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Abstract

Many machine learning systems are vulnerable to small perturbations made to inputs either
at test time or at training time. This has received much recent interest on the empirical
front due to applications where reliability and security are critical. However, theoretical
understanding of algorithms that are robust to adversarial perturbations is limited.

In this work we focus on Principal Component Analysis (PCA), a ubiquitous algorith-
mic primitive in machine learning. We formulate a natural robust variant of PCA where
the goal is to find a low dimensional subspace to represent the given data with minimum
projection error, that is in addition robust to small perturbations measured in ¢; norm
(say ¢ = 00). Unlike PCA which is solvable in polynomial time, our formulation is compu-
tationally intractable to optimize as it captures a variant of the well-studied sparse PCA
objective as a special case. We show the following results:

e Polynomial time algorithm that is constant factor competitive in the worst-case with
respect to the best subspace, in terms of the projection error and the robustness criterion.
e We show that our algorithmic techniques can also be made robust to adversarial training-
time perturbations, in addition to yielding representations that are robust to adversarial
perturbations at test time. Specifically, we design algorithms for a strong notion of training-
time perturbations, where every point is adversarially perturbed up to a specified amount.
o We illustrate the broad applicability of our algorithmic techniques in addressing ro-
bustness to adversarial perturbations, both at training time and test time. In particular,
our adversarially robust PCA primitive leads to computationally efficient and robust al-
gorithms for both unsupervised and supervised learning problems such as clustering and
learning adversarially robust classifiers.

Keywords: adversarial robustness, PCA, training robustness, sparse PCA

1. Introduction

Reliability and trustworthiness of machine learning systems are key requirements for their
secure adoption in day to day life. Many algorithms in machine learning are brittle to small
perturbations made to the data points either at test time or at training time. While the
design of robust machine learning algorithms has seen exciting recent developments in both
statistics and computer science (Huber, 2011; Diakonikolas and Kane, 2019), our theoretical
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understanding of robustness to adversarial perturbations is limited. This lack of robustness
to adversarial perturbations poses significant practical hurdles (Szegedy et al., 2013; De Sa
et al., 2017, 2018), and raises foundational questions of whether and how we can design
basic machine learning primitives that are robust to adversarial perturbations.

In this work we study the above question in the context of principal component analysis
(PCA), that is the predominant tool for obtaining succinct data representations, and used
as a preprocessing primitive in many machine learning pipelines. Given data in a high-
dimensional space R™ represented by the columns of a matrix A, the goal in PCA is to
find a subspace of dimension at most r < n to represent the points, that minimizes the
projection error (or reconstruction error) onto the subspace. This is formalized as follows
where the matrix norm ||-|| is either the Frobenius norm or the spectral norm:

min||TI+A||? = min||A — IIA||?, where P = {orthogonal projections of rank < r}. (1)
IIeP IIeP

The representation of each point £ € R™ corresponds to the projection Ilx onto the r-
dimensional subspace given by II (one can also represent the point as an r-dimensional
vector in terms of a basis for II).

We propose a robust variant of PCA that corresponds to learning representations that
are robust to adversarial perturbations to the data. We model an adversarial perturbation
x’ of a point x as one for which the ¢, norm of the difference is small, i.e., ||z — 2'||; < 4,
for some fixed § > 0 and ¢ > 2. It is instructive to keep in mind the case of ¢ = oo, that is
of particular interest in emerging paradigms such as adversarial machine learning (Szegedy
et al., 2013; Madry et al., 2017). A low dimensional subspace with an associated projection
matrix IT is robust if ||IIz — I2/||2 is small for any adversarial perturbation 2’ of x.

What data representations are adversarially robust? Given an r-dimensional subspace
of R™ with projection matrix II, the adversarial robustness of II to §-perturbations in the
¢, norm is precisely captured by

sup — |T(z — ) [[2 = 0|[TT]|g2- (2)

z,x’:||z—a'||¢ <8

The quantity £ = ||II||;—2 characterizes the robustness of the projection II to perturbations
in £, norm around every point x € R" in the following sense. The distance between the
projections of z and a J-perturbation z’ of = (in ¢, norm) is upper bounded by xd. On the
other hand, around each point = one can also realize a perturbation z’ = z+z with ||z||; < &
such that ||IIz — I12'||s = k§. We will call II a (k, ¢)-robust rank-r projection when II is
an orthogonal projection matrix of rank at most r with ||II||;—2 < k; when the robustness
parameter x and norm ¢ are understood, we will just call it a robust rank-r projection.

This leads to the following natural formulation. Given a data matrix A € R™*™ com-
posed of m points in R™, a robustness parameter £ > 1 and the norm ¢ € [2, 0], find a
robust rank-r projection with low error:

min [ A[P = minfl A~ 114]? (3)
s.t. IT is an (orthogonal) projection matrix of rank at most r, and [[II| ;-2 < k.  (4)

One can also switch the objective and the constraint to consider the alternate formulation
where we want to find a projection matrix with the minimum |[/II||;—2 (i.e., the most robust
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projection), that achieves a prescribed projection error. We will be interested in two versions
of the problem, depending on whether we measure the projection error in Frobenius norm
or spectral norm. Recall that the top-r terms of the Singular Value Decomposition of A
simultaneously solve both of these problems in polynomial time, when there is no additional
robustness constraint, or when ¢ = 2 (since ||II||2—,2 = 1 for any non-trivial projection II).
We also remark that just as for the PCA objective (1), the above objective (3) can be
equivalently rephrased as finding the best approximation among low-rank matrices, but
among those with a “robust column space” (see Claim 9).

Training-time robustness. Our formulation in (3) finds robust representations assum-
ing access to the uncorrupted training dataset denoted by the matrix A. However in prac-
tice, large scale datasets often contain various kinds of measurement errors (Sloutsky et al.,
2013), or even data that is poisoned by adversarial perturbations. Hence, it is important
to design algorithms that are robust to such training-time perturbations as well.

To capture training-time perturbations, we extend our formulation in (3) by assuming
that we only have access to a corrupted dataset 121, whose ith column A; is an adversarial
perturbation of the corresponding column A; of the uncorrupted dataset A, i.e., || A;—A;||, <
8. Given as input A, our goal is to output a robust projection TI that achieves near optimal
error for the true dataset A, i.c., |1+ A2 ~ ming || TT-A|2.

We will show how to design algorithms for finding robust representations that are robust
to adversarial perturbations at training-time. In other words, we achieve robustness to both
test-time and training-time perturbations simultaneously. As we will see in Section 2.1.2,
the resilience to adversarial perturbations in the training set will crucially depend on the
the ¢ — 2 operator norm of the projection matrix associated with the minimizer of (3).

Problem motivation. Studying robust variants of PCA can lead to new robust prim-
itives for problems in data analysis and machine learning. (See Section 2.2 for specific
examples.) Our work is also motivated by emerging paradigms such as adversarial ma-
chine learning and low precision machine learning. The recent phenomenon of adversarial
robustness identified by Szegedy et al. (2013) shows that learning algorithms even when
trained on high quality datasets are susceptible to small adversarial perturbations at test
time. Even though empirical approaches have been proposed (Madry et al., 2017; Zhang
et al., 2019) for designing algorithms that are robust to such perturbations, the current
theoretical understanding is limited. Moreover in low-precision machine learning, one can
achieve substantial performance improvements by quantizing the data to a few most signif-
icant bits (e.g., 8-bit arithmetic); this quantization noise is naturally captured as a small
perturbation (in /o, norm) to each training data point (De Sa et al., 2017, 2018).

Practical implications. Surprisingly, our techniques for learning robust linear representa-
tions also lead to algorithms for making deep neural networks that are highly non-linear
in nature, more robust to test-time perturbations. In a very recent work, Awasthi et al.
(2020Db) directly build on the theoretical insights developed in this work to design a practi-
cal algorithm for making deep neural networks more robust to adversarial perturbations as
compared to the state-of-the-art.

Connection to Sparse PCA and generalizations. While our formulation in (3) that
is motivated by robustness is new to the best of our knowledge, it has rich connections to
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(and implications for) well studied problems like the sparse PCA problem (Zou et al., 2006;
Johnstone and Lu, 2009). Consider the setting when the perturbations are measured in £,
norm and rank r = 1. The robustness constraint on the projection II = vv ! imposes an
upper bound of x on the “analytic sparsity” of v € R (measured as the ratio of ¢; and ¢,
norms). In the special case of r = 1 the formulation is

min |A —vv" A||% = tr(AAT) —maxv' AATw subject to |[v]; < &, and |Jvfa =1. (5)

The complementary objective (i.e., maxv' AATv) is the ¢; version of the maximization
SPARSE PCA objective;! both the £y and the ¢; versions are notoriously hard in the worst-
case (Chan et al., 2016) (see also Theorem 54 in Appendix H.3). For general ¢ > 2,
requiring robustness places a constraint on the dual {4+ norm of the direction v. Moreover
for projection matrices of higher rank r > 1, ||II||;—2 is a basis-independent quantity that
captures the maximum £+ norm over all directions (unit vectors in ¢3) in the subspace given
by II (see Lemma 7). Hence robust projection matrices correspond to subspaces comprised
of analytically sparse vectors measured in an appropriate norm e.g., 1 norm, when ¢ = co
(see also Claim 8 for an approximate converse in terms of the sparsity of a basis for II).
Appendix H.2 gives some examples of what robust projection matrices i.e., matrices with
small ¢ — 2 operator norm, look like.

The range of values of the robustness parameter « is 1 < ||TI[|,—2 < n!/271/9. For several
real world datasets we expect k to be significantly smaller than the upper bound. As an
example Figure 1 shows that most of the signal in images from the CIFAR-10 dataset can
be captured by a robust subspace with co — 2 norm that is significantly smaller than /n.
The smaller the value of k, the more robust the subspace is (it will be instructive to think

of k = n®, for some small constant ¢ = 0.01).
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Figure 1: We study the CIFAR-10 image dataset (Krizhevsky et al., 2009) transformed in the
discrete cosine (DCT) basis. We project each channel, of dimensionality n = 1024, onto
a robust 200-dimensional subspace. The figure shows the histogram of the ¢, /¢5 sparsity
of the corresponding basis vectors. Each of the three projection matrices capture more
than 99% of the signal in the respective channel. Furthermore, for each projection matrix,
the ||-||co—s2 is in [19,21], significantly smaller than /n = 32.

1. It is within a factor 2 of the £y version where the constraint ||v||; < & is replaced by |Jv]jo < k2 (see
Section 10.3.3 of Vershynin (2018)).
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2. Our Results

While all the results that follow apply to ¢ > 2, it will be useful to think of ¢ = oo
(perturbations measured in £, norm), and the robustness parameter k < nl/2, say k < n’l.
Intuitively, the larger the choice of ¢, the more unrestricted the adversarial perturbations
can be (since ||z||, < ||z||q when p > q).

2.1. Algorithmic Guarantees for Robust Low-Rank Projections
2.1.1. APPROXIMATION ALGORITHMS FOR ADVERSARIALLY RoBuUST PCA

We first consider the two variants of problem (3), where the matrix norm || - || represents
either the Frobenius norm or spectral norm, in the worst-case setting.

(Informal) Theorem 1 There exist polynomial time algorithms that given q > 2, any
v € (0,1] and a data matriz A with a (k, q)-robust projection matriz II* of rank at most r
satisfying || A — TT*A||* < || A||? for some € € [0,1], find a projection matriz T1 of rank at
most r s.t.

~ ~ 2
ITlg2 < O(1/yA) - &, and |A—LA||" < (a +7) - e[| A, (6)

where o = 2 for the Frobenius norm error objective and o = 3 for the spectral norm
error objective. Moreover, for any v € (0,1], there exist polynomial time algorithms that
find an r' < r(1 + O(y~1))-dimensional projection 1 that gets a projection error of (1 +
Y||A = IT*A|[?, and relazes the robustness parameter by O(1/\/7) factor.

In other words, our algorithms attain small constant factor bicriteria approximation
to the adversarially robust PCA problem. The algorithms for both objectives — Frobe-
nius norm and spectral norm, use convex relaxations and similar ideas, yet the algorithms
(and relaxations) are different, unlike the case for standard PCA. Please see Theorem 11
(Frobenius norm objective) and Theorem 18 (spectral norm objective) for the formal state-
ments. Our algorithms take in as input a guess for the robustness parameter k. Recall that
k€ [1,n/?271/9].2 Alternately, one can also input a guess for the optimal projection error
(or the desired projection error), and minimize the robustness parameter x approximately.

Observe that the approximation guarantee in Theorem 1 is a constant independent of
the desired rank r. Even if we do not restrict the rank r (set r = n) our algorithm finds
among all subspaces that are O(k)-robust, the one with approximately optimal error. The
constant factor loss in the robustness parameter depends on the value of ¢ € [2,00). It is the
largest for ¢ = oo (where it is \/7/2), and this is related to a variant of the Grothendieck
problem (Alon and Naor, 2004; Nesterov, 1998). This loss in the robustness parameter is
unavoidable when ¢ > 2, due to the inapproximability for certifying the ¢ — 2 norm, even
for projection matrices (Bhattiprolu et al., 2018b) (see Section A.2).

Our result also has new implications for approximating the minimization objective for
sparse PCA specified in (5). Most existing theoretical guarantees for Sparse PCA have
been established for average case models (Berthet and Rigollet, 2013). There has also been

2. When ¢ = 2, the robustness constraint becomes trivial, and problem reduces to the standard PCA
problem as discussed earlier.
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work on studying the maximization version of the sparse PCA objective in worst case mod-
els (Chan et al., 2016). To the best of our knowledge, we are not aware of any existing worst
case guarantees for the minimization version as defined in (5). Our results (applied with
r = 1) provides a small constant factor bicriteria approximation to problem (5). This is
in stark contrast to the approximability of the maximization version of the problem. Even
when 7 = 1 the best known polynomial time algorithm gives a O(nl/ 3) factor approximation
in the worst-case (for both the ¢; and ¢y versions); moreover no constant factor approxi-
mation is possible assuming the SSE conjecture (Chan et al., 2016). (see its implication to
computational hardness of our minimization version (3) in Appendix H.3). Furthermore, the
minimization variant of the problem that we study (and our small approximation factors)
will be crucial in various downstream applications such as clustering.

2.1.2. ROBUSTNESS TO ADVERSARIAL ERRORS DURING TRAINING

We now discuss how to handle data poisoning, where points in the training data set A are
adversarially perturbed. Recall that in the corruption model, every sample A; € R™ can
potentially be adversarially perturbed up to a 4 amount, as measured in ¢; norm for ¢ > 2.
So every column of A satisfies || A;— A; |4 < 6; and we will refer to such an A as a §-corrupted
instance of A. While the input instance is ;{7 our goal now is to recover a robust low-rank
projection for the uncorrupted matrix A. We will show that we can in fact output a robust
low-rank projection II that is competitive with the best robust low-rank projection of A,
even though A is not known to us! We first state our result when the error is measured in
Frobenius norm, and later describe the guarantees for the spectral norm variant.

(Informal) Theorem 2 Suppose ¢ > 2 and A € R"*™ is the unknown uncorrupted data
matriz, with a (k, q)-robust projection matriz II* of rank at most r satisfying ||A—II*A||% <
el|Al|% for some € € [0,1]. There exists a polynomial time algorithm that given as input a
§-corrupted instance A of A outputs a projection I of rank at most r that is approzimately
optimal:
>0, |Tlg2 < O(k), and |4 ~TIA|} < O +n) - |AF +O(;) - 8*s*m. (7)
In particular this gives an O(1) approzimation when 6% < (e2/k%) - L||Al|%.

To interpret the results let ¢ = oo and consider an uncorrupted dataset A where every
column (sample) is a unit vector in R”, and let x = n%!. The total corruption to each
point is at most o(1) in Euclidean norm when § = o(n~'/2); in this case one would expect
that standard PCA applied to A may recover a good solution. The above Theorem 2 on
the other hand guarantees to find a good (robust) low-rank approximation for the unknown
matrix A even when § = o(1/k) = o(n~%!). Note that in this setting every point can be
completely overwhelmed by the adversarial noise (in Euclidean norm). The algorithm first
denoises the input by solving a convex minimization problem before applying the algorithm
from Theorem 1. Furthermore, Proposition 28 shows that the additive factor of O(mé2x?)
is unavoidable for every k,0 = O(1/k). These results suggest that the robust projection
structure (measured in ¢ — 2 operator norm) is key in understanding the resilience to small
adversarial perturbations of every point during training, even without any test-time robust-
ness considerations. Subsequent work by Awasthi et al. (2020a) also characterize principal
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subspace recovery in an average-case setting in the presence of adversarial perturbations at
training time using the ¢ — 2 norm robustness criterion (in an instance-optimal sense).

Our guarantees for spectral norm error in the presence of training-time adversarial per-
turbations are somewhat similar to Theorem B.1. However, there is a qualitative difference:
given as input an adversarial d-perturbation A of an uncorrupted matrix A that has a good
solution (i.e., ||A — II*A|| < ¢||A]| for some small € € (0,1)), we will either find a robust
low-dimensional projection of the unknown dataset A, or we will certify that the dataset
has been poisoned substantially (i.e., |A — A|| > ¢||4]]). In particular, the algorithm will
never output a low-dimensional representation that is bad for the unknown data matrix A.
Please see Theorem 25 for a formal statement. We remark that information-theoretically
we can design an estimator (that is computationally inefficient) that achieves the stronger
qualitative guarantees as in Theorem 2. Designing a computationally efficient algorithm to
do the same is an open question that we describe in more detail in Section 2.3.2.

