accuracy for ε > n−0.16666,
where ε is the desired accuracy of the estimation.

Motivating questions: Given the possible utility of universal estimators based on PML and the
recent progress of Charikar et al. (2019a), a key motivating question for this paper is:

What is the smallest β for which we can compute β-approximate distributions in polynomial time?

Recently, Charikar et al. (2019a) showed that exp(−O(n2/3 log n))-approximate PML distribu-
tions can be computed in polynomial time and in this paper, we seek to improve this approximation
quality. Acharya et al. (2016) implies that such improvements yield efficient universal estimators for
certain symmetric properties in broader accuracy regime.
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Beyond seeking improved approximation guarantees for PML, this paper seek to better understand
the algorithmic machinery which underlies computing approximate PML. The algorithm and analysis
in Charikar et al. (2019a) were somewhat specialized and it is unclear how this work relates to the
design of approximation algorithms more broadly.

Towards this goal, we note that computing approximate PML corresponds to solving a non-convex
optimization problem, where the objective function is a permanent of generalized Vandermonde
matrix. There is rich literature Yedidia et al. (2005); Vontobel (2013); Linial et al. (1998); Schrijver
(1998); Gurvits (2011); Vontobel (2013); Gurvits and Samorodnitsky (2014); Schrijver (1978);
Alon and Spencer (2004) on approximating the permanent of a fixed non-negative matrix using
continuous optimization problems. For example, the Bethe and Sinkhorn permanent approximations
Gurvits and Samorodnitsky (2014); Grier and Schaeffer (2018); Vontobel (2014); Yedidia et al.
(2005); Vontobel (2012) are few such optimization problems that were originally studied in statistical
physics as popular tools for providing deterministic approximations to the permanent of non-negative
matrices. Although these prior works provide a way to approximate the permanent of a fixed matrix,
approximately maximizing the permanent over the entries of the matrices remains largely unknown.
Nevertheless, we ask:

Can we draw connections between permanent approximation and approximate PML computation?

Unfortunately, establishing such a connection faces an immediate barrier. The current analysis of
the Sinkhorn and Bethe permanents show that the ratio between the permanent and these approxima-
tions is upper bounded by cN Gurvits and Samorodnitsky (2014); Anari and Rezaei (2018) for some
constant c > 0, where N is the dimension of the matrix. However, in most of our setting we seek to
compute eO(N1−δ) approximate PML distribution for constant δ > 0 and it therefore seems that such
results may be insufficient for our purposes.

Towards overcoming this issue, we note that these previous results on the Bethe and Sinkhorn
permanent, do not exploit many structural properties of the matrix being approximated. For example,
the PML matrix has low non-negative rank. Consequently, towards enabling Bethe and Sinkhorn
permanent approximations to yield non-trivial guarantees for PML we ask:

Can we efficiently provide efficient deterministic approximations to the permanent of a broad class of
structured matrices, where the approximation factor depends on the structural parameter?

We believe this question is interesting on its own.

Our contribution: In this paper we make progress on addressing the preceding motivating ques-
tions. Our main results are two fold: (1) we show that it is possible to compute a exp(−O(

√
n log n))-

approximate PML distribution in polynomial time through a continuous optimization problem closely
related to Sinkhorn approximations to the permanent (in fact this is the same as the one in Charikar
et al. (2019a)) and (2) we provide new bounds on the quality of Bethe and Sinkhorn approximations
to the permanent in the case of low rank matrices (the special case of this to matrices with a bounded
number of distinct columns we leverage to prove (1)).

Our first result has two conceptual steps: First, we use the idea of probability discretization and
apply it to the Sinkhorn permanent to study a different convex optimization problem. We show that
this new convex program approximates the probability of a given profile with respect to a fixed
distribution p; the approximation factor is upper bounded by exp(−O(k log n)), where n is the
number of samples and k is the number of distinct frequencies in the profile. Given n samples as
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the number of distinct frequencies k is always less than
√
n, we immediately get a deterministic

exp (−O(
√
n log n)) approximation to the probability of a profile.

In the second step, we study a variant of the convex program from the first part to encode the
problem of maximizing over all distributions. This new optimization problem is also convex and its
feasible solutions represent fractional distributions1. To return a valid approximate PML distribution
with the desired guarantee, we provide a new efficient rounding algorithm that rounds the fractional
distributions while incurring a loss of exp(O(

√
n log n)) in the objective.

Recall that the previous best known result for efficiently computing approximate PML distribution
is due to Charikar et al. (2019a), where the authors using combinatorial techniques provide a
convex optimization problem that helps them compute an exp(−O(n2/3 log n))-approximate PML
distribution in nearly linear time. The convex program provided in Charikar et al. (2019a) is the same
as ours, which is quite surprising as the prior derivation of this relaxation in Charikar et al. (2019a)
was purely combinatorial and was not directly derived from Sinkhorn approximation. We also remark
that in a follow up work to ours Anari et al. (2020), using the connection we established between the
Sinkhorn and PML from the first part, and several other key steps in our rounding algorithm from the
second part, the authors in Anari et al. (2020) provided an improved efficient rounding algorithm
that returns an instance based exp(−O(k log n)) approximate PML distribution. Anari et al. (2020)
further used the instance based approximation to efficiently implement the PseudoPML Charikar
et al. (2019b) and profile entropy results Hao and Orlitsky (2020) (See Section 4.1 for further details).

Leveraging the result from Acharya et al. (2016), such an improved exp(−O(
√
n log n)) ap-

proximate PML distribution provides us an universal estimator that is sample optimal in the
regime ε > n−0.249, while the previous work Charikar et al. (2019a) provided analogous result
for ε > n−0.166.

We now describe our second result (a crucial ingredient used in the improved PML approximation
described above): we show that the approximation ratio between the permanent and the scaled
Sinkhorn permanent is upper bounded by exp(−O(k log(N/k))), where N, k are the dimension
and the non-negative rank of the matrix respectively. This result implies the same approximation
guarantee for the Bethe permanent, an alternative to the Sinkhorn permanent with a tighter worst-case
multiplicative approximation. We also give an explicit construction of a matrix to show that our result
for this structural parameter is asymptotically tight. As described earlier, the main application of the
improved upper bound for the Sinkhorn and Bethe permanents are in PML. Recall that the scaled
Sinkhorn permanent was used to provide the convex programs studied in our first result and the
analysis of the scaled Sinkhorn was the key ingredient to prove the desired approximation guarantees
for the PML.

Organization of the paper: In Section 2, we provide a overview of our techniques. In Section 3
we present preliminaries. In Section 4, we provide the main results of the paper. In Section 5,
we demonstrate the process of computing approximate PML through an illustrative example. In
Appendix A, we analyze the scaled Sinkhorn permanent of structured matrices. In Appendix A.2, we
prove an upper bound for the approximation ratio of the scaled Sinkhorn permanent to the permanent
as a function of the number of distinct columns. In Appendix A.3, we prove the generalized result of
the scaled Sinkhorn permanent for the low non-negative rank matrices. In Appendix B, we prove the
lower bound for the Bethe and scaled Sinkhorn approximations of the permanent. In Appendix C,

1. The variable of this new optimization problem is a matrix whose rows correspond to probability values and the ith row
sum denotes the number of domain elements in the distribution with that probability value.
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we combine the result for the scaled Sinkhorn permanent with the idea of probability discretization
to provide the convex program that returns a fractional representation of an approximate PML
distribution. In the same section, we provide the rounding algorithm to return a valid approximate
PML distribution.

2. Overview of Techniques

Here we provide a broad overview of our approach to compute an approximate PML distribu-
tion. In Section 2.1, we outline the key ideas in obtaining an efficient algorithm to compute an
exp(−O(

√
n log n)) approximate PML. A crucial ingredient in this result is a bound on the quality

of the Sinkhorn permanent approximation for low non-negative rank matrices. We give an overview
of this proof in Section 2.2.

2.1. Efficient computation of approximate PML distribution

Here we provide a proof overview of our primary result, where we draw a connection between
the previous known permanent approximations and PML to provide an efficient algorithm to com-
pute exp(−O(

√
n log n)) approximate PML distributions. Our approach leverages that we can

obtain improved bounds on the approximation ratio of the Bethe and scaled Sinkhorn permanent
approximations of low non-negative matrices, which we discuss in greater detail in Section 2.2.

The idea of using these permanent approximations for computing an approximate PML dis-
tribution comes from the fact that the likelihood of a profile with respect to a distribution can be
written as the permanent of a non-negative Vandermonde matrix (which we call the profile probability
matrix) Vontobel (2012). The number of distinct rows and columns of this profile probability matrix
correspond to the number of distinct frequencies in the profile and distinct probability values in the
distribution respectively.

As the non-negative rank of a matrix is always upper bounded by the minimum of the number
of its distinct rows and columns, through our analysis (outlined in the next section) we get that the
Bethe and scaled Sinkhorn permanents are within a factor exp (−O(k log n)) of the PML objective
with respect to a fixed distribution, where k is the number of distinct frequencies in the profile. Given
n samples, as the number of distinct frequencies is always upper bounded by

√
n, our analysis of the

scaled Sinkhorn permanent immediately implies an exp (−O(
√
n log n)) approximation to the PML

objective with respect to a fixed distribution.
Even with this improved bound on the quality of the Bethe and scaled Sinkhorn approximations

as applied to the PML objective, challenges remain in obtaining an improved approximate PML
distribution. In particular, we do not know of an efficient algorithm to maximize the Bethe or the
scaled Sinkhorn permanent of the profile probability matrix over a family of distributions as it
would be needed to compute the Bethe or the scaled Sinkhorn approximation to the optimum of the
PML objective. Prior work by Vontobel suggests an alternating maximization approach, but this
is only guaranteed to produce a local optimum. To address this, we apply the idea of probability
discretization to rewrite the scaled Sinkhorn optimization problem. Our new optimization problem is
convex and its variables form a matrix. The rows of this variable matrix are indexed by a fixed set
of probability values and the columns are indexed by the distinct frequencies. Further the row and
column sums of this matrix are equal to the number of domain elements with their corresponding
probability values and frequencies respectively. One nice property of this new optimization problem
is that a slight modification to it helps us encode the part of maximizing over all the distributions. The
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modification results in a new convex program whose optimal solution is a fractional representation
of an approximate PML distribution. Surprisingly, the resulting convex program is exactly the same
as the one in Charikar et al. (2019a), where a completely different (combinatorial) technique was
used to arrive at the convex program.

The final challenge towards obtaining our PML results is to round the fractional solution produced
so that the approximation guarantee is preserved. The rounding procedure from Charikar et al. (2019a)
does not immediately suffice, but we present a more sophisticated and delicate rounding procedure
that does indeed give us the required approximation guarantee. A main task of the algorithm is to
round the fractional solution matrix such that all row sums are integral while preserving the column
constraints. Our rounding algorithm proceeds in three steps, where in the first step we first apply
a procedure analogous to Charikar et al. (2019a) to handle large probability values and in the later
steps we provide a new procedure to the smaller probability values; in each step, we ensure that
the objective function does not drop significantly. We create rows corresponding to new probability
values in the course of the rounding algorithm, maintain column sums and eventually ensure that
all row sums are integral, and ensure that the objective function has not dropped significantly. We
provide a more detailed proof overview of the rounding algorithm in Appendix C.2.

2.2. Permanent approximations of low non-negative-rank matrices

Here we provide a proof overview of one of our main technical results where we show that the
approximation ratio between the permanent and the Bethe and scaled Sinkhorn permanent approxima-
tions are upper bounded by an exponential in the non-negative rank of the matrix (up to a logarithmic
factor). The Bethe and scaled Sinkhorn permanents of a non-negative matrixA are optimum solutions
to maximization problems over doubly stochastic matrices Q where the objective functions have
entropy-like terms involving the entries ofA andQ. Our analysis here exploits the non-trivial fact that
the Bethe and scaled Sinkhorn approximations are lower bounds for the permanent of a non-negative
matrix. In order to obtain an upper bound on the Bethe and scaled Sinkhorn approximation as a
function of the non-negative rank, we show the existence of a doubly stochastic matrix Q as a witness
such that the objective of the Bethe and scaled Sinkhorn w.r.t. Q upper bounds the permanent of A
within the desired factor.

We first work with a simpler setting of matrices A with at most k distinct columns.2 Here we
consider a modified matrix Â that contains the k distinct columns of A. We define a distribution
µ on permutations of the domain where the probability of a permutation σ is proportional to its
contribution to the permanent of A. There is a many-to-one mapping from such permutations to
0-1, N × k matrices with row sums 1 and column sums φj , the number of times the j’th column
of Â appears in A. We next define an N × k real-valued, non-negative matrix P with row sums
1 and column sums φj , in terms of the marginals of the distribution µ. We also define a different
distribution ν on 0-1, N × k row-stochastic matrices by independent sampling from P . Finally, we
use the fact that the KL-divergence between µ and ν is non-negative to get the required upper bound
on the scaled Sinkhorn approximation with a doubly stochastic witness Q (obtained from P ). This
proof technique is inspired by the recent work of Anari and Rezaei Anari and Rezaei (2018) that

2. In response to an initial submission of this paper, an anonymous reviewer showed that a simpler proof for the distinct
column case can be derived using Corollary 3.4.5 of Barvinok’s book Barvinok (2017). We thank the anonymous
reviewer for this and include the derivation in Appendix D. The proof of the Corollary 3.4.5 further uses the famous
Bregman–Minc inequality, a relatively heavy hammer. In contrast, our proof is self-contained and we believe it
provides further insight into the structure of the Sinkhorn/Bethe approximations. See Section 4.1 for further details.
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gives a tight
√

2
N

bound on the approximation ratio of the Bethe approximation for the permanent
of an N ×N non-negative matrix.

Both our work and Anari and Rezaei (2018) use entropy based methods but they differ at key
places. In most of the prior entropy based methods Schrijver (1978); Radhakrishnan (1997); Anari
et al. (2018), µ is the distribution of interest and is straightforward to construct. On the other hand,
the distribution ν differs across various approaches and is the crucial part of the analysis. For instance,
we exploit the structure of repetitive columns and work with a marginal distribution ν defined over
0− 1, N × k matrices while the proof of Anari and Rezaei (2018) analyzes a distribution defined
over permutations. The idea of working with marginal distributions reduces the dimension of the
problem and helps us derive bounds in terms of k instead of N . Another key difference between
our work and Anari and Rezaei (2018) is in the procedure to derive distribution ν. While Anari
and Rezaei (2018) used dependent sampling procedure to define the distribution ν, we use a simple
independent sampling procedure.

Though this bound on the quality of the Bethe and scaled Sinkhorn approximations for non-
negative matrices with k distinct columns suffices for our PML applications, interestingly we show
that it can be extended to non-negative matrices with bounded rank. In order to obtain an upper
bound on the Bethe and scaled Sinkhorn approximation as a function of the non-negative rank of A,
recall that we need to show the existence of a suitable doubly stochastic witness Q which certifies the
required guarantee. We express the permanent of A as the sum of O(exp(k log(N/k))) terms of the
form perm(U)perm(V ) where matrices U and V have at most k distinct columns. We focus on the
largest of these terms, and construct a doubly stochastic witness Q for matrix A from the witnesses
for matrices U and V in this largest term. This doubly stochastic witness Q certifies the required
guarantee and we get an upper bound on the scaled Sinkhorn approximation as a function of the
non-negative rank. This result for the scaled Sinkhorn approximation further implies an upper bound
for the Bethe approximation.

3. Preliminaries

Let [a, b] and [a, b]R denote the interval of integers and reals ≥ a and ≤ b respectively. Let D be

the domain of elements and N def
= |D| be its size. Let A ∈ RD×D be a non-negative matrix, where

its (x, y)’th entry is denoted by Ax,y. We further use Ax: and A:y to denote the row and column
corresponding to x and y respectively. The non-negative rank of a non-negative matrix A ∈ RD×D
is equal to the smallest number k such there exist non-negative vectors vj ,uj ∈ RD for j ∈ [1, k]
such that A =

∑
j∈[1,k] vju>j . Let SD be the set of all permutations of domain D and we denote a

permutation σ in the following way σ = {(x, σ(x)) for all x ∈ D}. The permanent of a matrix A
denoted by perm(A) is defined as: perm(A)

def
=
∑

σ∈SD
∏
e∈σ Ae . Let Krc ⊆ RD×D≥0 be the set of

all non-negative matrices that are doubly stochastic. For any matrix A ∈ RD×D≥0 and Q ∈ Krc, we
define the following set of functions:

U(A,Q)
def
=

∑
(x,y)∈D×D

Qx,y log

(
Ax,y

Qx,y

)
and V(Q) =

∑
(x,y)∈D×D

(1−Qx,y) log
(
1−Qx,y

)
.

(1)
For a matrix A ∈ RD×D≥0 , the Bethe and Sinkhorn permanent of A are defined as follows,

bethe(A)
def
= max

Q∈Krc

exp (U(A,Q) + V(Q)) sinkhorn(A)
def
= max

Q∈Krc

exp (U(A,Q)) .
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Later we will see that it is convenient to work with exp(−N)sinkhorn(A) than sinkhorn(A) itself;
we define this expression to be scaled Sinkhorn and we formally define it as follows.

scaledsinkhorn(A)
def
= max

Q∈Krc

exp (U(A,Q)−N) .

The maximization objectives in the definitions of bethe(A), sinkhorn(A) and scaledsinkhorn(A)
are all concave functions of Q after taking log. The log concavity of sinkhorn(A) and scaledsinkhorn(A)
objectives is immediate due to the use of the entropy function. However, showing that the objective
of bethe(A) is log concave is nontrivial and shown in Vontobel (2013).

Lemma 3.1 (Stirling’s approximation) For all n ∈ Z+, the following inequalities hold: exp(n log n−
n) ≤ n! ≤ O(

√
n) exp(n log n− n) .

3.1. Profile maximum likelihood

Let ∆D ⊂ [0, 1]DR be the set of all discrete distributions supported on domain D. Here on we use the
word distribution to refer to discrete distributions. Throughout this paper we assume that we receive
a sequence of n independent samples from an underlying distribution p ∈ ∆D. Let Dn be the set of
all length n sequences and yn ∈ Dn be one such sequence with yni denoting its i’th element. The
probability of observing sequence yn is:

P(p, yn)
def
=
∏
x∈D

pf(yn,x)
x

where f(yn, x) = |{i ∈ [n] | yni = x}| is the frequency/multiplicity of symbol x in sequence yn and
px is the probability of domain element x ∈ D. For any given sequence one could define its profile
(histogram of a histogram or fingerprint) that is sufficient statistic for symmetric property estimation.

Definition 3.2 (Profile) For any sequence yn ∈ Dn, let M = {f(yn, x)}x∈D\{0} be the set of all
its non-zero distinct frequencies and m1,m2, . . . ,m|M| be elements of the set M. The profile of a

sequence yn ∈ Dn denoted by φ = Φ(yn) ∈ Z|M|+ is φ def
= (φj)j∈[1,|M|] , where φj = φj(y

n)
def
=

|{x ∈ D | f(yn, x) = mj}|3. We call n the length of profile φ and let Φn denote the set of all profiles
of length n. We use k to denote the number of distinct frequencies and k = |M|.4

For any distribution p ∈ ∆D, the probability of a profile φ ∈ Φn is defined as:

P(p, φ)
def
=

∑
{yn∈Dn | Φ(yn)=φ}

P(p, yn) (2)

The profile maximum likelihood and approximate profile maximum likelihood distributions are
defined as follows.

Definition 3.3 (Profile maximum likelihood) For any profile φ ∈ Φn, a profile maximum likeli-
hood (PML) distribution ppml,φ ∈ ∆D is: ppml,φ ∈ arg maxp∈∆D P(p, φ) and P(ppml,φ, φ) is the
maximum PML objective value.

Definition 3.4 (Approximate PML) For any profile φ ∈ Φn, a distribution pβpml,φ ∈ ∆D is a

β-approximate PML distribution if P(pβpml,φ, φ) ≥ β · P(ppml,φ, φ).
3. The profile does not contain information about the number of unseen domain elements.
4. Note that the number of distinct frequencies denoted by k in a length n sequence is always upper bounded by

√
n.
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4. Results

Here we state the main results of this paper. In our first result, we draw a connection between the
Sinkhorn and Bethe permanent approximations to the PML, and provide an efficient algorithm to
compute an exp(−O(

√
n log n)) approximate PML distribution. We defer the proof of the following

theorem to Appendix C.

Theorem 4.1 (exp (
√
n log n)-approximate PML) For any given profile φ ∈ Φn, Algorithm 4

computes an exp (−O(
√
n log n))-approximate PML distribution in Õ(n1.5) time.

Previously the best known result by Charikar et al. (2019a) gave an efficient algorithm to compute
exp(−O(n2/3 log n))-approximate PML distribution. One important application of approximate
PML is in symmetric property estimation. In Acharya et al. (2016), the authors showed that a
β-approximate PML distribution based plug-in estimator is sample complexity optimal for estimating
certain symmetric properties; the approximation factor β affects the error parameter regime under
which the estimator is sample complexity optimal. Combining their result with our Theorem 4.1, we
get an efficient version of Theorem 2 in Acharya et al. (2016); we summarize this result next.

