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Abstract
Many multi-agent systems with strategic interactions have their desired functionality encoded as
the Nash equilibrium of a game, e.g. machine learning architectures such as Generative Adver-
sarial Networks. Directly computing a Nash equilibrium of these games is often impractical or
impossible in practice, which has led to the development of numerous learning algorithms with the
goal of iteratively converging on a Nash equilibrium. Unfortunately, the dynamics generated by the
learning process can be very intricate and instances failing to converge become hard to interpret. In
this paper we show that, in a strong sense, this dynamic complexity is inherent to games. Specif-
ically, we prove that replicator dynamics, the continuous-time analogue of Multiplicative Weights
Update, even when applied in a very restricted class of games–known as finite matrix games–is rich
enough to be able to approximate arbitrary dynamical systems. In the context of machine learning,
our results are positive in the sense that they show the nearly boundless dynamic modelling capabil-
ities of current machine learning practices, but also negative in implying that these capabilities may
come at the cost of interpretability. As a concrete example, we show how replicator dynamics can
effectively reproduce the well-known strange attractor of Lonrenz dynamics (the “butterfly effect”,
Fig 1) while achieving no regret.
Keywords: Game Theory, Online Learning, Replicator Dynamics, Regret, Nash Equilibria, Dy-
namical Systems, Attractors

Figure 1: A no-regret strange attractor. The Lorenz system can be embedded in replicator dynamics
on a finite matrix game. For more details see Sections §4 and Appendix A.3.
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1. Introduction

Game theory has emerged as a powerful formalism for studying machine learning settings with
multiple interacting loss functions. These settings are ubiquitous; they arise explicitly from the goal
of machine learning tasks (e.g. chess, poker, Go) or implicitly in the design of architectures such
as Generative Adversarial Networks (Goodfellow et al., 2014; Balduzzi et al., 2020). Rather than
the classical algorithms which simply minimize a single loss function, problems with multiple loss
functions require algorithms which converge to a Nash equilibrium. However, in practice, many
games underlying multi-loss machine learning have an implicit complexity (e.g. from datasets and
the deep networks used) that makes formal analyses of general settings infeasible using current
techniques. In light of this complexity, since many well-studied classes of games equate to ideal-
ized multi-loss problems, studying the dynamics of learning in these simpler settings becomes an
important stepping stone for machine learning theory. Inspired by this, recent work has addressed
questions traditionally studied in evolutionary game theory by trying to derive and understand algo-
rithms with strong equilibrium convergence guarantees in classic game theoretic settings.

Unfortunately, even for simple games, we lack learning algorithms that provably find such equi-
libria in general. In the presence of multiple interacting loss functions, the standard toolbox of
learning algorithms often fails in unpredictable ways. Recent work has shown that, even under the
simplifying assumption of perfect competition (zero-sum games and variants), instead of converg-
ing to Nash equilibria the dynamics of standard learning algorithms can cycle (Mertikopoulos et al.,
2018) diverge (Bailey and Piliouras, 2018), or even be formally chaotic (Cheung and Piliouras,
2019). Moreover, when one broadens their scope to a more general class of games, experimental
results suggest that chaos is in fact typical behaviour (Sanders et al., 2018) and can even emerge
in low-dimensional systems (Palaiopanos et al., 2017). Considering the ubiquity of multi-loss ML
settings alongside these negative results for relatively simple games, and others discussed in §1.1,
an urgent question arises: Is there any hope for a general understanding of the behaviours arising
from optimization-driven dynamics in games?

This paper provides evidence that the answer to this question is likely to be “no”. We show
that the dynamics of even, arguably, the most well-studied evolutionary learning algorithms, even
in a simple and seemingly very constrained class of games, can approximate arbitrarily complex
dynamical systems.

Informal Main Theorem. Replicator learning dynamics on a matrix game can, after a transi-
tionary period of time, approximate essentially any C1 dynamical system with arbitrary precision.

The significance of our result is clear when one considers that matrix games are a very restricted
class of games and that replicator dynamics is a special case of Follow-the-Regularized-Leader
(FTRL) dynamics, which captures multiple popular learning algorithms such as gradient descent,
hedge, multiplicative weights, etc. as a special case and enjoys vanishing regret at a rate of O(1/T )
(see e.g. Mertikopoulos et al. (2018)). Since matrix games are a simple class of games and repli-
cator dynamics is a special case of FTRL, then the dynamics of more general classes of games and
learning algorithms cannot be any simpler than the case we have shown to be arbitrarily complex;
framed like this, our result can be interpreted in the same fashion as a reduction in computational
complexity theory. When understood in this way, our result implies that understanding learning
dynamics in multi-agent machine learning settings is akin to a general understanding of dynamical
systems and has multi-faceted implications depending on the context it is being interpreted in. We
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discuss a range of such implications in §5, including what our result implies for designing learning
algorithms and the use of regret for measuring learning performance.

A formal statement of the main theorem requires carefully exploring strong notions of equiva-
lence between dynamical systems, and how these notions can be used to meaningfully define ap-
proximations of dynamical systems. All of the requisite language and formalism is introduced in §2,
while our notion of approximation and the main result is given in §3. Our proof establishes connec-
tions between game theory, topological dynamics, learning theory, and standard population models
from mathematical ecology. In fact, the question explored in this paper mirrors one famously asked
nearly fifty years ago by Smale (1976)–about whether it is possible to meaningfully understand
and predict the behaviours of well-studied ecological models of competition. The class of systems
considered in this paper are, relatively speaking, even more restricted than the ones considered by
Smale in his construction. However, as we show through a sequence of transformations and embed-
dings, we can approximately capture the behaviour of any target system using replicator dynamics
in finite dimensional matrix games.

1.1. Related Work

Optimization-driven learning in games, e.g., regret-minimizing dynamics, has been the subject of in-
tense study. The standard approach focuses on their time-averaged behaviour and its convergence to
coarse correlated equilibria in games, (see e.g. Roughgarden (2015); Stoltz and Lugosi (2007)). The
analysis of the time-averaged behaviour, however, is unable to faithfully capture the day-to-day dy-
namics. In many cases, it has been shown that the emergent day-to-day behaviour is non-convergent
in a strong formal sense (Mertikopoulos et al., 2018; Bailey and Piliouras, 2019). Perhaps even
more alarming is the fact that strong time-average convergence guarantees may hold true regardless
of whether the underlying system is convergent, recurrent, or even chaotic (Palaiopanos et al., 2017;
Chotibut et al., 2020a,b; Cheung and Piliouras, 2019, 2020; Bailey et al., 2020). In fact, all FTRL
dynamics, despite their optimal regret guarantees, fail to achieve (even local) asymptotic stability
on any (even partially) mixed Nash equilibrium in effectively all games (Flokas et al., 2020).

With the proliferation of multi-agent architectures in machine learning, e.g., Generative Adver-
sarial Networks (GANs), recent work has placed particular attention on the modes of failure arising
in variants of zero-sum competition between learning agents (e.g. between two neural networks).
In zero-sum games the dynamics of standard learning algorithms such as gradient descent do not
converge to Nash equilibria. Instead, the resultant dynamics may lead to cycling (Mertikopoulos
et al., 2018; Vlatakis-Gkaragkounis et al., 2019; Boone and Piliouras, 2019; Balduzzi et al., 2018),
divergence (Bailey and Piliouras, 2018; Cheung, 2018), or formally chaotic behaviours (Cheung
and Piliouras, 2019, 2020). In the face of such strong negative results for out-of-the-box optimiza-
tion methods the development of tailored algorithmic solutions is incentivized, e.g. Daskalakis et al.
(2018); Mertikopoulos et al. (2019); Gidel et al. (2019); Mescheder et al. (2018); Perolat et al.
(2020); Yazıcı et al. (2019). However, even when these algorithms do equilibrate, they may stabi-
lize at fixed points that are not Nash equilibria and thus not game theoretically meaningful (Adolphs
et al., 2019; Daskalakis and Panageas, 2018).