2.2. Applications to Learning Problems.

The algorithmic results that we have described so far, may be used as a robust primitive in
lieu of standard PCA. These lead to efficient, adversarially robust algorithms for learning
problems of different flavors, further validating our formulation. In particular, we demon-
strate the versatility of our robust primitive via the following three applications across both
unsupervised and supervised learning:

1. Clustering with training-time perturbations. We study the classical unsupervised
learning problem of k-means clustering. Let A € R™ ™ denote m data points with an
unknown ground truth clustering into k clusters. It is well known that if the ground truth
clusters are well separated then the popular Lloyd’s algorithm (Lloyd, 1982), when properly
initialized, recovers the ground truth clustering (Kumar and Kannan, 2010; Awasthi and
Sheffet, 2012). We extend this setting to consider a scenario where the input to the algorithm
is the data matrix A with each data point being adversarially corrupted up to a perturbation
of a certain amount. Existing algorithms based on variants of the Lloyd’s heuristic fail to
handle large amounts of noise in this setting. This is due to the fact that these algorithms
use PCA to initialize the cluster centers, and as we saw in previous sections, PCA is not
robust to adversarial perturbations.

We instead design a robust variant of the Lloyd’s heuristic that can handle a large
amount of perturbation while successfully clustering the data according to the ground truth.
In our algorithm, the adversarially robust PCA primitive plays a crucial role. We use the
adversarially robust PCA primitive to obtain a good set of initial cluster centers. Addition-
ally, during the iterative Lloyd’s updates, we compute new cluster means via a new robust
mean estimation procedure that we design in this work (this is the special case of clustering
with k£ = 1). As a result we obtain a clustering algorithm that can handle adversarial per-
turbations to the training set, of magnitude up to o(1/k) where « is the robustness of the
k-dimensional subspaces spanned by the cluster means. Hence our algorithm can handle
significantly more noise when this subspace is robust, compared to standard approaches that
break down unless the perturbation amount (in o, norm, say) is of the order of o(1/y/n).
On the other hand, such a dependence on ¢; sparsity of the means is needed even in the
case where k =1 (i.e., mean estimation in the presence of adversarial perturbations).
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See Section D for details, including Theorem 31 for the general case, and Theorem 33
for the specialization to clustering mixtures of Gaussians.

2. Learning intersection of halfspaces under training-time and test-time per-
turbations. We consider the problem of learning an intersection of k halfspaces over the
Gaussian distribution on R”™ in the presence of adversarial perturbations to the samples,
both at testing-time and training-time. We will represent an intersection of halfspaces by
a function h : R™ — {0, 1} denoted by h(x) = Hle 1(w; x > 6;), where Vi € [k], ||wi]l2 =1
and 0; € R and where 1(-) denotes the indicator function. Let H}, represent the hypothesis
class of all intersections of at most k halfspaces. In the uncorrupted setting, the training
points x1, ...,z € R™ are drawn i.i.d. from a Gaussian distribution, and their correspond-
ing labels y; = h*(z;) for some h* € Hy. A series of well-known results (Vempala, 2010b,a;
Klivans et al., 2008) shows that when we are given access to uncorrupted training samples
in R™ drawn from a Gaussian distribution, one can learn an intersection of halfspaces in the
PAC learning model, in time f(k) - poly(n). Crucially, these algorithms use PCA as a first
step to reduce the learning problem to a low dimensional space. Our adversarially robust
PCA primitive can be used to learn an intersection of £ = O(1) halfspaces even when there
are adversarial perturbations both at training-time and test-time.

What does a classifier h, say h(z) = 1(w{2 > 0) - 1(wyx > 0), that is robust to
adversarial d-perturbations at test-time look like? First observe that max{||w||1, ||wal/1} <
O(1/9) is necessary, otherwise there exists a d-adversarial perturbation & with ||Z — z||e <
0 that h misclassifies w.h.p! Moreover the subspace II* spanned by wi,ws is robust as
measured in k = ||II*||oc—2 (see Claim 45 for a formal claim). For general k, we will assume
that there exists a robust classifier h*(z) = Hle 1(w, 'z > 6;) for the data such that the
projection matrix IT* onto the span of the normals wy, ..., wy, satisfies ||II*||;—2 < k.

We consider a natural model of training-time perturbations, where each training data-
point is §-adversarially perturbed in £, norm (¢ > 2). Our robust algorithm follows the same
general approach as in Vempala (2010a); however we use our primitive for adversarially
robust PCA instead of standard PCA to bring down the dimension to k. This allows
us to handle adversarial perturbations of magnitude 6 = o(1/k) (as opposed to existing
approaches that need § = o(1/4/n) for ¢ = 00), and output a robust classifier (intersection
of k-halfspaces) that incurs an error of o(1). Recall from the earlier discussion, that such
a condition is necessary qualitatively: even a single half-space 1(w{ x > 0) is not robust
when [|w;||; =k and § > 1/k. See Section E for details.

3. Trading off natural accuracy in classification for robustness to test-time
perturbations. Finally, in many scenarios it might be desirable to trade off natural
accuracy for significant robustness to test-time perturbations. We demonstrate how our
robust primitive can be used for this purpose. Specifically, we consider the Gaussian data
model (Anderson, 2003) that has been studied in recent works to understand adversarial ro-
bustness (Tsipras et al., 2018; Schmidt et al., 2018). In this model a labeled example (z,y)
is generated by first picking the label as +1 or —1 with equal probability. Then z € R"
is drawn from either N (u1,3) or N (usg,X) depending on whether y = —1 or y = +1. We
denote this model as M (p1, p2, X).

In the above model the (Bayes) optimal classifier is a linear classifier of the form
sgn({w,z) + b) with weight vector w = X ~!(u; — p2). If the means are well separated
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then the above classifier has good accuracy but can be easily fooled during test-time via
small perturbations. In other words, the robust accuracy of the above classifier is close
to zero. In order to get a better trade-off of standard accuracy and robust accuracy, we
could instead aim to look for robust subspaces where the variance is low and the means
when projected are still separated by a non-trivial amount. We will show how our robust
PCA primitive helps us achieve this and obtain a classifier with better robust accuracy. See
Section F for details.

2.3. Proof Sketches and Technical Overview

We give a flavor of the technical ideas involved in obtaining our main algorithmic results.

2.3.1. CONSTANT FACTOR APPROXIMATION ALGORITHMS

Let us first consider the version of problem (3) of finding a robust rank-r projection that has
small error measured in Frobenius norm. A natural mathematical programming relaxation
is the following:

min||A[[f — (AA", X) (8)
subject to tr(X) <7, 02X <171 and || X|j»2 <k 9)

This is a valid convex relaxation for the problem since the constraints are all satisfied
by any rank-r projection matrix that is robust i.e, ||[II||;—2 < k.

The first challenge however is that the operator norm constraint (9) is NP-hard to
verify efficiently, even for the case of projection matrices. However, these operator norm
||-|l—p computation problems form a rich class of problems related to the Grothendieck
problem (Alon and Naor, 2004; Nesterov, 1998), and polynomial time O(1) factor approxi-
mations are known for general ¢ — 2 norms with ¢ > 2 (see Section A.2).

The bigger challenge is in producing a projection matrix from X* that simultaneously
(a) achieves a good objective value, (b) has rank at most 7, and (c) is O(k)-robust i.e.,
has bounded ¢ — 2 norm. A natural approach for producing a good low-rank solution is
to output a rank-r projection matrix II, that corresponds to the large singular values of
X*. However we have no control on the robustness of the subspace ||IL.| ;2. In fact, the
algorithmic problem (3) is challenging even when there is no rank constraint (r = n). The
main issue is to relate the ¢ — 2 operator norm of the projection matrix we output to that
of the relaxation solution || X*|/;—2 which is upper bounded by &.

Our crucial insight is that we can indeed design a rounding scheme that achieves all
three goals if the norm in the constraint (9) is a monotone norm!

A matrix norm || - || is monotone iff VA, B > 0, we have [|A+ B|| > ||A]l.

(See Definition 5 for details.) This monotonicity property allows us to truncate terms in
the eigendecomposition of X* without any loss in robustness k, and get fine control on the
robustness k when we rescale different rank-1 terms appropriately. Unfortunately however,
the ¢ — 2 operator norm is not monotone in general (see e.g., Claim 51, Claim 50).

Our next important observation is that we can replace the constraint (9) by a similar
constraint in terms of the ¢ — ¢* norm. This is because for any matrix B, we have that
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IBlZ_, = | BT B||4—q+ where £+ is the dual norm for ¢, and satisfies q% +% = 1. The main
advantage of this reformulation is that the ¢ — ¢* operator norms are indeed monotone.

Claim 3 (Same as Claim 15) For any q > 1, the operator norm ||-||g—q* is monotone.

Moreover polynomial time O(1)-approximate separation oracles based on semidefinite
programs exist for these norms when ¢ > 2. This motivates convex programming relaxation
CP1 and its equivalent but more elegant convex relaxation CP2 shown in Figure 2.

CP1 : CP2 :
in||A||% — (AAT, X i AllZ — (AAT X
%PH”F ( ) Xﬂﬁg%m%Hlb ( , X)

st tr(X) <7, 02X =T stotr(X)<r, 0=<X<I

< Cgr? i
r}?eaé(<X’ Y) < Cgk®, where X < diag(d)

- = o)\ (4—2)/q
Q={Y eR"™: Y =0, E Y;g/z <1} Hqu/(q,g) ;:( E d;}/(q 2)> < Cgr?.
=1 i=1

Figure 2: Two equivalent tractable convex relaxations CP1 and CP2 for problem (13).
See Lemma 16 for proof of equivalence using convex duality.

Let X* be the optimal solution to the convex program. We obtain the required robust
low-rank projection matrix from X* by a simple rounding procedure that focuses on the
large singular values of X*. The monotonicity property of the norm leads to an elegant anal-
ysis to guarantee that the resulting low-rank projection is O(x)-robust, while also achieving
small error. We now sketch the proof of Theorem 1 with the Frobnenius norm objective.
Similar ideas also work when the projection error is measured in terms of the spectral norm.
However, the objective function is instead rephrased as min||(AT (I — X)A| where ||| is
the spectral norm; the algorithm and analyis, while slightly different again leverage the
monotonicity property of the ¢ — ¢* norms.

Proof Sketch of Theorem 1.  Assume ||Al|r = 1 without loss of generality, and let OPT =
e € [0,1]. It is easy to see any feasible projection matrix II of rank r satisfying ||II||;—2 < K
forms feasible solutions to CP1 and CP2 (for an appropriate feasible d) with the correct
objective value. Moreover the relaxations CP1 and CP2 can be solved in polynomial time
to arbitrary accuracy using the Ellipsoid algorithm. See Claim 17 for details.

Set 6 :=1/(147). Let X = S vy, and S = {i: \; > 1—6}. Define for each i € [S],
a; = (v, AAT). We form T from S by picking the min{r, |S|} ones with the largest {c;}
values. Let Ilg =, vivi—r. Our projection matrix will be Il = >, . vivi—r.

We use monotonicity of ||-|[4—¢ to show the operator norm constraint is satisfied:

1 1 X[lgoqs . ar  a(l+7)k
T T —
7 [lg—qs = H;Uzvz lg=qr < 1_5”1;)\;5 Aiviv; [lgogr < 1 _q 5q < 1-65 ~
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Also, since IIg (and hence II7) projects onto the large eigenspace of X , We can prove that
by truncating onto the large eigenvalues (see Lemma 14)

(T —Ts, AAT) = 3 (o], AAT) < % and
i¢S
D (A =Moo, AATY < (1= Ao, AAT) <1— (X, AAT) <¢

i€S

1) =1—(2+7)e,

Hence, Z)\ZOzZ = Z)\Z<UZ’L)ZT,AAT> > 1-— 6(1 + 5

€S 1€S
for our choice of 6 = 1/(1 + ). By our greedy choice of T', we have Y, . a; > > ;g Aiay,
as ) icg A < min{tr(X), [S|} = |T|, with each A; € [0,1]. Thus ||HlAHF (2 4+ )e. This
completes the proof. For the bicriteria guarantee with rank /(1 — ) we output IIg. The
objective and |[|-||q—q+ bounds follow using similar arguments.
|

2.3.2. TECHNICAL OVERVIEW FOR TRAINING-TIME ADVERSARIAL PERTURBATIONS

Let ¢ = oo. Recall that our input instance A is a d-corrupted instance obtained from A
by potentially corrupting every entry of it by a § amount. Our goal is to output a robust
low-rank projection matrix IT of rank at most r for the uncorrupted matrix A, that is not
known to us. This question is interesting even from a purely statistical standpoint; but
additionally, we would also like our algorithm to run in polynomial time.

Why should this be possible? Suppose the uncorrupted matrix A has a robust low-rank
projection IT* of small error i.e., ||A—IT*A|| < || A|| (where || A|| is either the Frobenius norm
or spectral norm). Also assume for just this discussion that the average column (Euclidean)
length of A is 1, k = n%! say and § = o(n™!). For any k-robust projection II, ITA; ~ HAj
for each data point j € [m] . So one could apply the worst-case algorithm on the corrupted
input fl and hope to also get a robust projection of low-error for the unknown matrix A.

However, there are two major challenges in implementing this strategy. (1 ) Solution

value of A: the robust projection II* may not achieve low error on A; in fact, A may not
have any good robust low-rank approximation — in this case the algorithm output may be
useless. This is because the entry-wise perturbations could make A and A far away in
aggregate e.g., ||A — A||p could be 6y/nm > /m =~ ||A||F.
(2) Identifiability issue: perhaps more importantly, even if the perturbation A has a robust
low-rank projection of small error, we need to argue that this subspace indeed attains
small error on A! The second issue is crucial in resolving the purely information-theoretic
aspect of the question; it involves ruling out the scenario where A has good robust low-rank
approximation that is very different from any robust low-rank approximation for A.

To address the second issue (identifiability), we prove that if the projection I gives a
small error on A, it necessarily gives a low-error on A. Roughly speaking, if there are two
data-matrices A and B with ||A — Bl|eo < 0, then for v € (0,1)

|A—II; All, | B-II2B|| < v||4| = ||A-ILA4]| < ’}/1||A||+$2\/%6n, (and similarly for B),

11
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where v1 = 71(7), 72 = 72(7) € (0,1). One can show that ||II; A —II; B|| and ||II2A — I B||
are small since IIj, IIy are robust (see Lemma 7); however this does not give a handle on
||A — IIoA||. Note that the above statement does not follow from an application of the
triangle inequality since we do not have any prior control on II; — IIs. This statement is
particularly tricky to show for the spectral norm. A natural approach is to argue that 111 A
and Il B are close by arguing about their actions on any unit vector. We use a somewhat
indirect proof; we show that for every direction v € S*~!, (1) the lengths ||Av||2 and || Bv|2
are similar and (2) the difference in the lengths |||Av||2 — ||Bv||2| is (approximately) lower
bounded by [[(A — IIsA)v||2. This will allow us to conclude that ||A — Iy Al is small.

To tackle the first issue (solution value), we first preprocess (denoise) to find an alternate
matrix A’ with a good solution value. Suppose we have an algorithm to find

A'= argmin min |B - 1B|? (10)
Bi||B—A||lso<s  mank(ID=r, [[Hlleom2<r

We know that the uncorrupted matrix A is a feasible solution with good value. Hence the
optimal solution A’ of (10) has an even better solution. Moreover ||A — Ao < 26. This
reduces the first issue to a computational question of solving (10). For Frobenius norm
error, we can obtain a good A’ by instead solving a simple convex optimization problem.

For the spectral norm problem, we do not know of an efficient algorithm for (10).
However by running our worst-case algorithm (for spectral norm error) on A, we will either
find a good solution that also works for A, or we will certify that ||A— A| is too large i.e., the
data was poisoned significantly. Finally we remark that we get the stronger computationally
efficient guarantee for the spectral norm error (as for the Frobenius norm error) if we can
resolve the spectral norm variant of (10), which is an open question.

2.4. Related and Concurrent Work on Training-time corruptions.

Subsequent work by Awasthi et al. (2020a), studies training time robustness in an average-
case setting namely, the spiked covariance model where the goal is to recover the top prin-
ciple subspace of the data distribution. They extend the algorithms developed in this
work (Section B) to the average case setting, and in fact show that the ¢ — 2 operator
norm of the principal subspace almost characterizes its robustness to adversarial perturba-
tions at training time in the spiked covariance model. Very recently, d’Orsi et al. (2020)
studies the problem of recovering an £y-sparse® principal component where there are adver-
sarial perturbations in ¢, norm to the training data points, again focusing on the spiked
covariance model. In contrast, our work studies the worst case formulation of the problem.

Comparison to the Huber contamination model and the robust PCA problem. There is a
vast amount of literature in designing robust algorithms in a different model, the Huber’s
contamination model, where, unlike our setting, a small fraction of the data can be arbi-
trarily corrupted (Huber, 2011; Diakonikolas et al., 2018a; Lai et al., 2016; Diakonikolas
and Kane, 2019). Our notion of training-time adversarial perturbations is very different in
flavor — it involves bounded adversarial perturbations to potentially every training point.
Another popular model is the robust PCA problem proposed in Candes et al. (2011). It
assumes that a given corrupted matrix A is a sum of two matrices, the true matrix A that is

3. Note that any £p sparse unit vector is also 1 sparse; see Claim 6.
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low-rank and a sparse corruption matrix S with sparsity pattern being essentially random.
The corruptions although sparse can be unbounded in magnitude. This setting is again
fundamentally different from ours. Recovery in this model necessitates incoherence type
structural assumptions that the principal components of A are spread out, whereas in our
setting sparsity or localization of the signal dictates the recovery error.