Theorem 4.2 (Efficient universal estimator using approximate PML) Let n be the optimal sam-
ple complexity of estimating entropy, support, support coverage and distance to uniformity. If
ε ≥ c

n0.2499 for some constant c > 0, then there exists a PML based universal plug-in estimator
that runs in time Õ(n1.5) and is sample complexity optimal for estimating entropy, support, support
coverage and distance to uniformity to accuracy ε.

Note that the dependency on ε in Theorem 4.2 and the approximation factor in Theorem 4.1 are
strictly better than Charikar et al. (2019a), which is the previous efficient PML based approach for
universal symmetric property estimation; Charikar et al. (2019a) works when ε ≥ 1

n0.166 .
Recent work Hao and Orlitsky (2019) shows the optimality of an approximate PML distribution

based estimator for other symmetric properties, such as sorted distribution estimation (under `1
distance), α-Renyi entropy for non-integer α > 3/4, and other broad class of additive properties
that are Lipschitz. Hao and Orlitsky (2019) also provides a PML-based tester to test whether an
unknown distribution is ≥ ε far from a given distribution in `1 distance and achieves the optimal
sample complexity up to logarithmic factors. Our result further implies an efficient version of all
these results (for a broader range of error ε than could be achieved by using Charikar et al. (2019a)).

As mentioned in Sections 1 and 2, we achieve the above results through the improved analysis of
the Bethe and scaled Sinkhorn permanent approximations of low non-negative matrices. Recall, that
for any fixed distribution p and profile φ, P(p, φ) is proportional to the permanent of the non-negative
matrix Ap,φ (See Equation (67) for the definition of Ap,φ). Note that the number of distinct columns
in the profile probability matrix Ap,φ is upper bounded by the number of distinct frequencies plus
one, which further is always less than

√
n + 1. Therefore the non-negative rank of the profile

probability matrix Ap,φ is always upper bounded by
√
n+ 1. In our next result, we show that the

scaled Sinkhorn permanent approximates the permanent of any non-negative matrix A, where the
approximation factor (up to log factors) depends exponentially on the non-negative rank of the matrix
A. Since scaledsinkhorn(A) can be computed in polynomial time Charikar et al. (2019a)5, our next

5. scaledsinkhorn(A) corresponds to a convex optimization problem and a minor modification of the approach in
Charikar et al. (2019a) to solve a related, but slightly different optimization problem, yields a polynomial time
algorithm to compute scaledsinkhorn(A) up to high accuracy.
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theorem implies an efficient algorithm to approximate the value P(p, φ) for a fixed distribution p up
to multiplicative exp(O(−k log n)) factor, where k ≤

√
n is the number of distinct frequencies in

the profile and is the best known approximation factor achieved by a deterministic algorithm. We
formally state the scaled Sinkhorn result next and defer its proof to Appendix A.

Theorem 4.3 (Scaled Sinkhorn permanent approximation for low non-negative rank matrices)
For any matrix A ∈ RD×D≥0 with non-negative rank at most k, the following inequality holds,

scaledsinkhorn(A) ≤ perm(A) ≤ exp

(
O

(
k log

N

k

))
scaledsinkhorn(A) . (3)

Further using scaledsinkhorn(A) ≤ bethe(A) (See Corollary A.5) and bethe(A) ≤ perm(A)
(See Lemma A.2) we immediately get the same result for the Bethe permanent.

Corollary 4.4 (Bethe permanent approximation for low non-negative rank matrices) For any
matrix A ∈ RD×D≥0 with non-negative rank at most k, the following inequality holds,

bethe(A) ≤ perm(A) ≤ exp

(
O

(
k log

N

k

))
bethe(A) . (4)

Interestingly, in the worst case, Sinkhorn is an eN approximation to the permanent of A ∈ RD×D≥0 ,
even when A has at most 1 distinct column (consider the all 1’s matrix). Consequently, for matrices
with non-negative rank at most k, whenever k = o(N/ logN), scaled Sinkhorn is a compelling
alternative to Sinkhorn, with a tighter worst-case multiplicative approximation to the permanent.

Our results improve the analysis of the Bethe permanent for such structured matrices. Previously,
the best known analysis of the Bethe permanent showed an

√
2
N

-approximation factor to the
permanent Anari and Rezaei (2018). The analysis in Anari and Rezaei (2018) is tight for general
non-negative matrices and the authors showed that this bound cannot be improved without leveraging
further structure. Our next result is of a similar flavor, and we provide an asymptotically tight example
for Theorem 4.3 and Corollary 4.4. Refer Appendix B for the proof of the following theorem.

Theorem 4.5 (Lower bound for the Bethe and the scaled Sinkhorn permanents approximation)
There exists a matrix A ∈ RD×D≥0 with non-negative rank k, that satisfies

perm(A) ≥ exp

(
Ω

(
k log

N

k

))
bethe(A) , (5)

which further implies,

perm(A) ≥ exp

(
Ω

(
k log

N

k

))
scaledsinkhorn(A) . (6)

4.1. Related work

We divide this section into two parts: profile maximum likelihood and permanent approximations.
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Profile maximum likelihood: As discussed in the introduction, PML was introduced by Orlitsky
et al. (2004). Many heuristic approaches such as the EM algorithm Orlitsky et al. (2004), algebraic
approaches Acharya et al. (2010) and a dynamic programming approach Pavlichin et al. (2017)
have been proposed to compute approximations to PML. Further Vontobel (2012, 2014) used the
Bethe permanent as a heuristic to compute the PML distribution. All these approaches don’t provide
theoretical guarantees for the quality of the approximate PML distribution and it was an open question
to efficiently compute a non-trivial approximate PML distribution. Charikar et al. (2019a) gave the
first efficient algorithm to compute the exp(−n2/3 log n) approximate PML distribution.

The connection between PML and universal estimators was first studied in Acharya et al. (2016).
Acharya et al. (2016) showed that an approximate PML distribution can be used as an universal
estimator that is sample optimal for estimating symmetric properties, namely entropy, distance to
uniformity, support size and coverage when error ε > n−0.249. See Hao and Orlitsky (2019) for broad
applicability of approximate PML in property testing and estimating other symmetric properties
such as sorted `1 distance, Renyi entropy, and other broad class of additive properties. Very recently,
authors in Han and Shiragur (2020) provide an improved competitive analysis of the PML, where
they show that the PML based plug-in approach is sample complexity optimal in estimating sorted `1
distance and various other symmetric properties when ε > n−0.333. In a follow up work Han (2020),
one of the authors from the previous work, further show that the condition on the accuracy parameter
ε > n−0.333 is actually tight for PML and other broad class of reasonable universal estimators.

Charikar et al. (2019a) combined with Acharya et al. (2016), gave the first efficient PML based
universal estimator for symmetric property estimation. There have been several other approaches for
designing universal estimators for symmetric properties. Valiant and Valiant (2011b) adopted and
rigorously analyzed a linear programming based approach for universal estimators proposed by Efron
and Thisted (1976) and showed that it is sample complexity optimal in the constant error regime
for estimating certain symmetric properties (namely, entropy, support size, support coverage, and
distance to uniformity). Recent work of Han et al. (2018) applied a local moment matching based
approach in designing efficient universal symmetric property estimators for a single distribution. Han
et al. (2018) achieves the optimal sample complexity in a broader error regimes for estimating the
power sum function, support and entropy.

In Charikar et al. (2019b); Hao and Orlitsky (2019) it was shown that variants of PML called
PseudoPML and truncated PML respectively, which compute an approximate PML distribution on a
subset of the coordinates, yield sample optimal estimators in broader error regime for a wide range
of symmetric properties. Further, in Hao and Orlitsky (2020) an instance dependent quantity known
as profile entropy was shown to govern the accuracy achievable by PML and their analysis holds for
all symmetric properties with no additional assumption on the structure of the property.

Estimating symmetric properties of a distribution is a rich field and extensive work has been
dedicated to studying their optimal sample complexity for estimating each of these properties.
Optimal sample complexities for estimating many symmetric properties were resolved in the past
few years; support Valiant and Valiant (2011b); Wu and Yang (2015), support coverage Orlitsky
et al. (2016); Zou et al. (2016), entropy Valiant and Valiant (2011b); Wu and Yang (2016), distance
to uniformity Valiant and Valiant (2011a); Jiao et al. (2016), sorted `1 distance Valiant and Valiant
(2011a); Han et al. (2018), Renyi entropy Acharya et al. (2014, 2017), KL divergence Bu et al.
(2016); Han et al. (2016) and many others.

Comparison to Charikar et al. (2019a): As discussed earlier, Charikar et al. (2019a) provides
an efficient algorithm to compute an exp(−n2/3 log n)-approximate PML distribution. Suppose
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` and k are the number of distinct probability values and frequencies respectively, then Charikar
et al. (2019a) provides a convex program that using combinatorial techniques they analyze and
show that it approximates the PML objective up to exp(−Õ(`× k)) multiplicative factor. Further
this convex program outputs a fractional solution and Charikar et al. (2019a) provide a rounding
algorithm that outputs a valid integral solution (that corresponds to a valid distribution). Charikar
et al. (2019a) further incur a exp(−Õ(`× k)) multiplicative loss in the rounding procedure. Using
the discretization results, up to exp(−n2/3 log n)-multiplicative loss one can assume `, k ≤ n1/3 and
therefore Charikar et al. (2019a) output a exp(−n2/3 log n)-approximate PML distribution.

However in our current work, using results for the scaled Sinkhorn permanent, we show that the
same convex program in Charikar et al. (2019a) approximates the PML objective up to exp(−Õ(`+
k)) multiplicative factor. Further we also provide a better rounding algorithm that outputs a valid
distribution and incur a exp(−Õ(`+ k)) multiplicative loss. Further using the discretization results,
up to exp(−

√
n log n)-multiplicative loss one can assume `, k ≤

√
n and therefore our work provides

a exp(−
√
n log n)-approximate PML distribution.

Permanent approximations: Valiant (1979) showed that computing the permanent of matrices
even when it has entries in 0, 1 is #P-Hard. This led to the study of computing approximations
to the permanent. For fixed rank the permanent can be computed in polynomial time Barvinok
(1996). Additive approximation to the permanent for arbitrary A was given by Gurvits (2005). On
the other hand, multiplicative approximation to the permanent (or even determining the sign) is hard
for general A Aaronson and Arkhipov (2011); Grier and Schaeffer (2018). This hardness result
led to the study of the multiplicative approximation to the permanent for special class of matrices
and one such class is the set of non-negative matrices. In this direction, Jerrum et al. (2004) gave
the first efficient randomized algorithm to approximate the permanent within (1 + ε) multiplicative
accuracy. There has also been a rich literature on coming up with deterministic approximation to
the permanent of non-negative matrices. Linial et al. (1998) gave the first deterministic algorithm
to the permanent of N ×N non-negative matrices with approximation ratio ≤ eN . Gurvits (2011)
using an inequality from Schrijver (1998) showed that the Bethe permanent lower bounds the value
of the permanent of non-negative matrices. Bethe approximation is based on the Bethe free energy
approximation and is very closely connected to the belief propagation algorithm Yedidia et al. (2005);
Vontobel (2013). We refer the reader to Vontobel (2013); Gurvits and Samorodnitsky (2014) for the
polynomial computability of the Bethe permanent and Anari and Rezaei (2018) for a more rigorous
literature survey on the Bethe permanent and other related work.

As discussed in the footnote of the introduction, an anonymous reviewer showed us an alternative
and simpler proof for the upper bound on the Sinkhorn approximation to the permanent of matrices
with at most k distinct columns (Lemma A.1). This proof is deferred to Appendix D and is
derived using Corollary 3.4.5. in Barvinok’s book Barvinok (2017). The result in turn, is proved
using the Bregman-Minc inequality conjectured by Minc, cf. Spence (1982) and later proved by
Bregman Brègman (1973). The Bregman-Minc inequality is well-known and there are many different
proofs Schrijver (1978); Radhakrishnan (1997); Alon and Spencer (2004) known. In comparison to
this alternative proof for matrices with k distinct columns, our proof is self contained and intuitive.
We believe it could help provide further insights into the Sinkhorn/Bethe approximations.
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5. Illustrative example

The algorithm to compute an approximate PML includes several steps and we provide an overview
of these steps through an illustrative example. Let aabc be the observed sample and φ = {{2, 1, 1}}6

be its corresponding profile. Although the number of unseen domain elements is unknown while
computing PML, for simplicity we assume it to be 1 and let d be this unseen domain element. Let
D = {a, b, c, d} denote the complete domain and ∆D be the set of all distributions supported on D.

Probability of a profile For a distribution p = (pa,pb,pc,pd) ∈ ∆D, the probability of the profile
{{2, 1, 1}} with respect to p is given by,

P(p, φ) = 12[papb(p2
cp

0
d + p0

cp
2
d) + papc(p2

bp
0
d + p0

bp
2
d) + papd(p2

bp
0
c + p0

bp
2
c) (7)

+ pbpc(p2
ap0
d + p0

ap2
d) + pbpd(p2

ap0
c + p0

ap2
c) + pcpd(p2

ap0
b + p0

ap2
b)] .

The first two terms in the summation correspond to the sequences abcc and abdd respectively. The
factor 12 further counts the permutations of those sequences. The other summation terms similarly
correspond to other sequences whose profile is {{2, 1, 1}}.

Permanent formulation and PML It is often convenient to think of the Equation (7) in terms of
the permanent of a matrix. For any p ∈ ∆D and profile φ, it is known that P(p, φ) (Equation (7)) is
proportional to the permanent of the following generalized Vandermonde matrix (Vontobel (2012)),

Ap =


p2
a pa pa p0

a

p2
b pb pb p0

b

p2
c pc pc p0

c

p2
d pd pd p0

d

 .

Consequently, computing a PML distribution corresponds to maximizing perm(Ap) over all p ∈ ∆D.

Sinkhorn permanent approximation In our work, we consider the Sinkhorn permanent to ap-
proximate the permanent. For a fixed distribution p ∈ ∆D, the Sinkhorn permanent (Section 3)
approximation to perm(Ap) is given by the following optimization problem,

scaledsinkhorn(Ap) = max
Q∈RD×D

∑
x,y∈D

Qx,y log
pfyx
Qx,y

, (8)

such that
∑
x∈D

Qx,y = 1 ∀ y ∈ D, and
∑
y∈D

Qx,y = 1 ∀ x ∈ D ,

where fy is the frequency of y ∈ D (fa = 2, fb = 1, fc = 1, fd = 0) and 4 is the dimension of
Ap. For a fixed p ∈ ∆D, the above problem can be solved by convex optimization methods as the
constraints are linear and the objective is log concave. However recall that our goal is to maximize
over all p ∈ ∆D. Unfortunately, the objective is not jointly log concave in Q and p in general.

New formulation To handle the issue of maximizing over all distributions, we rewrite the opti-
mization problem 8. To illustrate this step and for simplicity, we consider a distribution p that takes
all its probability values in the set {r1, r2} and let pa = pb = pc = r1, pd = r2. Note that the rows

6. We use double brackets to denote the multiset
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in Ap corresponding to elements a, b, c are all the same as they share the same probability value
and due to symmetry, it is immediate that there exists an optimum solution Q∗ to problem 8 such
that Q∗a. = Q∗b. = Q∗c.. Therefore it is sufficient to maximize 8 over doubly stochastic matrices Q
that satisfy Qa. = Qb. = Qc.. Further, note that all of these matrices have at most two distinct rows
denoted by Q1. and Q2. corresponding to probability values {r1, r2} respectively. These structured
matrices Q have one to one correspondence to low dimensional matrices P that consist of two rows,
where P1. = 3Q1., P2. = Q2. and the optimization problem 8 can be rewritten as follows,

max
P∈R[1,2]×D

∑
i∈[1,2],y∈D

Pi,y log
r
fy
i

Pi,y
+
∑
i∈[1,2]

(∑
y∈D

Pi,y
)

log
(∑
y∈D

Pi,y
)
, (9)

such that
∑
i∈[1,2]

Pi,y = 1 for all y ∈ D,
∑
y∈D

P1,y = 3 and
∑
y∈D

P2,y = 1 .

Note that the values 3 and 1 on the right hand side of row constraints correspond to the number of
domain elements with probability values {r1, r2} respectively. A similar argument as the one we
applied to rows/probabilities can also be applied to columns/frequencies and we can further compress
columns of matrix Q (equivalently P) to get a new variable matrix S that has dimension `× k, where
` denotes the distinct probabilities and k the distinct columns in Q (same as distinct columns in P)
which is further equal to the number of distinct frequencies. Now, rewriting the above optimization
problem in terms of Sij yields the following optimization problem,

max
S∈R[1,2]×[0,2]

∑
i∈[1,2],j∈[0,2]

Si,j log
rji

Si,j
+
∑
i∈[1,2]

( ∑
j∈[0,2]

Si,j
)

log
( ∑
j∈[0,2]

Si,j
)

+
∑
j∈[0,2]

φj log φj ,

such that
∑
i∈[1,2]

Si,j = φj for all j ∈ [0.2],
∑
j∈[0,2]

S1,j = 3 and
∑
j∈[0,2]

S2,j = 1 , (10)

where φj denotes the number of domain elements with frequency j (φ0 = 1, φ1 = 2, φ2 = 1). In
general, the optimization problem 8 always exhibits an optimum solution that assigns same values to
rows and columns that share equal probability and frequency values respectively. Therefore for any
other distribution p′ that has probabilities in set {r1, r2}, the probability of profile φ with respect
to p′ can be approximated by the above optimization problem by just replacing the right hand side
of row sum constraints with values x1 and x2 that count the number of domain elements in p′ with
probability r1 and r2 respectively. Further, any distribution that takes all its probability values in
some set R can be approximated by extending the above optimization problem by including a row
constraint for each probability value in R.

Maximizing over all distributions, convex program and rounding As discussed, the i’th row
sum of the variable matrix S indicates the number of domain elements with probability ri. To handle
the maximization over all distributions, we remove all the row constraints in optimization problem
(10) and replace them by just one constraint

∑
i∈R ri

(∑
j Sij

)
≤ 1 which serves as a proxy to

capture all pseudo-distributions. This new optimization problem with the above constraint is our final
convex program with variable matrix S. The optimum solution to this new optimization problem may
not necessarily have integral row sums and therefore might not correspond to a valid distribution.
Therefore, in our final step we design a rounding algorithm that rounds these fractional row sums
to integral while not losing much in the objective. Such a rounded solution then corresponds to an
approximate PML distribution.
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Appendix A. The Sinkhorn permanent for structured matrices.

In this section, we provide the proof for our first main theorem (Theorem 4.3). We show that
the scaled Sinkhorn permanent of a non-negative matrix approximates its permanent, where the
approximation factor is exponential in the non-negative rank of the matrix (up to log factors). Our
proof is divided into two parts. First in Appendix A.2, we work with a simpler setting of matrices A
with at most k distinct columns and prove the following lemma.

Lemma A.1 (Scaled Sinkhorn permanent approximation) For any matrix A ∈ RD×D≥0 with at
most k distinct columns, the following holds,

scaledsinkhorn(A) ≤ perm(A) ≤ exp

(
O

(
k log

N

k

))
scaledsinkhorn(A) . (11)

Further using the above result, in Appendix A.3 we prove our main theorem (Theorem 4.3) for
low non-negative rank matrices. We start by providing some basic inequalities related to the Bethe
and scaled Sinkhorn permanents.

A.1. Basic inequalities

A well known and important result about the Bethe permanent is that it lower bounds the value of
permanent of a non-negative matrix and we state this result next.

Lemma A.2 (Gurvits (2011) based on Schrijver (1998)) For any non-negative A ∈ RD×D≥0 , the
following holds,

bethe(A) ≤ perm(A)

To establish the relationship between the Bethe and the Sinkhorn permanent we need the following
lemma from Gurvits and Samorodnitsky (2014).

Lemma A.3 (Proposition 3.1 in Gurvits and Samorodnitsky (2014)) For any distribution p ∈
RD≥0, the following holds, ∑

x∈D
(1− px) log(1− px) ≥ −1 .

For any matrix Q ∈ Krc, each row of Q is a distribution; therefore the following holds,

V(Q) ≥ −N .

As a corollary of the above inequality we have,

Corollary A.4 For any non-negative matrix A ∈ RD×D≥0 , the following inequality holds,

exp(−N)sinkhorn(A) ≤ bethe(A) .

The above expression can be equivalently stated as,

scaledsinkhorn(A) = exp(−N)sinkhorn(A) .

Combining Lemma A.2 and Corollary A.4 we get the following result.

Corollary A.5 For any matrix A ∈ RD×D≥0 , the following inequality holds,

scaledsinkhorn(A) ≤ bethe(A),

which further implies,
scaledsinkhorn(A) ≤ perm(A) .
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A.2. The Sinkhorn permanent for distinct column case.