Alongside studies of learning in zero-sum games, differential games (i.e. smooth games) have
been the focus of recent research as a powerful, and more general, model of multi-agent machine
learning (e.g. Balduzzi et al. (2018); Mazumdar et al. (2020)). Letcher et al. (2019) leveraged con-
nections with Hamiltonian dynamics to design new algorithms for training GANs while “correcting”
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cyclic behaviours. In addition, Balduzzi et al. (2020) explored the structure of differential games and
revealed promising training guarantees when relatively weak constraints are placed on the loss func-
tions of agents in the model and the payoff structure of their interactions. Within the space of differ-
ential games, the dynamics of non-convex non-concave games have received particular attention and
a number of distinct non-equilibrating failure modes have been catalogued (Vlatakis-Gkaragkounis
et al., 2019; Hsieh et al., 2020). The impossibility of universal algorithmic solutions within the
broad scope of differential games has also been reinforced by recent work that constructs a simple
example where reasonable gradient-based methods cannot hope to converge (Letcher, 2021).

Even when one restricts their attention on matrix games, the difficulty of learning Nash equilib-
ria grows significantly and swiftly when one broadens their scope to a more general class of games
than just zero-sum games (Daskalakis et al., 2010; Kleinberg et al., 2011; Galla and Farmer, 2013;
Papadimitriou and Piliouras, 2019). In fact, detailed experimental studies suggest that chaos is stan-
dard fare (Sanders et al., 2018) and emerges even in very low dimensional systems (Sato et al.,
2002; Palaiopanos et al., 2017; Pangallo et al., 2017). This abundance of non-equilibrating results
has inspired a program for linking game theory to topology of dynamical systems (Papadimitriou
and Piliouras, 2018, 2019), specifically to Conley’s fundamental theorem of dynamical systems
(Conley, 1978). This approach shifts attention from Nash equilibria to a more general notion of
recurrence, called chain recurrence, that is flexible enough to capture both cycling behavior as well
as chaos. These tools have since found application in multi-agent ML settings (Omidshafiei et al.,
2019; Rowland et al., 2019).

Thus far, almost all work on learning dynamics in games can be roughly broken into two
streams: (i) designing algorithms that converge to desirable states, and (ii) characterizing the pos-
sible emergent behaviors from a given class of game dynamics. Our work differs from both these
lines of inquiry by, in a sense, doing the converse of (ii). Roughly speaking, we ask the question
“Given a target dynamical system, can we construct a game whose learning dynamics behave in a
similar fashion?” To the best of our knowledge, our work is the first construction of this sort in the
context of learning in games. Our approach is inspired by the work of Smale (1976) and Hirsch
(1988) in mathematical ecology, which have developed constructions in the same spirit as ours to
study the dynamics of population models.

2. Preliminaries

2.1. Game Theory

A matrix game (finite 2-player normal form game) is defined on a set of two agents [2] = {1, 2}.
Agent i ∈ [2] chooses actions from a finite action set Si according to a distribution xi in the proba-
bility |Si|-simplex ∆|Si| = {xi ∈ R|Si|

+ :
∑

s∈Si
xis = 1}. The probability distribution xi is known

as i’s mixed strategy. As the name indicates, agents in a matrix game receive payoffs according to a
payoff matrix Ai,j ∈ R|Si|×|Sj | where i, j ∈ [2] and i 6= j. Given that mixed strategies x1 ∈ ∆|S1|

and x2 ∈ ∆|S2| are chosen, agent 1 receives payoff xᵀ1A1,2x2 and agent 2 receives payoff xᵀ2A2,1x1.
This gives rise to two optimization problems, one per agent, where agents act strategically and
independantly to maximize their expected payoff over the other agent’s mixed strategy, i.e.

max
xi∈∆|Si|

xᵀiAi,jxj , i, j ∈ [2] & i 6= j . (1)
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2.2. Follow-the-Regularized-Leader (FTRL) Learning and Replicator Dynamics

Arguably the most well known class of algorithms for online learning and optimization is Follow-
the-Regularized-Leader (FTRL). Given initial payoff vector yi(0), an agent i that plays against agent
j in a matrix game Ai,j updates their strategy at time t according to

yi(t) = yi(0) +

∫ t

0
Ai,jxj(s)ds

xi(t) = arg max
xi∈∆|Si|

{〈xi, yi(t)〉 − hi(xi)}
(2)

where hi is strongly convex and continuously differentiable. FTRL effectively performs a balanc-
ing act between exploration and exploitation. The accumulated payoff vector yi(t) indicates the
total payouts until time t, i.e. if agent i had played strategy si ∈ Si continuously from t = 0 until
time t, agent i would receive a total reward of yisi(t). The two most well-known instantiations of
FTRL dynamics are the online gradient descent algorithm when hi(xi) = ||xi||22, and the replica-
tor dynamics (the continuous-time analogue of Multiplicative Weights Update Arora et al. (2012))
when hi(xi) =

∑
si∈Si xisi ln xisi . FTRL dynamics in continuous time has bounded regret in ar-

bitrary games (Mertikopoulos et al., 2018). For more information on FTRL dynamics and online
optimization, see Shalev-Shwartz (2012).

In this paper, we will focusing on replicator dynamics (RD) as our main game dynamics. Aside
from its role in optimization, RD is one of the key mathematical models of evolution and biologi-
cal competition (Schuster and Sigmund, 1983; Taylor and Jonker, 1978). It is also the prototypical
dynamic studied in the field of evolutionary game theory (Weibull, 1995; Sandholm, 2010). In this
context, replicator dynamics can be thought of as a normalized form of the population models intro-
duced in §2.4, and is studied given just a single payoff matrixA and a single probability distribution
x that can be thought abstractly as capturing the proportions of different species/strategies in the
current population. Species/strategies get randomly paired up and the resulting payoff determines
which strategies will increase/decrease over time.

Formally, the dynamics are as follows. Let A ∈ Rm×m be a matrix game and x ∈ ∆m be the
mixed strategy played. RD on A are given by:

ẋi =
dxi
dt

= xi ((Ax)i − xᵀAx) , i ∈ [n] (3)

Under the symmetry of Ai,j = Aj,i, and of initial conditions (i.e. xi = xj), it is immediate to
see that under the xi, xj solutions of (2) are identical to each other and to the solution of (3) with
A = Ai,j = Aj,i. For our purposes, it will suffice to focus on exactly this setting of matrix games
defined by a single payoff matrix A and a single probability distribution x, which is actually the
standard setting within evolutionary game theory.

2.3. Dynamical Systems Theory

Dynamical systems are mathematical models of time-evolving processes. The object undergoing
change in a dynamical system is called its state and is often denoted by x ∈ X, where X is a
topological space called a state space. We will be focusing on continuous time systems with time
denoted by t ∈ R. Change between states in a dynamical system is described by a flow Φ : X×R→
X satisfying two properties:
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(i) For each t ∈ R, Φ(·, t) : X→ X is bijective, continuous, and has a continuous inverse.

(ii) For every s, t ∈ R and x ∈ X, Φ(x, s+ t) = Φ(Φ(x, t), s).

Intuitively, flows serve the purpose of describing the evolution of states in the dynamical system.
Given a time t ∈ R, the flow describes the relative movement of every point x ∈ X; we will denote
this by the map Φt : X→ X. Similarly, given a point x ∈ X, the flow captures the trajectory of x as
a function of time; in an abuse of notation, we will denote this by Φt(x) where t is changing.

When x changes according to a continuous function in t the dynamical system is often given
as a system of ordinary differential equations (ODEs). Systems of ODEs describe a vector field
V : X → TX which assigns to each x ∈ X a vector in the tangent space of X at x. This fact is
particularly important in this paper for the case that X is ∆n, in which case the tangent space T∆n

at each x ∈ ∆n is: {y ∈ Rn : ‖y‖1 = 0} for x in the interior of ∆n, and additionally “pointing
inwards” for x on the boundary of ∆n (i.e. yi ≥ 0 if xi = 0). A system of ODEs is said to generate
(resp. give) a flow Φ if Φ describes a solution of the ODEs at each point x ∈ X. Throughout this
paper we will assume that all dynamical systems discussed can be given by a system of ODEs. As
such, we will use the term dynamical system to refer to the system of ODEs, the associated vector
field, and a generated flow interchangeably. Note that, for Lipschitz-continuous systems of ODEs,
the generated flow is unique (see Perko (1991); Meiss (2007)) and using these terms interchangeably
is well defined.