Please see Section G for more details, and comparison to other related work.
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Appendix A. Notation and Preliminaries

Norms. For every ¢ > 1 and z € R", we will use ||z||, to denote the £, norm of the vector
zie., |z||d = >_icfn) |7l The dual norm of {4 is £« where 1/¢* +1/q = 1. We will heavily
use Holder’s inequality which states that

(Holder’s inequality) |(u,v)| < |lullq - |lv

¢ Yu,veR" (11)

When not specified, ||z|| will denote the Euclidean norm of . Further S*~! will represent
the unit sphere for the Euclidean norm. For convenience, we will use ||z||o to denote the
sparsity i.e., the size of the support of z (note that ¢y is not a valid norm on vectors).

Operator Norms of Matrices. We will use the following matrix norms. For any ¢,p > 1
and any matrix M € R™™, we will denote by [[M|4—p = maxyegm |y, <1l[Myllp- By
duality of vector norms, we have
|| M| = max max z'My=  max max  y M z=|M"|, g
P yemm o<1 zeRr ]l <1 2€R™, 2], <1yeR™, Iyl <1 v
When p = ¢ = 2, this corresponds to the spectral norm of the matrix M i.e., the
maximum singular value of M. When unspecified, we will use |M|| to denote the spectral
norm of M. (Note that the above equalities from duality also show that the ||A| = || AT||
i.e., the maximum right singular value is the same as the maximum left singular value). We
will also make use of the following claim relating the ¢ — 2 and ¢ — ¢* norms of a matrix.

Claim 4 For any projection matriz 11, and q > 2, ||lgmg = |2, (this is cru-

cially an equality, and not just an inequality). More generally, for any matriz B, we have

1B Bllg-sq= = I Bll3-5-

Proof Note that by duality of norms, we have for any matrix B we have:

|B" B|l4—q = max |B Byl = max z'B'By= max Bz, By)
lyllq<1 lyllg<Lllzllq<1 lylla<1Lllzllq<1
2 2
= max (By, By) = max ||By|j3 = || B[;-2-

lyllg<1 lyllg<1

For a projection matrix II we also have IT = II" and IT? = II. Hence the lemma follows. W

Entry-wise Norms of Matrices. We will also consider various matrix norms obtained
by considering a matrix M € R™*™ as a vector of size mn. In particular, for any ¢ > 1
we will use | M||4 to denote the £, norm of the “flattened” vector corresponding to M i.e.,
[M|lg = 2227 =1 IM(i,5)|?. The Frobenius norm || M|[p = [[M]|2. Moreover for matrices
A, B, we use (A, B) := tr(A" B) to represent the trace inner product.

Monotonicity of Matrix Norms. The following property of certain matrix norms will
be crucial in designing constant factor approximation algorithms for the low-rank approxi-
mations.

Definition 5 (Monotone matrix norm) A matriz norm || - || is said to be monotone
if and only if
VA, B =0, [|A+ Bl = [lA]l- (12)
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Observe that it suffices to check the above condition for all rank-1 PSD matrices B i.e.,
B = w! for v € R*. It is well known that all unitarily invariant matrix norms* are
monotone (this is because unitarily invariant norms are just norms on the singular values).
On the other hand, many other matrix norms including other entry-wise norms || X||, or
general operator norms ||X||,—p, are not necessarily monotone (see Claim 50 and Claim 51
for some counterexamples). Perhaps surprisingly, the ¢ — ¢* matrix operator norms are

monotone (see Claim 15 for a simple proof of this fact)!

High probability bounds. We will say that an event holds with high probability (w.h.p.)
if the probability of failure on a given instance is less than any polynomial of the input
parameters e.g., the dimension n, and the number of data points m. We remark that in
all our settings, one can amplify the success probability to 1 — n for any small n > 0 by
repeating the algorithm log(1/n) times.

A.1. Properties of Robust Projections.

Throughout the paper we will use the term projections and projection matrices to always
refer to orthogonal projection matrices on to linear subspaces of R"™. Next we list and prove
some simple properties of subspaces with robust projection matrices i.e., subspaces with
IIIT||co—s2 (or more generally ¢ — 2 norm for some g > 2) that is upper bounded.

For any ¢* € [1, 2], the ratio of the {4+ vs {5 corresponds to an analytic notion of sparsity.
The following claim gives an upper bound on the £;+ norm in terms of the sparsity.

Claim 6 (Analytic Sparsity) Consider any vector v € R™ of support size k. For any
q* € [1,2], we have

1.1
[ollgr < ka2 {[o]2.

In particular, |v||y < VE|[v||2 for vectors with support size at most k.

On the other hand, it is easy to see that the bound given here is tight for any vector that
is equally spread out among its support of size k.

Proof Without loss of generality suppose |[v||2 =1 (if v = 0 it holds trivially). Let v have
support S of size k. Set p := 2/¢*, and let u be the vector such that u; = |v;|?* for each
i € [n]. By Holder’s inequality

lolfe = D21 i < sl llp < K77 (32 felP )P < K02 ol = 10012
1€S i

hence establishing the lemma. |

Recall that ¢4« corresponds to the dual norm for ¢,, and ¢* € [1,2] when ¢ > 2. The
following simple lemma proves two useful properties of robust subspaces i.e., subspaces
having projection matrices with bounded oo — 2 norm (or more generally ¢ — 2 norm for
g > 2). The first property shows that any two vectors that are close in /o, norm will have
nearby projections onto any subspace that is robust. The second property shows that a

4. A matrix norm ||| - || is unitarily invariant iff || Al| = ||[UAV]| for all matrices A and all unitary matrices
UV
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subspace is robust (i.e., has a robust projection matrix) exactly when every vector in the
subspace is analytically sparse.

Lemma 7 [Properties of Robust Subspaces and Projections] Consider any subspace of V C
R™ with projection matriz II € R™"™ satisfying ||II||q—2 < k. We have the following two
properties:

1. Closeness of projections of pertubations: For any vector v and its perturbation

(%
lo—dlly, <6 = |5 — Tz < K.

II. Analytic sparsity: For any v € V, we have ||v||g+ < k||v||2, where ¢* = q/(q¢ — 1).
Moreover, if every vector in V has ||v|y < klv]l2, then ||1|j;—2 < k. In particular
11| o2 < & if and only if ||v]j1 < & for all unit vectors v € S*"1NV.

Proof We first show property (I). Let u := v — ©. Then
05 — Ty = [Tl < T osallully < 6

To show property (II), note that by duality of matrix operator norms we have ||II||;—2 =
T 2o = [Tl

Hence WveS" 1NV, |ullg = [Mvflgs < [[Tlzmg-[lv]l2 < 5.

For the converse, if there exists v € S*" ' NV s.t. v
Ml g—s2 > A

¢+ > K, then by duality ||II|2—q =

Observe that the robustness condition on the subspace as captured by the ¢ — 2 operator
norm bound of its projection matrix II is basis independent.The following simple claim
gives a simple sufficient condition on the basis of the subspace that implies robustness of
the subspace spanned by them. This relates our robustness of the subspace to alternate
notions of sparsity of subspaces that have been studied in the literature on sparse PCA (Vu
and Lei, 2012, 2013).

Claim 8 Given any orthonormal basis vy, va,...,v, for a subspace V such that ||v;
for each i € [r], we have |[II||4—2 < \/TK.

—
Proof Firstly, I1 = Y7, v;v;', and ||II||;—2 = ||T||2—4+. We have

2<r- max  max |(u,v)| < V7K.

wiljuflg <1 vefjoll g« <n

T
g2 = max HZW“@'W
=1

uiljufl<1

2_

For a given matrix B € R™ ™ let us denote by II(B) to the projection matrix onto
the column space of B. The following lemma shows that the best low-rank (k,q)-robust
projection objective (3) also finds the low-rank approximation that has smallest error among
ones with a (k, ¢q) robust column space.
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Claim 9 Let P, be the set of all rank-r projection matrices. Given a data matriz A € R™™
and a given parameter k > 1, ¢ > 0, we have

min ||[A—-TA||= min |A-B|,
I1eP, B:rank(B)<r,
1]l g2 <r IT(B)llg—2<r

where ||M|| here stands for the spectral norm. The above statement is also true for the
Frobenius norm.

Proof Let B* be the minimizer for the right minimization problem and let Iy = II(B*)
be its projection matrix, and let II; be the minimizer for the left optimization problem.
It is easy to see that |A — II;A|| > ||A — B*||, since II; A is also a feasible choice for
B in the right minimization problem.  The other direction follows from the fact that
|A—TI(B)A| < ||]A— B]J| holds for both Frobenius norm and the spectral norm (specifically,
||Av — II(B)Av||2 < ||Av — Bol|2 for any v € R™).

|

A.2. Approximation Algorithms for Operator Norms.

Here we briefly describe some known positive and negative results for approximating the ¢ —
p operator norm of a matrix (sometimes referred to as the (¢4, ¢,)-Grothendieck problem).
We will say that a randomized algorithm gives an a-factor approximation for the ¢ — p
operator norm (for some « > 1) iff for any input matrix M the algorithm outputs with
probability at least (1 — n~“(1)) a vector  # 0 such that |M2Z||,/|Z]l, > LM gy
The oo — 1 norm is the well-known Grothendieck’s problem (Grothendieck, 1952) (that is
related to the cut-norm of a matrix (Alon and Naor, 2004) and has a rich history.

There is a lot of work on approximation algorithms and inapproximability results for
computing these ¢ — p norms (Nesterov, 1998; Alon and Naor, 2004; Bhaskara and Vija-
yaraghavan, 2011; Barak et al., 2012; Bhattiprolu et al., 2018a,b). Regarding approximation

algorithms, the works of (Nesterov, 1998; Wolkowicz et al., 2012; Steinberg, 2005) provides
a 1/(2”& — %) ~ 2.29 approximation for when 1 < p < 2 < ¢ < oo, and for the special
case p = 2 or ¢ = 2 the factor becomes /m/2 ~ 1.25. Recently, improved upper and
(almost matching) lower bounds were proved for many settings of ¢, p in (Bhattiprolu et al.,
2018a,b). Formally, we have the following guarantee where fyg: is the ¢*th moment of a
standard normal random variable.

Theorem 10 ((Bhattiprolu et al., 2018a,b; Nesterov, 1998; Steinberg, 2005)) For
computing the oo — 2 norm, there is a randomized polynomial time algorithm that gives
a \/m/2 = 1.25-approximation, and for the ¢ — 2 norm there is a randomized polynomial
time algorithm that gives a 1/v4-factor approximation. Furthermore, when the input ma-
trices are positive semidefinite, the integrality gap of the aforementioned SDP is w/2 for the
oo — 1 norm, and 1/73* for the ¢ — q* operator norm respectively. Using a generalization
of random hyperplane rounding, this SDP yields approximation algorithms that succeed with
high probability for any given instance.
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Appendix B. Worst-case Approximation Guarantees

In this section, we show the approximation algorithm bounding the Frobenius norm er-
ror in Section B.1 and the approximation algorithm bounding the spectral norm error in
Section B.2 separately.

B.1. Approximations in Frobenius Norm Error

We will aim to obtain a bicriteria approximation for the robust low-rank approximation
problem given in (3) for the Frobenius norm error. In the rest of the section, we will
focus on the the formulation where the objective is to minimize projection error, subject
to a specified robustness requirement. It is easy to see that one can switch the role of the
objective and constraint here and obtain similar guarantees for minimizing the robustness
parameter x, subject to a bound on the projection error. In what follows ¢ € [2, o0].

minl[ T A% = minf AJ% — (AAT, 1) (13)
s.t. IT is a projection matrix of rank < r, and ||II|;—2 < k. (14)

We prove the following theorem.

Theorem 11 Suppose the data matriz A € R™ ™ has an (orthogonal) projection I1* of
rank at most v such that |II*||,—2 < K and the approzimation error OPT := ||(I —II*)A|%.
There exists a polynomial time algorithm such that given any v > 0, it finds a projection
matriz 11 of rank at most r satisfying

ITflg2 < v/Cala) (L +1/7) - &, and ||[(I =T A|7 < (2+7)OPT, (15)

where Cg(q) > 0 is a constant that only depends on q as given in Theorem 10 (for ¢ = oo
this value is at most w/2). Moreover, for any v > 0, there exists an algorithm that runs in
polynomial time and finds an v’ < r(1+1/7)-dimensional orthogonal projection 11 such that

ITlg2 < VCo(a) (L +1/7) -, and (I = TDA|} < (14 7)OPT. (16)

The theorem above will be established by proving a statement about the more general
problem of finding a low-rank projection under any monotone norm constraint that can be
approximately certified. While the ¢ — 2 norm is not monotone as discussed in Section A,
we will show that applying the more general guarantee on an appropriate monotone norm
helps prove Theorem 11 above. Let || - ||| be a monotone matrix norm. Consider the following
generalization of problem (1) that given a data matrix A € R"*", and a parameter k > 1,
finds a projection

mr}nHAH% — (AATTI) s.t. IT is a projection matrix of rank < 7, and [[TI|| < x.  (17)

Definition 12 [a-approzimately certifiable matriz norm] A matriz norm ||| - || over R™*™
matrices is a-approximately certifiable for some a > 1 iff there exists an algorithm that runs
in time poly(n,m), and when given a PSD matriz B € R"*" and a parameter k as input
will either certify that ||B|| < ak, or finds a Z € R™ ™ such that (1) (B,Z) > Kk, and (2)
(M,Z) <k forall M s.t. ||M]|| < k.
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As we will see later the operator norms that we will consider (e.g., ¢ — 2 norm and the
q — ¢* norm for ¢ > 2) will be O(1)-approximately certifiable.

The following general theorem gives an O(1) bicriteria approximation for the problem
assuming the monotone matrix norm || - || is approximately certifiable.

Theorem 13 Let || - || be any matriz norm that is monotone and a-approximately certi-
fiable for some o > 1. Suppose we are given as input a data matriz A € R™ ™ that has an
(orthogonal) projection ITI* of rank at most r such that ||II*|| < K and the approximation
error OPT = ||(I — II*)A||%. There exists a polynomial time algorithm such that given

every v € (0,1), it finds an orthogonal projection matriz II of rank at most r satisfying

T < a(1+2) - r, and ||(T = DA} < (2+7)OPT. (18)

Moreover, for any v € (0,1), there exists a polynomial time algorithm that finds an
r" < (14 1/v)r-dimensional orthogonal projection 11 such that

T < a(1+2) -k, and (I~ DA} < (1+7)- OPT. (19)

We consider the following mathematical programming relaxation for the problem. In
the alternate formulation where we minimize the robustness parameter subject to an upper
bound on projection error, the roles of (20) and (23) below is switched.

minf| [} — (447, X) (20)
s.ttr(X) <r (21)
0=X=<1I (22)
X < & (23)

First we observe that this is a valid convex relaxation to the problem. In fact any feasible
projection matrix IT of rank at most r for (17) is a feasible solution to the above program
(20)-(23) with the same value. The intended solution here is just X = II. All the eigenvalues
of IT are 0 or 1, since II is a projection matrix; hence (21), (22) are satisfied. Moreover (23)
is satisfied just because of the same constraint as in (17). Finally, the objective value is
preserved since

1AlI7 = (AAT,TT) = [[AJfF — tr(AATTD) = [|A|F — tr(TTA(TIA) ') = [|A[[F — [|ITLA||3.

In the above program, the objective (20) and constraints (21)-(22) define a semi-definite
program (SDP). Moreover, for (23), we see that for any A € [0,1], by triangle inequality
[IAXT + (1 = XN)Xa|| < M| X1+ (1=X)[|X2|||- Hence the set of all X that satisfies constraints
(21) - (23) is convex. In general, constraint (23) may be NP-hard to verify for a given PSD
matrix X. However, we can use the fact that ||- || is approximately certifiable to get
a approximately feasible solution to the program in polynomial time, using the Ellipsoid
method.

The following lemma shows that by truncating a solution of the program (20)-(23) to
just the terms corresponding to the large eigenvalues, we retain much of the objective.
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Lemma 14 Lete,0 > 0, and M = 0. Suppose X satisfies the SDP constraints (22) and
(M, X) > (1—¢e)tr(M). Suppose P)l(_‘S is the projection operator onto the subspace spanned
by eigenvectors of X with eigenvalues at least (1 — 8). Then we have

(I—PL° M) < % (M), (24)

Proof We can assume without loss of generality that tr(M) = 1, since M can be scaled
accordingly. Let X =>"" | )\iviv; be the eigendecomposition of X (note that A; > 0 since
X isp.s.d.),and let S ={i:\; >1—09}. We have

(1= e)tr(M) < (M, X) =Y _ M M,

tr(M) = Z v Mu;, since {v; : i € [n]} is an orthonormal basis.
i
By subtracting the two inequalities, we get

n

Z(l — \)v; Mu; < e-tr(M) =e.

i=1
Z(Sv Mvz<21— UMUZ—'—ZI_ ’UMUZ<€
¢S ¢S €S

from definition of S, M > 0, and (22). Hence

(I — P)l(_a,M> = ZUZTMW < % = % ~tr(M), as required.
¢S
|

Proof of Theorem 13.  We can scale the matrix A appropriately so that we can assume
||A||7 = 1 without loss of generality. Let OPT = ¢ for some ¢ € [0,1]. We will use the
Ellipsoid algorithm to approximately solve the relaxation in (20)-(23). As we have explained
before, the feasible set is convex. We now show how to design an approximate hyperplane
separation oracle for (23); the rest of the constraints just correspond to a simple SDP.
Since || - || is a-approximately certifiable, we have a polynomial time algorithm that given
a matrix X = 0, either certifies that H]X\H < ak (e.g., when the SDP value is at most ak),
and otherwise produces a separating hyperplane of the form (Z, X) < k that is not satisfied
by X. We run the Ellipsoid algorithm to find a solution X that satisfies || X|| < ok, and
has objective value that is arbitrarily close to OPT.