We start this section by defining some notation that captures the structure of repetition of columns
in a matrix. For the remainder of this section we fix a matrix A ∈ RD×D≥0 . We let k denote the
number of distinct columns of A and use c1, c2, . . . ck to denote these distinct columns. Further we
let Â = [c1 | c2 | . . . | ck] denote the D × k matrix formed by these distinct columns. We use A:y

to denote the y’th column of matrix A and let φj
def
= |{y ∈ D | A:y = cj}| denote the number of

columns equal to cj . It is immediate that, ∑
j∈[1,k]

φj = N , (12)

where N = |D| is the size of the domain. For any matrix P ∈ RD×k≥0 define,

f(A,P)
def
=
∑
x∈D

∑
j∈[1,k]

Px,j log
Âx,j

Px,j
+
∑
j∈[1,k]

φj log φj −
∑
j∈[1,k]

φj . (13)

In the first half of this section, we show existence of a matrix P ∈ RD×k≥0 (See Lemma A.8) such that∑
j∈[1,k] Px,j = 1 for all x ∈ D,

∑
x∈D Px,j = φj for all j ∈ [1, k], and further (See Lemma A.9),

log perm(A) ≤ O
(
k log

N

k

)
+ f(A,P) . (14)

Later in the second half (See Lemma A.10), we show that for any matrix P ∈ RD×k≥0 that satisfies∑
j∈[1,k] Px,j = 1 for all x ∈ D and

∑
x∈D Px,j = φj for all j ∈ [1, k], there exists a matrix

Q ∈ Krc (recall Krc is the set of all D ×D doubly stochastic matrices) that satisfies,

f(A,P) = U(A,Q)−N . (15)

However, using Corollary A.5 we already know that, scaledsinkhorn(A) ≤ perm(A). Further using
the definition of scaledsinkhorn(A) and combining with Equations (14) and (15) we get,

scaledsinkhorn(A) ≤ perm(A) ≤ exp

(
O

(
k log

N

k

))
scaledsinkhorn(A) .

In the remainder, we provide proofs for all the above mentioned inequalities and we need the
following set of definitions. Let Kr ⊆ {0, 1}D×k, be the subset of all D × k matrices that are row
stochastic, meaning there is exactly a single 1 in each row. Let KA ⊆ Kr be the set of matrices such
that any X ∈ KA satisfies

∑
x∈D Xx,j = φj for all j ∈ [1, k].

Definition A.6 Let hA : SD → KA be the function that takes a permutation σ ∈ SD as input and
returns a matrix X ∈ KA in the following way,

Xx,j =

{
1 if A:σ(x) = cj
0 otherwise

for all x ∈ D. (16)
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Remark: Note that as desired hA(σ) ∈ KA for all σ ∈ SD because of the following. For any

σ ∈ SD, let X def
= hA(σ). Since cj for all j ∈ [1, k] are distinct, we have

∑
j∈[1,k] Xx,j = 1. Further

for any j ∈ [1, k],
∑

x∈D Xx,j =
∑
{x∈D | A:σ(x)=cj} 1 =

∑
{x∈D | A·x=cj} 1 = φj .

We next define the probability of a permutation σ ∈ SD with respect to matrix A as follows,

Pr (σ)
def
=

∏
e∈σ Ae

perm(A)
(17)

Further we define a marginal distribution µ on Kr and later we will establish that this is indeed a
probability distribution, that is, probabilities add up to 1.

µ(X)
def
=

{
0 if X ∈ Kr\KA∑
{σ∈SD | hA(σ)=X} Pr (σ) if X ∈ KA .

(18)

For X ∈ KA, we next provide another equivalent expression for µ(X).

µ(X) =
∑

{σ∈SD | hA(σ)=X}

Pr (σ) =
∑

{σ∈SD | hA(σ)=X}

∏
(x,σ(x)) Ax,σ(x)

perm(A)
,

=
1

perm(A)

∑
{σ∈SD | hA(σ)=X}

∏
x∈D

∏
j∈[1,k]

Â
Xx,j
x,j

=

 ∏
j∈[1,k]

φj !

∏
x∈D

∏
j∈[1,k]

Â
Xx,j
x,j

( 1

perm(A)

)
(19)

In the first and second equality, we used definitions of µ(X) and Pr (σ) (See Equation (17)). For any
σ ∈ SD, let X = hA(σ). Further for any x ∈ D, let j′ be such that A:σ(x) = cj′ , then Ax,σ(x) = Âx,j′

that is further equal to
∏
j∈[1,k] Â

Xx,j
x,j because Xx,j is equal to 1 if j = j′ and 0 otherwise. Therefore

the third equality holds. For the final equality, observe that for any σ ∈ SD if we let X = hA(σ),
then for each j ∈ [1, k], any permutation within the subset of elements {x ∈ D | A:σ(x) = cj} results
in a permutation σ′ that satisfies hA(σ′) = X. These permutations can be carried out independently
for each j ∈ [1, k] that corresponds to

∏
j∈[1,k] φj ! number of permutations and all of them have the

same
∏
x∈D

∏
j∈[1,k] Â

Xx,j
x,j value.

Using the derivation from above, the definition for µ can also be written as follows:

µ(X) =

{
0 if X ∈ Kr\KA(∏

j∈[1,k] φj !
)(∏

x∈D
∏
j∈[1,k] Â

Xx,j
x,j

)(
1

perm(A)

)
if X ∈ KA .

(20)

Note that for X ∈ KA, the expression for µ(X) can be equivalently written as follows:

µ(X) =

 ∏
j∈[1,k]

φj !

 ∏
{(x,j)∈D×[1,k] | Xx,j=1}

Âx,j

( 1

perm(A)

)
. (21)

We next show that the µ defined above is a valid distribution.∑
X∈Kr

µ(X) =
∑

X∈KA

µ(X) =
∑

X∈KA

∑
{σ∈SD | hA(σ)=X}

Pr(σ) =
∑
σ∈SD

Pr(σ) = 1

Remark: The domain of distribution µ is Kr, but its support is subset of KA.
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Definition A.7 For the distribution µ, we define a non-negative matrix P ∈ RD×k≥0 with respect to µ
as follows:

Px,j
def
= Pr

X∼µ
(Xx,j = 1) =

∑
{X∈KA | Xx,j=1}

µ(X) . (22)

Lemma A.8 The matrix P defined in Equation (22) satisfies the following conditions:∑
j∈[1,k]

Px,j = 1 for all x ∈ D and
∑
x∈D

Px,j = φj for all j ∈ [1, k] . (23)

Proof We first evaluate the row sum. For each x ∈ D,∑
j∈[1,k]

Px,j =
∑
j∈[1,k]

∑
{X∈KA | Xx,j=1}

µ(X) =
∑

X∈KA

µ(X) = 1 .

In the second inequality we used that X ∈ KA, meaning for each x ∈ D,
∑

j∈[1,k] Xx,j = 1. Next
we evaluate the column sum, for each j ∈ [1, k],∑

x∈D
Px,j =

∑
x∈D

∑
{X∈KA | Xx,j=1}

µ(X) =
∑

X∈KA

∑
{x∈D | Xx,j=1}

µ(X)

=
∑

X∈KA

µ(X)
∑

{x∈D | Xx,j=1}

1 =
∑

X∈KA

µ(X)φj = φj

In the first equality we used the definition of Px,j . In the second inequality we interchanged the
summations. In the final equality we used

∑
X∈KA

µ(X) = 1.

The matrix P defined in Equation (22) is important because we can upper bound the permanent of
matrix A in terms of entries of this matrix. We formalize this result in the following lemma.

Lemma A.9 For matrix A ∈ RD×D≥0 , if P is the matrix defined in Equation (22), then

log perm(A) ≤ O
(
k log

N

k

)
+ f(A,P)

Proof We first calculate the expectation of log(µ(X)) and express it in terms of matrix P.

EX∼µ [logµ(X)] =
∑

X∈Kr

µ(X) logµ(X) =
∑

X∈KA

µ(X) logµ(X) ,

=
∑

X∈KA

µ(X) log

 ∏
j∈[1,k]

φj !

 ∏
{(x,j)∈D×[1,k] | Xx,j=1}

Âx,j

( 1

perm(A)

) ,

= log

 ∏
j∈[1,k]

φj !

− log perm(A) +
∑

X∈KA

µ(X) log

 ∏
{(x,j)∈D×[1,k] | Xx,j=1}

Âx,j

 .

(24)
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The second equality holds because the support of distribution µ is subset of KA. In the third equality
we used Equation (21). We now simplify the last term in the final expression from the above
derivation.

∑
X∈KA

µ(X) log

 ∏
{(x,j)∈D×[1,k] | Xx,j=1}

Âx,j

 =
∑

X∈KA

µ(X)
∑

{(x,j)∈D×[1,k] | Xx,j=1}

log Âx,j ,

=
∑

(x,j)∈D×[1,k]

log Âx,j

∑
{X∈KA | Xx,j=1}

µ(X) ,

=
∑

(x,j)∈D×[1,k]

Px,j log Âx,j .

(25)

Combining Equation (24) and Equation (25) together we get,

EX∼µ [logµ(X)] = log

 ∏
j∈[1,k]

φj !

− log perm(A) +
∑

(x,j)∈D×[1,k]

Px,j log Âx,j . (26)

We next define a different distribution ν on Kr using the following sampling procedure: For
each x ∈ D, pick a column j ∈ [1, k] independently with probability Px,j . Note that this is a valid
sampling procedure because for each x ∈ D,

∑
j∈[1,k] Px,j = 1. The description of distribution ν is

as follows: for each X ∈ Kr,

ν(X)
def
=

∏
{(x,j)∈D×[1,k] | Xx,j=1}

Px,j (27)

Remark: Note that
∑

X∈Kr ν(X) =
∏
x∈D(

∑
j∈[1,k] Px,j) = 1 and ν is a valid distribution.

We next calculate the expectation of log(ν(X)) with respect to distribution µ and express it in
terms of matrix P. Note that

∑
X∈Kr µ(X) log ν(X) =

∑
X∈KA

µ(X) log ν(X) because µ(X) = 0 for
all X ∈ Kr\KA and we get,

EX∼µ [log ν(X)] =
∑

X∈KA

µ(X) log ν(X) =
∑

X∈KA

µ(X) log

 ∏
{(x,j)∈D×[1,k] | Xx,j=1}

Px,j


=
∑

X∈KA

µ(X)
∑

{(x,j)∈D×[1,k]|Xx,j=1}

log Px,j =
∑

(x,j)∈D×[1,k]

log Px,j
∑

{X∈KA|Xx,j=1}

µ(X)

=
∑

(x,j)∈D×[1,k]

Px,j log Px,j

We now calculate the KL divergence KL (µ‖ν) between distributions µ and ν.

KL (µ‖ν)
def
= EX∼µ [logµ(X)]− EX∼µ [log ν(X)]

= log

 ∏
j∈[1,k]

φj !

− log perm(A) +
∑

(x,j)∈D×[1,k]

Px,j log Âx,j −
∑

(x,j)∈D×[1,k]

Px,j log Px,j
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As KL divergence between two distributions is always non-negative, we have KL (µ‖ν) ≥ 0, that
further implies,

log perm(A) ≤ log

 ∏
j∈[1,k]

φj !

+
∑

(x,j)∈D×[1,k]

Px,j log
Âx,j

Px,j

≤
∑
j∈[1,k]

O(log φj) +
∑
j∈[1,k]

φj log φj −
∑
j∈[1,k]

φj +
∑

(x,j)∈D×[1,k]

Px,j log
Âx,j

Px,j

≤ O(k log
N

k
) +

∑
j∈[1,k]

φj log φj −
∑
j∈[1,k]

φj +
∑

(x,j)∈D×[1,k]

Px,j log
Âx,j

Px,j

(28)

In the second inequality we used Lemma 3.1 on each φj and further in the third inequality we
used

∑
j∈[1,k] φj = N and the fact that the function

∑
j∈[1,k] log φj is always upper bounded by

O(k log N
k ). Further using the definition of f(A,P) (See Equation (13)), we conclude the proof.

We provided an upper bound to the permanent of matrix A and all that remains is to relate this
upper bound to the scaled Sinkhorn permanent of matrix A. Our next lemma will serve this purpose.

Lemma A.10 For any matrix P ∈ RD×[1,k]
≥0 that satisfies,∑

j∈[1,k]

Px,j = 1 for all x ∈ D and
∑
x∈D

Px,j = φj for all j ∈ [1, k] . (29)

there exists a doubly stochastic matrix Q ∈ RD×D≥0 such that,

f(A,P) = U(A,Q)−N . (30)

Proof Define matrix Q ∈ RD×D as follows,

Qx,y
def
=

Px,j
φj

where in the definition above j is such that A:y = cj . Now we verify the row and column sums of
matrix Q. For each x ∈ D,∑

y∈D
Qx,y =

∑
j∈[1,k]

∑
{y∈D | A:y=cj}

Px,j
φj

=
∑
j∈[1,k]

Px,j
φj

∑
{y∈D | A:y=cj}

1

=
∑
j∈[1,k]

Px,j
φj
· φj =

∑
j∈[1,k]

Px,j = 1

(31)

We next evaluate the column sums. For each y ∈ D, let j 7 be such that A:y = cj , then∑
x∈D

Qx,y =
∑
x∈D

Px,j
φj

=
1

φj

∑
x∈D

Px,j =
1

φj
φj = 1 . (32)

7. Note that j is a function of y. For convenience, in our notation we don’t capture its dependence on y.
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Therefore the matrix Q is doubly stochastic and we next relate U(A,Q) with f(A,P). Recall the
definition of U(A,Q) (Equation (1)),

U(A,Q) =
∑

(x,y)∈D×D

Qx,y log(
Ax,y

Qx,y
) . (33)

We analyze the above term and express it in terms of entries of matrices P and Â.

∑
(x,y)∈D×D

Qx,y log(
Ax,y

Qx,y
) =

∑
x∈D

∑
j∈[1,k]

 ∑
{y∈D | A:y=cj}

Qx,y log(
Ax,y

Qx,y
)


=
∑
x∈D

∑
j∈[1,k]

 ∑
{y∈D | A:y=cj}

Px,j
φj

log(
Âx,jφj

Px,j
)


=
∑
x∈D

∑
j∈[1,k]

[
φj ·

Px,j
φj

log(
Âx,jφj

Px,j
)

]
=
∑
x∈D

∑
j∈[1,k]

[
Px,j log(

Âx,jφj
Px,j

)

]
(34)

The first equality follows because cj for all j ∈ [1, k] are distinct. The second equality follows
because for each x ∈ D, consider any y ∈ D such that A:y = cj and note that for all such y’s,
Ax,y = Âx,j and Qx,y =

Px,j
φj

. The third equality follows because
∑
{y∈D | A:y=cj} 1 = |{y ∈

D | A:y = cj}| = φj .
We further simplify the final term in the above derivation.∑
x∈D

∑
j∈[1,k]

[
Px,j log(

Âx,jφj
Px,j

)

]
=
∑
x∈D

∑
j∈[1,k]

[
Px,j log(

Âx,j

Px,j
)

]
+
∑
x∈D

∑
j∈[1,k]

Px,j log φj

=
∑
x∈D

∑
j∈[1,k]

[
Px,j log(

Âx,j

Px,j
)

]
+
∑
j∈[1,k]

log φj
∑
x∈D

Px,j

=
∑
x∈D

∑
j∈[1,k]

[
Px,j log(

Âx,j

Px,j
)

]
+
∑
j∈[1,k]

φj log φj .

(35)

Combining Equation (34), Equation (35) and further substituting back in Equation (33) we get,

U(A,Q) =
∑
x∈D

∑
j∈[1,k]

[
Px,j log(

Âx,j

Px,j
)

]
+
∑
j∈[1,k]

φj log φj

= f(A,Q) +N .

(36)

In the final expression, we used the definition of f(A,Q) and combined it with N =
∑

j∈[1,k] φj .

We are now ready to prove our main lemma of this section and is restated for convenience.

Lemma A.1 (Scaled Sinkhorn permanent approximation) For any matrix A ∈ RD×D≥0 with at
most k distinct columns, the following holds,

scaledsinkhorn(A) ≤ perm(A) ≤ exp

(
O

(
k log

N

k

))
scaledsinkhorn(A) . (11)
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Proof Consider the matrix P defined in Equation (22). By Lemma A.8, matrix P satisfies the
conditions of Lemma A.10; therefore, there exists a doubly stochastic matrix Q ∈ Krc such that
f(A,P) = U(A,Q) − N . Combining it with Lemma A.9 we get log perm(A) ≤ O(k log N

k ) +
U(A,Q)−N , which further implies perm(A) ≤ exp(O(k log N

k ))scaledsinkhorn(A). The lower
bound for the perm(A) follows from Corollary A.5 and we conclude the proof.

We next state another interesting property of the matrix P defined in Equation (22). This property
will be useful for the purposes of PML (Appendix C).

Theorem A.11 For matrix A ∈ RD×D≥0 , the matrix P defined in Equation (22) satisfies the following:
If x, y ∈ D are such that Ax. = Ay. then, for all j ∈ [1, k] we have Px,j = Py,j .

Proof For any j ∈ [1, k], recall by the definitions of terms Px,j and Py,j ,

Px,j =
∑

{X∈KA | Xx,j=1}

 ∏
j′∈[1,k]

φj′ !

 ∏
(z,j′)∈D×[1,k]

Â
Xz,j′
z,j′

( 1

perm(A)

)
,

=

 ∏
j′∈[1,k]

φj′ !

( 1

perm(A)

) ∑
{X∈KA | Xx,j=1}

∏
(z,j′)∈D×[1,k]

Â
Xz,j′
z,j′ .

(37)

Py,j =

 ∏
j′∈[1,k]

φj′ !

( 1

perm(A)

) ∑
{X′∈KA | X′y,j=1}

∏
(z,j′)∈D×[1,k]

Â
X′
z,j′

z,j′ . (38)

For any Y ∈ {X ∈ KA | Xx,j = 1} we next construct a unique Y′ ∈ {X′ ∈ KA | X′y,j = 1} (and
vice versa) such that, ∏

(z,j′)∈D×[1,k]

Â
Yz,j′
z,j′ =

∏
(z,j′)∈D×[1,k]

Â
Y′
z,j′

z,j′

Each Y ∈ KA corresponds to a bipartite graph where vertices correspond to set D on left side and
[1, k] on the other, such that, degree of every left vertex x ∈ D is 1 and degree of every right vertex
j ∈ [1, k] is φj .

Consider Y ∈ {X ∈ KA | Xx,j = 1}, we divide the analysis into the following two cases,

1. If Yy,j = 1, meaning both vertices x, y ∈ D are connected to j ∈ [1, k] in our bipartite graph

representation. Then, Y′ def
= Y.

2. If Yy,j = 0, meaning vertex x is connected to j and y to some other vertex j′ 6= j. In this case
we swap the edges, meaning we remove edges (x, j), (y, j′) and add (x, j′), (y, j) to construct
Y′. We formally define Y′ next,

Y′z,j′′
def
=



1 if z = y and j′′ = j,

0 if z = y and j′′ = j′,

1 if z = x and j′′ = j′,

0 if z = x and j′′ = j,

Yz,j′ otherwise .

(39)
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In both cases, clearly Y′ ∈ {X′ ∈ KA | X′y,j = 1}. Further, Ax. = Ay. implies Âx,j′ = Ây,j for all
j′ ∈ [1, k] and the following equality holds,∏

(z,j′)∈D×[1,k]

Â
Yz,j′
z,j′ =

∏
(z,j′)∈D×[1,k]

Â
Y′
z,j′

z,j′

The same analysis also holds when we start with a Y′ ∈ {X′ ∈ KA | X′y,j = 1} and construct
Y ∈ {X ∈ KA | Xx,j = 1}. We have a one to one correspondence between elements Y and Y′ in the
sets {X ∈ KA | Xx,j = 1} and {X′ ∈ KA | X′y,j = 1} respectively, satisfying,

∏
(z,j′)∈D×[1,k]

Â
Yz,j′
z,j′ =

∏
(z,j′)∈D×[1,k]

Â
Y′
z,j′

z,j′ .

Therefore, Px,j = Py,j and we conclude the proof.

A.3. Generalization to low non-negative rank matrices

Here we prove our main result for the scaled Sinkhorn permanent of low non-negative rank matrices
(Theorem 4.3). To prove this result, we use the performance result of the scaled Sinkhorn permanent
for non-negative matrices with k distinct columns. The following lemma relates the permanent of a
matrix A of non-negative rank k to matrices with at most k distinct columns and will be crucial for
our analysis.

Lemma A.12 (Barvinok (1996)) Let A ∈ RD×D≥0 be a matrix of non-negative rank k. If A def
=∑

j∈[k] vju>j for vj ,uj ∈ RD≥0, then

perm(A) =
∑

{α⊆Zk+|
∑
j∈[k] αj=N}

1∏
j∈[k] αj !

perm(Vα)perm(Uα),

where Vα def
= [v1 . . . v1︸ ︷︷ ︸

α1

| v2 . . . v2︸ ︷︷ ︸
α2

| . . . | vk . . . vk︸ ︷︷ ︸
αk

] and Uα def
= [u1 . . . u1︸ ︷︷ ︸

α1

| u2 . . . u2︸ ︷︷ ︸
α2

| . . . |uk . . . uk︸ ︷︷ ︸
αk

].