An important notion in this paper, and dynamical systems theory in general, is that of a global
attracting set of the dynamical system. Let Φ be a flow generated by some dynamical system on X.
We say Y ⊂ X is forward invariant for the flow Φ if Φt(y) ∈ Y for every t ≥ 0, y ∈ Y. We say
Y ⊂ X is globally attracting for the flow Φ if Y is nonempty, forward invariant, and

Y ⊇
⋂
t>0

{Φt(x) : x ∈ X} . (4)

Intuitively speaking, if Y is globally attracting it will capture the dynamics of Φ starting from any
point in X after some transitionary period of time. In §3 we also use the notion of stationary
dynamics, which is often considered “uninteresting” in dynamical systems theory since, in a sense,
it describes dynamical systems that are not dynamic. For our purposes, we say a dynamical system
is stationary if the ODEs of that system are identically zero, i.e. the ODEs describe a system whose
solutions are stuck in their initial state.

Now let X and Y be two topological spaces. We say that a function f : X→ Y is a homeomor-
phism if (i) f is bijective, (ii) f is continuous, and (iii) f has a continuous inverse. Furthermore, two
flows Φ : X × R → X and Ψ : Y × R → Y are homeomorphic if there exists a homeomorphism
g : X → Y such that for each x ∈ X and t ∈ R we have g(Φ(x, t)) = Ψ(g(x), t). If addition-
ally g is C1 and has a C1 inverse, then we say g is a diffeomorphism and that the flows Φ and Ψ
are diffeomorphic. Note that every diffeomorphism is also a homeomorphism, and thus every pair
of diffeomorphic flows are also homeomorphic. Homeomorphisms (resp. diffeomorphisms) are a
strong, and typical, notion of equivalence between dynamical systems. In essence, two dynamical
systems are homeomorphic if their trajectories can be mapped to one another by stretching and
bending space.
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2.4. Ecological Population Models

Throughout this paper we make use of tools developed in mathematical ecology for studying the
growth and decline of populations of species. As is typically done in ecological models, consider
vectors x ∈ Rn+ where n is the number of “species” and xi represents the population of the ith

space. Suppose that the dynamics of each population is given by the system of ODEs

ẋi =
dxi
dt

= xiMi(x), i ∈ [n] . (5)

We call any dynamical systems given by eq. 5 a population system. Furthermore, for each i ∈ [n],
Mi is called the ith species’ fitness function.

Two well studied special cases of population systems will be particularly relevant to our anal-
ysis: (i) when the fitness functions are affine and (ii) when the fitness functions are multivariate
generalized polynomials. In case (i)–when the fitness function Mi is affine for every i ∈ [n]–the
system of ODEs is known as the Lotka-Volterra (LV) equations and is given by the system of ODEs

ẋi =
dxi
dt

= xi

λ̂i +
∑
j∈[n]

Âijxj

 , i ∈ [n] (6)

where λ̂ ∈ Rn and Â ∈ Rn×n. In case (ii)–when the fitness functionMi is a multivariate generalized
polynomial for every i ∈ [n]–the system of ODEs is known as the generalized Lotka-Volterra (GLV)
equations and is given by the system of ODEs

ẋi =
dxi
dt

= xi

λi +
∑
j∈[m]

Aij
∏
k∈[n]

x
Bjk

k

 , i ∈ [n] (7)

where m is some positive integer, λ ∈ Rn, A ∈ Rn×m, and B ∈ Rm×n.

3. Main Result: Universality of Replicator Dynamics in Matrix Games

In this section we formally state and prove our main result. Specifically, we show that replicator
dynamics in finite matrix games can emulate the behaviour of any finite dimensional C1 dynamical
system defined on a space diffeomorphic to the probability simplex. In order to state our result, we
introduce a notion of approximately embedding one dynamical system into another.

Definition 1 A flow Ψ on topological space X is (ε, T )-approximately embedded in a flow Θ on
topological space Z if there exists Z′ ⊆ Z and topological space Y satisfying the following:

(i) The diameter of Y is 1 with respect to ‖ · ‖∞, i.e. sup{‖y− ŷ‖∞ : y, ŷ ∈ Y} = 1.

(ii) There exists diffeomorphisms g : X→ Y and f : relint(Y)→ Z′.

(iii) For every y ∈ relint(Y) and t ∈ [0, T ] we have

‖g(Ψt(g−1(y)))− f−1(Θt(f(y)))‖∞ < ε .

7



ANDRADE FRONGILLO PILIOURAS

Ψ Φ
Diffeomorphism

Φ̂
ε-Approximation

Γ
Embedding

Γ̃
Embedding

Γ̂
Diffeomorphism

Θ
Diffeomorphism

X Y = ∆n
g

g−1

relint(∆n)
Restrict Rn

++
id

Rm−1
++

f1
Rm−1

++

f2
Z = relint(∆m)

f3

f = f3 ◦ f2 ◦ f1

Prescribed
Dynamical

System GLV System GLV System LV System
Replicator
Dynamics

Theorem 2

Theorem 3 Theorem 4

Figure 2: A diagram highlighting the relationship between Theorems 2, 3, and 4, along with the
steps used to construct the (ε, T )-approximate embedding of Ψ in Θ. All embeddings are
injective smooth maps and ensure the original dynamical system’s approximation can be
recovered from the higher dimensional embedding spaces. The functions f1, f2, and f3

are diffeomorphisms defined in Appendix A.2. Furthermore, in Theorem 2, the subspace
Z′ ⊆ Z for the (ε, T )-approximate embedding is f ◦ id(relint(∆n)).

This definition can be seen as an extension of embeddings traditionally studied in differential topol-
ogy; in fact, the function f is an embedding of relint(Y) into Z in the traditional sense. Intuitively,
a flow Ψ is said to be (ε, T )-approximately embedded in a flow Θ if, on some subspace Z′, Θ stays
within ε from a diffeomorphic copy of Ψ for at least T time. Definition 1 stipulates that the ap-
proximation is for every y ∈ relint(Y), instead of on the entire space Y. The importance of this
distinction lies in the fact that the flow Θ restricted to Z′ should be diffeomorphic to a flow that is
well defined in Y, but the boundary of Y may not be well defined in the embedding space.

With this definition, we can state our main result. For expository purposes we state Theorem 2
in terms of the convex hull of n + 1 affinely independent points in Rn, since this captures most
settings of interest to machine learning practitioners. Theorem 2 trivially extends to any space
diffeomorphic to the simplex since diffeomorphisms are closed under composition.

Theorem 2 Let X be the convex hull of a set of n + 1 affinely independent points in Rn and Ψ
be any flow on X given by a finite dimensional C1 system of ODEs. For any ε, T > 0, there exists
m ≥ 0 and a matrix A ∈ Rm×m such that Ψ is (ε, T )-approximately embedded in the flow given by
replicator dynamics on A.

A proof of Theorem 2 follows immediately from Theorems 3 and 4 stated below. The basic
intuition of how Theorems 2, 3, and 4 are proved and relate to one another is summarized in Figure 2.
The remainder of this section is dedicated to formally proving Theorem 2. We begin by stating
Theorems 3 and 4 along with their proof sketches–the full proofs are given in Appendices A.1
and A.2 respectively. We then conclude by demonstrating how these Theorems come together
to prove Theorem 2. It is worth noting that in some cases our proof techniques can be used to
actually construct a matrix game that emulates the behaviour of a prescribed dynamical system
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under RD; a concrete example is given in §4 where a matrix game giving rise to the iconic Lorenz
system (Lorenz, 1963) is constructed.

Theorem 3 Let Φ be a flow on ∆n that is generated by a C1 system of ODEs. For any ε, T > 0,
there exists a flow Γ on Rn++ given by a system of GLV equations (eq. 7) such that:

(i) A subspace of relint(∆n) is a global attracting set of Γ.

(ii) For every y ∈ relint(∆n) and t ∈ [0, T ] we have

‖Φt(y)− Γt(y)‖∞ < ε .