Set 6 := 1/(1+7). Let X = S vy, and let S = {i: A\; > 1 — §}. Define for each
i € 19), a; :== (vv;,, M), where M = AAT We sort the elements of S based on {a;}, and
pick greedily the first min{r, |S|} of them to form 7" C S. Our projection matrix will be
Iy =3 ep viv

We first argue that the operator norm constraint is approximately satisfied. By the
monotonicity of the || - || we have

HI K| _ ar _a(l+9)
Il = 1D vl I < T=I1 D2 Al < K (25)

€T A >1—06 5_1 6 v
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Also, from Lemma 14, we have

%@ivﬁm = (I - P M) <
D (@ = Xovv M)y <D (1= Nvw] M) <1— (X, M) <e.
€S i

%, and

1
Hence, Z/\iai = ZAi<viv;,M> >1- 5(1 + 5) =1—-(2+7)e,
€S €S

for our choice of 6 = 1/(1 4 ). By our greedy choice of T', we have >, .po; > > ;g Nics,
as > ;eg Ai < minftr(X), [S|} = |T|, with each \; € [0,1]. Thus |[IIFA[|% < (2 + 7)e.

The guarantee in (16) is obtained by returning the projection Ilg = 3, ¢ v;v; . Observe
that |S| < r/(1—0) from (21). The operator norm bounds follows using the same argument

as (25) with T'= S. Moreover, the objective value follows directly from Lemma 14. [

Guarantees for the ¢ — 2 norm (Proof of Theorem 11). Our goal will be to apply
Theorem 13 to obtain our required guarantee. However the ¢ — 2 operator norm is not
monotone when ¢ > 2; see Claim 51 for a counter-example. Our crucial insight is that we
can instead use the |||[4—¢+ norm which we show indeed satisfies the monotonicity property
(Definition 5), so that we can apply Theorem 13.

Claim 15 (Monotonicity of ¢ — ¢* operator norm) For anyq > 1, the operator norm
||'||q—)q* s monotone.

Proof Let B € R™". It suffices to prove for any B = 0,0 € R™, | B+vv " ||gmq* > | Bllgsqr-

Bl = s TBy= e (5
lyllg<1,ll2llq<1 lyllg<1,||z]lq<1
lyllg<1 lyllg<1

In other words, the quadratic form is maximized by y = z. Moreover for every y,
y'(B+vo" )y =y"By+(y,v)> >y  By.

Hence, [|B + 00" [lgog= 2 [ Bllg—sq--
|

This gives the following mathematical programming relaxation for the problem, where
the robustness constraint is captured by the ¢ — ¢* operator norm.

minl|Af}p — (447, X) (26)
st. tr(X)<rand 0 XX <7 (27)
[ X goqr < K? (28)
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In the above program, the objective (26) and constraints (27) define a semi-definite
program (SDP). However, the ¢ — ¢* operator norm is NP-hard to compute. Instead we
will use the standard SDP relaxation (Nesterov, 1998; Steinberg, 2005) for certifying the
g — ¢* norm of any PSD matrix X, where Cg = Cg(q) > 0 is the constant given by
Theorem 10:

||X||q%q* < max (X,Y) < CGHXHqu*» (29)
YERMX™:Y =0

Z YLZ/2§1

This shows that ¢ — ¢* norm is o = C'¢ approximately certifiable. At this point, we have
all the ingredients to prove Theorem 11 by using Theorem 13 as a black-box. However, let
us first consider the convex relaxation(s) suggested by this certificate, with a view towards
designing a more efficient algorithm based on convex relaxations.

Convex relaxations for the Frobenius norm objective. The program (26) along
with the approximate certificate for ¢ — ¢* norm from (29) leads to the following two
tractable relaxations for our problem (13) that are equivalent. CP1 involves a universal
quantifier over Y € Q. Fortunately, there exists an efficient hyperplane separation oracle
for the constraint (32) (which by itself is an SDP relaxation). This can be used with the
Ellipsoid algorithm to solve the above relaxation in polynomial time. We now instead give
an equivalent convex relaxation for (30) that is much more efficient to solve. The main idea
is to use Lagrangian duality to convert the universal quantifier in (32) into an existential
quantifier. In what follows for a vector d € R™, we will use diag(d) to denote the diagonal
matrix in R™*" defined by d.

CP1: CP2:
m)gnllAH% — (447, X) (30) XeRnI;lggeRgoHAll% — (447, X) (33)
st tr(X) <7, 0=X=<1T (31) S't__ (X)) <r, 0<X<TI (34)
max(X,Y) < Cgr?, where X < diag(d) (35)
Q={Y eR™": YV =0, Zn:Yﬁ/z <1} | ldllg/q-2 ZZ(id?/(q_Q))(q_Q)/q < Cor?|
= (32) - (36)

Figure 3: Two tractable mathematical relaxations CP1 and CP2 for problem (13) with
Frobenius norm objective.

The equivalence of CP1 and CP2 follows immediately from the following lemma that
uses Lagrangian duality.
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Lemma 16 Consider the following two programs defined for ¢ > 2 and input C € R™*"

n

imal: valp = CY)yst. S vY?<1, v=0 (37
primal: valp := max (C,Y) s ; W = i (37)

" ) (-2
dual: valp := min || d]g/(g-2) = (Zdj/ (@ 2)) Tt diagd)=C, d>0. (38
=1

For any feasible solution Y of the primal, and any feasible solution d of the dual, we have
(C,Y) < |dllg/q—2) i-e., weak duality holds. Moreover, the optimum values of the primal
and the dual relaxations are equal valp = valp (strong duality).

We remark that in the special case when ¢ = oo, the last constraint (36) becomes the
simple linear constraint ), d; < cgr?. The following claim shows that the above convex
programs CP1 and CP2 are valid relaxations for (13) and can be solved in polynomial
time.

Claim 17 Any feasible projection matriz IL of rank r satisfying (14) forms feasible so-
lutions to CP1 , CP2 (for an appropriate feasible d) and (26) with the same objective
value as (13). Moreover the relaxations CP1 and CP2 can be solved in polynomial time to
arbitrary accuracy.

Proof First we argue about the feasibility of CP1 and (26). The intended SDP solution
here is just X = II. All the eigenvalues of IT are 0 or 1, since II is a projection matrix; hence
(27) and the corresponding constraints in the programs (31) and (34) are satisfied. To verify
(28), note that from Claim 4, ||II||;—q = HHHZHQ. Moreover from (29), we also have that
(32) is satisfied by X. Hence CP1 (and (26)) are feasible. Moreover X is also feasible for
CP2 for an appropriate choice of d since the constraints (32) and (36) are equivalent from
Lemma 16.
Finally, the objective value is preserved since

IAIF — (AAT,TL) = | A% — tr(AATID) = [|A|F — tr(ITA(AID) ') = ||A[[% — [|T1A|[ .

It is easy to check that both relaxations CP1 and CP2 are convex. We now argue about
the computational tractability of CP2 . The relaxation is a semi-definite program (SDP)
with an extra constraint (36). The constraint (36) is convex when ¢ > 2. Let ¢’ = ¢/(q—2);
the dual norm for £y is ¢;/5. Moreover there is a simple separation oracle for this constraint
since by duality

d*

Ild 9y = max y,d) = <7,d>, where df = sign(d;)|d(i)|?/97? Vi € [n].
lara-2) = | g (9 ]|/ i ol ]
Hence by using the Ellipsoid algorithm, this problem can be solved in polynomial time.
Finally CP1 can also be solved in polynomial time since (32) is itself a semi-definite pro-
gram: this can be solved in polynomial time (by Ellipsoid method for example) and can in

turn be used as a hyperplane separation oracle for constraint (32) and the outer relaxation.
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We remark that solving CP1 is less computationally efficient compared to CP2 due to the
repeated use of the Ellipsoid method (to certify (32)). [ |

Proof of Theorem 11.  We will apply Theorem 13 with || - ||| := ||||g—¢+. From Lemma 15,
we have that the ||-|[4—¢+ is monotone. We now show that [-||;—¢ is O(1)-approximately
certifiable. For this we use the constraint (32) of CP1 or equivalently (36) of CP2 . As
shown in Claim 17 both of these constraints can be certified efficiently. By (29), this in turn
shows that ||-||q—¢ is @ = Cg(q) = O4(1)-approximately certifiable (in particular, o = 7 /2
for oo — 1). Hence, applying Theorem 13 we see that the algorithm outputs a projection
matrix II with HﬁHg_)z = Hﬁ\|q_>q* < Calg)(1 + %)/@2 which obtains an objective value of
(2 +~)OPT. This completes the proof of Theorem 11.

We remark that applying Theorem 13 as a black-box involves solving an SDP to a-
approximately certify the ||-||— 4+ — this corresponds to solving the convex relaxation CP1 .
However, using the equivalence between CP1 and CP2 (from Lemma 16), we can also apply
the same rounding algorithm from Theorem 13 to the solution X obtained from CP2 to
obtain the same guarantees. |

We now complete the proof of Lemma 16 which establishes the equivalence of CP1 and
CP2.

Proof of Lemma 16.  First we observe that the primal (37) is a conic program (PSD cone)
with an additional convex constraint. Consider the following Lagrangian dual of the conic
program

L here = Y) Y2 4
A>I£lll}l>_0 (N U), where LN, U) := X+ Ylg%g?in (C, )\Z (39)
Moreover by duality, valp = mgl}OL()\ U). (40)

The second line follows from strong duality for the Lagrangian dual — it is easy to see that
Slater’s condition holds for the primal (there exists a primal feasible solution Y where all the
constraints hold strictly). Note that U > 0 (since the PSD cone is its own self dual). Note
that for the optimal U, we have C;; + U;; = 0 for all i # j € [n] (otherwise Y can be chosen
to make the objective go to co). By introducing the variable d € R™ with d; = Cj; + Uy; for
all i € [n], we can rewrite (39) as

min_ L(\,d), where L(\,d) = A+ max Y d;Vi — AY7/2 (41)
A>0,deR™ Y ERnXn 4 v
diag(d)=C =1

Note that the inner maximization objective is concave in the variables {Yj;}; hence its
maximum is obtained where the gradient vanishes i.e.,

Vi e [n], di :)\<%>Y£/2_1 oy, = (2;@)(1/((1—2)‘
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Further d; > 0 for all i € [n]. Substituting in (41) and simplifying we get that (41) is
equivalent to

. N q — 2 2/(¢—2) q/(q— 2
oin L), where L\ d) =+ (T ) (qA) z;d (42)
diag(d)>=C ‘

Again L(\,d) is convex is A; hence its minimum is attained at the critical point (that is
strictly positive)
SO A

Substituting this value of A in (42) proves that (39) is equivalent to the claimed dual
formulation (38). Finally from Lagrangian duality and (40) the lemma follows. [ |

B.2. Approximations in the Spectral Norm

We now show how techniques similar to those in Section B.2 can also be extended to robust
low-rank approximations, when the error is measured in spectral norm as opposed to the
Frobenius norm. In this section we will use ||A|| to denote the spectral norm of matrix A.
For convenience of exposition, we will measure the projection error in (3) using the spectral
norm ||A — ITA|| as opposed to the squared spectral norm.

Theorem 18 Suppose the data matric A € R™ ™ has an (orthogonal) projection IT* of
rank at most v such that ||II*||4—2 < Kk and the approzimation error OPT = ||(I —II*)A]|.
There ezists a polynomial time algorithm such that given any v € (0,1), it finds an (orthog-
onal) projection matriz I of rank at most r satisfying

T2 < V/Ca(a)(1+2/7) - 5, and |(I = TA| < V/(3+7) - OPT, (43)

where Cg(q) > 0 is a constant that only depends on q as given in Theorem 10. For ¢ = oo
this value is known to be at most w/2.

Moreover, for any v € (0,1), there exists a polynomial time algorithm that finds an
< (14 g)7“ dimensional orthogonal projection II such that

T2 < V/Cala)(1+2/7) - 5, and |(I = TA| < /(1 +7) - OPT. (44)

Proof of Theorem 18. We will use the following mathematical relaxation for the prob-
lem.

min A (45)

st. AT(I — X)A <A (46)
tr(X)<r, and0 <X <1 (47)

[ X lg—q < K? (48)

The last constraint (48) is NP-hard to certify. So as in the previous section we will relax it
and consider the following two convex relaxations CP3 and CP4 .

The following claim (which is analogous to Claim 17) shows that the above convex
programs are valid relaxations and can be solved in polynomial time.
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CP3 : CP4 :
min A (49) min A (53)
st. AT(I = X)A =<\ (50) st AT(I—X)A =\ (54)
tr(X)<r, and0=<X =<1 (51) tr(X)<r, 0<X =T (55)
I;lag(X, Y) < Cgr?, where X =< diag(d) (56)
S
» o\ (a-2)/
Q= {Y e R™™: ¥ 20,3 VI <1} | ldllgyqn = (D) T < OgR?
7 =1
(52) (57)

Figure 4: Two tractable relaxations CP3 and CP4 for spectral norm objective.

Claim 19 Any feasible projection matriz II of rank r satisfying ||| 4—2 < K forms feasible
solutions to CP3 , CP} (for an appropriate feasible d) and (45) with objective value || A —
IIA||2. Moreover the relaxations CP8 and CP4 can be solved in polynomial time to arbitrary
accuracy.

Proof The proof follows the same argument as Claim 17, with a small modification to
account for the different objective. We first argue that CP3 and CP4 are valid relaxations.
Consider any projection matrix II of rank r satisfying ||II||;—2 < k. From Claim 17, we
have that constraints (51) and (52) of CP3 and (55) and (57) of CP4 are satisfied. To see
that the objective value is preserved, note that for any projection matrix II,

IAT( = A| = AT Al = TTAJ? = [|A - TTA|?,

as required. This establishes the first part of the claim.

We now show that CP3 and CP4 are polynomial time solvable up to accuracy n > 0
in time polynomial in the input size and log(1/n). We use the Ellipsoid algorithm to solve
both the relaxations. It is easy to verify that the feasible sets are convex. The argument in
Claim 17 proves that the constraints (51), (52), (55) and (57) are all efficiently separation.
We now argue about the objective i.e., the constraint (50) and (54). Finally, given A\, X,
(50) and (54) can also be efficiently separated by computing the maximum eigenvalue of
AT(I — X)A. Let v € S"! be the corresponding eigenvector. If the constraint is violated,
the hyperplane separator is of the form

(o, ATA) — (v ,ATXA) =X <0, ie., (o', ATA) — (AvwT AT, X) =X <0,
since tr(vv' AT X A) = tr(Avv " AT X). This completes the proof. [ |

The proof of Theorem 18 also crucially uses the monotonicity of ¢ — ¢* matrix operator
norm, and also follows the same outline as the Frobenius norm objective. The primary
difference arises in analyzing the objective.

Proof of Theorem 18.  Let OPT? := ¢2||A||? for some ¢ € (0,1]. Set § := 2/(2 + 7).
Claim 19 shows that in polynomial time we obtain a solution X > 0 satisfying (47), (46) with
A < OPT, and maxyco(Y, Z) < Cg(q)x? . From (29), this implies || X ||;—q+ < Ca(q)k%

33



AwASTHI CHATZIAFRATIS CHEN VIJAYARAGHAVAN

Let X = Y, Mvw and let S = {i : \; > 1 — §}. For the rest of the analysis we will
assume without loss of generality that HAH = 1. We first show the guarantee in (44). The
projection output is just IIs = ) ;g vv; . Observe that [S| < r/(1—0) from (47). Since the
projector we output is just Ilg, each of 1ts associated eigenvalues are at least 1 — §. Hence,
the operator norm bounds follows using the monotonicity of the norm since IIg < ﬁX .
To verify the objective value we see that

| 224 =HATH>AHwHAHz:EQ

i€[n]
HZ&A viviA HZ (I—\ vlv AH<HZ (I—=2X Tow TAH<5

¢S
€

Hence HATHLéA < == (1 + %)52,
as required. We now show the guarantee in (43) where we output a projection of rank at
most 7 (with no slack). Let M’ := >, ¢ ATvv; A. Let II' be the projection matrix for the
subspace corresponding to the best rank r projection of M’. The algorithm outputs IT'.

Note that IT" < IIg, hence by monotonicity, the ¢ — ¢* operator norm constraint is
satisfied up to a a := Cg factor. Also note that if II* is the projection that gives the
optimal solution to the problem,

IN

2
|M' — AT A|| < |M'— ATA| + |ATA - ATIT*A|| < €2 + %

But ATII*A is a valid approximation of M’ of rank at most r. Hence, we have that
M —I'M'T|| < *(1+ 1)
|ATA—TIATAIT|| < |ATA - II'TIgA T ATIGIT || < ||[ATA — M| + | M’ — I’ M'IT|

2¢? 2 24,2 2
ST—F{:‘ :(14—3)8 :(3+’Y)€

=(1+5)=(243)¢

as required.
|

As before the same ideas also give the following more general theorem for any monotone
matrix norm || - || that is approximately certifiable.