As the number of terms in the above summation is low, the maximizing term is a good approximation
to the permanent of A.

Corollary A.13 Given a non-negative matrix A ∈ RD×D≥0 , let k denote the non-negative rank of the
matrix. If A =

∑
j∈[k] vju>j for vj ,uj ∈ RD≥0 is any non-negative matrix factorization of A, then

perm(A) ≤ exp

(
O(k log

N

k
)

)
max

{α⊆Zk+|
∑
j∈[k] αj=N}

1∏
j∈[k] αj !

perm(Vα)perm(Uα) . (40)

Proof The number of feasible α’s in the set {α ⊆ Zk+|
∑

j∈[k] αj = N} is at most
(
N+k−1
k−1

)
∈

exp
(
O(k log N

k )
)

and we conclude the proof.
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Lemma A.14 Let Q′,Q′′ ∈ RD×D≥0 be any doubly stochastic matrices. Then Q def
= Q′Q′′ is a doubly

stochastic matrix.

Proof We first consider the row sums,

Q1 = Q′Q′′1 = Q′1 = 1 .

Therefore the matrix Q is row stochastic. In the above derivation, the second and third equalities
follow because Q′′ and Q′ are row stochastic matrices respectively. We now consider the column
sums,

Q>1 = Q′′>Q′>1 = Q′′>1 = 1 .

The above derivation follows because Q′ and Q′′ are column stochastic and therefore the matrix Q is
column stochastic. As the matrix Q is both row and column stochastic we conclude the proof.

We are now ready to prove our main result of this section and we restate it for convenience.

Theorem 4.3 (Scaled Sinkhorn permanent approximation for low non-negative rank matrices)
For any matrix A ∈ RD×D≥0 with non-negative rank at most k, the following inequality holds,

scaledsinkhorn(A) ≤ perm(A) ≤ exp

(
O

(
k log

N

k

))
scaledsinkhorn(A) . (3)

Proof Let α be the maximizer of the optimization problem 40, then

perm(A) ≤ exp

(
O(k log

N

k
)

)
1∏

j∈[k] αj !
perm(Vα)perm(Uα) . (41)

Recall to prove the theorem, we need to construct a doubly stochastic witness Q that satisfies:

log perm(A) ≤ O(k log
N

k
) + U(A,Q)−N .

We construct such a witness Q from the doubly stochastic witnesses for matrices Vα and Uα. For
all j ∈ [k] define Sj

def
= {y ∈ D | Vα

:y = vj}, equivalently Sj = {y ∈ D | Uα
:y = uj} and note that

αj = |Sj |. Let Q′ and Q′′ be the doubly stochastic matrices that maximize the scaled Sinkhorn
permanent for matrices Vα and Uα respectively. Therefore by Lemma A.1 the following inequalities
hold,

log perm(Vα) ≤ O(k log
N

k
) + U(Vα,Q′)−N , (42)

log perm(Uα) ≤ O(k log
N

k
) + U(Uα,Q′′)−N , (43)

where recall U(Vα,Q′) =
∑

x,y∈D×D Q′x,y log
Vαx,y
Q′x,y

and U(Uα,Q′′) =
∑

x,y∈D×D Q′′x,y log
Uαx,y
Q′′x,y

.
Without loss of generality by the symmetry (with respect to columns within Sj) and concavity of
the scaled Sinkhorn objective, we can assume that the maximizing matrices Q′ and Q′′ satisfy the
following: for all x ∈ D and j ∈ [k],

Q′x,y = Q′x,y′ and Q′′x,y = Q′′x,y′ for all y, y′ ∈ Sj and x ∈ D . (44)
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Note that the doubly stochastic matrix that we constructed for the proof of Lemma A.1 also satisfies
the above collection of equalities. Now combining Equations (41) to (43) we get,

log perm(A) ≤ O(k log
N

k
)− log

∏
j∈[k]

αj ! + U(Vα,Q′)−N + U(Uα,Q′′)−N ,

≤ O(k log
N

k
)−

∑
j∈[k]

(αj logαj − αj) + U(Vα,Q′)−N + U(Uα,Q′′)−N ,

≤ O(k log
N

k
)−

∑
j∈[k]

αj logαj + U(Vα,Q′) + U(Uα,Q′′)−N .

(45)

In the second inequality we use the Stirling’s approximation (Lemma 3.1) and the error term due to
this approximation is upper bounded by O(k log N

k ). In the third inequality we used
∑

j∈[k] αj = N .
Let Q = Q′Q′′>, then by Lemma A.14 the matrix Q is doubly stochastic. In the remainder of

the proof we show that,

−
∑
j∈[k]

αj logαj + U(Vα,Q′) + U(Uα,Q′′) ≤ U(A,Q) , (46)

where recall U(A,Q) =
∑

x,y∈D×D Qx,y log
Ax,y
Qx,y

. As matrix Q is doubly stochastic, the above
inequality combined with Equation (45) concludes the proof. Therefore in the remainder we focus
our attention to prove Equation (46) and we start by simplifying the above expression. Define,

βjx,y
def
=

1

Qx,y

∑
z∈Sj

Q′x,zQ
′′
y,z for all x ∈ D, y ∈ D and for all j ∈ [k] . (47)

For all x ∈ D and y ∈ D the variables defined above satisfy the following,∑
j∈[k]

βjx,y =
1

Qx,y

∑
j∈[k]

∑
z∈Sj

Q′x,zQ
′′
y,z =

1

Qx,y

∑
z∈D

Q′x,zQ
′′
y,z =

1

Qx,y
Qx,y = 1 , (48)

where in the third inequality we used the definition of Q = Q′Q′′>. We next simplify and lower
bound the term U(A,Q) in terms of these newly defined variables.

log Ax,y = log
∑
j∈[k]

vj(x)uj(y) ≥ log
∏
j∈[k]

(
vj(x)uj(y)

βjx,y

)βjx,y
=
∑
j∈[k]

βjx,y log

(
vj(x)uj(y)

βjx,y

)
,

(49)

where in the first equality we used A =
∑

j∈[k] vju>j . In the second inequality we used weighted
AM-GM inequality. Now consider the term Qx,y log Ax,y and substitute the above lower bound,

Qx,y log Ax,y ≥ Qx,y

∑
j∈[k]

βjx,y(log vj(x) + log uj(y))−Qx,y

∑
j∈[k]

βjx,y log βjx,y . (50)

32



EFFICIENT APPROXIMATE PROFILE MAXIMUM LIKELIHOOD

Summing over all the (x, y) pairs we get,∑
x,y∈D×D

Qx,y log Ax,y ≥
∑
x∈D

∑
j∈[k]

log vj(x)
(∑
y∈D

Qx,yβ
j
x,y

)
+
∑
y∈D

∑
j∈[k]

log vj(y)
(∑
x∈D

Qx,yβ
j
x,y

)
,

−
∑

x,y∈D×D
Qx,y

∑
j∈[k]

βjx,y log βjx,y .

(51)

In the above expression the following terms simplify,∑
y∈D

Qx,yβ
j
x,y =

∑
y∈D

Qx,y
1

Qx,y

∑
z∈Sj

Q′x,zQ
′′
y,z =

∑
z∈Sj

Q′x,z
∑
y∈D

Q′′y,z =
∑
z∈Sj

Q′x,z . (52)

Similarly, ∑
x∈D

Qx,yβ
j
x,y =

∑
z∈Sj

Q′′y,z . (53)

Also note that,

∑
x,y∈D×D

Qx,y

∑
j∈[k]

βjx,y log βjx,y =
∑

x,y∈D×D
Qx,y

∑
j∈[k]

βjx,y log
βjx,yQx,y

Qx,y
,

=
∑

x,y∈D×D
Qx,y

∑
j∈[k]

βjx,y log(βjx,yQx,y)−
∑

x,y∈D×D
Qx,y

∑
j∈[k]

βjx,y log Qx,y,

=
∑

x,y∈D×D

∑
j∈[k]

βjx,yQx,y log(βjx,yQx,y)−
∑

x,y∈D×D
Qx,y log Qx,y ,

=
∑

x,y∈D×D

∑
j∈[k]

( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
log
( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
−

∑
x,y∈D×D

Qx,y log Qx,y .

(54)

In the third and fourth inequality we used Equation (48) and Equation (47) respectively. Substituting
Equations (52) to (54) in Equation (51) we get,∑
x,y∈D×D

Qx,y log Ax,y ≥
∑
x∈D

∑
j∈[k]

log vj(x)
( ∑
z∈Sj

Q′x,z
)

+
∑
y∈D

∑
j∈[k]

log vj(y)
( ∑
z∈Sj

Q′′y,z
)

−
∑

x,y∈D×D

∑
j∈[k]

( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
log
( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
+

∑
x,y∈D×D

Qx,y log Qx,y .

(55)

By rearranging terms the above expression can be equivalently written as,

U(A,Q) =
∑

x,y∈D×D
Qx,y log

Ax,y

Qx,y
≥
∑
x∈D

∑
j∈[k]

log vj(x)
( ∑
z∈Sj

Q′x,z
)

+
∑
y∈D

∑
j∈[k]

log uj(y)
( ∑
z∈Sj

Q′′y,z
)

−
∑

x,y∈D×D

∑
j∈[k]

( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
log
( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
.

(56)
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In the above expression we have a lower bound for the term U(A,Q) and we relate it to terms
U(Vα,Q′) and U(Uα,Q′′). Consider the following term,∑
x,y∈D×D

Q′x,y log Vα
x,y =

∑
x∈D

∑
j∈[k]

∑
y∈Sj

Q′x,y log Vα
x,y =

∑
x∈D

∑
j∈[k]

∑
y∈Sj

Q′x,y log vj(x) ,

=
∑
x∈D

∑
j∈[k]

log vj(x)
( ∑
y∈Sj

Q′x,y
)

=
∑
x∈D

∑
j∈[k]

log vj(x)
( ∑
z∈Sj

Q′x,z
)
,

(57)

In the final equality we renamed the variables and the rest of equalities are straightforward. Carrying
out similar derivation we also get,∑
x,y∈D×D

Q′′x,y log Uα
x,y =

∑
x∈D

∑
j∈[k]

log uj(x)
( ∑
y∈Sj

Q′′x,y
)

=
∑
y∈D

∑
j∈[k]

log uj(y)
( ∑
z∈Sj

Q′′y,z
)
. (58)

As before in the final equality we renamed variables. Substituting Equations (57) and (58) in
Equation (56) we get,

U(A,Q) ≥
∑

x,y∈D×D
Q′x,y log Vα

x,y +
∑

x,y∈D×D
Q′′x,y log Uα

x,y −
∑

x,y∈D×D

( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
log
( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
= U(Vα,Q′) + U(Uα,Q′′) +

∑
x,y∈D×D

Q′x,y log Q′x,y +
∑

x,y∈D×D
Q′′x,y log Q′′x,y

−
∑

x,y∈D×D

∑
j∈[k]

( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
log
( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
.

(59)

Therefore to prove Equation (46), all that remains is to show that,∑
x,y∈D×D

(
Q′x,y log Q′x,y+Q′′x,y log Q′′x,y

)
−

∑
x,y∈D×D

( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
log
( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
≥ −

∑
j∈[k]

αj logαj .

(60)
To prove the above inequality we use the symmetry in the solutions Q′ and Q′′. Recall from
Equation (44), for all x ∈ D and j ∈ [k] we have Q′x,y = Q′x,y′ and Q′′x,y = Q′′x,y′ for all y, y′ ∈
Sj and x ∈ D. Define R′x,j = Q′x,y and R′′x,j = Q′′x,y for any y ∈ Sj . We next substitute these
definitions and simplify terms on the left hand side of Equation (60),∑

x,y∈D×D
Q′x,y log Q′x,y =

∑
x∈D

∑
j∈[k]

∑
y∈Sj

Q′x,y log Q′x,y =
∑
x∈D

∑
j∈[k]

∑
y∈Sj

R′x,j log R′x,j ,

=
∑
x∈D

∑
j∈[k]

αjR′x,j log R′x,j .
(61)

In the final equality we used |Sj | = αj and the rest of the equalities are straightforward. Similar
argument as above also gets us,∑

x,y∈D×D
Q′′x,y log Q′′x,y =

∑
x∈D

∑
j∈[k]

αjR′′x,j log R′′x,j =
∑
y∈D

∑
j∈[k]

αjR′′y,j log R′′y,j . (62)
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Note that in the final equality we renamed variables. Finally,∑
x,y∈D×D

∑
j∈[k]

( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
log
( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
=

∑
x,y∈D×D

∑
j∈[k]

αjR′x,jR
′′
y,j logαjR′x,jR

′′
y,j ,

=
∑

x,y∈D×D

∑
j∈[k]

αjR′x,jR
′′
y,j

(
logαj + log R′x,j + log R′′y,j

)
,

(63)

Again each of the terms in the parenthesis further simplify as follows,∑
x,y∈D×D

∑
j∈[k]

αjR′x,jR
′′
y,j logαj =

∑
j∈[k]

αj logαj
∑

x,y∈D×D
R′x,jR

′′
y,j =

∑
j∈[k]

αj logαj
∑
x∈D

R′x,j
∑
y∈D

R′′y,j ,

=
∑
j∈[k]

αj logαj .

∑
x,y∈D×D

∑
j∈[k]

αjR′x,jR
′′
y,j log R′x,j =

∑
x∈D

∑
j∈[k]

αjR′x,j log R′x,j
∑
y∈D

R′′y,j =
∑
x∈D

∑
j∈[k]

αjR′x,j log R′x,j .

Similarly, ∑
x,y∈D×D

∑
j∈[k]

αjR′x,jR
′′
y,j log R′′y,j =

∑
y∈D

∑
j∈[k]

αjR′′y,j log R′′y,j .

Substituting back all the above three expressions in Equation (63) we get,∑
x,y∈D×D

∑
j∈[k]

( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
log
( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
=
∑
x∈D

∑
j∈[k]

αjR′x,j log R′x,j +
∑
y∈D

∑
j∈[k]

αjR′′y,j log R′′y,j

+
∑
j∈[k]

αj logαj .

(64)

Further substituting Equations (61), (62) and (64) in the derivation below we get,∑
x,y∈D×D

(
Q′x,y log Q′x,y+Q′′x,y log Q′′x,y

)
−

∑
x,y∈D×D

( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
log
( ∑
z∈Sj

Q′x,zQ
′′
y,z

)
= −

∑
j∈[k]

αj logαj .

Therefore the above derivation proves Equation (60) and we further substitute it in Equation (59) to
get,

U(A,Q) ≥ U(Vα,Q′) + U(Uα,Q′′)−
∑
j∈[k]

αj logαj . (65)

The above expression combined with Equation (45) gives the following upper bound on the log of
permanent,

log perm(A) ≤ O(k log
N

k
) + U(A,Q)−N . (66)

The above expression combined with definition of the scaled Sinkhorn permanent concludes the
proof.
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Appendix B. Lower bound for Bethe and scaled Sinkhorn permanent
approximations

Here we provide the proof for Theorem 4.5 that intuitively works as follows. The performance of
the Bethe permanent for the all 1’s matrix is not hard to analyze and the approximation ratio is
lower bounded by Ω(d) for the d× d all 1’s matrix. The all 1’s matrix has non-negative rank 1. We
construct a matrix of non-negative rank k by creating a block diagonal matrix consisting of k blocks,
where each block is a N

k ×
N
k dimensional all 1’s matrix. The key property used in the analysis is

that the value of the permanent of such a block diagonal matrix is equal to the permanent of each
block raised to the power of k. Such a property also holds for the Bethe permanent and yields a gap
of exp

(
Ω(k log N

k )
)
.

Theorem 4.5 (Lower bound for the Bethe and the scaled Sinkhorn permanents approximation)
There exists a matrix A ∈ RD×D≥0 with non-negative rank k, that satisfies

perm(A) ≥ exp

(
Ω

(
k log

N

k

))
bethe(A) , (5)

which further implies,

perm(A) ≥ exp

(
Ω

(
k log

N

k

))
scaledsinkhorn(A) . (6)

Proof Assume N is divisible by k. Let 1 and 0 be N
k ×

N
k all ones and all zeros matrices respectively.

Note that log bethe(1) ≤ N
k log N

k −
N
k + 1 and the proof for this statement follows because k

N 1 is
the maximizer of the optimization problem maxQ F(1,Q) over all doubly stochastic matrices Q. On
the other hand log perm(1) = log N

k ! ≥ N
k log N

k −
N
k + Ω(log N

k ), where in the last inequality we
used the Stirling’s approximation. Now consider the following matrix,

A def
=


1 0 . . . 0
0 1 . . . 0
... . . .

. . .
0 0 . . . 1


In the above definition A is a N × N matrix with k blocks, where each block is a N

k ×
N
k

dimensional all ones matrix. For the matrix A we have, log perm(A) = k · log perm(1) ≥
k
(
N
k log N

k −
N
k + Ω(log N

k )
)

and log bethe(A) = k · log bethe(1) ≤ k
(
N
k log N

k −
N
k + 1

)
.

Therefore log perm(A)− log bethe(A) ≥ Ω(k log N
k ).

The proof for the case when N is not divisible by k is similar. Here matrix A is the N ×N block
diagonal matrix where the first k blocks correspond to bNk c× b

N
k c all ones matrix and the final block

corresponds to r× r all ones matrix, where r def
= N − kbNk c. For this definition of matrix A we have,

log perm(A) = k · logbNk c!+log r! ≥ k
(
bNk c logbNk c − b

N
k c+ Ω(log N

k )
)

+r log r−r+Ω(log r)

and log bethe(A) = k · log bethe(1) ≤ k
(
bNk c logbNk c − b

N
k c+ 1

)
+ r log r − r + 1. Therefore

log perm(A)− log bethe(A) ≥ Ω(k log N
k ). The first condition of the theorem follows by taking

exponential on both sides of the previous inequality.
The second inequality in the theorem follows by using bethe(A) ≥ scaledsinkhorn(A) (See

Corollary A.5). As the matrix A constructed here is of non-negative rank k, we conclude the proof.
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Appendix C. Improved approximation to profile maximum likelihood

In this section, we provide an efficient algorithm to compute an exp (−O(
√
n log n))-approximate

PML distribution. We first introduce the setup and some new notation. For convenience, we also
recall some definitions from Section 3.

We are given access to n independent samples from a hidden distribution p ∈ ∆D supported on
domainD. Let xn be this length n sequence and φ = Φ(xn) be its corresponding profile. Let f(xn, y)
be the frequency for domain element y ∈ D in sequence xn. Let k be the number of non-zero
distinct frequencies and we use {m1, . . .mj , . . .mk} to denote these distinct frequencies. Note that
the number of non-zero distinct frequencies k is always upper bounded by

√
n. For j ∈ [1, k], we

define φj
def
= |{y ∈ D | f(xn, y) = mj}|. Let ppml be the PML distribution with respect to profile φ

and is formally defined as follows,

ppml ∈ arg max
p∈∆D

P(p, φ) .

Let xn be a sequence such that Φ(xn) = φ. We define a profile probability matrix Ap,φ with respect
to sequence xn (therefore profile φ) and distribution p as follows,

Ap,φ
z,y

def
= pfy

z for all z, y ∈ D, (67)

where fy
def
= f(xn, y) is the frequency of domain element y ∈ D in sequence xn and recall Φ(xn) = φ.

We are interested in the permanent of the matrix Ap,φ, and note that the perm(Ap,φ) is invariant
under the choice of sequences xn that satisfy Φ(xn) = φ. Therefore we index the matrix Ap,φ with
profile φ rather than sequence xn itself. The number of distinct columns in Ap,φ is equal to number
of distinct observed frequencies plus one (for the unseen), i.e. k + 1.

The probability of a profile φ ∈ Φn with respect to distribution p (from Equation 20 in Orlitsky
et al. (2003), Equation 15 in Pavlichin et al. (2017)) in terms of permanent of matrix Ap,φ is given
below:

P(p, φ) = Cφ ·

 ∏
j∈[0,k]

1

φj !

 · perm(Ap,φ) (68)

where Cφ
def
= n!∏

j∈[1,k](mj !)
φj

and φ0 is the number of unseen domain elements and note that it is

not part of the profile. Given a distribution p we know its domain D therefore the unseen domain
elements. Also, note that Cφ is independent of the term φ0, therefore it depends just on the profile φ
and not on the underlying distribution p.

We now provide the motivation behind the techniques used in this section. Recall that the goal
of this section is to compute an approximate PML distribution and we wish to do this using the
results from the previous section. A first attempt would be to use the scaled Sinkhorn (or the Bethe)
permanent as a proxy for the term perm(Ap,φ) in Equation (68) and solve the following optimization
problem:

max
p∈∆D

Cφ ·

 ∏
j∈[0,k]

1

φj !

 · scaledsinkhorn(Ap,φ) .
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The above optimization problem is indeed a good proxy for the PML objective and recall the
above optimization problem is equivalent to the following:

max
p∈∆D

Cφ ·

 ∏
j∈[0,k]

1

φj !