Formally constructing a flow Γ with the properties stated in Theorem 3 requires some technical
legwork, but the intuition behind our construction of Γ is rather straightforward. First we get a poly-
nomial approximation of the ODEs generating Φ from the well known Stone-Weierstrass theorem,
which we call p = (p1, . . . , pn). In our construction we ensure that p generates a forward invariant
flow Φ̂ on ∆n and has a subspace of relint(∆n) as a global attracting set. Then, for each i ∈ [n], we
divide pi by yi and add the resultant generalized polynomials to the polynomial π(y) = (1−‖y‖1),
which yields a new generalized polynomial π + 1

yi
pi for each i ∈ [n]. By setting these new gen-

eralized polynomials, π + 1
yi
pi, as the fitness functions of a population system on Rn++ we get the

system generating Γ. The role of π is to define logistic equation dynamics between the ODEs so
that the dynamics of the system as a whole approaches ∆n. Since the logistic equation ensures
‖y‖1 → 1 as t → ∞, though the dynamics outside ∆n may be different from those on ∆n, this
construction ensures that the probability simplex ∆n is attracting all of the dynamics. Furthermore,
not only is ∆n forward invariant under the construction, but π(x) = 0 for x ∈ ∆n and so the flow
is exactly generated by the polynomials p that approximate Φ. A full proof of Theorem 3 can be
found in Appendix A.1.

Theorem 4 Let λ ∈ Rn, A ∈ Rn×(m−1), and B ∈ R(m−1)×n define a system of GLV equa-
tions (eq. 7) on Rn++, where m− 1 ≥ n. Let Γ on Rn++ be the flow generated by this system of GLV
equations. There exists a flow Θ on relint(∆m) and a diffeomorphism f : Rn++ → P ⊆ relint(∆m)
such that:

(i) The flow Θ on relint(∆m) is given by RD on a matrix game with payoff matrix A ∈ Rm×m.

(ii) The flow Θ|P = f(Γ) and Γ = f−1(Θ|P), where Θ|P is the flow given by Θ restricted to P.

A full proof of Theorem 4 appears in Appendix A.2. The result follows from our construction
of the payoff matrix A ∈ Rm×m, which requires an intermediary step where the system of GLV
equations on Rn++ is embedded into a system of LV equations on Rm−1

++ . This embedding is guaran-
teed to exist due to a trick introduced by Brenig and Goriely (1989). First, the embedding trick adds
dummy dimensions to the GLV system by padding λ, A, and B to define a qualitatively equivalent
system of GLV equations on Rm−1

++ –this step ensures the new GLV system is always stationary on
the m−n−1 newly introduced dimensions and is identical to the original system on a submanifold
of Rm−1

++ . Next, the embedding trick uses a diffeomorphism to transform the enlarged GLV equa-
tions on Rm−1

++ into a system of LV equations on Rm−1
++ . As summarized in Figure 2, the original

GLV equations on Rn++ generate a flow Γ and we use the embedding trick to place it into a flow
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Γ̂ given by the LV equations. Using a diffeomorphism by Hofbauer and Sigmund (1998), which
maps trajectories of LV equations in Rm−1

++ to trajectories of RD in relint(∆m), we construct the
game matrix A ∈ Rm×m. This matrix A under RD generates the flow Θ on relint(∆m) that we
are ultimately interested in. Finally, to find the subspace P ⊆ relint(∆m) and diffeomorphism f ,
we note that the embedding constructed by the embedding trick is an injective smooth map from
Rn++ to Rm−1

++ ; define f̂ : Rn++ → relint(∆m) as the composition of this embedding map with the
diffeomorphism by Hofbauer and Sigmund (1998). The subspace P is precisely f̂(Rn++) and the
diffeomorphism f is obtained by restricting the range of f̂ to P.

With Theorems 3 and 4 stated we are now ready to prove Theorem 2. Let X be a topological
space with a diffeomorphism g : X→ ∆n and let Ψ be any flow on X given by a finite dimensional
C1 system of ODEs. Define the flow Φ = g(Ψ) on ∆n, i.e. the dynamical system diffeomorphic
to Ψ via g. From Theorem 3 we know that for any ε, T > 0 there exists a flow Γ given by a
system of GLV equations on Rn++ such that ‖Φt(y) − Γt(y)‖∞ < ε for every y ∈ relint(∆n)
and t ∈ [0, T ]. From Theorem 4, for m ≥ n, we know there exists a flow Θ on relint(∆m) and
diffeomorphism f : Rn++ → P ⊆ relint(∆m) such that Θ restricted to P is diffeomorphic
to Γ via f . Let Θ|P be the flow given by Θ restricted to P. Since g(Ψ) = Φ, f−1(Θ|P) = Γ,
and f(relint(∆n)) ⊂ P = f(Rn++), it follows that ‖g(Ψt(g−1(y))) − f−1(Θt(f(y)))‖∞ < ε for
every y ∈ relint(∆n) and t ∈ [0, T ]. Thus, by setting Z = relint(∆m), Z′ = f(relint(∆n)),
and Y = ∆n, we have shown that Ψ is (ε, T )-approximately embedded in Θ. Furthermore, from
Theorem 4 we know that Θ is the flow given by replicator dynamics on a matrix game with payoff
matrix A ∈ Rm×m. The convex hull of n+ 1 affinely independent points in Rn is a special case of
X, so we have proven Theorem 2.

4. The Lorenz Game

To demonstrate how the construction in §3 can be applied, we will highlight the construction of
a matrix game whose dynamics under RD embeds the iconic system of Lorenz (1963); the full
construction of this matrix game can be found in Appendix A.3. The Lorenz system’s strange
attractor, the “butterfly”, has nearly become synonymous with chaotic flows and is given by the
following three dimensional the system of ODEs in R3

ẋ1 = σ(x2 − x1)

ẋ3 = x1(ρ− x3)− x2

ẋ3 = x1x2 − βx3 ,

where σ, ρ, β > 0 are constants. Due to the fame of the Lorenz attractor it has been studied exten-
sively and analyses of its dynamics under various settings of its parameters can be found in many
sources (see e.g. Hateley (2019)). We will focus on the setting first studied by Lorenz, given by
ρ = 28, σ = 10, and β = 8/3. Given these parameters, it is straightforward to show that, for
sufficiently large r > 0, the sphere R = {(x1, x2, x3) : x2

1 + x2
2 + (x3 − ρ− σ)2 = r} is globally

attracting and forward invariant under the Lorenz system. (Moreover, all initial conditions converge
toR exponentially fast.)

Shifting the solutions of the Lorenz equation by r in the positive direction for all three dimen-
sions, and then rearranging terms, we arrive at the following GLV system on R3

++:

10
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ẋ1 = σ ((x2 − r)− (x1 − r))
ẋ3 = (x1 − r) (ρ− (x3 − r))− (x2 − r)
ẋ3 = (x1 − r)(x2 − r)− β(x1 − r)

=⇒
ẋ1 = x1

(
σx2x

−1
1 − σ

)
ẋ2 = x2

(
ηx1x

−1
2 − x1x3x

−1
2 + rx3x

−1
2 + αx−1

2 − 1
)

ẋ3 = x3

(
x1x2x

−1
3 − rx1x

−1
3 − rx2x

−1
3 + µx−1

3 − β
)

where η = ρ + r, α = r − ρr − r2, and µ = r2 + βr. Since we can rewrite the shifted Lorenz
system in this GLV form, there is no need do derive the approximation highlighted in Theorem 3
and we can immediately apply Theorem 4.

From the construction used to prove Theorem 4, we get the game matrix A ∈ R11×11 that can
be written as

A =



−σ η −1 r α 0 0 0 0 (σ − 1) 0
σ −η 1 −r −α 0 0 0 0 (1− σ) 0
σ −η 1 −r −α 1 −r −r µ (1− σ − β) 0
0 −η 1 −r −α 1 −r −r µ (1− β) 0
0 −η 1 −r −α 0 0 0 0 1 0
σ η −1 r α −1 r r −µ (β − σ − 1) 0
σ 0 0 0 0 −1 r r −µ (β − σ) 0
0 η −1 r α −1 r r −µ (β − 1) 0
0 0 0 0 0 −1 r r −µ β 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



.