Theorem 20 Let || - || be any matriz norm that is monotone and a-approzimately certi-
fiable for some o > 1. Suppose the data matriz A € R™ ™ has a projection IT* of rank at
most r such that ||IT*|| < k and the approxzimation error OPT := ||(I —1I*)A||. There exists
a polynomial time algorithm such that given any v € (0,1), it finds an orthogonal projection
I of dimension at most r satisfying

T < /a1 +2/7) - &, and ||(I — N)A| < /(3 +7) - OPT. (58)

Moreover, for any v € (0, 1) there exists a polynomial time algorithm that finds an
orthogonal projection 11 of rank ' < (1+= )7’ such that

I < Va(l+2/7) - £, and ||(I = TA| < /(1 +7) - OPT. (59)
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We omit the proof, since the ideas are identical to Theorem 18.

B.3. Recovering the Optimal Projection Matrix

We now show that if the optimal robust low-rank projection has very small error compared to
the rth smallest singular value of A, then we can in fact approximately recover the subspace
itself up to small error measured in terms of the principal angles. For two subspaces with
projection matrices Iy, Ilo, the Sin of the canonical angles matrix is given by I II. These
techniques will also be helpful for recovery in the Spiked Covariance model. The following
simple corollary will work for both Frobenius norm error and spectral norm error. For this
purpose, we will just use || A]| to denote the norm of A, where the unspecified matrix norm
Il - [II is norm in which we are measuring the error — either Frobenius norm or spectral norm.

Corollary 21 Suppose the data matriz A € R™™™ has an r-dimensional projection IT*
such that ||[TT*||,2 < &, the approzimation error OPT := ||(I — II*)A|* < €2||A|* and
o,(II*A) > 6. There exists a polynomial time algorithm that finds a projection 11 of rank at

most r such that
ellAll

0
where the subspace corresponding to Il is a subset of the subspace given by II* and a is the
approximation factor attained by the algorithm in Theorem 11 (or Theorem 18).

T IT)| < O(1 + a) -

(60)

Note that the above bound holds for the spectral norm error and the Frobenius norm
error.
Proof The algorithm is exactly the same algorithm used in Theorem 11. Let II denote
the best robust low-rank subspace for A. We will then use the Davis-Kahan sin © theorem
about perturbations of singular vectors to show that the subspaces given by II; and Ils are
close. Note that the Davis-Kahan theorem states that if II; is the projection matrix onto
eigenspaces of A; A/ respectively (i € {1,2}) with the least singular values of 11y A; being
at least § > 0 more than the singular values of I3 Ag, then for any unitarily invariant norm

(- I,
[l Ay — A2|H.

)

We would like to apply it with Ay = I1A4, A; = II*A and Il = II,II; = II*. We know
that by the triangle inequality, for some constant « given by the approximation ratio in
Theorem 11 (or Theorem 18),

1T I || <

A = TIAJ| < ITT*A = Al + [[[A = TA[| < e[| AJ] + aelAlll < (e + DelfAlll, — (61)

where we used the fact that II gives an a-factor approximation to the objective. Moreover,
in our case Ay = IT*A is itself of rank-r and H%‘Ag = 0. Under the stronger assumption in
(60), we have o,(II*A) > 6. Hence we see that (60) holds since

T A — TA|| _ (L+a)e
; < :

LI <
l I < p
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Appendix C. Data Poisoning and Robustness to Adversarial
Perturbations at Training Time

In this section, we consider training-time robustness, where the input matrix A is an adver-
sarial perturbation of A and the goal is to recover the robust projection of A rather than
A. In Section C.1, We will study the approximation algorithms in Frobenius norm error. In
Section C.2, we will study its counterpart in spectral norm error. Finally we show a lower
bound in Section C.3.

C.1. Training-Time Robustness: Approximations in Frobenius Norm Error

Theorem 22 Suppose ¢ > 2 and A € R™™ 4s the (unknown) uncorrupted data matriz,
with an (orthogonal) projection matriz II* of rank at most r that is robust i.e., |[II*||q—2 < K
satisfying ||A — I*A||% < ¢||A||% for some ¢ € [0,1]. There exists a polynomial time
algorithm that given as input any (adversarially perturbed) data matriz A s.t. for each
column j € [m], |A; — Aj|l, < 8, outputs an orthogonal projection IT of rank at most r such

that for any n > 0
ITTlg2 < O(x), and |A —TIA[} < O(c +n) - Al + O(}) - 8K m. (62)

To get a multiplicative approximation we will set n = O(e), and get an extra additive term of
§%k?m/e. Here think of §°x? < L .¢||A||%. Further we remark that the above guarantees are
optimal up to constant factors; in particular, the additive factor of O(mé%?) is unavoidable
(see Proposition 28).

The main challenge here is that while A has a good low-rank projection (in fact a
robust one), A may be very far from a rank-r matrix (let alone having a robust rank-
r approximation). Further, the best robust low-rank approximation of A could be very
different from the best robust low-rank projection of A. This is because the entry-wise
perturbations of ¢ could be too large in aggregate; for instance, it could be the case that
|A||% > ||A]|%. Suppose IT* is the best robust low-rank projection of A. We will run the
algorithm in the previous section not on the given matrix A, but on a suitably modified
matrix A’

Lemma 23 There is a polynomial time algorithm that given any matric M € R™ ™ can

find
Lo(M) = min I1B]I%,

1B —M;lq<6,¥j€[m]

up to arbitrary accuracy.

Proof First we note that since || B||% = > jHBng, the optimization problem is separable
across each of the m samples i.e.,

min IBlF= >  min B3

nxm

.T. . J
IB;—M;|l¢<8Vj€lm] €M | Bj—M;|4<s
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Input: A, the corrupted n x m data matrix, rank r, robustness parameter £ > 1 and
norm q > 2.

1. Compute A" (using Lemma 23) such that

A= argmin | Bl -
BER™ ™ s.t.
1B —A;jllq<d,¥5€[m]

2. Run the algorithm from Theorem 11 on A’, to obtain a rank-r projection matrix .

3. Output .

Figure 5: Robust rank-r approximations in Frobenius norm under adversarial perturbations
during training.

We now describe how to solve each of the m subinstances corresponding to the column
Jj € [m], which for a given b € R is of the form

. 2
min [|b— 2[3.
llzllg<o

Note that the least-squares objective ||b — 2|3 is convex. Moreover the constraint |z, < §
is also convex; further there is a simple separation oracle for this constraint since by duality

z*

.2 = (e

lzllq = ,z>, where 2} = sign(z;)|2(i)|7! Vi € [n].

max
yER™ [lyllg+ <1

Hence by using the Ellipsoid algorithm, this problem can be solved in polynomial time. °
[ |

Note that when ¢ = oo, it is easy to find the matrix A, by just setting
A;j = sign(M;;) - max{0, |M;;| — 6}, Vi, j € [n].

We will argue that IT* also gives a good low-rank approximation to A’. This crucially
uses the fact that II* has bounded ¢; — 2 norm, which implies the following useful lemma.

Lemma 24 Suppose A, B € R™™ are two matrices such that for each column j € [m],
|A; — Bjllg <9, and let I be any rank-r projection matriz such that ||II||q—2 < k. Then for
any 7 € (0,1),

(1= ITA[E — (5 = 1)**m < TIB[|E < (1 +)|[TTA[E + ( + 187w m.

5. In fact Projected Gradient Descent Algorithm can also be used here; see Sra (2012).
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Proof For each j € [m], let Aj, B; be the jth columns of A and B respectively. Then
III(A; — Bj)|l2 < |II||g—2]|Aj — Bjllq < 6k. Using this along with the triangle inequality we
get,

ImB|E = ZHHB — A7) + A3 > ) (A |12 — 6k)°
7=1 7j=1

;wm !\2—2(f)(fHHA o) + (9r)?

> (1-— )HHAHF ( )52m2m for any n € (0,1).

This proves the first inequality. A similar argument also shows the other inequality. |

We now prove that Algorithm 5 finds an approximately optimal robust low-rank pro-
jection for unknown, uncorrupted data matrix A.

Proof of Theorem 22.  The first step of the algorithm finds the matrix A’ given by
A= argmin | B||%.
BER™™M st
1B —A;lq<6,75€[m]

Note that ||A'[|r < ||A||F since A is also a feasible solution for the above minimization.
Moreover since ||A; — Al < 26 for each j € [m], we get from Lemma 24,

T A[[7 > (1= )T Al[f — 4(; — 1)0°%m, for any 5 € (0,1). (63)

Now we run the algorithm from the previous section (Theorem 11) on A’. From The-
orem 11 (with 6 = 1/2 say), we find a rank-r projection matrix II with [|II||ccm2 < O(k)
such that

A7 = TAY 3 < 3 ()43 — (1= n) [T Al + 4(2 = 1)6%2m)
< 3|4 - T AJI3) + 3nT Al + 12(4 - 1)6%2m
<3(e+n)l|AlF + 12(2 — D&**m.
However we know that ||A’||% > ||II*A’||%. Hence
A% > A7 — A" = DA% > T A|[F — (| A" = TTA'||5
> (1= )T Alf% = 3(e + n)[|AllF - 165 — 1)6°x*m
Hence, ||A = TTA|I% = [ A% = A% <temma 24 [AllF = (1 = ) ITTA'[|% + (5 + 1)0%K>m
< AIIE = (1 =) A% + 3(e +0)(1 — )| All7
+ m62n2(1 + L1601 -m)(d - 1))
< HA — I AJE + (32 + )| Al + (14 ) o2k2m
OIA% + O(;)0%K*m,
for any n > 4e. |
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C.2. Training-Time Robustness: Approximations in Spectral Norm Error

We now show guarantees for low-rank approximations in spectral norm error that are similar
to Theorem 22. However, there is a qualitative difference: we will either find a robust
low-dimensional projection of the unknown dataset A, or we will certify that the dataset
has been poisoned substantially. In particular, the algorithm will never output a low-
dimensional representation that is bad for the unknown data matrix A. We will later
see how these guarantees also imply training-time robustness for downstream unsupervised
learning applications like spectral clustering, robust mean estimation and learning mixture
models. In what follows ||-|| will refer to the spectral norm.

Theorem 25 Suppose ¢ > 2 and A € R™™™ is the (unknown) uncorrupted data matriz,
and let IT* have the smallest spectral norm error ||A —ILA|| among (orthogonal) projections
of rank at most r that are robust i.e., |[I|[q—2 < k. There exists a polynomial time algorithm
(Alg. 6) that given as input any (adversamally perturbed) data matriz A s.t. for each column
Jj € [m], ||A — Ajllq < 0 and a parameter T > 0, outputs either a projection matriz Il of
rank at most r or outputs BAD INPUT s.t.

(1) if the algorithm outputs a projection I of rank at most r, then it is a near-optimal
robust low-rank approximation for the unknown matrixz A i.e., for some small universal
constant ¢ > 1,

v >0, |42 < g and [(I-T)A| < O(143) (74| AT Al +-v/mdr ) + /2] Al
(64)

(II) if the algorithm outputs BAD INPUT , then either the data was poisoned i.e., ||A—A| >
T, or there is no good robust spectral norm approzimation for A i.e., ||A —IIA| > 7
for all rank-r projection matrices I s.t. ||II||g—2 < K.

In particular, if we are promised that A has a good robust projection II* of value || A—TI* A[| <
e||Al|, then the algorithm either finds an approzimately optimal robust projection Il of rank
at most v for A with

T2 < cqre and vy >0, [|(I-THA| < O(1+2) (JA=1I"A]|+ Vinor)+/2n]| All, (65
or certifies that the data has been poisoned i.e., |A — Al > e||Al|.

Our algorithm just runs the worst-case approximation algorithm from Theorem 18 on A to
find a projection II. If the error is less than 7, it outputs II; else it certifies that the data
is corrupt.

The main feature of the above algorithm is that it is always correct. The algorithm
certifies that the input is BAD only when the data has been poisoned i.e., A is substantially
far from A, or A did not have a good robust low-rank approximation to begin with. More
crucially, when it does output a projection matrix ﬁ, it is guaranteed to be a valid robust
projection® for the unknown matrix A. We remark that the additive error term of Q(5x+/m)
is unavoidable here information-theoretically; see Proposition 28 for an example.

6. In particular it rules out the scenario where the algorithm finds a solution that it thinks is good (on A),
but is in fact bad for the unknown, uncorrupted matrix A.
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Input: A, the corrupted nxm data matrix, tolerance parameter 7 > 0, rank r, robustness
parameter x > 1 and norm q > 2.

1. Run the algorithm from Theorem 18 on A, to obtain a rank-r projection matrix II.
2. If the robust low-rank approximation error on A, Hfl - IALZXH < 7, output 1i.

3. Otherwise output BAD INPUT .

Figure 6: Robust rank-r approximations in Spectral norm error under adversarial pertur-
bations in training.

The following is the key lemma that argues that if the projection I gives a small error
on A, it necessarily gives a low-error on A.

Lemma 26 Letd € Ry and A, B € R™™ such that ||A—B||; < §. LetI1;,IIy be projection
matrices such that |[I11]|4—2, [I2]q—2 < K, and = ||A =111 A|| < &1 and |B — II1B|| < es.
Then we have that for any n € (0,1),

|A-ToA| < O(1+ 1) (1 + 22+ vimdr) + V20| Al (66)
and ||B — 11, B|| 30(1+%) (51+52+\/ﬁan) +/21|B]l. (67)

Proof The projection matrices IIj, Il are both robust. For ¢ € {1,2}

LA — LB < |I(A— B)h = S (4, — By} < mr?s?

J€[m]

Hence ||| A|| — ||TI,B]|| < vVm&kd. (68)

Let v := y/mdk. We also know that [|[A — T A|| < &;.

[A-ILB| < [[A-TLA| + A -ILB| <e1+7y
Hence Vv € S" !, ||Av — I} Bv|jz < &1+, and similarly |Bv — I Av|s < g9 + 7. (69)

But Bv = II; Bv + I} Bv. We have for any n € (0,1)

1B[|3 = 1T Bol3 + 1y Bul3 > ([ Av]l2 — e1 = ~)* + [y Bull3
> (1 —n)||Av[l3 — (e1 +7)*(L + §) + | B3
Similarly, [|Av|[3 > (1 —n)[[Bul3 — (e2 +7)*(1 + ) + [Ty Av|l3
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Combining the two, we get that

1Bul3 = (1= m?IBul3 = 1+ 5 ((e1 +7)2 + (o1 +7)?)
+ (1 — )| 115 Av||3 + 111 Bol|3
(1= Il Av|3 + [T Bul3 < (20— )| Bulld + (1 + 1) (1 +7)% + (&1 +9)?)

Vo e S"T, I Bol} < 20)Bol3 + (1+ 1)((e1 + )% + (61 + 7))

Hence, || B — L B|? < 29[| B||* + (1 + 1) (e1 + 27 +2)?,
as required. A similar statement also follows for A using a symmetric proof. |

Proof [Proof of Theorem 25] Firstly the algorithm from Theorem 18 runs on A and pro-
duced a robust projection matrix II. The proof consists of two parts. We first argue that
if the algorithm outputs any robust rank-r projection matrix, then it has to be robust for
A. Any such II satisfies ||A — ITA|| < 7. Applying Lemma 26 with ey = 7 (B = A) and
g1 = ||A — II*A||, we have

1A - TIA|| < 0(1 + %) (T A - T A| + \/mam) + /201 All.
On the other hand, if the input A is not “BAD” i.e., (a) for the unknown matrix A,

|A —TI*A|| < 7, and (b) ||[A — A < 7, we now show that the algorithm outputs a good
solution for A. In this case we have that ||A — IT* A|| < 27; hence,

|A - Al < A —TI"A|| + |ITA - T A| < 27+ | [T 4; — T4, |3 < 27 + V/mk.
j€lm]

Hence, by Lemma 26 applied with e; = 7 and g9 = (B = fl), we have that
|A - TiA| < 0(1 + %) (T + \/Fn(m) + /2|4

This proves the theorem. The moreover part follows by setting 7 := ¢|| A]|.
|

In fact, Lemma 26 implies a stronger information-theoretic statement about finding a
robust low-rank approximation of the unknown, uncorrupted matrix A with low spectral
norm (just like Theorem 22 for Frobenius norm error). In fact we get a polynomial time
algorithm assuming access to a polynomial time algorithm approximation algorithm for
solving the following problem: given a matrix A € R™*™ find”

min min |B —IIB|?, (70)
B||Bj—A;q<6 Vi€[m]  Mrank(Il)=r, [[Il]lg—2<r

where ||-|| stands for the spectral norm.

7. This problem is reminiscent of the concept of e-rank (Alon et al., 2013), that corresponds to the smallest
rank attainable by changing every entry of the given matrix by at most §.
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Proposition 27 Suppose ¢ > 2 and A € R™*™ is the (unknown) uncorrupted data matriz,
and let IT* have the smallest spectral norm error |A — ILA|| among rank-r projections that
are robust i.e., ||II||;—2 < k. Suppose further that there is an efficient algorithm for finding
an a-factor approximation algorithm for (70). Then there exists an algorithm that runs in
polynomial time, and given as input any (adversarially perturbed) data matriz A s.t. for
each column j € [m], |A; — Ajll, < & and a parameter T > 0, outputs a robust projection
matriz 11 of rank at most r that is near optimal in approrimation error for the unknown
matriz A i.e., for some small universal constant ¢ > 1,

vy >0, |(I-A| <O(1+ 1) (alA=T Al + Vimék) + V2llAl. - (71)

Moreover, the above bound is achieved information-theoretically by an algorithm (that po-
tentially does nmot have polynomial running time), by using an inefficient algorithm for
problem (70).

We remark that the main difference between the above proposition and Theorem 25 is that
Proposition 27 will always output a good robust projection for A (just like Theorem 22 for
Frobenius norm error), but the algorithm is not computationally efficient unless (70) can
be solved efficiently.