 · max
Q∈Zrc

exp
(

U(Ap,φ,Q)
)
.

Taking log and ignoring the constants we get the following equivalent optimization problem,

max
p∈∆D

max
Q∈Zrc

(
log

1

φ0!
+ U(Ap,φ,Q)

)
Interestingly, the function U(Ap,φ,Q), is concave with respect to p for a fixed Q and concave with
respect to Q for a fixed p (See Vontobel (2014)). However, unfortunately the function U(Ap,φ,Q)
in general is not a concave function with respect to p and Q simultaneously Vontobel (2014) and
we do not know how to solve the above optimization problem. Vontobel Vontobel (2014) proposed
an alternating maximization algorithm to solve the above optimization problem, and studied its
implementation and convergence to a stationary point; see Vontobel (2014) for empirical performance
of this approach. Using the Bethe permanent as a proxy in the above optimization problem has
similar issues; see Vontobel (2012, 2014) for further details.

To address the above issue we use the idea of probability discretization from Charikar et al.
(2019a), meaning we assume distribution takes all its probability values from some fixed predefined
set. We use this idea in a different way than Charikar et al. (2019a) and further exploit the structure of
optimal solution Q to write a convex optimization problem that approximates the PML objective. The
solution of this convex optimization problem returns a fractional representation of the distribution
that we later round to return the approximate PML distribution with desired guarantees. Surprisingly,
the final convex optimization problem we write is exactly same as the one in Charikar et al. (2019a)
and our work gives a better analysis of the same convex program by a completely different approach.

The rest of this section is organized as follows. In Appendix C.1, we study the probability
discretization. In the same section, we also study the application of results from Appendix A for
approximating the permanent of profile probability matrix (Ap,φ). We further provide the convex
optimization problem at the end of this section that can be solved efficiently and returns a fractional
representation of the approximate PML distribution. In Appendix C.2, we provide the rounding
algorithm that returns our final approximate PML distribution. Till this point, all our results are
independent of the choice of the probability discretization set. Later in Appendix C.3, we choose
an appropriate probability discretization set and further combine analysis from all the previous
sections. In this section, we state and analyze our final algorithm that returns a exp (−O(

√
n log n))-

approximate PML distribution. Note that our rounding algorithm is technical and for the continuity
of reading we defer all the proofs for results in Appendix C.2 to Appendix C.4.

C.1. Probability discretization

Here we study the idea of probability discretization that is also used in Charikar et al. (2019a). We
combine this with other ideas from Appendix A to provide a convex program that approximates the
PML objective.

Let R ⊆ [0, 1]R be some discretization of the probability space and in this section we consider
distributions that take all its probability values in set R. All results in this section hold for finite set R
and we specify the exact definition of R in Appendix C.3.
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The discretization introduces a technicality of probability values not summing up to one and we
redefine pseudo-distribution and discrete pseudo-distribution from Charikar et al. (2019a) to deal
with these.

Definition C.1 (Pseudo-distribution) q ∈ [0, 1]DR is a pseudo-distribution if ‖q‖1 ≤ 1 and a
discrete pseudo-distribution with respect to R if all its entries are in R as well. We use ∆Dpseudo and
∆DR to denote the set of all such pseudo-distributions and discrete pseudo-distributions with respect
to R respectively.

We extend and use the following definition for P(v, yn) for any vector v ∈ RD≥0 and therefore for
pseudo-distributions as well,

P(v, yn)
def
=
∏
x∈D

vf(yn,x)
x .

Further, for any probability terms defined involving p, we define those terms for any vector v ∈ RD≥0

just by replacing px by vx everywhere. For convenience we refer to P(q, φ) for any pseudo-
distribution q as the “probability” of profile φ with respect to q.

For a scalar c and set S, define bccS and dceS as follows:

bccS
def
= sup

s∈S:s≤c
s and dceS

def
= inf

s∈S:s≥c
s

Definition C.2 (Discrete pseudo-distribution) For any distribution p ∈ ∆D, its discrete pseudo-
distribution q = disc(p) ∈ ∆DR with respect to R is defined as:

qx
def
= bpxcR ∀x ∈ D

We now define some additional definitions and notation that will help us lower and upper bound
the permanent of profile probability matrix by a convex optimization problem.

• Let ` def
= |R| be the cardinality of set R and ri be the i’th element of set R.

• For any discrete pseudo-distribution q with respect to R, that is q ∈ ∆DR , we let `q
i

def
= |{y ∈

D | qy = ri}|, be the number of domain elements with probability ri.

• Let Zq,φ
R ⊆ R`×(k+1)

≥0 be the set of non-negative matrices such that, for any S ∈ Zq,φ
R the

following holds:∑
j∈[0,k]

Si,j = `q
i for all i ∈ [1, `] and

∑
i∈[1,`]

Si,j = φj for all j ∈ [0, k] , (69)

where φ0
8 is the number of unseen domain elements and we use m0

def
= 0 to denote the

corresponding frequency element.

8. φ0 is not part of the profile and is not given to us. Later in this section, we get rid of this dependency on φ0.
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• For any S ∈ R`×(k+1)
≥0 define,

h(S) =
∑
i∈[1,`]

∑
j∈[0,k]

[
Si,j log(

rmj

i

Si,j
)

]
+
∑
i∈[1,`]

 ∑
j∈[0,k]

Si,j

 log

 ∑
j∈[0,k]

Si,j

+
∑
j∈[0,k]

φj log φj−
∑
j∈[0,k]

φj .

(70)

• Throughout this section, for convenience unless stated otherwise we abuse notation and use A
to denote the matrix Aq,φ. The underlying pseudo-distribution q and profile φ with respect to
matrix A will be clear from the context.

The first half of this section is dedicated to bound the perm(A) in terms of function h(S). For any
fixed discrete pseudo-distribution q and profile φ, we will show that,

max
S∈Zq,φ

R

h(S) ≤ log perm(Aq,φ) ≤ O(k log
N

k
) + max

S∈Zq,φ
R

h(S) .

Later in the second half, we use the above inequality to maximize over all the discrete pseudo-
distributions to find the approximate PML distribution and the summary of which is stated later. We
start by showing the lower bound first and later in Theorem C.4 we prove the upper bound.

Theorem C.3 For any discrete pseudo-distribution q with respect to R and profile φ, let A be the
matrix defined (with respect to q and φ) in Equation (67), then the following holds,

log perm(A) ≥ max
S∈Zq,φ

R

h(S) . (71)

Proof For any matrix S ∈ Zq,φ
R , define matrix Q ∈ RD×D as follows,

Qx,y
def
=

Si,j
`q
i φj

where in the definition above i and j are such that qx = ri and fy = mj . We now establish that
matrix Q is doubly stochastic. For each x ∈ D, let i be such that qx = ri, then∑

y∈D
Qx,y =

∑
j∈[0,k]

∑
{y∈D | fy=mj}

Si,j
`q
i φj

=
∑
j∈[0,k]

Si,j
`q
i φj

∑
{y∈D | fy=mj}

1

=
∑
j∈[0,k]

Sx,mj

`q
i φj
· φj =

1

`q
i

∑
j∈[0,k]

Sx,mj = 1 .

(72)

For each y ∈ D, let j be such that fy = mj , then∑
x∈D

Qx,y =
∑
i∈[1,`]

∑
{x∈D | qx=ri}

Si,j
`q
i φj

=
∑
i∈[1,`]

Si,j
`q
i φj

∑
{x∈D | qx=ri}

1

=
∑
i∈[1,`]

Sx,mj

`q
i φj
· `q
i =

1

φj

∑
i∈[1,`]

Sx,mj = 1 .

(73)
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Since matrix Q is doubly stochastic, by the definition of the scaled Sinkhorn permanent and
Corollary A.5 we have log perm(A) ≥ U(A,Q) − N . To conclude the proof we show that
U(A,Q)−N = h(S).

U(A,Q) =
∑

(x,y)∈D×D

Qx,y log(
Ax,y

Qx,y
) =

∑
i∈[1,`]

∑
j∈[0,k]

`q
i φj ·

Si,j
`q
i φj

log(
rmj

i `q
i φj

Si,j
)

=
∑
i∈[1,`]

∑
j∈[0,k]

Si,j log(
rmj

i `q
i φj

Si,j
) .

(74)

We consider the final expression above and simplify it. First note that,∑
i∈[1,`]

∑
j∈[0,k]

Si,j log `q
i =

∑
i∈[1,`]

log `q
i

∑
j∈[0,k]

Si,j =
∑
i∈[1,`]

`q
i log `q

i .

Similarly, ∑
i∈[1,`]

∑
j∈[0,k]

Si,j log φj =
∑
j∈[0,k]

log φj
∑
i∈[1,`]

Si,j =
∑
j∈[0,k]

φj log φj .

Using the above two expressions, the final expression of Equation (74) can be equivalently written as,

∑
i∈[1,`]

∑
j∈[0,k]

Si,j log(
rmj

i `q
i φj

Si,j
) =

∑
i∈[1,`]

∑
j∈[0,k]

[
Si,j log(

rmj

i

Si,j
)

]
+
∑
i∈[1,`]

`q
i log `q

i +
∑
j∈[0,k]

φj log φj .

(75)
Combining Equation (74), Equation (75) and substituting N =

∑
j∈[0,k] φj , we get:

U(A,Q)−N =
∑
i∈[1,`]

∑
j∈[0,k]

Si,j log(
rmj

i

Si,j
) +

∑
i∈[1,`]

`q
i log `q

i +
∑
j∈[0,k]

φj log φj −
∑
j∈[0,k]

φj = h(S) .

In the above equality we used
∑

j∈[0,k] Si,j = `q
i for all i ∈ [1, `] and for any S ∈ Zq,φ

R . Combining
the above inequality with log perm(A) ≥ U(A,Q)−N we get,

log perm(A) ≥ h(S) .

The above inequality holds for any S ∈ Zq,φ
R (and therefore holds for the maximizer as well) and we

conclude the proof.

We next give an upper bound for the log of permanent of A in terms of h(S).

Theorem C.4 For any discrete pseudo-distribution q with respect to R and profile φ, let A be the
matrix defined (with respect to q and φ) in Equation (67). Then,

log perm(A) ≤ O(k log
N

k
) + max

S∈Zq,φ
R

h(S) .
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Proof Here we construct a particular matrix S ∈ Zq,φ
R such that log perm(A) ≤ O(k log N

k ) + h(S),
which immediately implies the theorem. Recall by Lemma A.8 and A.9, there exists a matrix
P ∈ RD×(k+1)

≥0 such that,
∑

j∈[0,k] Px,j = 1 for all x ∈ D and
∑

x∈D Px,j = φj for all j ∈ [0, k],
and satisfies log perm(A) ≤ O(k log N

k ) + f(A,P) 9. Further using the definition of f(A,P) we get,

log perm(A) ≤ O(k log
N

k
) +

∑
j∈[0,k]

φj log φj −
∑
j∈[0,k]

φj +
∑

(x,j)∈D×[0,k]

Px,j log
Âx,j

Px,j
, (76)

where for the matrix A defined (with respect to q and φ) in Equation (67), we have,

Âx,j = qmj
x .

We now define the matrix S that satisfies the conditions of the lemma.

Si,j
def
=

∑
{x∈D | qx=ri}

Px,j

By Theorem A.11, for any fixed j ∈ [0, k], all x ∈ D such that qx = ri, share the same probability
value Px,j and we use the notation Pi,j to denote this value. Using this definition, we have:

Si,j = `q
i Pi,j (77)

Further note that for any i ∈ [1, `], if x ∈ D is any element such that qx = ri, then∑
j∈[0,k]

Pi,j =
∑
j∈[0,k]

Px,j = 1

We wish to show that S ∈ Zq,φ
R . We first analyze the row sum constraint. For each i ∈ [1, `],∑

j∈[0,k]

Si,j =
∑
j∈[0,k]

`q
i Pi,j = `q

i

We now analyze the column constraint. For each j ∈ [0, k],∑
i∈[1,`]

Si,j =
∑
i∈[1,`]

∑
{x∈D | qx=ri}

Px,j =
∑
x∈D

Px,j = φj

In the remainder of the proof we show that the matrix S defined earlier satisfies log perm(A) ≤
O(k log N

k ) + h(S). We start by simplifying the term
∑

(x,j)∈D×[0,k] Px,j log
Âx,j
Px,j in Equation (76),

∑
(x,j)∈D×[0,k]

Px,j log
Âx,j

Px,j
=
∑
j∈[0,k]

∑
i∈[1,`]

∑
{x∈D | qx=ri}

Px,j log
Âx,j

Px,j
=
∑
j∈[0,k]

∑
i∈[1,`]

∑
{x∈D | qx=ri}

Pi,j log
rmj

i

Pi,j

=
∑
j∈[0,k]

∑
i∈[1,`]

`q
i Pi,j log

rmj

i

Pi,j
=
∑
i∈[1,`]

∑
j∈[0,k]

Si,j log
rmj

i `q
i

Si,j

=
∑
i∈[1,`]

∑
j∈[0,k]

Si,j log
rmj

i

Si,j
+
∑
i∈[1,`]

`q
i log `q

i

(78)

9. The inequality holds because matrix A has k + 1 distinct columns and O((k + 1) log N
k+1

) is asymptotically same as
O(k log N

k
).
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In the second equality, we used Âx,j = rmj

i and further by the definition of Pi,j we have Px,j = Pi,j
for all x ∈ D that satisfy qx = ri. In the third equality, we used

∑
{x∈D | qx=ri} 1 = `q

i . In the fourth

equality we used Equation (77). In the final equality, we used
∑

i∈[1,`]

∑
j∈[0,k] Si,j log

r
mj
i `q

i
Si,j =∑

i∈[1,`]

∑
j∈[0,k] Si,j log

r
mj
i

Si,j +
∑

i∈[1,`]

∑
j∈[0,k] Si,j log `q

i and the final term further simplifies to
the following,

∑
i∈[1,`]

∑
j∈[0,k] Si,j log `q

i =
∑

i∈[1,`] log `q
i

∑
j∈[0,k] Si,j =

∑
i∈[1,`] `

q
i log `q

i .
We conclude the proof by combining equations 76 and 78 and using

∑
j∈[0,k] Si,j = `q

i for any

S ∈ Zq,φ
R .

Note that using Theorem C.3 and C.4, for matrix A defined (with respect to q and φ) in Equation (67),
we showed the following,

max
S∈Zq,φ

R

h(S) ≤ log perm(A) ≤ O(k log
N

k
) + max

S∈Zq,φ
R

h(S) . (79)

Our final goal of this section is to maximize P(q, φ) ∝ 1
φ0!perm(A) over discrete pseudo-

distributions q but let us take a step back and just focus on writing an upper bound. Consider the
term maxS∈Zq,φ

R
h(S) in the expression above, it depends on discrete pseudo-distribution q at two

different places. The first is the constraint set Zq,φ
R and the second is the function h(S) (because it

contains the φ0 term in its expression). We address the first issue by defining the following new set
that encodes the constraint set Zq,φ

R for all discrete pseudo-distributions simultaneously.

Definition C.5 Let ZφR ⊂ R`×(k+1)
≥0 be the set of non-negative matrices, such that any S ∈ ZφR

satisfies,∑
i∈[1,`]

Si,j = φj for all j ∈ [1, k],
∑
j∈[0,k]

Si,j ∈ Z+ for all i ∈ [1, `] and
∑
i∈[1,k]

ri
∑
j∈[0,k]

Si,j ≤ 1 .

(80)

Note that in the definition of ZφR we removed the constraint related to φ0 and recall φ0 denotes
the number of unseen domain elements. Not having constraint with respect to φ0 helps us encode
discrete pseudo-distributions (with respect to R) of different domain sizes. Further for any S ∈ ZφR,
there is a discrete pseudo-distribution associated with it and we define it next.

Definition C.6 For any S ∈ ZφR, the discrete pseudo-distribution qS associated with S is defined as
follows: For any arbitrary

∑
j∈[0,k] Si,j number of domain elements assign probability ri.

Note that in the definition above qS is a valid pseudo-distribution because of the third condition in
Equation (80). Further note that, for any discrete pseudo-distribution q and S ∈ Zq,φ

R , the distribution
qS associated with respect to S is a permutation of distribution q. Since the probability of a profile
is invariant under permutations of distribution, we treat all these distributions the same and do not
distinguish between them.

We now handle the second issue that corresponds to removing the dependency of discrete pseudo-
distribution q from the function h(S). To handle this issue, we define a new function g(S) that
when maximized over the set Zq,φ

R and ZφR approximates the value P(q, φ) and maxq∈∆DR
P(q, φ)
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respectively (See next theorem for the formal statement). For any S ∈ R`×(k+1)
≥0 , the function g(S) is

defined as follows,

g(S)
def
= exp

∑
i∈[1,`]

∑
j∈[0,k]

[
Si,j log(

rmj

i

Si,j
)

]
+
∑
i∈[1,`]

 ∑
j∈[0,k]

Si,j

 log

 ∑
j∈[0,k]

Si,j

 . (81)

Note that we switch gears and define the function g(S) as an exponential function. g(S) approximates
the value P(q, φ) instead of log of it and it helps with proof readability. The following theorem
summarizes this result.

Theorem C.7 Let R be a probability discretization set. Given a profile φ and discrete pseudo-
distribution q with respect to R. The following inequality holds,

exp (−O(k log(N + n))) · Cφ · max
S∈Zq,φ

R

g(S) ≤ P(q, φ) ≤ exp

(
O

(
k log

N

k

))
· Cφ · max

S∈Zq,φ
R

g(S)

(82)
Further,

exp (−O(k log(N + n))) ·Cφ ·max
S∈ZφR

g(S) ≤ max
q∈∆DR

P(q, φ) ≤ exp

(
O

(
k log

N

k

))
·Cφ ·max

S∈ZφR
g(S)

(83)

Proof For any discrete pseudo-distribution q with respect to R and profile φ, let A be the matrix
defined (with respect to q and φ) in Equation (67). Then, by Equation (79) we have,

max
S∈Zq,φ

R

h(S) ≤ log perm(A) ≤ O(k log
N

k
) + max

S∈Zq,φ
R

h(S) .

Further by Equation (68) we have,

P(q, φ) = Cφ ·

 ∏
j∈[0,k]

1

φj !

 · perm(Aq,φ) .

Combining the above two equations we have,

Cφ·

 ∏
j∈[0,k]

1

φj !

· max
S∈Zq,φ

R

exp (h(S)) ≤ P(q, φ) ≤ exp

(
O

(
k log

N

k

))
·Cφ·

 ∏
j∈[0,k]

1

φj !

· max
S∈Zq,φ

R

exp (h(S))

(84)
We now simplify the term

(∏
j∈[0,k]

1
φj !

)
· exp (h(S)) in the above expression. First note that for

any S ∈ Zq,φ
R ,

exp (h(S)) = g(S) · exp

 ∑
j∈[0,k]

φj log φj −
∑
j∈[0,k]

φj

 .

Therefore, ∏
j∈[0,k]

1

φj !

 · exp (h(S)) =

 ∏
j∈[0,k]

1

φj !

 · g(S) · exp

 ∑
j∈[0,k]

φj log φj −
∑
j∈[0,k]

φj

 . (85)
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By Lemma 3.1 (Stirling’s approximation) we have,

exp (−O (k log(N + n))) ≤

 ∏
j∈[0,k]

1

φj !

 · exp

 ∑
j∈[0,k]

φj log φj −
∑
j∈[0,k]

φj

 ≤ 1 . (86)

The first inequality follows because for each j ∈ [0, k], we have 1
φj !

exp (φj log φj − φj) ≥
Ω( 1√

φj+1
), which by using φj ≤ N+n is further lower bounded by Ω( 1√

N+n
) ≥ exp (−O(log(N + n))).

Equation (86) follows by taking product over all j ∈ [0, k]. Now combining Equation (86) and
Equation (85) we have,

exp (−O(k log(N + n))) · g(S) ≤

 ∏
j∈[0,k]

1

φj !

 · exp (h(S)) ≤ g(S) . (87)

The first statement of the lemma follows by combining the above Equation (87) with Equation (84),
that is we have,

exp (−O(k log(N + n))) ·Cφ · max
S∈Zq,φ

R

g(S) ≤ P(q, φ) ≤ exp

(
O

(
k log

N

k

))
·Cφ · max

S∈Zq,φ
R

g(S) .

(88)
Given a profile φ, for any discrete pseudo-distribution q ∈ ∆DR we have Zq,φ

R ⊆ ZφR and further
combining it with above inequality we get,

max
q∈∆DR

P(q, φ) ≤ exp

(
O

(
k log

N

k

))
· Cφ ·max

S∈ZφR
g(S) .

Note that for any S ∈ ZφR, we also have S ∈ Zφ,qS
R , where qS is the discrete pseudo-distribution

associated with respect to S (See Definition C.6). Therefore,

exp (−O(k log(N + n)))·Cφ·max
S∈ZφR

g(S) ≤ exp (−O(k log(N + n)))·Cφ·max
q∈∆DR

max
S∈Zq,φ

R

g(S) ≤ max
q∈∆DR

P(q, φ) .