The solution of RD on A is plotted in Figure 1. It is worth noting that the last row and column
are all zeros since they correspond to a compactifying dimension added during our construction
for normalizing each dimension. Similarly, the second to last row of zeros and its corresponding
column serves the role of keeping track of the constants in the shifted Lorenz system. In addition to
A, we have a diffeomorphism f : R3

++ → P ⊂ relint(∆11) from x ∈ R3
++ to p ∈ relint(∆11) that

is written as

f(x) =

(
x−1

1 x1
2

N
,
x1

1x
−1
2

N
,
x1

1x
−1
2 x1

3

N
,
x−1

2 x1
3

N
,
x−1

2

N
,
x1

1x
1
2x
−1
3

N
,
x1

1x
−1
3

N
,
x1

2x
−1
3

N
,
x−1

3

N
,

1

N
,

1

N

)
,

where N is a normalization factor given by the sum of the numerators in f . Since we were able to
rewrite the Lorenz system in GLV form exactly, without an approximation step, RD on this game is
a true embedding of the Lorenz system’s strange attractor.

5. Discussion

In this paper we show that learning dynamics in finite matrix games can be as complex as any
system of ODEs defined on a set diffeomorphic to the probability simplex. This result has multiple
implications for both multi-agent machine learning and algorithmic game theory. We discuss some
of these implications here, along with extensions and future directions.

5.1. On the Hardness of Nash Equilibria

Our results offer an interesting conclusion to a progression of results from algorithmic game theory
which have established the hardness of computing Nash equilibria. First, it was shown that comput-
ing Nash equilibria is impractical or impossible in general, as it is a PPAD-hard problem (Daskalakis

11
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Figure 3: Time-averaged regret of the trajectory shown in Figure 1. As theoretical predictions sug-
gest (Mertikopoulos et al., 2018), we see that regret (solid blue line) quickly converges to
zero (dashed black line).

et al., 2006). Next, it was shown that learning dynamics do not converge to equilibria in gen-
eral (Daskalakis et al., 2010; Sato et al., 2002; Mertikopoulos et al., 2018; Flokas et al., 2020).
Recently it was revealed that, not only is convergence to equilibria not guaranteed, learning dy-
namics in games can even be provably chaotic (Palaiopanos et al., 2017; Chotibut et al., 2020a,b;
Cheung and Piliouras, 2019, 2020). In this paper, we show that, indeed, learning dynamics can
effectively simulate any behavior even in the special case of finite matrix games.

5.2. No-Regret Strange Attractors

A popular measure of performance for online learning algorithms is regret, which measures the
difference between an algorithm’s average performance against the performance of the best fixed
strategy in hindsight. When the regret of an algorithm tends to zero as t → ∞ for all sets of
input, the algorithm is said to be no-regret. Though analyzing an algorithm’s regret provides use-
ful insights and knowing that an algorithm has no-regret is a good guarantee to have, our result
shows that having a no-regret algorithm provides effectively no insight into the system’s day-to-
day behaviour. The arbitrary behaviour of no-regret learning algorithms in games is perhaps best
exemplified by our construction of the Lorenz game in §4. Since RD is known to have no-regret
in arbitrary games (e.g., Mertikopoulos et al. (2018)) and we have embedded the Lorenz system’s
strange attractor into RD on a matrix game, it follows that we have constructed a game where it
is possible to have no-regret while the day-to-day dynamics move along a strange attractor–this is
demonstrated in Figure 3. To the best of our knowledge this is the first instance where this possibility
has been formally established.

12
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5.3. Extensions and Future Directions

In this paper, we study learning in games from a different perspective than prior work; rather than
focusing on the dynamics generated by a specific game setting, we focus on which games generate
specific dynamics. Approaching the problem from this angle introduces a natural way of formalizing
intuitions about multi-loss learning relative to the complexity of other dynamical systems. Although
great strides have been made towards answering fundamental questions about learning dynamics
in games, the area is still rich with challenging problems and issues. We believe that our main
results, along with the novel techniques they required, provide useful insights into old questions and
introduce interesting new directions. We conclude by highlighting some of these below.

Taming dynamic complexity by designing games, not just algorithms. The complex dynam-
ics that arise from training multi-loss machine learning models, such as Generative Adversarial
Networks (GANs), has recently become the object of intense study. As highlighted in §1.1, this
study has led to several results reporting possible modes of failure and algorithms seeking to correct
pathological training behaviours. Our main result, Theorem 2, shows that essentially any dynamics
can arise in highly simplistic games and thus formalizes the idea that some dynamic complexity in
multi-agent learning can be inherent to the underlying game. As the games encountered in machine
learning problems are generally more complex than matrix games, our result highlights an inter-
esting direction for future work: rather than just focusing on algorithms, we should also identify
properties of games that facilitate desirable learning dynamics and tackle difficult learning prob-
lems by designing underlying games with these properties.

This idea of designing games is closely related to a research program recently proposed by Leibo
et al. (2019), which treats underlying interaction structures encoded in games as an “autocurricula”
to be harnessed for training more robust models. The paradigm of designing games has already
led to promising results on the emergent behaviours of certain multi-agent systems (Balduzzi et al.,
2020; Chang et al., 2020), but many natural approaches remain largely unexplored. For example,
studying settings where the games themselves should evolve over time may help guide multi-agent
learning (Skoulakis et al., 2021).

Time-average convergence, other algorithms, and relations to day-to-day dynamics. As high-
lighted in §5.2, the Lorenz game (§4) demonstrates the possibility of learning algorithms having
no-regret while their trajectory is on a strange chaotic attractor. The existence of these no-regret
strange attractors is in spite of guarantees that replicator dynamics’ trajectories will converge on the
set of coarse correlated equilibria in a time-average sense. A precise understanding of the relation-
ship between an algorithm’s day-to-day dynamics and its time-average convergence could provide
useful insights for future work, and embedding specific dynamics into the day-to-day behaviours
of replicator dynamics could be a potent tool for exploring this relationship formally. In addition,
as our proof is for replicator dynamics, extending the result to other popular algorithms, including
discrete-time algorithms, would be invaluable for tackling this line of inquiry more broadly.

A notion of reduction for learning dynamics. The techniques used in this paper are similar in
spirit to a reduction in computational complexity theory. By mapping essentially arbitrary dynami-
cal systems onto specific instances of replicator dynamics in games, Theorem 2 immediately shows
that no positive dynamics results are possible for any class of learning dynamics that include repli-
cator dynamics as a special case, e.g. the family of FTRL dynamics and, even more broadly, the
class of all regret-minimizing dynamics. In fact, since replicator dynamics have strong no-regret
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guarantees, our result implies that “fast convergence” to the set of coarse correlated equilibria is
insufficient for proving positive topological results about learning dynamics in games. In this way,
as with traditional reductions, restricting ourselves to specific settings (e.g. replicator dynamics)
can serve to strengthen the negative result. Extending these ideas and formalizing a notion of re-
duction for learning dynamics could serve as a framework capable of providing rigorous insights
about general settings. Not only would such a framework be useful for proving negative results like
ours, but it could also be used to derive strong positive guarantees. For example, FTRL dynamics
on zero-sum games are known to be Hamiltonian systems (Bailey and Piliouras, 2019), which are
not guaranteed to have well-behaved dynamics unless they are fully integrable; a reduction between
integrable Hamiltonian systems and special cases of FTRL on zero-sum games would be a positive
result of significant interest.

We hope that our work inspires further investigations in each of these directions, as we keep
exploring the impressive expressive power of multi-agent learning dynamics.
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Appendix A. Proofs

A.1. Proof of Theorem 3

Theorem 2 Let Φ be a flow on ∆n that is generated by a C1 system of ODEs. For any ε, T > 0,
there exists a flow Γ on Rn++ given by a system of GLV equations (eq. 7) such that:

(i) A subspace of relint(∆n) is a global attracting set of Γ.

(ii) For every y ∈ relint(∆n) and t ∈ [0, T ] we have

‖Φt(y)− Γt(y)‖∞ < ε .

Proof Suppose the flow Φ is given by a system of ODEs h : ∆n → Rn, i.e. ẏi = hi(y). We
will first construct a flow Φ̂ that approximates Φ within ε on ∆n for any T, ε > 0. Importantly,
our construction ensures that Φ̂ is given by a system of polynomials that is well defined on ∆n. To
construct Φ̂ in a way where these properties are satisfied, we find a polynomial approximation
of Φ and then add correction terms to the approximation that ensure the resultant polynomials
are well behaved on the boundary of ∆n. We conclude the proof by constructing the flow Γ in
the Theorem statement, which has Φ̂ embedded on a globally attracting set of Γ. Note that the
construction of the population system giving Γ is related to the construction in Smale (1976), where
it is shown that some additional bookkeeping guarantees that Γ will satisfy properties commonly
used in mathematical ecology for modeling species in competition.