Proof Given A, the algorithm first runs the a-factor approximation algorithm for solving
(70) on A. The uncorrupted matrix A is itself a feasible solution; hence the solution output
by the algorithm A’ has a robust low-rank approximation of error O(«)||A —II*A||. Such a
robust low-rank projection II for A’ i.e., a projection for rank at most r with Hﬁ||q_>2 < O(k)
and ||A’ — 14| < O(«)||A—TIIA|| can be found by running Theorem 18 on A’. Moreover A’
and A are valid 20 adversarial perturbations of each other. Now applying Lemma 26 with
A, TI* and A’, I completes the proof. [ |

C.3. Lower Bound for the Additive Error in Training with Adversarial
Perturbations

We now show that the additive terms of Q(md2x?) in Theorem 22 is unavoidable.
Proposition 28 For any data matriz A with the following two properties:

1. Each column ||Aj||2 € [1/10,10],

2. There exists II* of rank 1 and ||II*||co—2 > K (which is at least 2) satisfying II"A = A,

there exists 0y (depending on A) such that for any 6 < &g , there exist A" as a §-perturbation
of A (i.e., ||A— Al <0) and a projection matriz II' of rank 1 satisfying

1. I is robust || 1] o2 < [|[TT*||oo—s2-

2. We still have A" = A’ but ||A —TI'A||p = Q(0k/m). Since A— A’ is of rank 2, this
also implies a similar lower bound for the spectral norm.
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When A is a k-sparse flat matrix where every entry is either 0 or ©(1/vk), &g is as large
as O(1/VE).
Proof Let v be the unit eigenvector of IT* such that ||v||; > k. Without loss of generality,
we assume |v1| > |vg| -+ > |v,| and £ = [supp(v)/2]. Notice that supp(v) > 2¢ by this
definition such that voy # 0. At the same time, because of the Cauchy-Schwartz inequality,
we have ||v||? < supp(v) - ||v||3 so that £ > x%/2 — 1.

Then we set dg = |vgg| and consider any 6 less than it. We perturb v to another “sparser”
vector u whose coordinate-wise absolute values are given by

<‘U1’ +57 ) ‘Ug‘ +57 |Uf+l‘ - 57-'-7|U2€’ _67 v2f+l‘7"'7|vn‘>'

However, since v; may be negative or positive, we define u according to the sign function:
U= <vl+sign(vl)~6, oo, vptsign(vg) -0, v —sign(vesq)-0, . . ., vog—sign(vap)-d, Vapiq, . - . ,vn> )

A 20
We have |lul|; = Zi:l |vi| + 6 + Zi:Z—H lvi| — & + Zi>2€ v; = ||v||1 and

lull3 = (jvil +8) + - + (fvel +8)* + (Jvesa] = 8)* + - + ([vael = 6)* +v3p 4y + - + 07

¢ 20
= i +20) il = Y |vil)6 + 2657,
i =1

i=0+1

Since |v1| > |ve| > - -+ > |vy], this is at least Y, vZ +2¢- 6% > ||v||3. So let @ = u/||ul]2 with
unit £ norm and I =@ - @' . So [|I||es2 = [|Ell1 < |Jv]l1 = ||TT*]|cos2-

Next we consider A. Since II*A = A, we assume A = [c1 - v,C2 * V..., Cp - v] With
coefficient |¢;| < [1/10,10]. We set A" = [¢1 - u,. .., ¢ - u] such that ||A — A'|| < 106 and
mra = A'.

Finally we lower bound ||4 — II'A||%. Notice that

y4 20 y4 20
(w,0) = (W7 +wild) + Y (WF = [wild) + > vf =1+ fuil = Y [wil)é.
=1 i=0+1 i>20 =1 i=0+1

H—(Zf:l |vi|_2?ﬁe+1 |vil)é
(S0 il =22, [vil)+2¢662
the distance between v — IT'v by counting the £ entries from vp;q to vap:

< 1. So we lower bound

Thus IT'v = (u, v)u/||ul|} = au for a =

2/ 2¢
D [vi — av; —sign(v;)8)? = > [(1 - a)vi| + ad].
i=+1 =041
Since § < |vy|, each term in the summation is at least 62. So |A—IUAl|p = \/c + -+ + -

5 -Vl = Q(0ky/m). |
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Appendix D. Robustness to Adversarial Perturbations in Clustering

As a concrete application of our guarantees for resilience to adversarial perturbations, we
study the problem of clustering under adversarial perturbations. Here our goal is to ap-
proximately recover the clusters of a well defined ground truth clustering, as well as good
approximations to the cluster centers. Our main result is to apply the guarantee from The-
orem 25 to show how to perform clustering of a well-clustered instance when every data
point in the instance could be corrupted. Our guarantees will apply to clustering a mixture
of well separated Gaussians and more general data distributions. In particular, we will show
that a robust modification of the popular Lloyd’s algorithm (Lloyd, 1982) (also known as
the k-means algorithm) can be used to perform clustering in our model, thereby providing
further evidence towards the widespread applicability of the algorithm. Existing guaran-
tees for using Lloyd’s algorithm (Kumar and Kannan, 2010; Awasthi and Sheffet, 2012) for
clustering a mixture of Gaussians and general datasets assume that every pair of means
i, [t are separated by ~ ok, where o is the maximum variance of the dataset around the
mean and k is the number of clusters (see (72) for the formal condition). In the presence
of adversarial perturbations of magnitude ¢, even if the optimal clustering (according to
unperturbed ground truth) of the perturbed data is provided to us, the best we can hope
for is to estimate the cluster means up to an error that goes to zero with 6.

D.1. Overview of clustering results

Let A € R™ ™ be clustered into k clusters of equal sizes with means pq, o, ..., pug. Fur-
thermore, let C € R™*™ be the matrix of corresponding centers for each column of A and
let o be such that ||A — C|| < oy/m. Then A satisfies c-spectral stability if for each pair of
optimal clusters, say, cluster » and s with means p, and ps, any point in cluster r, when
projected onto the line joining u,. and us is closer to u, than ug by an additive amount of
A, s = cak-o. Here « is a quantity that captures the signal-to-noise ratio and the relative
perturbation magnitude.® When A is a set of m = poly(n, k) points drawn i.i.d. from a
mixture of Gaussians with the variance of each Gaussian being bounded by ¢2, and with uni-
form mixture weight 1/k each, the separation condition becomes A, s = cak-polylog(nk)-o.
Below we denote k to be the robustness, as measured in || - ||;—2, of the subspace spanned
by the true means {p1, p2, ..., pg}-

(Informal) Theorem 29 [Robust Clustering] Fiz g > 2, and let ¢, be a constant that
depends on q. Let A € R™ ™ satisfy c-spectral stability, for ¢ > 200c,. Then given as input
a -corrupted instance A of A, there is a Lloyd’s style algorithm that either certifies that
the dataset is poisoned, i.e, |A — A|| = Q(o\/m), or recovers each mean p, up to error
O(a\/Ea). Using the computed centers to cluster A, we obtain a clustering of A such that
the corresponding induced clustering on A that misclassifies O(1/k)- fraction of the points.

In the special case of a mixture of Gaussians with equal mizing weights we recover the
means upto error O(ac), where we hide a polylog(m,n) factor in the O notation. This
implies O(1/k?)-fraction clustering error.

8. We show that unlike standard clustering, the dependence on « is unavoidable with corruptions even for
k =1 (mean estimation).
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See Theorem 31 and Theorem 33 for formal statements that also handle more general
cluster sizes and mixing weights. Finally, as in Section 2.1.2 we can also prove that there is
an algorithm (though computationally inefficient) that can cluster well-clustered instances
up to the claimed error above, without the need for certification. Whether this can be
achieved in polynomial time is an open question.

Our analysis proceeds in three stages: a) an initialization stage, b) a center improvement
stage, and c¢) analyzing the robust Lloyd’s updates. Each stage poses unique challenges
arising from working with A where each data point is potentially corrupted. The standard
way to initialize Lloyd’s algorithm via PCA? can be arbitrarily bad when every data point
is corrupted. Using our algorithm for spectral norm error from Section 2.1.2 we instead
project the data onto a robust k-dimensional subspace II for A with small error, or certify
that the dataset has been poisoned. This then lets us compute initial centers that are
O(ako)-close to the true means.

In the second stage we improve the initial center estimates by a vk factor. Our main
technical contribution here is to establish a stronger version of the statements that appear
in Kumar and Kannan (2010); Awasthi and Sheffet (2012) (see Lemma 35). This lemma
simultaneously helps us argue about the clustering error, and also the variance of each
current cluster around its mean, a quantity crucial to bound in order to analyze the iterative
updates later. The first two stages together help us establish the guarantee for general well-
clustered instances.

To establish the stronger guarantee for mixtures of Gaussians we first analyze the “ideal”
iterative updates, as if we had access to the uncorrupted data. This largely follows the
analysis in Kumar and Kannan (2010) and helps us argue that if the current center estimates
are Ban/ko close to the corresponding means (where 8 < 1), then in the next step the
ideal updates give estimates that are %a\/ﬁa close. A key technical step is to show that
when performing ideal updates, the variance of the formed clusters around their means
is bounded even though the clusters themselves are impure! Using the bounded variance
property, we next analyze the actual updates and use a specialized robust mean estimation
procedure (Lemma 30) to get an estimate that is within O(ao) + ga\/ﬁa of the true mean
. Hence, the updates will keep improving until the unavoidable error of O(aa).

Guarantees for mean estimation. For purpose of recovering the means we will crucially
rely on a subroutine to robustly estimate the mean of a cluster. We sketch below this
procedure and state the associated guarantee.

Lemma 30 Let A be an n x m matrix representing m data points in n dimensions and let
i be a vector such that ||[MEAN(A) — u|l2 < n. Let C be the n x m matriz with each column
being pu. Let TI* = pup' /||p||? be the one dimensional subspace denoting the projection onto
p and assume that ||[TT*|| ;2 < K, for some q > 2. Let A be the given input such that for
every column j € [m] we have ||A; — fleq < 4. Furthermore, let 0> > 0 be a given upper
bound on the variance of the data around p, i.e., ||[A — C|| < oy/m. Then the algorithm
from Figure 7 when run on A, runs in polynomial time, and either certifies that the data
has been poisoned, i.e., |A — A|| = Q(o\/m), or outputs an estimate fi of the true mean u

9. This initialization is needed for theoretical bounds. In practice, the initial centers are chosen as random
data points.
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RobustMean(4, «, 0?) . )
Input: The corrupted data matrix A € R™*™ with columns A; for i € [m], and the upper
bound & on the robustness of the subspace ||II*||4—2.

1. Run the algorithm from Figure 6 with 7 = 20y/m,r =1, and k.

2. If the algorithm outputs BAD INPUT then terminate and certify that the data has
been poisoned. Otherwise let IT be the 1-dimensional subspace output by the algo-
rithm. Return 4 = MEAN(ITA).

Figure 7: Robust Mean Estimation.

such that

. KO
I = pllz < 4+ Oeg) (1 + =) max (o, /ol )

where cq s a constant that depends on q. In particular, the above implies a relative error

guarantee of
|4 — pll2 gn—i—O(cq)(l—l-i(s)maX( g , g )
il o ™V Nl

We provide the proof of the above lemma in Appendix H.4. In the appendix we also provide a
matching lower bound stating that in general the above bound on estimation error cannot be
improved. See also subsequent work (Awasthi et al., 2020a) for other algorithms for robust
mean estimation, without the need for certification. However, the associated guarantees in
Awasthi et al. (2020a) are incomparable and typically have a multiplicative dependence on
7 which is not desirable for the clustering application. In the above lemma we make use of
the fact that the data has a small projection onto II to get a stronger additive guarantee,
or certify that the data has been poisoned.

Guarantees for k-means clustering. From the above discussion, in the context of
clustering, even if one is given the original optimal clustering of the given perturbed dataset,
we must incur a loss of Q(o - max(1,/||ux||/o)) in simply estimating the true mean p of
a cluster. This suggests a separation condition of the type ~ aovk, where o depends on
(14 #mex) and the guarantee to aim for is to estimate means upto error O(ao) error. Here
Hmax 18 the maximum ¢9 norm of the any of the £ mean vectors. In this section we will
show that a modified Lloyd’s combined with our certification procedure can indeed achieve
this guarantee or certify that the dataset has been poisoned.

More formally, we will assume that there is a set of m points in R™ with ground truth
clustering C},C5, ..., C}, and means p, = MEAN(C;) for r € [k] and fimax = max, ||,
Let A be the n x m data matrix and C be the matrix of corresponding centers. We will
assume that we have an upper bound ¢ on the maximum variance of the data points around
their mean, i.e. |4 — C||?> < o?m and define a = (1 + %5)(1 + tmax)2/3 We will enforce the
spectral stability condition studied in Kumar and Kannan (2010) on our clustering instance.
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This condition implies that for each pair of clusters C}:, C; with means p,, pts and each point
x € Cy, z is closer to pu, than to ps by a margin A, ;. Here Z is the projection of x onto
the line joining p, and pg. For a constant ¢ > 0, the c-spectral stability condition requires
that for each r # s,

Apg > caa\f(\/% \/\\/C;;*) (72)

Notice that the above also implies that every pair of means are separated i.e.,

1 = sl = cao Vi % w%).

It is worth mentioning that in the typical analysis of Lloyd’s algorithm (Kumar and Kan-
nan, 2010; Awasthi and Sheffet, 2012) the dependence on « in the separation condition is
not needed. However, as discussed before, in our noise model, some dependence on « is
unavoidable to get a meaningful clustering guarantee.

Assumptions I: Fix ¢ > 2. We will assume that we are given access to A such that
for every j € [m], ||4; — Aj||, < 6. Furthermore, define # to be the robustness, of the
subspace spanned by the means 1, ..., ;. Formally, let Il be the projection matrix for
the orthogonal projection onto the space of the means. Then  is such that [[II¢|g—2 < &.
Under Assumptions I, we prove the following theorem that applies to any stable dataset as
defined in (72).

Theorem 31 Fiz q > 2, and let c; be a constant that depends on q. Let A be a dataset
that satisfies c-spectral stability for ¢ > 200cq. Under Assumptions I, there is a Lloyd’s
style algorithm that takes A as input, runs in polynomial time, and either certzﬁes that the
dataset is poisoned, i.e, |A — A| = Q(oy/m), or outputs a clustering Cy,Cs,...,Cy and
means (i1, f2, - . ., i such that

k Qm
7; |CTAC )| < O(kach)
ag+\/m
litr = finrl < cga- 2
O = 1cr

for an appropriately chosen bijection 7 : [k] — [k].

While the above theorem works for any data set that satisfies spectral stability, notice that
it leads to a sub optimal mean estimation error of O(ao+\/m/+/|C}|) for each cluster r. For
example, when the clusters are balanced, this will lead to a guarantee of O(«ao) Vk. Next,
we show that for data sets that additionally satisfy Gaussian type concentration, we can
indeed get O(ao) estimation error even when each data point is corrupted.

Assumptions II: Let A be a given dataset with optimal clustering C7,C3, ..., C;. We will
assume that we are given A that satisfies Assumptions I. Furthermore, we will assume that
|C#|| > n? for each r € [k] and that for any subset S C C} of points such that |S| > nlogn,
we have that || Ag — Cs|| < 0+/|S| - poly log(m,n). Here Ag, Cg are the matrices A and C
restricted to the columns of the points in S. Additionally, we require a pointwise guarantee
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that for each r € [k], and A; € CF, ||A; — pr||* < 202n - polylog(m,n). It is easy to see
that m > poly(m, 1/wpnin) samples generated from a mixture of Gaussians with maximum
variance o2 and minimum mixture weight wy,;, will, with high probability, satisfy the above
assumptions. Under Assumptions II, we prove the following theorem that applies to any
stable dataset as defined in (72).

Theorem 32 Fiz q > 2, and let c; be a constant that depends on q. Let A be a dataset
that satisfies c-spectral stability for ¢ > 200c,. Under Assumptions II, there is a Lloyd’s
style algorithm that takes A as input, runs in polynomial time, and either certzﬁes that the
dataset is poisoned, i.e, |A — A| = Q(oy/m), or outputs a clustering Cy,Cs,...,Cy and
means [, fha, . . ., i such that

b cam
rz:; |C:AC )= O(k‘2a202)

lir = fir( | < O(a0r).

for an appropriately chosen bijection 7 : [k] — [k], where we hide a polylogarithmic (in
n,m) factor in the O notation.

As a corollary we get the following statement about robustly clustering a mixture of Gaus-
sians.

Theorem 33 Fiz g > 2, and let ¢ be a constant that depends on q. Define M to be a
distribution that is a mizture of k Gaussians, i.e., M := Zle wrN (-, 3). Furthermore,
let £, = 021 and define Wiy = min, w, and fimax = max; ||p ]|, o = (14 £2)(1 + Lmex)2/3,
Let A be a set poly(n,1/wmin) samples generated i.i.d. from the mizture. If the mixture if
well separated, i.e, ||, — ps|| > caoVk - poly log(n/Wmin)/\/Wmin for ¢ > 200cy, and the
means span a k robust subspace, then given access to A such that |A; — Aj|l, < 3, there
is a Lloyd’s style algorithm that, runs in polynomial time, and either certzﬁes that the data
is poisoned, i.e., |A — A| > Q(oy/m), or outputs a clustering Cy,Cs,...,C) and means
1y 2,y . ooyl such that
k A c2m
I V)

r=1

||/LT lu’7T(7‘)|| < (O‘U)'
for an appropriately chosen bijection 7 : [k] — [k].