For the last inequality in the above derivation we used Equation (88). Now combining the previous
two inequalities we conclude the proof.

The previous theorem provides an upper bound for the probability of profile with respect to any
discrete pseudo-distribution. However one issue with this upper bound is that it is not efficiently
computable because the set ZφR is not a convex set (because of the integrality constraints). We relax
these integrality constraints and define the following new set.

Definition C.8 Let Zφ,fracR ⊆ R`×(k+1)
≥0 be the set of non-negative matrices, such that any S ∈

Zφ,fracR satisfies, ∑
i∈[1,`]

Si,j = φj for all j ∈ [1, k] and
∑
i∈[1,k]

ri
∑
j∈[0,k]

Si,j ≤ 1 . (89)
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Lemma C.9 Let R be a probability discretization set. Given a profile φ, the following holds,

max
q∈∆DR

P(q, φ) ≤ exp

(
O

(
k log

N

k

))
· Cφ · max

S∈Zφ,fracR

g(S) (90)

Proof By Theorem C.7 we already have,

max
q∈∆DR

P(q, φ) ≤ exp

(
O

(
k log

N

k

))
· Cφ ·max

S∈ZφR
g(S) .

The lemma holds because ZφR ⊆ Zφ,fracR .

Note that in the above lemma, the upper bound only depends on the profile 10 and we removed all
dependencies related to distributions (and also φ0). Next we show that this upper bound can be
efficiently computed by using the result that function g(S) is log concave in S.

Lemma C.10 (Lemma 4.16 in Charikar et al. (2019a)) Function g(S) is log concave in S.

Theorem C.11 (Theorem 4.17 in Charikar et al. (2019a)) Given a profile φ ∈ Φn, the optimiza-
tion problem maxS∈Zφ,fracR

log g(S) can be solved in time Õ(k2`). 11

C.2. Rounding Algorithm

In the previous section we provided an efficiently computable upper bound for the probability of
profile φ with respect to any discrete pseudo-distribution q ∈ ∆DR . This upper bound returns a
solution S ∈ Zφ,fracR and we need to round this solution to construct a discrete pseudo-distribution
that approximates this upper bound. In this section we provide a rounding algorithm that takes
as input S ∈ Zφ,fracR and returns a solution Sext ∈ ZφRext , where Rext is an extended probability

discretization set. Further using Sext ∈ ZφRext , we construct a discrete pseudo-distribution qSext with
respect to Rext such that P(qSext , φ) approximates the upper bound and therefore is an approximate
PML distribution. Our rounding algorithm is technical and we next provide a overview to better
understand it.

Overview of the rounding algorithm: The goal of the rounding algorithm is to take a fractional
solution S def

= arg maxS′∈Zφ,fracR
log g(S′) as input and round each row sum to an integral value while

preserving the column sums and g(S) value. Our rounding algorithm proceeds in three steps:

Step 1: Consider the fractional solution S ∈ R`×(k+1)
≥0 and recall the rows are indexed by the

elements of set R (which represent probability values). We first round the rows corresponding
to the higher probability values by simply taking the floor (rounding down to the nearest integer)
of each entry. This procedure ensures the integrality of the row sums (corresponding to higher
probability values) but violates the column sum constraints. To satisfy the column sum constraints
and the distributional constraint (i.e. last condition in Equation (80)) simultaneously, we create rows
corresponding to new probability values using Algorithm 2. However to ensure that all these new

10. Cφ has no dependency on φ0.
11. Note that here we hide the logarithmic dependence on n, the size of sample.
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rows also have integral row sums, we modify the (old) rows corresponding to lower probability
values accordingly. Let S(1) be the solution returned by the first step of the rounding algorithm.
Algorithm 2 ensures that the g(S(1)) value is not much smaller than g(S). In S(1), all the new rows
and (old) rows corresponding to higher probability values have integral row sums and we round the
remaining rows corresponding to smaller probability values next.

Step 2: In this step, we round all the rows corresponding to the smaller probability values. For
each of these rows, we scale all the entries in a particular row by the same factor to ensure that
the row sum is rounded down to the nearest integer. Similar to the step 1, using Algorithm 2 we
create rows corresponding to new probability values to maintain the column sum constraints and the
distributional constraint; all these new rows further correspond to small probability values. Unlike in
the previous step, the new rows created in step two may not have integral row sums but these rows
have a nice diagonal structure. Let S(2) be this intermediate solution created in step 2. Algorithm 2
ensures that the g(S(2)) value is not much smaller than g(S(1)) (and hence g(S)). Note that all the
row sums in S(2) are integral except the new rows created in step 2 that all have small probability
values and have diagonal structure.

Step 3: In this final step, using Algorithm 1 we round the new rows created in step 2. Algorithm 1
exploits the low probability and diagonal structure in these rows. The diagonal structure ensures
that there is just one non-zero entry in any particular row and we modify the solution S(2) (from the
previous step) as follows. We transfer the mass from a non-integral lower probability value row to an
immediate higher probability value row until the (lower probability value) row sum is integral. This
process might violate the distributional constraint and we rescale the probability values accordingly
to satisfy this constraint. Let Sext be the solution returned by step 3. We ensure that all column sums
are preserved, all row sums are integral and the g(Sext) value is not much smaller than g(S(2)) (and
hence not much smaller than g(S)).

In the remainder of this section we state all three algorithms and the results corresponding to
them. For continuity of reading, we defer the proofs of these results to Appendix C.4. For con-
venience, we first state Algorithm 1 that rounds the rows corresponding to the low probability
values in step 3 of our main rounding algorithm (Algorithm 3). We follow up this algorithm with
a lemma that summarizes the guarantees provided by it. Later we state Algorithm 2 that creates
rows corresponding to new probability values to preserve the column sums and the distributional
constraint. This algorithm is invoked as a subroutine in both step 1 and 2 of Algorithm 3. Finally,
we state our main rounding algorithm that consists of three different steps. We then state results
analyzing each of these steps separately. The final result (Theorem C.16), is the main theorem of this
subsection that summarizes the final guarantees promised by our rounding algorithm.
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Algorithm 1 Structured Rounding Algorithm
Procedure StructuredRounding(x,w, a)

1 Input: x ∈ (0, 1)
[0,k]
R , w ∈ R[0,k] and a =

∑
j∈[0,k] xj ∈ Z+.

2 Output: z ∈ R[0,k]×[0,k] and s ∈ Ra.
3 Initialize z = 0[0,k]×[0,k].
4 For each i ∈ [1, a], let si denote the smallest index such that

∑
j≤si xj > i−1 and let sa+1 = k.

for i ∈ [1, a] do

zsi,j =


xj if si < j < si+1 ,∑

j′≤si xj′ − (i− 1) if j = si ,

1−
∑

si≤j′<si+1
zsi,j′ if j = si+1 .

(91)

end
5 return z and s.

The next lemma summarizes the quality of the solution produced by Algorithm 1.

Lemma C.12 Given a set of reals xj ∈ (0, 1) for all j ∈ [0, k] such that
∑

j∈[0,k] xj ∈ Z+, weights
wj for all j ∈ [0, k] and exponents mj ∈ Z+ for all j ∈ [0, k] 12. Using Algorithm 1, we can
efficiently compute a matrix z ∈ [0, 1]

[0,k]×[0,k]
R such that the following conditions hold,

1.
∑

j∈[0,k] zi,j ∈ {0, 1} for all i ∈ [0, k] and
∑

i∈[0,k] zi,j = xj for all j ∈ [0, k].

2.
∑

i∈[0,k]

(∑
j∈[0,k] zi,j

)
wi ≤

∑
j∈[0,k] xjwj + maxj∈[0,k]wj .

3.
∏
j∈[0,k]w

mjxj
j ≤

∏
i∈[0,k]

∏
j∈[0,k]w

mjzi,j
i .

We next provide description of Algorithm 2. The algorithm takes input (B,C,R, φ) and creates a
new probability discretization set R′ (lines 6-10). The solution B′ outputted by the algorithm belongs
to Zφ,fracR′ , has same column sums as B and the value g(B′) is lower bounded by g(B).

12. Here m0 need not be equal to zero.
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Algorithm 2 Create New Probability Values
Procedure CreateNewProbabilityValues(B,C,R, φ)

6 Input: Probability discretization set R (|R| = t), profile φ (let k be the number of distinct
frequencies) and B ∈ Zφ,fracR ⊆ R[1,t]×[0,k] and C ∈ R[1,t]×[0,k] such that Ci,j ≤ Bi,j for all
i ∈ [1, t] and j ∈ [0, k]. Let ri be the i’th element of R.

7 Output: Probability discretization set R′ and B′ ∈ R[1,t+(k+1)]×[0,k].
8 Initialize B′ = 0[1,t+(k+1)]×[0,k].
9 B′ij = Cij for all i ∈ [1, t], j ∈ [0, k] .

for j ∈ [0, k] do
10 Create a new row with probability value rt+1+j =

∑
i∈[1,t](Bij−Cij)ri∑
i∈[1,t](Bij−Cij) .

11 Assign B′t+1+j,j =
∑

i∈[1,t](Bij − Cij).
end

12 Define R′ def
= R ∪ {rt+1+j}j∈[0,k].

13 return R′ and B′.

The next lemma summarizes the quality of the solution produced by Algorithm 2.

Lemma C.13 The solution (R′,B′) returned by Algorithm 2 satisfies the following conditions:

1.
∑

j∈[0,k] B′i,j =
∑

j∈[0,k] Ci,j for all i ∈ [1, t].

2. For any i ∈ [t + 1, t + (k + 1)] let j ∈ [0, k] be such that i = t + 1 + j then B′t+1+j,j′ = 0
for all j′ ∈ [0, k] and j′ 6= j. (Diagonal Structure)

3. For any i ∈ [t+ 1, t+ (k+ 1)] let j ∈ [0, k] be such that i = t+ 1 + j, then
∑

j′∈[0,k] B′i,j′ =

B′t+1+j,j = φj −
∑

i′∈[1,t] Ci′,j .

4. B′ ∈ Zφ,fracR′ and
∑

i∈[1,t+(k+1)]

∑
j∈[0,k] B′i,j =

∑
i∈[1,t]

∑
j∈[0,k] Bi,j .

5. Let αi
def
=
∑

j∈[0,k] Bi,j−
∑

j∈[0,k] Ci,j for all i ∈ [1, t] and ∆
def
= max(

∑
i∈[1,t](B

−→
1 )i, t×k),

then g(B′) ≥ exp
(
−O

(∑
i∈[1,t] αi log ∆

))
g(B) .

6. For each j ∈ [0, k], the new row corresponds to the probability value, rt+1+j =
∑
i∈[1,t](Bij−Cij)ri∑
i∈[1,t](Bij−Cij) .

In the remainder of this section, we state and analyze our rounding algorithm. Our algorithm
works in three steps, and we show that all the solutions produced during the intermediate and final
steps all have the desired approximation guarantee. We divide the analysis into three lemmas. Each
of the lemmas C.14, C.15 and C.16 analyze the guarantees provided by the intermediate solutions
S(1), S(2) and final solution Sext respectively.
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Algorithm 3 Rounding Algorithm
Procedure Rounding(S)

14 Input: Probability discretization set R, profile φ ∈ Φn and S ∈ Zφ,fracR ⊆ R[1,`]×[0,k].
15 Output: Probability discretization set Rext and Sext.
16 Step 1:
17 Initialize A = 0[1,`]×[0,k]. Let ri be the i’th element of R.

18 Define H def
= {i ∈ [1, `] | ri > γ} and L def

= {i ∈ [1, `] | ri ≤ γ}.
19 Aij = bSijc for all i ∈ H, j ∈ [0, k] .

20 Aij = Si,j
b
∑
i∈L Si,jc∑
i∈L Si,j for all i ∈ L, j ∈ [0, k] .

21 (S(1),R(1)) = CreateNewProbabilityValues(S,A,R).
22 Step 2:

23 Note that |R(1)| = ` + (k + 1) and S(1) ⊆ R[1,`+(k+1)]×[0,k]. Let r(1)
i be the i’th element of

R(1).
24 Let H(1) def

= {i ∈ [1, `+ (k + 1)] | r(1)
i > γ} and L(1) def

= {i ∈ [1, `+ (k + 1)] | r(1)
i ≤ γ}.

25 Define A(1) = 0[1,`+(k+1)]×[0,k].

26 A(1)
ij = S(1)

ij for all i ∈ H(1), j ∈ [0, k] .

27 A(1)
ij = S(1)

ij
b(S(1)−→1 )ic
(S(1)−→1 )i

for all i ∈ L(1), j ∈ [0, k] .

28 (S(2),R(2)) = CreateNewProbabilityValues(S(1),A(1),R(1)).
29 Step 3:

30 Note that |R(2)| = ` + 2(k + 1) and S(2) ⊆ R[1,`+2(k+1)]×[0,k]. Let r(2)
i be the i’th element of

R(2).
31 Let w, x ∈ R[0,k], such that wj

def
= r(2)

`+(k+1)+1+j and xj
def
= S(2)

`+(k+1)+1+j − bS
(2)
`+(k+1)+1+jc for

all j ∈ [0, k]. Define a def
=
∑

j∈[0,k] xj .

32 Let (z, s)
def
= StructuredRounding(x,w, a).

33 Initialize Sext = 0[1,`+2(k+1)]×[0,k].

34 Assign Sext
i,j = S(2)

i,j for all i ∈ [1, `+ (k + 1)] and j ∈ [0, k].

35 Assign Sext
`+(k+1)+1+j,j′ = bS(2)

`+(k+1)+1+j,j′c+ zj,j′ for all j, j′ ∈ [0, k].

36 Define Rext def
= { r(2)i

1+γ | for all i ∈ [1, `+ 2(k + 1)]}.
37 return Rext and Sext.

The next lemma summarizes the quality of the intermediate solution (S(1),R(1)) produced by
Step 1 of Algorithm 3.

Lemma C.14 The solution (S(1),R(1)) returned by the step 1 of Algorithm 3 satisfies the following:

1. (S(1)−→1 )i ∈ Z+ for all i ∈ H(1).

2. S(1) ∈ Zφ,frac
R(1) and

∑
i∈[1,`+(k+1)]

∑
j∈[0,k] S(1)

i,j =
∑

i∈[1,`]

∑
j∈[0,k] Si,j .

3. g(S(1)) ≥ exp
(
−O

((
1
γ + k

)
log ∆

))
g(S), where ∆ = max(

∑
i∈[1,`](S

−→
1 )i, `× k).
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Using Lemma C.14 we now provide the guarantees for the solution S(2) returned by the step 2 of
Algorithm 3.

Lemma C.15 The solution (S(2),R(2)) returned by the step 2 of Algorithm 3 satisfies the following,

1. (S(2)−→1 )i ∈ Z+ for all i ∈ [1, `+ (k + 1)].

2. S(2)
`+(k+1)+1+j,j′ = 0 for all j, j′ ∈ [0, k] and j 6= j′ (Diagonal Structure).

3. S(2) ∈ Zφ,frac
R(2) and

∑
i∈[1,`+2(k+1)]

∑
j∈[0,k] S(2)

i,j =
∑

i∈[1,`+(k+1)]

∑
j∈[0,k] S(1)

i,j .

4.
∑

i∈[`+(k+1)+1,`+2(k+1)](S(2)−→1 )i ∈ Z+.

5. For any j ∈ [0, k], r(2)
`+(k+1)+1+j ≤ γ.

6. g(S(2)) ≥ exp
(
−O

((
1
γ + `+ k

)
log ∆

))
g(S).

Using Lemma C.15 we now provide the guarantees for the final solution Sext returned by
Algorithm 3.

Theorem C.16 The final solution returned (Sext,Rext) by Algorithm 3 satisfies the following,

1. Sext ∈ ZφRext .

2. g(Sext) ≥ exp
(
−O

((
1
γ + `+ k + γn

)
log ∆

))
g(S).

C.3. Combining everything together

Here we combine the analysis from previous two sections to provide an efficient algorithm to compute
an exp (

√
n log n) approximate PML distribution. The main contribution of this section is to define

a probability discretization set R that guarantees existence of a discrete pseudo-distribution q with
respect to R that is also an exp (

√
n log n) approximate PML pseudo-distribution. We further use

this probability discretization set R and combine it with results from the previous two sections to
finally output an exp (

√
n log n) approximate PML distribution. In this direction, we first provide

definition of R that has desired guarantees and such a set R was already constructed in Charikar et al.
(2019a) and we formally state results from Charikar et al. (2019a) that help us define such a set R.

Lemma C.17 (Lemma 4.1 in Charikar et al. (2019a)) For any profile φ ∈ Φn, there exists a dis-
tribution q′′ ∈ ∆D such that q′′ is an exp (−6)-approximate PML distribution and minx∈D:q′′x 6=0 q′′x ≥

1
2n2 .

The above lemma allows to define a region in which our approximate PML takes all its probability
values and we use idea similar to Charikar et al. (2019a) to define this region.

Let R def
= {(1 + ε)1−i}i∈[`] be a discretization of probability space, where ` = O( logn

ε ) is the
smallest integer such that 1

4n2 ≤ (1 + ε)1−` ≤ 1
2n2 for some ε ∈ (0, 1). Fix any arbitrary order

for the elements of set R, we use ri to denote the i’th element of this set. We next state a result in
Charikar et al. (2019a) that captures the effect of this discretization.
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Lemma C.18 (Lemma 4.4 in Charikar et al. (2019a)) For any profile φ ∈ Φn and distribution
p ∈ ∆D, its discrete pseudo-distribution q = disc(p) ∈ ∆DR satisfies:

P(p, φ) ≥ P(q, φ) ≥ exp (−εn)P(p, φ) .

We are now ready to state our final algorithm. Following this algorithm, we prove that it returns
an approximate PML distribution.

Algorithm 4 Algorithm for approximate PML
Procedure Approximate PML(φ,R)

38 Input: Profile φ ∈ Φn and probability discretization set R.
39 Output: A distribution papprox.
40 Solve S = arg maxA∈Zφ,fracR

log g(A).

41 Use Algorithm 3 to round the fractional solution S to integral solution Sext ∈ ZφRext .
42 Construct discrete pseudo-distribution qSext with respect to Sext (See Definition C.6).

43 return papprox
def
=

qSext
‖qSext‖1

.

Theorem 4.1 (exp (
√
n log n)-approximate PML) For any given profile φ ∈ Φn, Algorithm 4

computes an exp (−O(
√
n log n))-approximate PML distribution in Õ(n1.5) time.

Proof Choose ε = logn√
n

and let the probability discretization space R def
= {(1 + 1√

n
)1−i}i∈[`] and

`
def
= |R| be the smallest integer such that 1

2n2 ≥ (1 + 1√
n

)1−` ≥ 1
4n2 and therefore ` ∈ O(

√
n). Let

ri be the i’th element of set R and we have ri ≥ 1
4n2 .

Given profile φ, let ppml be the PML distribution. Define qpml
def
= bppmlcR and by Lemma C.18

(and choice of ε) we have,

P(qpml, φ) ≥ exp
(
−O(
√
n log n)

)
P(ppml, φ) . (92)

Let S def
= arg maxA∈Zφ,fracR

g(A), then by Lemma C.9 we have,

max
q∈∆DR

P(p, φ) ≤ exp

(
O

(
k log

N

k

))
· Cφ · g(S) . (93)

Note that qpml ∈ ∆DR , therefore P(qpml, φ) ≤ maxq∈∆DR
P(q, φ) and further combined with equa-

tions 92 and 93 we have,

P(ppml, φ) ≤ exp

(
O

(
k log

N

k
+
√
n log n

))
· Cφ · g(S) . (94)

Let Sext and Rext be the solution returned by Algorithm 3, then by the second condition of Theo-
rem C.16 we have,

g(Sext) ≥ exp

(
−O

((
1

γ
+ `+ k + γn

)
log ∆

))
g(S) (95)
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Combining equations 94 and 95 we have,

P(ppml, φ) ≤ exp

(
O

(
k log

N

k
+
√
n log n+

(
1

γ
+ `+ k + γn

)
log ∆

))
·Cφ ·g(Sext) . (96)

We now simplify the above expression by providing the bounds and values for parameters k, `, γ,N
and ∆. We choose γ = 1√

n
and recall ` ∈ O(

√
n). Given n samples, the number of distinct

frequencies in upper bounded by
√
n and therefore k ≤

√
n. By Lemma C.17, up to constant

multiplicative loss we can assume that the minimum non-zero probability value of our approximate
PML distribution is at least 1

4n2 and therefore the support N ≤ 4n2. Recall by the third condition
of Lemma C.14, we have ∆ = max(

∑
i∈[1,`](S−→1 )i, ` × k). The condition S ∈ Zφ,fracR implies∑

i∈[1,`] ri(S−→1 )i ≤ 1 and further using ri ≥ 1
4n2 for all i ∈ [1, `] we have

∑
i∈[1,`](S−→1 )i ≤ 4n2.