The Stone-Weierstrass Theorem famously implies that any continuous function on a compact
topological space can be approximated to an arbitrary degree of accuracy with a continuous se-
quence of polynomials. It follows that, by the Stone-Weierstrass Theorem, for any δ > 0 and every
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i ∈ [n− 1] there exists a polynomial p̂i such that for every y ∈ ∆n we have |hi(y)− p̂i(y)| < δ
n2 .

Furthermore, since h is defined on ∆n and therefore has the tangent space T∆n defined in §2.3, we
know that hn = −

∑
i∈[n−1] hi, and setting p̂n = −

∑
i∈[n−1] p̂i guarantees that

|hn(y)− p̂n(y)| ≤
∑

i∈[n−1]

|p̂i(y)− hi(y)| < δ/n .

It is mentioned in §2.3 that a dynamical system must “point inwards” on the boundary for it
to be well defined on ∆n. Therefore let us now consider the behaviour of p̂i on the boundary
of ∆n, i.e. y ∈ ∆n such that some yi = 0. We know that, for each i ∈ [n − 1], hi(y) ≥ 0
for y ∈ ∆n such that yi = 0, therefore p̂i(y) > −δ/n2. Similarly, hn(y) ≥ 0 for y ∈ ∆n

such that yn = 0, therefore p̂n(y) > −δ/n. It follows that to use p̂i to construct a polynomial
approximation on ∆n of the flow Φ, we will need to add an appropriate correction term to each p̂i.
Define pi(y) = p̂i(y)+δ( 1

n−yi) for i ∈ [n−1], and pn(y) = −
∑

i∈[n−1] pi(y) as before. Observe
that we have pn(y) = −

∑
i∈[n−1](p̂i(y)+δ( 1

n−yi)) = p̂n−δ n−1
n +δ

∑
i∈[n−1] yi = p̂n+δ( 1

n−yn).
It follows that, for i ∈ [n] and y ∈ ∆n, we have

|hi(y)− pi(y)| = |hi(y)− p̂i(y)− δ( 1
n − yi)| < 2δ .

Furthermore, for i ∈ [n], when y is on the boundary of ∆n this construction ensures that pi(y) > 0
when yi = 0 and that pi(y) < 0 when yi = 1. We therefore know the dynamical system given by
p = (p1, . . . , pn) is well defined on ∆n and has a subspace of relint(∆n) as a global attracting set.

Let Φ̂ be the flow given by the approximating polynomials p = (p1, . . . , pn). By definition
dΦt

dt (y) = h(Φt(y)) and dΦ̂t

dt (y) = p(Φ̂t(y)) for every y ∈ ∆n and t ∈ R. Furthermore, since h
is C1 and ∆n is compact, we know that h is Lipschitz continuous. Letting L denote the Lipschitz
constant for h with respect to ‖ · ‖∞, it follows that for every y ∈ ∆n and t ∈ R,

‖Φt(y)− Φ̂t(y)‖∞ =

∫ t

0
‖dΦs

ds
(y)− dΦ̂s

ds
(y)‖∞ ds

=

∫ t

0
‖h(Φs(y))− p(Φ̂s(y))‖∞ ds

≤
∫ t

0
‖h(Φs(y))− h(Φ̂s(y))‖∞ ds+

∫ t

0
‖h(Φ̂s(y))− p(Φ̂s(y))‖∞ ds

≤
∫ t

0
L‖Φs(y)− Φ̂s(y)‖∞ ds+ 2tδ .

Defining R(t) =
∫ t

0 L‖Φ
s(y)− Φ̂s(y)‖∞ ds+ 2tδ, we have

Ṙ(t) = L‖Φ̂t(y)− Φt(y)‖∞ + 2δ ≤ LR(t) + 2δ .

Letting z(0) = R(0) = 0 and ż = Lz + 2δ ≥ Ṙ, and solving for z(t), we have

L‖Φ̂t(y)− Φt(y)‖∞ + 2δ = Ṙ(t) ≤ z(t) = 2δeLt .

Thus, for every t ∈ [0, T ] and y ∈ ∆n, we have

‖Φ̂t(y)− Φt(y)‖∞ ≤
2δ

L

(
eLt − 1

)
< ε , (8)
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where we set ε = δ
L

(
eLT − 1

)
.

We will now embed Φ̂, restricted to relint(∆n), inside of a flow Γ on Rn++ given by a population
system with generalized polynomial fitness functions. Letting π(y) = (1 − ‖y‖1), consider the
population system M on Rn++ given by fitness functions Mi(y) = π(y) + 1

yi
pi(y) for each i ∈ [n],

where pi are the polynomials constructed above generating Φ̂. Note that M is given by the ODEs

ẏi = yiπ(y) + pi(y) .

By construction, relint(()∆n) is forward invariant under M, as π(y) = 0 on ∆n. Furthermore,
observe that for y = y(t) ∈ Rn++ the population system M has

d

dt
‖y‖1 =

∑
i∈[n]

yiπ(y) +
∑
i∈[n]

pi(y)

= ‖y‖1π(y)

= ‖y‖1(1− ‖y‖1) ,

the logistic equation. Thus, for every y ∈ Rn++, we know ‖y‖1 → 1 as t → ∞. It follows that
relint(()∆n) is globally attracting for the dynamical system given by M.

As a final step define Γ to be the flow on Rn++ given by M. By our construction, we know that
a subspace of relint(∆n) is a global attracting set of Γ and that for y ∈ relint(∆n) we have Γ = Φ̂.
All that remains to show is that Γ is given by a system of GLV equations. Recall that multivariate
generalized polynomials on y ∈ Rn are defined as functions of the form∑

j∈[m]

aj
∏
k∈[n]

ybkk

where each aj ∈ R and bk ∈ R. It is easy to check that the set of generalized polynomials is
closed under multiplication and addition. Therefore 1

yi
pi(y) is a generalized polynomial, π(y) is

a generalized polynomial, and so Mi(y) = π(y) + 1
yi
pi(y) is a generalized polynomial for each

i ∈ [n]. Since the fitness functions Mi for each i ∈ [n] is given by a generalized polynomial, the
flow Γ on Rn++ is given by a system of GLV equations by definition. Furthermore, we showed that
part (i) of the Theorem follows since Γ has relint(∆n) as a global attracting set. In addition, we
showed that part (ii) of the Theorem follows, as Γ|relint(∆n) = Φ̂|relint(∆n).

A.2. Proof of Theorem 4

Theorem 3 Let λ ∈ Rn, A ∈ Rn×(m−1), and B ∈ R(m−1)×n define a system of GLV equa-
tions (eq. 7) on Rn++, where m− 1 ≥ n. Let Γ on Rn++ be the flow generated by this system of GLV
equations. There exists a flow Θ on relint(∆m) and a diffeomorphism f : Rn++ → P ⊆ relint(∆m)
such that:

(i) The flow Θ on relint(∆m) is given by RD on a matrix game with payoff matrix A ∈ Rm×m.

(ii) The flow Θ|P = f(Γ) and Γ = f−1(Θ|P), where Θ|P is the flow given by Θ restricted to P.

21



ANDRADE FRONGILLO PILIOURAS

Proof Our proof proceeds by first embedding the GLV equations generating Γ into a system of LV
equations, and then constructing a diffeomorphism from the system of LV equations to a replicator
system on a matrix game with payoff matrix A ∈ Rm×m. The embedding from the GLV equa-
tions into the LV equations ensures that the original system is easy to recover. Our result follows
immediately by composing the transformations from the given GLV equations all the way to the
replicator system. The first part of our proof uses an embedding trick introduced by Brenig and
Goriely (1989), whose properties (e.g. smoothness) are explored by Hernández-Bermejo and Fairén
(1997). The second part of our proof follows Theorem 7.5.1 by Hofbauer and Sigmund (1998).