Computing Good Initial Centers. The first step in establishing the above theorems is
to compute centers/means that are close to the true ones. A common approach for this step
is to use PCA to project the data onto the top-k subspace of the input data matrix, and run
any constant factor approximation algorithm for k-means clustering (Kumar and Kannan,
2010). However this can be arbitrarily bad if the data is corrupted as in our model. We
instead show that by projecting the data onto a robust subspace as output by our guarantee
from Theorem 25 and then using a k-means approximation algorithm, we do indeed recover
good centers. Our initialization algorithm is shown in Figure 8. We next provide proofs for
our claims.
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Input: The corrupted data matrix A € R™*™ with columns A; for i € [m], upper bound
Kk on the robustness of the subspace ||[Il¢|/;—2, upper bound ¢? on the data variance

IA = C|?/m.
1. Run the algorithm from Figure 6 with 7 = 20+v/m,r = k, and k.

2. If the algorithm outputs BAD INPUT then certify that the data has been poisoned
and terminate.

3. If the algorithm outputs a projection matrix II then project A onto II. Denote
A =1IIA as the projected matrix.

4. Run a 10-approximation algorithm for k-means clustering on fl, and obtain k centers
vi,V2,...,Vg.

5. Output vq,19,..., V.

Figure 8: Computing initial center estimates.

Theorem 34 Assume that the clustering instance A is c-stable for ¢ > 200c,. If Assump-
tions I hold, then the algorithm in Figure 8 runs in polynomial time, and either certifies
that the data has been poisoned, i.e., ||A — A|| > 20+/m, or the algorithm outputs centers
vi,Va,. ..,V such that for all v € [k],

[ per — VW(T’)H < Socqa\/%o-\/cﬁ*'

|CF|

for an appropriately chosen bijection .

Proof The proof will follow the general outline of Lemma 5.1 of Kumar and Kannan
(2010), except that we need to argue following two stronger conditions. Firstly, we need to
establish that A projected on to II has cost comparable to that of ko?m. This will ensure
that the approximation algorithm will output a clustering of low cost. Secondly, we also
simultaneously need to establish that A when projected on to IT has low cost clustering when
true means C' are used to cluster it. Together with the fact that A and A are pointwise
close in the projected space, we can then claim that missing out on a good approximation
for even a single cluster center of C* will incur a cost of Q(ko?m), thereby contradicting
the approximation guarantee of the k-means algorithm used in step 2.

Establishing that ITA has low cost with respect to C' boils down to showing that IT is
good for A given that it is good for A, a perturbation of A. This statement, established
in Theorem 25 is the key in analyzing the initialization phase, and is a generalization of
Lemma 56 to higher dimensional subspaces. Let’s first establish that A projected on to IT
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has a low cost clustering. We have
|IA — IIC|| ¢ < V3k|IIA — IIC| (since both IIA and IIC' have rank at most k)
< VBR(IT(A - A)] + (A - O] )
< V3k(cgdry/m + [|[A = C|)
< 2v3cqVkovm < cq(1+ %5)@0\/%. (73)
Here the third inequality follows from the fact that for any nxm matrix M, [|M|| < lypaxy/m,

where £,x is the maximum ¢5 norm of a column of M. Furthermore, from the robustness
of IT we know that for any j € [m],

ITI(A; — Al < cqrd.
Next, let’s establish that ||A — IIA|| is small. By triangle inequality we know that

JA - TeAl < A~ C|l +]|C — ToA]
= A~ C| + [Te(C - A)]
<24 - C| < 20m.

Furthermore, from the guarantee of Theorem 25 we have that for any n € (0,1),
HA—EMsou+;x%vm+wA—mﬂw+m¢m)+wmmu
<00+ ?17) (40 + 58) v + /2] Al
Setting n = (50+/m/||A||)?/3 we get that

o JAl 273
A 1A < 1+ o1+ (JALYY o
4= 1A < dey (14 2o (14 (J50) ) vim
< dcgaoy/m. (74)
The last inequality above follows from the fact that

[Al < [[A=Cl+ ]
< 0m+ﬂmaxm-

Next notice that
|TIA — C||p < V3E||IIA — C|| (since both ITA and C have rank at most k)
< VBE(T(A - 4)]| + 1A - 4] + |4 - )

< \/?E(cqém\/ﬁ + begaoy/m + o/m)
< 6V3ke,a0/m. (75)
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Now we are ready to establish the claim of the theorem. From (73) we get that the centers

vi,Va, ...,V will have k-means cost at most 120k(1 + %5)20202m on A. Furthermore,
suppose that there exists a center p, such that every vy is far from it. For any point A;, let
V(i) be the center in the set {v1,v9,...,vx} that is closest to the projection of A; on to II.

Then we have that

kG = i
120k:c§(1 + 7)202771 > Z |T1A; — Vc(i)||2 = Z ITLA; — por + pr — Vc(i)||2
A;eC, A;eCy

1 -
> S |Colllpr = v I* = > A = g
A;eCr

1 _
2 S| llper — Ve ||? = IIA = C|
> 450ka’cio*m — |TIA — C||%

> 120]{03042021%. (76)
Noticing that a > (1 + %‘S), we get a contradiction to the fact that p, is far from every vs.
This combined with the fact that the clustering instance is c-stable for ¢ > 200¢, implies
that one can find a bijection 7 : [k] — [k] between {u1,...,ux} and {v1,..., v} such that
each f; is close to a unique vy ;. |

D.2. Analyzing Lloyd’s Updates

Next we will use the obtained initial centers and run the robust Lloyd’s algorithm starting
with these centers as shown in Figure 9. Our goal in this section is to analyze the updates
and establish Theorem 31 and Theorem 32.

Overview of Analysis and Challenges. Our analysis of the modified Lloyd’s updates
proceeds in two stages: a) a center improvement step, and b) analyzing robust Lloyd’s
updates. In (a), we first improve the initial center estimates obtained form the initialization

phase to get estimates Vfl), e ,V,El) such that each ur(,l) is ~ A, /2-close to the corresponding

fr, where A, = 40c,a0/m/+/|C;]. In other words, we get a factor vk improvement over
the initial estimates. This is sketched in step 3 of the algorithm in Figure 9. First, we
motivate the need for this intermediate step, since it is not necessary in the analysis of
Lloyd’s algorithm for uncorrupted data.

Just as in standard analysis of Lloyd’s updates, we would like to argue that if we
have non-trivial estimates of the centers, as obtained from the initialization stage, forming
clusters using these points and moving to the means of these clusters will improve the center
estimates. To argue this we will crucially rely on the fact that when projected onto 1I, A
and A are close pointwise. Hence, we can come up with a charging argument to assign
mistakes made by the current centers on the uncorrupted points to the mistakes made by
the centers on the corrupted points. We can then bound the number of such mistakes by
observing that on 1A, the true means have a small k-means cost. This forces us to work
in the projected space II, but as a result inherently limits the accuracy to which we can
obtain center estimates. Notice that if the initialization algorithm outputs II, then II is
guaranteed to be good overall for A, in the sense that ||A — IIA|| = O(o/m). However, II
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Input: The corrupted data matrix A € R"*™ with columns A; for i € [m], upper bound

Kk on the robustness of the subspace ||[Il¢|/;—2, upper bound ¢? on the data variance
IA = C?/m.
1. Let II be the robust & dimensional projection matrix as computed by the initializa-
tion algorithm in Figure 8.
2. Define initial center estimates V%O),I/éo), e ,1/,&0) to be the centers output by the
algorithm in Figure 8.

3. For each r € [k], define S, = {II4; : ||[lIA; — v,| < M?’_VS“?\V/S # r}. Update
Y = MEAN(S,).
4. Fort=2,3,... do:
(a) For each r € [k], compute S, = {A; : Hﬂfli—yﬁt—l)” < \\Hﬁi—ygt_l)]],VS #r}.

(b) For each r € [k], update i = ROBUSTMEAN(S;, k,40) //If ROBUSTMEAN
outputs BAD INPUT then certify that data is poisoned.

Figure 9: TIterative Updates of the Lloyd’s Algorithm.

has no per cluster guarantee, and in general || A, — ITA,|| when restricted to a cluster C
could be as large as oy/m//|C;|. Hence, to achieve our goal of estimating the centers upto
O(aa) accuracy, we also need to work outside of the projection II at the same time. Due
to these conflicting demands, notice that the Lloyd’s updates we analyze in step 4 of the
algorithm in Figure 9 perform clustering using current centers in the projected space, but
perform robust mean estimation on the original input data.

Furthermore, from our guarantee on robust mean estimation in Theorem 30, we know
that in the ROBUSTMEAN step of the algorithm the centers will be accurate upto ~ aog,
where og is the standard deviation of the uncorrupted data points in S, around the un-
corrupted mean of S,. As a result we need a stronger argument that not only shows that
we have low clustering error given the current estimates, but also helps us argue about the
variance of the formed clusters S, at each step. Such an argument (Lemma 35) is a main
technical contribution in the analysis.

Unfortunately, the argument (Lemma 35) only kicks in when we have much better center
estimates than the one provided by the initialization stage, thereby requiring an additional
center improvement stage. To argue about the center improvement stage, we use a trick
from Awasthi and Sheffet (2012) and form sets S, that correspond to points in ITA that are
significantly close to one of the centers Vﬁo) than any other center Vgo). Notice that these
sets do not form a partitioning of the data. We then argue that any mistake made by this
assignment must have also been made if one had used the true centers 1, ..., ux, to cluster
IIA. Using the fact that the true means have small k-means cost on IIA we can bound the
number of such mistakes and hence get sets S, that have low error, thereby helping us show
that the means of these sets will be much closer to the true centers. This is established in
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Theorem 36. The above arguments help us establish Theorem 31. We next state the key
technical lemma for our analysis.

Lemma 35 Let II be the robust subspace computed in step (1) of the algorithm in Figure 9.
For each cluster C in the optimal clustering of A, define A, = 40cqaov/m/+/|C|. Suppose
we have center estimates {vi,va,... vk} such that ||v, — pr| < BA,, ¥r € [k], and some
B < 1. When using v;s to cluster IIA, define T, s to be the set of points that are misclassified,
w.r.t. the induced clustering on A, i.e., Ts_yy = {i : A; € CF and ||TTA; — v, < ||TLA; — v, }.
There exists a constant c; > 0 depending on q such that if the clustering instance is c-stable

2.2
for ¢ > 200c, then we have that |Ts—,,| < %

Proof Fix s # r and let W be the subspace spanned by {u, ps, v, vs} with Iy being
the projection matrix for the orthogonal projection on to the subspace. Define A4; to be the
projection of A; onto the line joining p, and us. Since W contains ji., ps, this is also the
same as the projection of Iy A; on to the line joining p, and p,. Similarly, define 4; to
be the projection of A; on to the line joining e and pg, and again this is the same as the
projection of Iy A; on to the line joining i, and ps. We will crucially make use of the fact
that

Hlez - MSH - H/L - /~L7’|| > Ans - 0(55) > AT,S/Z (77)

The above holds since from c-stability we know that ||A; — us|| — ||4; — el > Ays. Fur-
thermore, since ||A; — A;||, < & and each of ju,, us is s-sparse in £, norm, we have that
|A; — As]| < O(kd). Here ¢* is such that 1/q + 1/¢* = 1. Next, let v = Iy A;. Then we
have that

lo — psl® = llo = pe|® = |1 As = 1l = |1 A; = pr|®

A — =
> M (using the fact that A; lies on the line joining u, and ps).

- 4
(78)
By triangle inequality we also have that,
lv = sll® = Il = pell* < (o = vs]| + BAS)? = (Il — vrl| = BA)?
< (lv = vl + BA)? = (o = ve|| = BA)
Sﬂ( +AT)HU_VT‘” (79)

Here the first inequality uses the fact that v, v, are close to ., us respectively and the
second inequality uses the fact that A; is closer to vs than to v, the same holds true
for A; projected on to any subspace that contains v, and vs. From (78) and (79), and

substituting the bound for A, s we get that |[v — 1| > %ﬁg’“”, which in turn implies
q
that ||v — .|| > cf” “éH . Hence we get that
2 2
~ c k|l pr —
S i — g > [Ty | e~ sl (30)
) 64c2p
1€ s—r q
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Combining with the fact that ||u, — v|| < BA, we get that

ke — ps|®

A 2
Z ||HWA7, - Vr” 2 |T3—>7” 128C362

1€Ts—r

(81)

On the other hand we also have that

Z |y A; — v || < E 2w A; — g |? + 2|Tssr ||| ptr — v |)? (by triangle inequality)
1€Ts—r 1€Ts—5r

- Z 2”HWAi - HWMTHZ + 2’TS—>T"HUT - VTH2 (Since p lies in HW)

’L’eTs—W‘
< 3 2l A; — |2 + 2075, 5202
ieTg—W‘
< Y ATw A - T |* + ) 4w (T — ) [|* + 2/ Tonr | B°A7
1€Ts—r 1€Ts 5
< Z 4HHWA7, - HWHM'FHz + 4’TS—>T‘HH/-'L'I’ - ,LL'rH2 + 2’Ts—>7"/82A2
ieTs—»’r‘
(82)
where the last but one line also uses triangle inequality. Next notice that
Mpr — pr| = ‘C* H > (A - 4| = |C*| 117 (1A — A)|
A ECT‘
1 deqaoy/m 2
—— |04 - 4] < = \*r = gAT.
C VICE]
Substituting into (82) we get that
Do IwA — v < > 4w Ay — Ty Tl |* + ITHTI( 0 12872
1€T5—r 1€Ts—r
= Y 4Oy I IA; — Ty I I, | + \TS_,T|( 6, 262)A2
iETS*}T
= > 4wl (T4, - Tig,)|* + ITHTI( oy 26%)A7
1€Ts—r
< 4|y I (TA - TIO)||% + |THT1( L 23%) A2
< 16||TTA — TIC||* + yTH\( 0 2[32)A2
since Iy 11" (ITA — IIC) has rank at most 4. Hence
i 2 2 KO\o o 16 2y A2
> IMwA; - v|* < 32¢2(1 + —)otm o+ Tl (5 +26%) A7 (83)

’ieTs—)T
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The last inequality uses the fact that
|ITA — TIC|| < ||TI(A — A)|| + ||TA — TIC|| < kdy/m + ||A — C|| < kéy/m + o/m.
Combining, (81) and (83) we get the desired claim. [ |

In order to apply Lemma 35 iteratively we need initial centers such that ||, —v,|| < BA,,
for g < i. However, notice that the the initialization procedure of Figure 8 only guarantees
8 < SOcq\/E. We next argue that step (3) of the algorithm in Figure 9 provides center
estimates that are much closer to the true means, thereby allowing us to analyze the iterative
Lloyd’s updates in step (4) of the algorithm.

Theorem 36 If the clustering instance A is c-stable as defined in Theorem 34, then given
A as input, steps 1-3 of the Algorithm in Figure 9, run in polynomial time, and output
centers Vfl), ey V]E,l) such that

vre k], e — il < BA,

for an appropriately chosen bijection o. Here A, = 40c,aoy/m/+/|C¥| and § < 1.

Proof The proof strategy closely follows the one in Awasthi and Sheffet (2012) and consists
of three main steps. We first define clusters T, for r € [k] such that T, consists of points
IIA; for A; € C*. In other words, {T}, T, ..., Ty} is the clustering induced on the data set
ITA by the optimal clustering {C},C%, . .., Cr}. We first argue that S, is pure w.r.t. T} i.e.,
at most O(C%|C;‘|) points of 7, do not belong to S, and in total at most O(4|C;|) points
from Ty, for s # r, end up belonging to S,. Next use the fact that any points that belongs
to |S, N Ts| for s # r, will also be misclassified when using centers Iy, ..., IIjy instead of
centers yfo), Cey y,io). Here fi, = MEAN(T,). Now each projected center IIf, is much closer
to the corresponding true center w,. To see this notice that

- 1 ~
I — ) = gl >0 (A= )
" AeT.
1 ~ 1
< ,C*,H > (H(Ai—Az‘))\|+|C*|H > (@A - A
" nAer, " NAer,
1 1
< e+ ——|[1T(ITA — A)|| < cyhd + ——||TTA — A
q |C:|” ( M <eq \/@H |
< cqnd + deqoo/m < Ay
o] 9

With the above idea, arguing that |75 N S,| is small and T, has large overlap with S,
follows verbatim from Lemmas 4.2 and 4.3 of Awasthi and Sheffet (2012) by substituting
[14; instead of A; in the proofs. In the final step we use the following standard fact stated
in Lemma 37 below and adapted from its original version in Awasthi and Sheffet (2012);
Kumar and Kannan (2010). From the guarantees on |Ts N S,| and |7, N S,| we can set
Pout = % and p;, = ¢/10k to get that

IMEAN(S,) — MEAN(C,)|| < 2 \U/T/c£|
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Furthermore we also have that

A 1
HMEAN(CT)—urH:ﬁH > (14 - A
Tl TIAeCH
1
—[[17(I1A - 4)|| <
\C \ VICH]

4cqa0f
< <

Combining the above two we get that
i — V) < O(BA,),

for g < 1. |

Lemma 37 (Fact 1.3 from Awasthi and Sheffet (2012)) Fiz a target cluster C and
let C.. be the projection of points in C) onto1l. Let S, be a set ofpomts created by removing
Pout|C*| points from C, and adding pi|C*| points from each cluster Cy for s # r, s.t. every
added point x satisfies ||z — Mps|| > 2|z — pe||. If pour < 1/4 and pi = Zs# pin < 1/4
then we have that

IMEAN(S,) — MEAN(C,)|| < 2( Pout k[ Pin

Gt e (54)

Proof [Proof of Theorem 31| The theorem follows from using steps 1-3 of the algorithm in
Figure 9 and from the guarantees in Lemma 35 and Lemma 36. |

Achieving O(ac) Guarantee for Mean Estimation.