Therefore ∆ ≤ max(4n2, `× k) ∈ O(n2).
Substituting these values in Equation (96) we get,

P(ppml, φ) ≤ exp
(
O
(√
n log n

))
· Cφ · g(Sext) . (97)

By the first condition of Theorem C.16 we have Sext ∈ ZφRext . Let qSext be the discrete pseudo-

distribution with respect to Sext, then the condition Sext ∈ ZφRext further implies Sext ∈ ZqSext ,φ

Rext and
combined with Theorem C.7 we have,

exp (−O(k log(N + n))) · Cφ · g(Sext) ≤ P(qSext , φ) (98)

Combining equations 97, 98, k ≤
√
n and N ≤ 4n2 we have,

P(qSext , φ) ≥ exp
(
−O

(√
n log n

))
P(ppml, φ) . (99)

Define papprox
def
=

qSext
‖qSext‖1

, then papprox is a distribution, P(papprox, φ) ≥ P(qSext , φ) (because qSext

is a pseudo-distribution and ‖qSext‖1 ≤ 1) and combined with Equation (99) we get,

P(papprox, φ) ≥ exp
(
−O

(√
n log n

))
P(ppml, φ) . (100)

Therefore papprox is an exp (−O (
√
n log n))-approximate PML distribution.

In the remainder of the proof we argue about the running time of our final algorithm for ap-
proximate PML. Step 4 of the algorithm, that is the convex program arg maxA∈Zφ,fracR

log g(A) can

be solved in Õ(k2`) time (See Theorem C.11). Algorithm 2 (CreateNewProbabilityValues) and
Algorithm 1 (StructuredRounding) can be implemented in Õ(k`) and Õ(k2) time respectively;
therefore, the Algorithm 3 (Rounding algorithm) can be implemented in Õ(k`) time. Combining
everything together our final algorithm (Algorithm 4) can be implemented in Õ(k2`) time. Further
using k, ` ∈ O(

√
n), we conclude the proof.

C.4. Missing Proofs from Appendix C.2

Here we provide the proofs for all the lemmas and theorems in Appendix C.2
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Proof [Proof of Lemma C.12] Without loss of generality assume w0 ≥ w1 ≥ w2 · · · ≥ wk. Let
a

def
=
∑

j∈[0,k] xj , we invoke Algorithm 1 with inputs (x,w, a). Let s ∈ Za+ and z ∈ R[0,k]×[0,k] be
the output of Algorithm 1. We now provide the proof for the three conditions in the lemma.

Condition 1: By construction of Algorithm 1, for any s ∈ {si}i∈[1,a] we have
∑

j∈[0,k] zs,j = 1
(Line 6) and for any other s ∈ [0, k]\{si}i∈[1,a] we have

∑
j∈[0,k] zs,j = 0. Therefore the first part

of condition 1 holds.
For any j ∈ [0, k], one of the following two cases holds,

1. If j ∈ {si}i∈[1,a] and in this case let i ∈ [1, a] be such that si = j. By line 6 (third case) of the
algorithm we have,

zsi−1,j = 1−

 ∑
j′≤si−1

xj′ − (i− 2) +
∑

si−1<j′<si

xj′

 = (i− 1)−
∑
j′<si

xj′ . (101)

We now analyze the term
∑

i′∈[0,k] zi′,j ,∑
i′∈[0,k]

zi′,j = zsi,j + zsi−1,j =
∑
j′≤si

xj′ − (i− 1) + (i− 1)−
∑
j′<si

xj′ = xsi = xj .

The first equality follows because for i′ ∈ [0, k]\{si, si−1} we have zi′,j = 0 and this follows
by the second and third case in line 6 of the algorithm. In the second equality we substituted
values for zsi,si and zsi−1,si using second case (Line 6) and Equation (101) respectively.

2. Else j ∈ [0, k]\{si}i∈[1,a], and in this case let i ∈ [1, a] be such that si < j < si+1. Then by
the first case in line 6 of the algorithm we have,∑

i′∈[0,k]

zi′,j = zsi,j = xj .

Condition 2: Consider
∑

i∈[0,k]

(∑
j∈[0,k] zi,j

)
wi,

∑
i∈[0,k]

 ∑
j∈[0,k]

zi,j

wi =
∑
i∈[1,a]

 ∑
si≤j≤si+1

zsi,j

wsi ≤
∑
i∈[1,a]

∑
si≤j≤si+1

zsi,j(wj + wsi − wsi+1)

≤
∑
i∈[1,a]

∑
si≤j≤si+1

zsi,jwj +
∑
i∈[1,a]

∑
si≤j≤si+1

zsi,j(wsi − wsi+1)

=
∑
i∈[1,a]

∑
j∈[0,k]

zsi,jwj +
∑
i∈[1,a]

∑
si≤j≤si+1

zsi,j(wsi − wsi+1) .

(102)

The first equality follows because rest of the other entries are zero. In the second inequality we
used j ≤ si+1 and therefore wj ≥ wsi+1 by our assumption at the beginning of the proof. In the
remainder, we simplify both the terms. Consider the first term in the final expression above,∑

i∈[1,a]

∑
j∈[0,k]

zsi,jwj =
∑
j∈[0,k]

wj
∑
i∈[1,a]

zsi,j =
∑
j∈[0,k]

wjxj . (103)
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In the first equality we interchanged the summations. In the second equality we used
∑

i∈[1,a] zsi,j =∑
i′∈[0,k] zi′,j and further invoked condition 1 of the lemma. Now consider the second term in the

final expression of Equation (102),∑
i∈[1,a]

∑
si≤j≤si+1

zsi,j(wsi − wsi+1) =
∑
i∈[1,a]

(wsi − wsi+1)
∑

si≤j≤si+1

zsi,j =
∑
i∈[1,a]

(wsi − wsi+1)

= (ws1 − wsx+1) ≤ max
j∈[0,k]

wj .

(104)

The second equality follows by line 6 of the algorithm. Condition 2 follows by combining equations
102, 103 and 104.

Condition 3: First we show that zi,j > 0 implies i ≤ j. Consider j ∈ [0, k],

1. If j ∈ {si}i∈[1,a], in this case let i ∈ [1, a] be such that si = j. Then by the second and
third case in line 6 of the algorithm we have, zi′,j > 0 implies i′ ∈ {si, si−1}. Further, using
si−1 < si and si = j we have i′ ≤ j.

2. Else j ∈ [0, k]\{si}i∈[1,a] and in this case let i ∈ [1, a] be such that si < j < si+1. Then by
the first case in line 6 of the algorithm we have, zi′,j > 0 implies i′ = si. Further, using si < j
we have i′ < j.

Using the above implication we have,∏
j∈[0,k]

w
mjxj
j =

∏
j∈[0,k]

w
mj
∑
i∈[0,k] zi,j

j =
∏
i∈[0,k]

∏
j∈[0,k]

w
mjzi,j
j ≤

∏
i∈[0,k]

∏
j∈[0,k]

w
mjzi,j
i (105)

In the first equality we used xj =
∑

i∈[0,k] zi,j for all j ∈ [0, k] (Condition 1). In the final inequality,
we used the result zi,j > 0 implies i ≤ j and further combined it with the assumption at the beginning
of the proof, that is, wi ≥ wj for all i, j ∈ [0, k] and i ≤ j.

Proof [Proof of Lemma C.13] Define φ0
def
=
∑

i∈[1,t] Bi,0. In the following we provide the proof for
each case.

Condition 1: For each i ∈ [1, t], B′i,j = Ci,j for all j ∈ [0, k] and the first condition holds.
Condition 2: Note that B′ is initialized to a zero matrix (Line 4). Further for any i ∈ [t+ 1, t+

(k + 1)] let j ∈ [0, k] be such that i = t + 1 + j, then the algorithm only updates the B′t+1+j,j’th
entry in the i’th row and keeps rest of the entries unchanged. Therefore the second condition holds.

Condition 3: For each i ∈ [t + 1, t + (k + 1)] let j ∈ [0, k] be such that i = t + 1 + j, then∑
j′∈[0,k] B′i,j′ = B′t+1+j,j =

∑
i′∈[1,t](Bi′,j − Ci′,j) = φj −

∑
i′∈[1,t] Ci′,j . The first equality holds

because of the Condition 2. The third equality follows from the Line 8 of the algorithm. The last
equality holds because B ∈ Zφ,fracR and we have

∑
i∈[1,`] Bi,j = φj .

Condition 4: Here we provide the proof for B′ ∈ Zφ,fracR′ . For any j ∈ [0, k], we first show that∑
i∈[1,t+(k+1)] B′i,j = φj .∑

i∈[1,t+(k+1)]

B′i,j =
∑
i∈[1,t]

B′i,j +
∑

i∈[t+1,t+(k+1)]

B′i,j =
∑
i∈[1,t]

Ci,j + B′t+1+j,j

=
∑
i∈[1,t]

Ci,j + φj −
∑
i∈[1,t]

Ci,j = φj
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The second equality follows because B′i,j = Ci,j for all i ∈ [1, t] and j ∈ [0, k] (Line 6) and∑
i∈[t+1,t+(k+1)] B′i,j = B′t+1+j,j (Condition 2). The third equality follows from the Condition 3.

We next show that
∑

i∈[1,t+(k+1)] ri
(∑

j∈[0,k] B′i,j
)
≤ 1.

∑
i∈[1,t+(k+1)]

ri

 ∑
j∈[0,k]

B′i,j

 =
∑
i∈[1,t]

ri

 ∑
j∈[0,k]

B′i,j

+
∑
j∈[0,k]

rt+1+jB′t+1+j,j

=
∑
i∈[1,t]

ri

 ∑
j∈[0,k]

Ci,j

+
∑
j∈[0,k]

∑
i∈[1,t](Bij − Cij)ri∑
i∈[1,t](Bij − Cij)

∑
i∈[1,t]

(Bi,j − Ci,j)


=
∑
i∈[1,t]

ri

 ∑
j∈[0,k]

Ci,j

+
∑
j∈[0,k]

∑
i∈[1,t]

(Bij − Cij)ri

=
∑
i∈[1,t]

ri

 ∑
j∈[0,k]

Bi,j

 ≤ 1

(106)

In the first equality, we divided the summation into two parts and for the second part we used
Condition 3. In the second equality we used Line 7 and 8 of the algorithm. In the third and fourth
equality we simplified the expression. In the final inequality we used B ∈ Zφ,fracR .

Combining all the conditions together we have B′ ∈ Zφ,fracR′ . In the remainder we show that∑
i∈[1,t+(k+1)]

∑
j∈[0,k] B′i,j =

∑
i∈[1,t]

∑
j∈[0,k] Bi,j .

Recall we already showed that
∑

i∈[1,t+(k+1)] B′i,j = φj for all j ∈ [0, k]. Recall φ0 =∑
i∈[1,t] Bi,0 and B ∈ Zφ,fracR implies φj =

∑
i∈[1,t] Bi,j for all j ∈ [1, k]. Therefore we have,

∑
i∈[1,t+(k+1)]

∑
j∈[0,k]

B′i,j =
∑
i∈[1,t]

∑
j∈[0,k]

Bi,j

Condition 5: We first provide the explicit expressions for g(B′) and g(B) below:

g(B′) =

 ∏
i∈[1,t]

r(B′−→m)i
i

exp
(

(B′−→1 )i log(B′−→1 )i

)
∏
j∈[0,k] exp

(
B′ij log B′ij

)
 ∏

j∈[0,k]

r
−→mjB′t+1+j,j

t+1+j · 1



g(B) =
∏
i∈[1,t]

r(B−→m)i
i

exp
(

(B−→1 )i log(B−→1 )i

)
∏
j∈[0,k] exp (Bij log Bij)


Note that in the expression for g(B′) we used Condition 2. In the above two definitions for g(B′) and
g(B), we refer to the expression involving ri’s as the probability term and the rest as the counting
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term. We start the analysis of Condition 5 by first bounding the probability term:

∏
i∈[1,t]

r(B−→m)i
i =

 ∏
i∈[1,t]

r(B′−→m)i
i

 ∏
i∈[1,t]

r
∑
j∈[0,k]

−→mj(Bij−B′ij)
i

 =

 ∏
i∈[1,t]

r(B′−→m)i
i

 ∏
j∈[0,k]

∏
i∈[1,t]

r
−→mj(Bij−B′ij)
i


=

 ∏
i∈[1,t]

r(B′−→m)i
i


 ∏
j∈[0,k]

 ∏
i∈[1,t]

r
(Bij−B′ij)
i

−→mj
 =

 ∏
i∈[1,t]

r(B′−→m)i
i


 ∏
j∈[0,k]

 ∏
i∈[1,t]

r(Bij−Cij)
i

−→mj


≤

 ∏
i∈[1,t]

r(B′−→m)i
i

 ∏
j∈[0,k]

(∑
i∈[1,t] ri(Bij − Cij)∑
i∈[1,t](Bij − Cij)

)−→mj
∑
i∈[1,t](Bij−Cij)


≤

 ∏
i∈[1,t]

r(B′−→m)i
i

 ∏
j∈[0,k]

r
−→mjB′t+1+j,j

t+1+j


(107)

The first three inequalities simplify the expression. The fourth equality follows because B′i,j = Ci,j

for all i ∈ [1, t] and j ∈ [0, k]. The fifth inequality follows from AM-GM inequality. The final
expression above is the probability term associated with B′ and the equation above shows that our
rounding procedure only increases the probability term and it remains to bound the counting term.

g(B′)
g(B)

≥
∏
i∈[1,t]

exp
(

(B′−→1 )i log(B′−→1 )i − (B−→1 )i log(B−→1 )i

)
∏
j∈[0,k] exp

(
B′ij log B′ij − Bij log Bij

)
=
∏
i∈[1,t]

exp
(

(C−→1 )i log(C−→1 )i − (B−→1 )i log(B−→1 )i

)
∏
j∈[0,k] exp (Cij log Cij − Bij log Bij)

.

(108)

Consider the numerator in the above expression, for each i ∈ [1, t] let si
def
= (C−→1 )i, then∏

i∈[1,t]

exp
(

(C−→1 )i log(C−→1 )i − (B−→1 )i log(B−→1 )i

)
=
∏
i∈[1,t]

exp (si log si − (si + αi) log(si + αi))

=
∏
i∈[1,t]

exp

(
si log

si
si + αi

− αi log(si + αi)

)

≥
∏
i∈[1,t]

exp

(
si
−αi
si
− αi log(si + αi)

)

≥ exp

−O
log(

∑
i∈[1,t]

si)
∑
i∈[1,t]

αi


≥ exp

−O
∑
i∈[1,t]

αi log ∆

 .

(109)
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In the third inequality we used log(1 + x) ≥ x
1+x for all x ≥ −1. The final inequality follows

because
∑

i∈[1,t] si ≤
∑

i∈[1,t](B−→1 )i ≤ ∆. Now consider the denominator in the above expression,
let αi,j = Bi,j − Ci,j for all i ∈ [1, t] and j ∈ [0, k], then∏
i∈[1,t]

∏
j∈[0,k]

exp (Cij log Cij − Bij log Bij) =
∏
i∈[1,t]

∏
j∈[0,k]

exp (Cij log Cij − (Cij + αi,j) log(Cij + αi,j))

=
∏
i∈[1,t]

∏
j∈[0,k]

exp

(
Cij log

Cij

Cij + αi,j
− αi,j log(Cij + αi,j)

)
≤
∏
i∈[1,t]

∏
j∈[0,k]

exp (−αi,j log(Cij + αi,j))

≤
∏
i∈[1,t]

∏
j∈[0,k]

exp (−αi,j logαi,j) ≤ exp

O( log(t× k)
∑
i∈[1,t]

αi
)

≤ exp

O
∑
i∈[1,t]

αi log ∆

 .

(110)

In the third inequality we used αi,j ≥ 0 and therefore Cij log
Cij

Cij+αi,j ≤ 0. In the fourth inequality
we used log(Cij+αi,j) ≥ logαi,j . In the fifth inequality we used

∑
j∈[0,k] αi,j = αi for all i ∈ [1, t]

and further
∑

i∈[1,t]

∑
j∈[0,k]−αi,j logαi,j =

∑
i∈[1,t] αi

(∑
j∈[0,k]−

αi,j
αi

log
αi,j
αi
− logαi

)
≤ log(k+

1)
∑

i∈[1,t] αi−
∑

i∈[1,t] αi logαi. Now consider the term−
∑

i∈[1,t] αi logαi and note that−
∑

i∈[1,t] αi logαi =

(
∑

i∈[1,t] αi)
(
−
∑

i∈[1,t]
αi∑

i∈[1,t] αi
log αi∑

i∈[1,t] αi
− log

∑
i∈[1,t] αi

)
≤ (1 + log t)

∑
i∈[1,t] αi. The

fifth inequality in Equation (110) follows by combining the previous two derivations together. The
final inequality follows because t× k ≤ ∆.

Condition 6: This condition follows immediately from Line 7 of the algorithm.

Proof [Proof of Lemma C.14] In the following we provide the proof for the claims in the lemma.
Condition 1: Note that H(1) ⊆ H ∪ [` + 1, ` + (k + 1)], where [` + 1, ` + (k + 1)] are the

indices corresponding to the new rows created by the procedure CreateNewProbabilityValues
(Algorithm 2). Consider any i ∈ H(1), then one the following two cases hold,

1. If i ∈ H, then by the first condition of Lemma C.13 we have (S(1)−→1 )i = (A−→1 )i =∑
j∈[0,k] Ai,j =

∑
j∈[0,k]bSi,jc ∈ Z+.

2. Else i ∈ [`+1, `+(k+1)] and in this case we have
∑

i∈[1,`] Ai,j =
∑

i∈H Ai,j+
∑

i∈L Ai,j =∑
i∈HbSi,jc + b

∑
i∈L Si,jc ∈ Z+. The second equality in the previous derivation follows

from Line 7 and 8 of the algorithm. The previous derivation combined with third condition of
Lemma C.13 we get, (S(1)−→1 )i = φj −

∑
i∈[1,`] Ai,j ∈ Z+.

(S(1)−→1 )i ∈ Z+ in both the cases and the condition 1 follows.
Condition 2: This condition follows immediately from the fourth condition of Lemma C.13.
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Condition 3: Let αi =
∑

j∈[0,k] Si,j −
∑

j∈[0,k] Ai,j for all i ∈ [1, `]. First we upper bound the
term

∑
i∈H αi. Consider

∑
i∈H αi ≤

∑
i∈H
∑

j∈[0,k] Si,j ≤ 1
γ . The last inequality follows because

of the constraint
∑

i∈[1,`] ri
∑

j∈[0,k] Si,j ≤ 1 (S ∈ Zφ,fracR ) and ri > γ for all i ∈ H.

We now upper bound the term
∑

i∈L αi. Consider
∑

i∈L αi =
∑

i∈L

(∑
j∈[0,k] Si,j −

∑
j∈[0,k] Ai,j

)
=∑

j∈[0,k]

(∑
i∈L Si,j −

∑
i∈L Ai,j

)
. Further

∑
i∈L Ai,j = b

∑
i∈L Si,jc for all j ∈ [0, k] (Line 8 of

the algorithm) and we get
∑

i∈L αi ≤ k + 1.
Therefore

∑
i∈[`] αi =

∑
i∈H αi +

∑
i∈L αi ≤

1
γ + k + 1 and combined with fifth condition

Lemma C.13 we have,

g(S(1)) ≥ exp

(
−O

((
1

γ
+ k

)
log ∆

))
g(S) .

Proof [Proof of Lemma C.15] In the following we provide proof for all the conditions in the lemma.
Condition 1: For all i ∈ [1, `+ (k + 1)], one of the following two conditions hold,

1. If i ∈ H(1), then by the first condition of Lemma C.13 we have (S(2)−→1 )i = (A(1)−→1 )i =

(S(1)−→1 )i ∈ Z+. The last expression follows from first condition of Lemma C.14.

2. Else i ∈ L(1), then again by the first condition of Lemma C.13 we have (S(2)−→1 )i =

(A(1)−→1 )i = b(S(1)−→1 )ic ∈ Z+. The last equality follows from Line 15 of the algorithm.