Consider the system of GLV equations on Rn++ generating Γ

ẋi = xi

λi +
∑

j∈[m−1]

Aij
∏
k∈[n]

x
Bjk

k

 , i ∈ [n] (9)

where λ ∈ Rn, A ∈ Rn×(m−1), B ∈ R(m−1)×n, and m − 1 ≥ n. Throughout this proof we will
assume without loss of generality that λ = 0, as we can simply append a column toA and add a row
of zeros to B. In addition, we will also assume without loss of generality that B has column rank
of n.1 We will embed the system given by eq. 9 into a higher dimensional system of GLV equations
by constructing matrices Ã, B̃ ∈ R(m−1)×(m−1) as follows:

(i) The matrix Ã has its first n rows identical to A and its last m− n− 1 rows as all zeros. That
is, the matrix Ã = {Ãij}i,j∈[m−1] has Ãij = Aij for 1 ≤ i ≤ n, j ∈ [m− 1] and has Ãij = 0
for n < i ≤ m− 1, j ∈ [m− 1].

(ii) The matrix B̃ has its first n columns identical to B and its last m− n− 1 columns set to any
values which ensure B̃ is non-singular. That is, the matrix B̃ = {B̃ij}i,j∈[m−1] has B̃ij = Bij

for i ∈ [m− 1], 1 ≤ j ≤ n and, for i ∈ [m− 1], n < j ≤ m− 1, has B̃ij set to any value
ensuring the columns are linearly independent.

These matrices define the GLV system on Rm−1
++ given by

ẏi = yi

 ∑
j∈[m−1]

Ãij
∏

k∈[m−1]

y
B̃jk

k

 , i ∈ [m− 1] . (10)

Observe that by construction ẏi = 0 for i > n since Ãij = 0 for j ∈ [m−1], therefore we know
that the dynamics of the m − n − 1 newly introduced species are stationary. Furthermore, since
the newly introduced species have stationary dynamics, this construction ensures that the ODEs
associated with the the original n species only change by multiplying certain monomials with a
constant–where for every species the multiplicative constant being introduced to the jth monomial
is fully defined by the initial conditions of the newly introduced species and is given by the term∏
k>n y

B̃jk

k . It follows that if we assign the initial condition yi = 1 for n < i ≤ m − 1, then
the ODEs ẏi ≡ ẋi for i ∈ [n]. As a consequence, this construction gives a natural embedding

1. This assumption is without loss of generality because we can always add rows to B (i.e. “increase m”) to ensure
it has rank n. It is important that we add a column of 0’s to A for every new row added to B and that any newly
introduced species have unit valued initial conditions (i.e. population of one at t = 0). We use the same trick when
embedding eq. 9 into the system given by eq. 10. Details about why this works are discussed below.
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of the system given by eq. 9 into the system given by eq. 10 while ensuring the dynamics of the
first n species remain identical. We can formally write this embedding as the injective smooth
map f̂1 : Rn++ → Rm−1

++ , where f̂1(x) = (x1, · · · , xn, 1, · · · , 1) ensures ẏi ≡ ẋi for i ∈ [n]

and x ∈ Rn++. It is worth noting that f̂1 is a diffeomorphism onto its image,2 i.e. it defines a
diffeomorphism f1 : Rn++ → f̂1(Rm−1

++ ).
Now, for i ∈ [m− 1], transform each yi in eq. 10 by

yi =
∏

k∈[m−1]

zCik
k , i ∈ [m− 1] (11)

where C ∈ R(m−1)×(m−1) is some non-singular matrix. It was shown by Brenig and Goriely
(1989) that transformations given by eq. 11 define diffeomorphisms from Rm−1

++ to itself and that
GLV equations are closed under these transformations. In fact, this transformation maps eq. 10 to
another system of GLV equations on Rm−1

++ given by

żi = zi

 ∑
j∈[m−1]

Âij
∏

k∈[m−1]

z
B̂jk

k

 , i ∈ [m− 1] (12)

where Â = C−1 · Ã and B̂ = B̃ · C. In particular, by using C = B̃−1, the transformation given
by eq. 11 makes B̂ = I (the identity matrix). Therefore, by using C = B̃−1, each generalized
monomial in eq. 12 reduces to a single variable and we have the system of LV equations

żi = zi

 ∑
j∈[m−1]

Âijzj

 , i ∈ [m− 1] . (13)

Furthermore, by eq. 11, we have a diffeomorphism from y ∈ Rm−1
++ to z ∈ Rm−1

++ given by the

transformations zi =
∏
k∈[m−1] y

B̃ik
k for each i ∈ [m − 1]. Let f2 : Rm−1

++ → Rm−1
++ be this

diffeomorphism from the GLV system given by eq. 10 to the LV system given by eq. 13. By
composing f̂1 with f2 we have defined an embedding of our original GLV system to the LV system
given by eq. 13. In addition, since f̂1 ensures yi = 1 for every n < i ≤ m − 1 in eq. 10, we find
that the embedding into the LV system can be written as zi =

∏
k∈[n] y

B̃ik
k =

∏
k∈[n] x

Bik
k for each

i ∈ [m− 1].
To conclude our construction, let p ∈ relint(∆m) be the mixed strategy of an agent playing an

m-dimensional matrix game. Furthermore, to make the notation of our argument easier to follow,
add a homogenous compactifying dimension zm ≡ 1 to the LV system from eq. 13. That is, let
z ∈ Rm++ be a population of species where zi is given by eq. 13 for i ∈ [m − 1] and zm ≡ 1. In
particular, we consider the system of LV equations given by the coefficient matrixA ∈ Rm×m where
A is simply the matrix Â with an additional row and column of zeros (i.e. {Al,h = Âl,h}l,h∈[m−1],
{Al,m = 0}l∈[m], and {Am,h = 0}h∈[m]). Observe that, aside from the compactifying dimension
zm, this LV system is equivalent to the LV system given by eq. 13. Now define a map z→ p, from
populations in the LV system to mixed strategies in a game, by

pi =
zi∑

j∈[m] zj
, i ∈ [m] . (14)

2. Readers familiar with differential topology might notice that f̂1 is an immersion, which implies f̂1 is a smooth
embedding.
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Similarly, define the inverse map by

zi =
zi
zm

=
pi
pm

, i ∈ [m] . (15)

By the product rule, eq. 14, and eq. 15 we have

ṗi =
żi∑

j∈[m] zj
−

zi
∑

j∈[m] żj(∑
j∈[m] zj

)2

= pm

zi ∑
j∈[m]

Aijzj

− p2
mzi

∑
j∈[m]

zj
∑
k∈[m]

Ajkzk


=

pi
pm

∑
j∈[m]

Aijpj −
pi
pm

∑
j∈[m]

pj
∑
k∈[m]

Ajkpk


=

pi
pm

∑
j∈[m]

Aijpj −
∑
j∈[m]

pj
∑
k∈[m]

Ajkpk


for each i ∈ [m]. By a change in velocity we can remove the term 1

pm
. This yields

ṗi = pi

∑
j∈[m]

Aijpj

−
∑
j∈[m]

pj
∑
k∈[m]

Ajkpk

 , i ∈ [m] .

Noting that
∑

j∈[m]Aijpj = (Ap)i and
∑

j∈[m] pj
∑

k∈[m]Ajkpk = pᵀAp, we have derived the
dynamical system

ṗi = pi ((Ap)i − pᵀAp) , i ∈ [m] (16)

where eq. 16 is a replicator system (eq. 3) on the matrix game with payoff matrix A ∈ Rm×m. The
converse direction, from eq. 16 to eq. 13, is derived in a similar way.3 We conclude that eq. 14
is a diffeomorphism mapping trajectories of our LV system given by eq. 13 onto trajectories of
RD on A. Since zm ≡ 1, we can define the diffeomorphism f3 : Rm−1

++ → relint(∆m) where

pi = zi/
(

1 +
∑

j∈[m−1] zj

)
for i ∈ [m] and pm = 1/

(
1 +

∑
j∈[m−1] zj

)
.

Taken as a whole, we have constructed an embedding from the original GLV system given by
eq. 9 to the replicator system on a matrix game given by eq. 16. The embedding itself can be written
as the injective smooth map f̂ : Rn++ → relint(∆m) where f̂ = f̂1 ◦ f2 ◦ f3. Furthermore, since we
know f̂1 is diffeomorphic onto its image, we know there exists a diffeomorphism f : Rn++ → P ⊆
relint(∆m) where f = f3 ◦ f2 ◦ f1 and P = f̂(Rn++).