For all i ∈ [1, `+ (k + 1)], we have (S(2)−→1 )i ∈ Z+ and therefore condition 1 holds.
Condition 2: This condition follows immediately from the second condition of Lemma C.13.
Condition 3: This condition follows immediately from the fourth condition of Lemma C.13.
Condition 4: Consider the term

∑
i∈[`+(k+1)+1,`+2(k+1)](S(2)−→1 )i,∑

i∈[`+(k+1)+1,`+2(k+1)]

(S(2)−→1 )i =
∑

i∈[1,`+2(k+1)]

(S(2)−→1 )i −
∑

i∈[1,`+(k+1)]

(S(2)−→1 )i

=
∑
j∈[0,k]

φj −
∑

i∈[1,`+(k+1)]

(A(1)−→1 )i

=
∑
j∈[0,k]

φj −

 ∑
i∈H(1)

(A(1)−→1 )i +
∑
i∈L(1)

(A(1)−→1 )i


=
∑
j∈[0,k]

φj −

 ∑
i∈H(1)

(S(1)−→1 )i +
∑
i∈L(1)

b(S(1)−→1 )ic

 ∈ Z+

(111)

In the first equality we add and subtract
∑

i∈[1,`+(k+1)](S(2)−→1 )i term. The first term in the second

equality follows because
∑

i∈[1,`+2(k+1)](S(2)−→1 )i =
∑

j∈[0,k]

∑
i∈[1,`+2(k+1)] S(2)

i,j =
∑

j∈[0,k] φj

and the last equality follows because S(2) ∈ Zφ,frac
R(2) (Condition 3). The second term in the second

equality follows by the first condition of Lemma C.13. In the third equality we divided the summation
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terms over H(1) and L(1). In the fourth equality we used Line 14 of the algorithm and further for

any i ∈ L(1) Line 15 implies (A(1)−→1 )i =
∑

j∈[0,k] S(1)
ij
b(S(1)−→1 )ic
(S(1)−→1 )i

= b(S(1)−→1 )ic. Finally by first

condition of Lemma C.14 we have (S(1)−→1 )i ∈ Z+ for all i ∈ H(1) and φj ∈ Z+ for all j ∈ [0, k].
Therefore,

∑
i∈[`+(k+1)+1,`+2(k+1)](S(2)−→1 )i ∈ Z+ and the condition 4 holds.

Condition 5: For any j ∈ [0, k] we have,

r(2)
`+(k+1)+1+j =

∑
i∈[1,`+(k+1)](S(1)

ij − A(1)
ij )r(1)

i∑
i∈[1,`+(k+1)](S(1)

ij − A(1)
ij )

=

∑
i∈L(1)(S(1)

ij − A(1)
ij )r(1)

i∑
i∈L(1)(S(1)

ij − A(1)
ij )

≤ γ
∑

i∈L(1)(S(1)
ij − A(1)

ij )∑
i∈L(1)(S(1)

ij − A(1)
ij )
≤ γ.

(112)

The first equality follows from the sixth condition of Lemma C.13. The second equality follows
because S(1)

i,j = A(1)
i,j for all i ∈ H(1) and j ∈ [0, k] (Line 14). The third inequality follows because

S(1)
i,j ≥ A(1)

i,j for all i ∈ L(1) and j ∈ [0, k] (Line 15) and further r(1)
i ≤ γ for all i ∈ L(1) (Line 12).

Condition 6: For any i ∈ [1, ` + (k + 1)], let αi =
∑

j∈[0,k] S(1)
i,j −

∑
j∈[0,k] A(1). Note that

αi = 0 for all i ∈ H(1) (Line 14) and αi = (S(1)−→1 )i − b(S(1)−→1 )ic ≤ 1 for all i ∈ L(1) (Line 15).
Therefore

∑
i∈[1,`+(k+1)] αi ≤ |L

(1)| ≤ `+ (k + 1) and further combined with the fifth condition of

Lemma C.13 we have g(S(2)) ≥ exp (−O ((`+ k) log ∆)) g(S(1)). Note that by the third condition
of Lemma C.14 we have g(S(1)) ≥ exp

(
−O

((
1
γ + k

)
log ∆

))
g(S). Combining the previous two

inequalities we get g(S(2)) ≥ exp
(
−O

(
(`+ k + 1

γ ) log ∆
))

g(S) and condition 6 holds.

Proof [Proof of Theorem C.16] In the following we provide proof for the two conditions of the
theorem.

Condition 1: Here we provide the proof for the condition Sext ∈ ZφRext .

1. For all i ∈ [1, ` + 2(k + 1)], consider (Sext−→1 )i. If i ∈ [1, ` + (k + 1)], then (Sext−→1 )i =

(S(2)−→1 )i ∈ Z+. The first equality follows by line 22 of the algorithm and the last expres-
sion follows by first condition of Lemma C.15. Else i ∈ [` + (k + 1) + 1, ` + 2(k + 1)],
let j be such that i = ` + (k + 1) + 1 + j, then (Sext−→1 )i =

∑
j′∈[0,k] Sext

`+(k+1)+1+j,j′ =∑
j′∈[0,k]

(
bS(2)
`+(k+1)+1+j,j′c+ zj,j′

)
= bS(2)

`+(k+1)+1+j,jc+
∑

j′∈[0,k] zj,j′ ∈ Z+. The second
equality follows by line 23 of the algorithm. The third equality follows from the second condi-
tion of Lemma C.15. Finally by the first condition of Lemma C.12 we have

∑
j′∈[0,k] zj,j′ ∈

{0, 1} for all j ∈ [0, k] and therefore (Sext−→1 )i ∈ Z+ for any i ∈ [`+(k+1)+1, `+2(k+1)].

Combining the analysis of cases i ∈ [1, `+ (k + 1)] and i ∈ [`+ (k + 1) + 1, `+ 2(k + 1)]
the condition 1 holds.

2. For all j ∈ [0, k],∑
i∈[1,`+2(k+1)]

Sext
i,j =

∑
i∈[1,`+(k+1)]

Sext
i,j +

∑
i∈[`+(k+1)+1,`+2(k+1)]

Sext
i,j

=
∑

i∈[1,`+(k+1)]

S(2)
i,j +

∑
j′∈[0,k]

(
bS(2)
`+(k+1)+1+j′,jc+ zj′,j

)
.

(113)
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The second equality follows because Sext
i,j = S(2)

i,j for all i ∈ [1, ` + (k + 1)] (Line 22) and

Sext
i,j = bS(2)

`+(k+1)+1+j′,jc+ zj′,j for all i ∈ [`+ (k+ 1) + 1, `+ 2(k+ 1)] (Line 23). We next
simplify the second term in the above expression.∑
j′∈[0,k]

(
bS(2)
`+(k+1)+1+j′,jc+ zj′,j

)
= bS(2)

`+(k+1)+1+j,jc+
∑

j′∈[0,k]

zj′,j = bS(2)
`+(k+1)+1+j,jc+ xj

= S(2)
`+(k+1)+1+j,j =

∑
i∈[`+(k+1)+1,`+2(k+1)]

S(2)
i,j .

(114)

In the first and final equality we used the second condition of Lemma C.15 (Diagonal Structure).
In the second equality we used the first condition of Lemma C.12. In the third equality we
used the definition of xj (Line 19). Combining equations 113 and 114 we get,∑

i∈[1,`+2(k+1)]

Sext
i,j =

∑
i∈[1,`+2(k+1)]

S(2)
i,j = φj

In the last inequality we used S(2) ∈ Zφ,frac
R(2) .

3. Let rext
i for all i ∈ [1, `+2(k+1)] be the i’th element of Rext. Consider

∑
i∈[1,`+2(k+1)] rext

i (Sext−→1 )i,
we have,

∑
i∈[1,`+2(k+1)]

rext
i (Sext−→1 )i =

∑
i∈[1,`+2(k+1)]

r(2)
i

1 + γ
(Sext−→1 )i

=
1

1 + γ

∑
i∈[1,`+(k+1)+1]

r(2)
i (S(2)−→1 )i +

1

1 + γ

∑
i∈[`+(k+1)+1,`+2(k+1)]

r(2)
i (Sext−→1 )i.

(115)

The first equality follows from Line 24 of the algorithm. In the second equality we divided the
summation into two parts and used Sext

i,j = S(2)
i,j for all i ∈ [1, `+ (k + 1) + 1] and j ∈ [0, k]

(Line 22) for the first part. We now simplify the second part of the above expression.

∑
i∈[`+(k+1)+1,`+2(k+1)]

r(2)
i (Sext−→1 )i =

∑
j∈[0,k]

r(2)
`+(k+1)+1+j

∑
j′∈[0,k]

(
bS(2)
`+(k+1)+1+j,j′c+ zj,j′

)
=
∑
j∈[0,k]

wj

(
S(2)
`+(k+1)+1+j,j − xj

)
+
∑
j∈[0,k]

wj
∑

j′∈[0,k]

zj,j′

≤
∑
j∈[0,k]

wj

(
S(2)
`+(k+1)+1+j,j − xj

)
+
∑
j∈[0,k]

wjxj + max
j∈[0,k]

wj

=
∑

i∈[`+(k+1)+1,`+2(k+1)]

r(2)
i (S(2)−→1 )i + γ .

(116)
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In the first equality we expanded the (Sext−→1 )i term. Further we used Sext
`+(k+1)+1+j,j′ =

bS(2)
`+(k+1)+1+j,j′c + zj,j′ for all j, j′ ∈ [0, k] (Line 23). In the second equality we used the

second condition of Lemma C.15 (Diagonal Structure) and further combined it with definitions
of wj and xj from Line 19 of the algorithm. The third inequality follows from second
condition of Lemma C.12. In the final inequality we used maxj∈[0,k]wj ≤ γ that follows
from the definition of wj and fifth condition of Lemma C.15. Further we combined it with
S(2)
`+(k+1)+1+j,j = (S(2)−→1 )i that follows from the second condition of Lemma C.15.

Combining equations 115 and 116 we have,

∑
i∈[1,`+2(k+1)]

rext
i (Sext−→1 )i ≤

1

1 + γ

 ∑
i∈[1,`+2(k+1)]

r(2)
i (S(2)−→1 )i + γ

 ≤ 1 .

In the final inequality we used S(2) ∈ Zφ,frac
R(2) and therefore

∑
i∈[1,`+2(k+1)] r(2)

i (S(2)−→1 )i ≤ 1.

The condition 1 holds by combining the analysis of all the above three cases.

Condition 2: Recall the definition of g(Sext),

g(Sext) =
∏

i∈[1,`+2(k+1)]

rext
i

(Sext−→m)i
exp

(
(Sext−→1 )i log(Sext−→1 )i

)
∏
j∈[0,k] exp

(
Sext
ij log Sext

ij

)


In the above expression consider the probability term,

∏
i∈[1,`+2(k+1)]

rext
i

(Sext−→m)i =
∏

i∈[1,`+2(k+1)]

(
r(2)
i

1 + γ

)(Sext−→m)i

≥ exp (−O(γn))

 ∏
i∈[1,`+(k+1)]

r(2)
i

(Sext−→m)i

 ∏
i∈[`+(k+1)+1,`+2(k+1)]

r(2)
i

(Sext−→m)i


= exp (−O(γn))

 ∏
i∈[1,`+(k+1)]

r(2)
i

(S(2)−→m)i

 ∏
i∈[`+(k+1)+1,`+2(k+1)]

r(2)
i

(Sext−→m)i

 .

(117)

In the first equality we used line 24 of the algorithm. In the second inequality we used
∑

i∈[1,`+2(k+1)](Sext−→m)i =

n that further implies (1 + γ)−
∑
i∈[1,`+2(k+1)](Sext−→m)i ≥ exp (−O(γn)). In the third equality we

used Sext
i,j = S(2)

i,j for all i ∈ [1, ` + (k + 1)] and j ∈ [0, k] (Line 22). We now analyze the second
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product term in the final expression above,∏
i∈[`+(k+1)+1,`+2(k+1)]

r(2)
i

(Sext−→m)i
=
∏

j∈[0,k]

r(2)
`+(k+1)+1+j

∑
j′∈[0,k] Sext

`+(k+1)+1+j,j′
−→mj′

=
∏

j∈[0,k]

r(2)
`+(k+1)+1+j

∑
j′∈[0,k]

(
bS(2)

`+(k+1)+1+j,j′c+zj,j′
)−→mj′

=

 ∏
j∈[0,k]

r(2)
`+(k+1)+1+j

bS(2)
`+(k+1)+1+j,j

c
 ∏

j∈[0,k]

r(2)
`+(k+1)+1+j

∑
j′∈[0,k] zj,j′

−→mj′

 .

(118)

The second equality follows from line 23 of the algorithm. The third equality follows from the
second condition of Lemma C.15 (Diagonal Structure).

Now consider the second product term in the above expression.∏
j∈[0,k]

r(2)
`+(k+1)+1+j

∑
j′∈[0,k] zj,j′

−→mj′
=
∏

j∈[0,k]

w

∑
j′∈[0,k] zj,j′

−→mj′

j ≥
∏

j∈[0,k]

w
xj
−→mj

j . (119)

In the first equality we used the definition of wj (Line 19). The second inequality follows from the
third condition of Lemma C.12.

Combining equations 118, 119 and further using xj = S(2)
`+(k+1)+1+j,j − bS

(2)
`+(k+1)+1+j,jc for

all j ∈ [0, k] (Line 19) we have,

∏
i∈[`+(k+1)+1,`+2(k+1)]

r(2)
i

(Sext−→m)i ≥
∏

j∈[0,k]

r(2)
`+(k+1)+1+j

S(2)
`+(k+1)+1+j,j

−→mj
=

∏
i∈[`+(k+1)+1,`+2(k+1)]

r(2)
i

(S(2)−→m)i
.

(120)
In the final inequality we used the second condition of Lemma C.15 (Diagonal Structure).

Combining equations 117 and 120 we have,∏
i∈[1,`+2(k+1)]

rext
i

(Sext−→m)i ≥ exp (−O(γn))
∏

i∈[1,`+2(k+1)]

r(2)
i

(S(2)−→m)i

Using the above expression we have,

g(Sext)

g(S(2))
≥ exp (−O(γn))

∏
i∈[1,`+2(k+1)]

exp
(

(Sext−→1 )i log(Sext−→1 )i − (S(2)−→1 )i log(S(2)−→1 )i

)
∏
j′∈[0,k] exp

(
Sext
i,j′ log Sext

i,j′ − S(2)
i,j′ log S(2)

i,j′

)


= exp (−O(γn))
∏

i∈[`+(k+1)+1,`+2(k+1)]

exp
(

(Sext−→1 )i log(Sext−→1 )i − (S(2)−→1 )i log(S(2)−→1 )i

)
∏
j′∈[0,k] exp

(
Sext
i,j′ log Sext

i,j′ − S(2)
i,j′ log S(2)

i,j′

)


= exp (−O(γn))
∏

i∈[`+(k+1)+1,`+2(k+1)]

exp

(Sext−→1 )i log(Sext−→1 )i −
∑

j′∈[0,k]

Sext
i,j′ log Sext

i,j′

 .

(121)
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In the second equality we used Sext
i,j = S(2)

i,j for all i ∈ [1, ` + (k + 1)] and j ∈ [0, k] (Line 22).
The third inequality follows by the second condition of Lemma C.15 (Diagonal Structure). In the
remainder of the proof we lower bound the term in the final expression.

For each i ∈ [`+ (k + 1) + 1, `+ 2(k + 1)] let j ∈ [0, k] be such that i = `+ (k + 1) + 1 + j,
then (Sext−→1 )i =

∑
j′∈[0,k](bS

(2)
`+(k+1)+1+j,j′c + zj,j′) = bS(2)

`+(k+1)+1+j,jc +
∑

j′∈[0,k] zj,j′ . The
first equality follows from line 23 of the algorithm. The second equality follows by the second
condition of Lemma C.15 (Diagonal Structure). Using first condition of Lemma C.12, one of the
following two cases hold,

1. If
∑

j′∈[0,k] zj,j′ = 0, then zj,j′ = 0 for all j′ ∈ [0, k]. Using second condition of Lemma C.15

(Diagonal Structure), we have Sext
`+(k+1)+1+j,j′ = bS(2)

`+(k+1)+1+j,j′c + zj,j′ = 0 for all

j′ ∈ [0, k] and j′ 6= j. Further note, (Sext−→1 )i = bS(2)
`+(k+1)+1+j,jc +

∑
j′∈[0,k] zj,j′ =

Sext
`+(k+1)+1+j,j . Combining previous two equalities we have, (Sext−→1 )i log(Sext−→1 )i−

∑
j′∈[0,k] Sext

i,j′ log Sext
i,j′ =

0. Therefore,

exp

(Sext−→1 )i log(Sext−→1 )i −
∑

j′∈[0,k]

Sext
i,j′ log Sext

i,j′

 ≥ 1 . (122)

2. If
∑

j′∈[0,k] zj,j′ = 1, then zj,j′ ∈ [0, 1]R for all j′ ∈ [0, k]. Using second condition of

Lemma C.15 (Diagonal Structure), we have Sext
i,j′ = Sext

`+(k+1)+1+j,j′ = bS(2)
`+(k+1)+1+j,j′c +

zj,j′ = zj,j′ for all j′ ∈ [0, k] and j′ 6= j. Therefore,
∑

j′∈[0,k] Sext
i,j′ log Sext

i,j′ = (bS(2)
`+(k+1)+1+j,jc+

zj,j) log(bS(2)
`+(k+1)+1+j,jc+zj,j)+

∑
j′ 6=j zj,j′ log zj,j′ ≤ (bS(2)

`+(k+1)+1+j,jc+zj,j) log(bS(2)
`+(k+1)+1+j,jc+

zj,j). The final inequality follows because zj,j′ ∈ [0, 1]R and zj,j′ log zj,j′ ≤ 0 for all
j′ ∈ [0, k].

Further note, (Sext−→1 )i = bS(2)
`+(k+1)+1+j,jc+

∑
j′∈[0,k] zj,j′ = bS(2)

`+(k+1)+1+j,jc+ 1. Com-

bining previous two inequalities we have, (Sext−→1 )i log(Sext−→1 )i −
∑

j′∈[0,k] Sext
i,j′ log Sext

i,j′ ≥
(bS(2)

`+(k+1)+1+j,jc+1) log(bS(2)
`+(k+1)+1+j,jc+1)−(bS(2)

`+(k+1)+1+j,jc+zj,j) log(bS(2)
`+(k+1)+1+j,jc+

zj,j) ≥ 0. The last inequality follows because of the following: If bS(2)
`+(k+1)+1+j,jc = 0, then

the inequality follows because zj,j ∈ [0, 1]R and zj,j log zj,j ≤ 0. Else bS(2)
`+(k+1)+1+j,jc ≥ 1,

in this case we use the fact that x log x is a monotonically increasing for x ≥ 1.

Therefore

exp

(Sext−→1 )i log(Sext−→1 )i −
∑

j′∈[0,k]

Sext
i,j′ log Sext

i,j′

 ≥ 1 . (123)

Combining equations 122 and 123, for all i ∈ [`+ (k + 1) + 1, `+ 2(k + 1)] we have,

exp

(Sext−→1 )i log(Sext−→1 )i −
∑

j′∈[0,k]

Sext
i,j′ log Sext

i,j′

 ≥ 1 .
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Substituting previous inequality in Equation (121) we get,

g(Sext)

g(S(2))
≥ exp (−O(γn)) .

Further the condition 2 of the theorem follows by combining the above inequality with the sixth
condition of Lemma C.15.

Appendix D. Alternative proof for the distinct column case.

Here we provide an alternative and simpler proof for Lemma A.1 which was pointed to us by
an anonymous reviewer. This alternative proof is derived using Corollary 3.4.5 in Barvinok’s
book Barvinok (2017) (which is further derived using the Bregman-Minc inequality) and we formally
state it below.

Lemma 1 (Corollary 3.4.5 from Barvinok (2017)) Suppose that Q is a N ×N doubly stochastic
matrix that satisfies,

Qi,j ≤
1

bi
for all i ∈ [N ], j ∈ [N ]

for some positive integers b1, . . . bN . Then,

perm(Q) ≤
∏
i∈[N ]

(bi!)
1/bi

bi
.

Using the above result, we now prove Lemma A.1 and we restate it for convenience.

Lemma A.1 (Scaled Sinkhorn permanent approximation) For any matrix A ∈ RD×D≥0 with at
most k distinct columns, the following holds,

scaledsinkhorn(A) ≤ perm(A) ≤ exp

(
O

(
k log

N

k

))
scaledsinkhorn(A) . (11)

Proof [Alternative proof for Lemma A.1] The lower bound follows from Corollary A.5 and in the
remainder we prove the upper bound. Let Q be the maximizer of the scaled Sinkhorn objective, then
it is a well know fact that Q satisfies,

Q = LAR ,

where matrices L and R are the left and right non-negative diagonal matrices. Further by the
symmetry of the objective, there exists an optimum solution Q that has at most k distinct columns
and we work with such an optimum solution. As L and R are diagonal matrices, the following two
inequalities are trivial,

perm(Q) = perm(L)perm(A)perm(R) , (124)

scaledsinkhorn(Q) = perm(L) scaledsinkhorn(A) perm(R), (125)

Further note that for all doubly stochastic matrices Q we always have,

exp(−N) ≤ scaledsinkhorn(Q) . (126)
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Therefore combining Equations (124) to (126), to prove the upper bound it is enough to show that,

perm(Q) ≤ exp

(
O

(
k log

N

k

))
· exp(−N) .

As matrix Q has at most k distinct columns, let the multiplicities of these distinct columns be
φ1, . . . , φk. Note that if a column has multiplicity φi, the maximal element in this column is at most
1/φi. Now by Theorem 1 (Corollary 3.4.5. in Barvinok (2017)), we have

perm(Q) ≤
k∏
i=1

φi!

φφii
≤ exp

(
O

(
k log

N

k

))
· exp (−N) ,

where the last inequality follows because the term
∏k
i=1

φi!

φ
φi
i

is maximized when all φi’s are equal

and take value N/k. Therefore we conclude the proof.
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