Let Θ be the flow generated by eq. 16 and Θ|P be the flow given by Θ restricted to P. Also,
recall that Γ was the flow generated by eq. 9. From our derivations of f1,f2,and f3, we know
that f(Γ) = Θ|P. Furthermore, as diffeomorphisms as invertible and have C1 inverses, we know
f−1 : P→ Rn++ exists and that f−1(Θ|P) = Γ. From our derivation of eq. 16 we know Θ is a flow

3. A full derivation of the inverse direction can be found in Hofbauer and Sigmund (1998) for Theorem 7.5.1.
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on relint(∆m) that is given by RD on a matrix game with the payoff matrix A ∈ Rm×m defined
above. Thus we have constructed a flow Θ and diffeomorphism f satisfying properties (i) and (ii)
in the Theorem, which concludes the proof.

Though not necessary for proving the Theorem, it is interesting to observe that the diffeomor-
phism f can be written as

pi =
zi

1 +
∑

j∈[m−1] zj
=

∏
k∈[n] x

Bik
k

1 +
∑

j∈[m−1]

∏
k∈[n] x

Bjk

k

, i ∈ [m− 1] , (17)

and pm = 1/
(

1 +
∑

j∈[m−1] zj

)
= 1/

(
1 +

∑
j∈[m−1]

∏
k∈[n] x

Bjk

k

)
. Similarly, by composing

the inverse directions of our construction, the inverse diffeomorphism f−1 can be written as

xi = yi =
∏

k∈[m−1]

z
B̃−1

ik
k =

∏
k∈[m−1]

(
pk
pm

)B̃−1
ik

, i ∈ [n] . (18)

A.3. The Lorenz Game: End-to-End Construction

In §4 we highlighted a construction of a matrix game that embeds the iconic Lorenz system under
RD, but many of the details were omitted to keep the ideas concise and understandable. In this
Appendix we will go through the construction of this game in its entirety. To start, note that the
Lorenz system’s strange attractor is given by the following three dimensional the system of ODEs
in R3

ẋ1 = σ(x2 − x1)

ẋ3 = x1(ρ− x3)− x2

ẋ3 = x1x2 − βx3 ,

where σ, ρ, β > 0 are constants. We will focus on the setting first studied by Lorenz himself
when ρ = 28, σ = 10, and β = 8/3, but it is worth noting that this construction applied for
any setting of these parameters. Given these parameters, it is straightforward to show that there
exists a spherical region with sufficiently large (constant) radius that is forward invariant under
the Lorenz equations and is globally attracting. To find such a region, define the ellipsoid region
E = {(x1, x2, x3) : ρx2

1 +σx2
2 +σ(x3−2ρ)2 ≤ c, c > 0} and choose r > 0 such that E is contained

inside a region bounded by the sphere R = {(x1, x2, x3) : x2
1 + x2

2 + (x3 − ρ − σ)2 = r}; the
regionR is a globally attracting and forward invariant spherical region under the Lorenz system.

By shifting the solutions of the Lorenz equation by r in the positive direction for all three
dimensions, and then rearranging terms, we get a GLV system that is well defined on R3

++ and can
be written as

ẋ1 = σ ((x2 − r)− (x1 − r))
ẋ3 = (x1 − r) (ρ− (x3 − r))− (x2 − r)
ẋ3 = (x1 − r)(x2 − r)− β(x1 − r)

=⇒
ẋ1 = x1

(
σx2x

−1
1 − σ

)
ẋ2 = x2

(
ηx1x

−1
2 − x1x3x

−1
2 + rx3x

−1
2 + αx−1

2 − 1
)

ẋ3 = x3

(
x1x2x

−1
3 − rx1x

−1
3 − rx2x

−1
3 + µx−1

3 − β
)
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where η = ρ+ r, α = r−ρr− r2, and µ = r2 +βr. Furthermore, observe that this system of GLV
equations is given by the matrices A ∈ R3×10 and B ∈ R10×3 which look as follows

A =

σ 0 0 0 0 0 0 0 0 −σ
0 η −1 r α 0 0 0 0 −1
0 0 0 0 0 1 −r −r µ −β

 , B =



−1 1 0
1 −1 0
1 −1 1
0 −1 1
0 −1 0
1 1 −1
1 0 −1
0 1 −1
0 0 −1
0 0 0


.

Since we can rewrite the shifted Lorenz system in this GLV form, there is no need do derive the
approximation highlighted in Theorem 3 and we can directly apply Theorem 4.

Using the embedding trick by Brenig and Goriely (1989) that is explained in Appendix A.2, we
first embed this GLV into a higher dimensional GLV system on R10

++ given by the matrices

Ã =



σ 0 0 0 0 0 0 0 0 −σ
0 η −1 r α 0 0 0 0 −1
0 0 0 0 0 1 −r −r µ −β
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


, B̃ =



−1 1 0 0 0 0 0 0 0 0
1 −1 0 1 0 0 0 0 0 0
1 −1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 0
1 1 −1 0 0 1 0 0 0 0
1 0 −1 0 0 0 1 0 0 0
0 1 −1 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


.

Next we use the diffeomorphism given by eq. 11 to transform this higher dimensional GLV system
into the LV system on R10

++ given by the matrix

Â =



−σ η −1 r α 0 0 0 0 (σ − 1)
σ −η 1 −r −α 0 0 0 0 (1− σ)
σ −η 1 −r −α 1 −r −r µ (1− σ − β)
0 −η 1 −r −α 1 −r −r µ (1− β)
0 −η 1 −r −α 0 0 0 0 1
σ η −1 r α −1 r r −µ (β − σ − 1)
σ 0 0 0 0 −1 r r −µ (β − σ)
0 η −1 r α −1 r r −µ (β − 1)
0 0 0 0 0 −1 r r −µ β
0 0 0 0 0 0 0 0 0 0


.

From the embedding trick we know that each the states z ∈ R10
++ of this LV system are given by

zi =
∏
j∈[3] x

Bij

j , where x ∈ R3
++ is from the shifted Lorenz system. As such, notice that each row

of Â is associated with a monomial in the shifted Lorenz system.
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To conclude the construction, we apply the diffeomorphism by Hofbauer and Sigmund (1998)
to this LV system and get game matrix A ∈ R11×11

++ that can be written as

A =



−σ η −1 r α 0 0 0 0 (σ − 1) 0
σ −η 1 −r −α 0 0 0 0 (1− σ) 0
σ −η 1 −r −α 1 −r −r µ (1− σ − β) 0
0 −η 1 −r −α 1 −r −r µ (1− β) 0
0 −η 1 −r −α 0 0 0 0 1 0
σ η −1 r α −1 r r −µ (β − σ − 1) 0
σ 0 0 0 0 −1 r r −µ (β − σ) 0
0 η −1 r α −1 r r −µ (β − 1) 0
0 0 0 0 0 −1 r r −µ β 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



.

The solution of RD on A is plotted in Figure 1. It is worth noting that the last row and column are
all zeros since they correspond to the compactifying dimension added during the diffeomorphism
by Hofbauer and Sigmund (1998). Similarly, the second to last row of zeros and the corresponding
column are from the matrix Â and serve the role of keeping track of the constants in the shifted
Lorenz system. In addition, we have a diffeomorphism f : R3

++ → P ⊂ relint(∆11) from x ∈ R3
++

to p ∈ relint(∆11) that is given by

pi =
zi

1 +
∑

j∈[m−1] zj
=

∏
k∈[n] x

Bik
k

1 +
∑

j∈[m−1]

∏
k∈[n] x

Bjk

k

, i ∈ [10] , (19)

and p11 = 1/
(

1 +
∑

j∈[m−1] zj

)
= 1/

(
1 +

∑
j∈[m−1]

∏
k∈[n] x

Bjk

k

)
. By finding that

B̃−1 =



0 0 1 −1 0 0 0 0 0 0
1 0 1 −1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 1 −1 1 0 0 0 0 0
0 0 −1 2 0 1 0 0 0 0
1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0
1 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


,

we find that the inverse diffeomorphism f−1 can be written as

xi = yi =
∏

k∈[m−1]

z
B̃−1

ik
k =

∏
k∈[m−1]

(
pk
pm

)B̃−1
ik

, i ∈ [3] . (20)
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