Proof [Proof of Theorem 32| Notice that Theorem 36 gives us centers vy,..., v that are
BA, close to the corresponding true centers p1,...,us. We start with these centers and
perform Lloyd’s updates as shown in step 4 of the algorithm in Figure 9. Next suppose
that at iteration ¢t we have centers I/Y), . ,V,Ef) such that Hy,gt) — |l < BA, for r € [k].

We will argue that using 1/( ) ...,Vlg,t) to form clusters Si, 59,...,.5, and computing new
means by calling the ROBUSTMEAN procedure on the sets .S, either leads to a certification

that the dataset is poisoned or leads to new centers estimates V]EtJrl), el (Hl) that satisfy

||l/7€t+1) — ] < (gAr + O(aa)). Hence the estimates will improve until the unavoidable
error of O(aa). We will prove the claim in two steps. First we analyze the “ideal” updates.
For each S, define S} to the set S, with corrupted points replace by the original points, i.e.,

S* ={A;: A; € S,}. We next show that the mean of S* is close to j, upto gAT error. As
in Lemma 35 define 7,_,, = S} N C; and for s # r, define T,_,s = S N C%. Then we have
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by triangle inequality that,

. T,
INEAN(S?) il = | T (MEAN(T ) — g +§j',HS’<MEAN<THs> )
T T’
T .
< 57 MEAN(T, ;) — \S* MEAN(T}—5) — pr
r
’TT—>T‘| 7’—>S’
< W MEAN(T,—) — \S* MEAN(T—5) — ps|| (85)
:
T,
+ § : | ’;_*)S| Hr — Hs (86)

Next we notice that

:IC;«*\THTIH S (A m)

T —r| v
< VIC\ T
< ovm
T

_VIGT= 1T

|Tr—r|

HMEAN(TT_W) — Ly

The first inequality above follows from the fact that

| X @

A €Ci\Tr—r

= ||15(A — O)| (15 is the indicator vector for points in CF \ Ty_,,)

< oym
VI T

Next, by Assumptions II regarding large subsets of optimal clusters we have that for sets
T,—,s either |T, 4| < nlogn or

1
T~ s]

Z (A’L - ,us)

AiETr—w

HMEAN(TT%) — ls

opoly log(m,n).

1
< -
VT

Furthermore, we also have the pointwise guarantee that for every A; € T,_,s, ||A; — ps|| <
20+/n - poly log(m,n). Hence we get that

|Tr—s]
|57 ]

(\/ ‘ T—)s‘

| S

T

ly 1
| opoly log(m,n), opoy og(m,n)>'
n

MEAN(T} ) —
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Substituting back into (85) we get that

VICH = |Trs| VIT T
IMEAN(S}) — || < IS* vl \F—FZ \STTS opolylog(m,n) Z ’f;s| L — fs|| + 0
(VBT \/rs ACH
- |57 S|
+ Z |’ST_>5 opolylog(m,n) Z | ’;,_*T‘ e — Ps|| + 0
S#ET
OIS [Trssl o1\ /3 \THsr + [T
5] i |s*|
lyl T
_I_Zapoyog(rrg*n VTS| Z! g:s! e — | + 0
S#r | |
VT v/ |T.
<4 \/>Z || r|—>s +4 \/72 ; 5|—>r
S#T r S#T r
Z| r—>s’
[sel IH
Noticing that |S}| > |C|/2 we get that
. VT, v/ |T. 2|7,
HMEAN(S ) ,UTH < 40_\/>Z ‘| ’r‘—\)s +4 \/*Z ”CS*—H“ Z ‘|C7"*—|>S| T s
S#Er r s#T r
Substituting the bound on T)._,s from Lemma 35 we get that
* 8cio/m Bo/m 2|Tr—s]
IMBAN(S?) — o] < 2ol — | + o
o || Zcfnur— Sl Z\C Hr

where ¢; is an absolute constant depending on g. Substituting the lower bound on ||, — ps||
and using the definition of A, we get that

. ﬁA 2|T, s
M) el < 5373 o - Y ,C:' o — s + 0
55, ofTh
< — .
=7 +Z |C;f| Wy — Ws|| +0

S#ET
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To bound the second term, we again substitute the guarantee on |T;_,| from Lemma 35
and get that

2 2
SZ 2c168%0°m

Hr — s

Z 2|Tr%s’
579,, |C7“

2 IOl — o]
_ 3~ 20 oymmin(/ICE, VICED
- pr ac2kVE|Cx|

BQAT 1 BQAT
< E < .
Q 2kvVk T ac’Vk

S#T
Combining the above we get that

IMEAN(S]) — ol < 227 (87)
Next we analyze the true updates that correspond to running the ROBUSTMEAN procedure
on the set S,.. Notice from the guarantee of Theorem 30, when run on S,, that either
the algorithm will certify that the dataset if poisoned or will output an approximation to
MEAN(S;) upto a factor of O(aogx) where og: is the variance of the set S around p,.. We
next bound this value.

1 2
% = e, e 2 (4 )

AiES:f
E Y () Y e o 3 (i) 0) 69)
< max — ( i — ‘U> + max ( TR 'U)
wlol=1 |8y, S AT Svlbl=1 Sy, G T

Since |Ty—r| > %\Cff | > n?, from Assumptions IT regarding large subsets of clusters we can
bound the first term by

> (A —p)-v)” < O(opolylog(m. ). (59)

max
villell=1 S| o=
7 T

To bound the second term we have by triangle inequality that

1 ( i ! 2 |T7’%5| 2
max o (A=) v) < max (A= 1) - 0) "+ =2y — ol
vilol=1 || AZEZT;% o viol=1 || AZ;T;% e Bl

Here again the first term is either small due to |T,_ 4| being small or is bounded due to
Assumptions IT about variance of large subsets. In particular, we have that

2 20%n1 T,
((AZ- — ls) - v) < max (L*ogn’ 20%poly log(m,n)| r_*>8|>. (90)
Py 53] 52

max
villol|=1 |5}
Finally, using the bound on |7,_,s| from Lemma 35 we have that

|Tr—s|
|57

23272
aZck

i — ps)) <
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Combining (89), (90), and (91) we get that

1 2
O'gv*' = max Tonl Z ((AZ_NT)’U>
Towll=1 [SE A
ERAY:

5. -

< O(a*poly log(m,n)) + 2
a?c

Hence, at each step the ROBUSTMEAN procedure will either certify that the dataset is
poisoned or will find estimates V£t+1), ey y,gtﬂ) such that

Wﬁ”—Mmmﬁmgém@+ﬁm.

Combining with (87) we get that at iteration ¢ + 1

A+ — | < Oao) + P57

r

Hence, the updates will keep improving until the unavoidable error of O(aa). |

Information Theoretic Upper Bounds (Computationally Inefficient Algorithms).
Finally, we would like to mention that using Proposition 27, via an (inefficient) algorithm
we can get the same guarantees as in this section on clustering without the need for certifi-
cation. In other words, if exponential time is allowed, then there exist algorithms for robust
mean estimation and robust clustering that, given any d-corrupted instance of the problem,
will always output solutions achieving the error guarantees in Theorem 30, Theorem 31,
Theorem 32 and Theorem 33 from this section. In order to achieve this, we simply use
the (inefficient) robust mean estimation procedure from the guarantee of Theorem 58 when
performing the modified Lloyd’s updates and we use the guarantee of Proposition 27 to
always compute good initial centers without the need for certification.

Appendix E. Learning Intersection of Halfspaces

We next demonstrate the applicability of our primitives in supervised learning as well.
We will consider the problem of learning an intersection of k halfspaces over the Gaussian
distribution on R™ in the presence of adversarial perturbations to the samples, both at
testing-time and training-time. We will represent an intersection of halfspaces by a Boolean
function % : R* — {0,1} denoted by h(z) = [T, 1(w; x > 6;), where Vi € [k], |Jwills = 1
and 6; € R and where 1(-) denotes the indicator function. Let Hj represent the hypothesis
class of all intersections of at most k halfspaces. We will also refer to ‘1’ as the positive
label, and ‘0’ as the negative label.

In the uncorrupted setting, the training points x1,...,z, € R™ are drawn i.i.d. from
a Gaussian distribution, and their corresponding labels y; = h*(x;) for some h* € Hy, (this
corresponds to the realizable setting). The special case of k = 1 corresponds to standard
linear classification. A series of well-known results (Vempala, 2010b,a; Klivans et al., 2008)
starting with Vempala (2010b) shows that when we are given access to uncorrupted training
samples in R™ drawn from a Gaussian distribution , one can PAC-learn an intersection of
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half-spaces in time f(k)-poly(n), where f(k) has a super-polynomial dependence on k. Our
algorithmic techniques will be used to learn an intersection of k = O(1) half-spaces even
when there are adversarial perturbations both at training-time and test-time. For simplicity
we will focus on the case when the uncorrupted points are drawn from a spherical Gaussian
N(0,0%I). We believe that the same ideas should also extend to general Gaussians, and
other convex geometrical concepts as in Vempala (2010a).

Consider a classifier h € Hs that is adversarially robust i.e., suppose h(z) = 1(w] z >
0) - 1(wg = > 0) is robust to adversarial §-perturbations at test-time measured in ¢, norm,
and let b := |Jwi — wal]2 € (0,2). It is easy to show that max{||wi| ¢+, |wa2ll@} < O(0)/0,
otherwise for most positive examples there exists d-adversarial perturbation that h mis-
classifies w.h.p! Moreover for such an adversarially robust classifier, we can assume that
the subspace IT* spanned by wi,ws satisfies £ = |[II*||;2 < O(c /(b)) (see Claim 45).
For general k, if the labels are generated by an intersection of k-halfspaces represented by
h*(x) == Hle 1(w; z > 6;) with ||w;||2 = 1 Vi € [k], we assume that the projection matrix
IT* onto the span of the normals wy, ..., wy satisfies ||II*||;—2 < k.

We consider the following natural model, where each of the samples can be corrupted
adversarially up to 4 measured in ¢, norm for ¢ > 2:

e Samples 1,22, . .., Ty, € R? are drawn i.i.d from N(0,02I). The labels y; = h*(x1), ...
h* ().

e For each j € [m], an adversary corrupts (corruptions could be dependent) the points
to produce Z1,...,Z, € R" such that Vj € [m], ||Z; — xj|lq < 6.

e The input consists of {(Z1,v1), (Z2,¥2)s- - (Tm, Ym)}-

The goal is to find an intersection of k half-spaces that achieves low-error and is ad-
versarially robust to d-perturbations at test-time (this is sometimes referred to as robust
accuracy). Now we state our main result in this section.

Theorem 38 Suppose k > 0,q > 2,8 > 0, and k < n'/2. Let h* = Hle 1(w,z > 6;)
with the normal vectors wi, ..., w; spanning a (k,q)-robust subspace. For convenience, let
e = O(k4/3 (kOVE o + 5252/02)1/3) denote the desired learning error rate. Suppose we
are given m = poly(n, 1/e) samples {(Zi,y;) : i € [m]|} where T; is a §-perturbation (under
, morm) of x; ~ N(0,0%I) and y; = h*(x;). There exists an algorithm that runs in time
poly(n) - (g)O(kQ) to output h = Hle 1((w}) Tz > 6') such that with probability 0.9,

P . h(z) = h*(z)] > 1—¢, and xNN}(%,OJI)[VZ s.t. ||z]lq <9, h(z+z) = h*(z)] > 1—2¢.

The above algorithm runs in polynomial time and returns an intersection of k£ half-spaces
that achieves error ¢ = o(1) as long as k6 = o(c). For example, when x ~ n%! this allows
us to tolerate § = 1/k = o(n~"1) as opposed to a tolerance of § = o(n~/2) for the naive
approach. Recall from the earlier discussion, that such a condition is necessary qualitatively:
even a single half-space 1(w{ x > 0) is not robust when |lw1||;+ = & and k6 > 0.
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Notation. We will use the following notation specific to this problem. Let X € R™*™

be the uncorrupted points, and X € R™ ™ be the points obtained after adversarial pertur-
bations. In particular, let m denote the number of positive labels and X, f(+ € Rmxm+
correspond to the positive examples. In what follows 1 = (1,1,...) will represent the
all-ones vector of appropriate dimension. Let B = X+ — nﬁ%f(ﬂl]ﬁ be the centered input
matrix corresponding to the (corrupted) positive examples. Hence, we can construct the co-

variance matrices, uncorrupted and corrupted by My =R |(x—py)(z—p )T | h*(x) = +1],
and M, = Tr%BBT.

We will assume without loss of generality that my > (kd/o) - m. Otherwise, we can
output the trivial hypothesis 1 > 0 A (—z1 > 0) that achieves an accuracy of 1 — O(kd/0)
with high probability.

Finally, we will say that an intersection of halfspaces h is in a subspace S C R" iff h

can be represented as h(x) = Hle 1(w;'z > 6;), where wy, ..., wy € S.
Algorithm description and overview. The algorithm (Algorithm 10) follows the same
general approach as Vempala (2010a). The main idea in Vempala (2010a) is to consider the
co-variance matrix of just the positive examples X . With infinite samples, the (population)
variance of X, in all the directions orthogonal to the span of wy, ..., wy in h* is 02. On the
other hand, the variance along directions in span{wi,...,w;} is less than o2 because any
thresholding (or any convex restriction) can only make the variance smaller; quantitative
bounds on the gap are given in Lemma 39! Suppose the data is uncorrupted i.e., we are
given X, we can just find the eigenspace corresponding to the k smallest eigenvalues of
the covariance matrix corresponding to X, and learn the hypothesis in the k-dimensional
subspace.

Lemma 39 (Lemma 4.8 in Vempala (2010a)) Let g be the standard Gaussian density
function in R™ and f : R® — Ry be any logconcave function. Define the function h to the
density h(z) = f(x)g(x)/B where B = [p. f(x)g(x)dx. Then for any unit vector u € R™,

et
Var,(u' =) < o
where the support of [ along u is [ag,a1] and b = min{|ag|, |a1|}. In the particular the above

statement also holds when f corresponds to the indicator function over any convex set.

We are given a matrix X that corresponds to a d-perturbation of X (a training time
perturbation). We will use a convex-programming approach as in Section B, but to find the
robust analog of a least singular subspace for the covariance matrix corresponding to )~(+
i.e., our goal is to find an (orthogonal) projection matrix IT of rank r that is (k,q) robust
ie., |I]|g—2 < % and that minimizes ||[IB||%.

We consider the following mathematical programming relaxation for the problem.

n%;n(BBT, Y) (92)
st. tr(Y) =r (93)
0=Y <1I (94)

(95)

||YHq—>q* < K> 95
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Input: Samples X € R™ ™ with labels Yiy---,Ym € {0,1}, o, robustness parameter
k > 1, and the perturbation parameters § and q. Set 7 = k/(k + 1).

1. Split the samples into two parts of 17, T» where |T5| = poly(k, o /kd).

2. Let X be the positive examples in 77 and let m. be the number of positive exam-
ples. Set B = X — miJrXJr]l]lT.

3. If my < (kd/o)m, output the trivial hypothesis h(z) = (z1 > 0) A (—z1 > 0).

4. Else solve the convex program (92) on input B, with parameters k, ¢ to get a PSD
matrix Y.

5. Let t be the number of eigenvalues of Y that are at least 7. Let II be the orthogonal
projection given by the top min{t¢, k} and S} be this subspace.

6. We run a net argument on S] to find a hypothesis h :

(a) Project the samples in 75 onto the subspace S to get samples {(z7,y;) : j € T2}
where 7, =11 - &;.

(b) Set e = 0.01 - max {(kd/c)?, (k + 1)n} where 7 is the same parameter in
Lemma 40.

(c) Let W be an e-net of unit vectors in S] : Vv € S],Ju € W s.t. ||[v — ul2 < e.
Let T be an eo-net of thresholds in [—50 - log1/e, 50 - log1/¢].

(d) Output any h = Hle 1(w;'z > ;) with each w; € W and 6; € T satisfying

S 1(nh) =) 2 [Tl (1= €4

JET

Figure 10: Learning a robust intersection of halfspaces with training corruptions.

Note that the above program is a relaxation where for any (x,¢)-robust (orthogonal)
projection matrix II of rank r, Y = II is a feasible solution. Moreover as in Theorem 11, we
can use the Ellipsoid algorithm along with a O(1) factor separation oracle for the constraint
(95), to find in polynomial time Y such that H?Hq—w* < ¢4k? (for some absolute constant
cq > 0 and the objective value attained by Y is at most the optimum solution value of the
above program (up to arbitrarily small accuracy).

The following lemma shows that we will recover a (O(k), q)-robust projection matrix

that captures all the directions where M, takes value significantly smaller than o2.
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Lemma 40 There exists a constant ¢i > 0 such that the projection matriz I output after
step 5 of the algorithm satisfies ||II||q—2 < c1k and for any X € (0,1)

2(r+1)n

Vo eS" ! st Mv=v andv' Myv < o>(1—)), we have |[v|3 >1— 5

) 252 1 5 1
where = 2vk - =+ -+ O( % Og”+i.M)_
o o VM4 o Vo

The error 7 in Theorem 38 inherits the same 7 from the above lemma where we simplify
the last two terms to x262/0? by assuming m, > (kd/c)m and m = poly(n, k,o/kd) is
sufficiently large. We defer the proof of Lemma 40 to Section E.1 and finish the proof of
Theorem 38 in the rest of this section.

Lemma 39 implies the following claim (see the proof of Theorem 1.3 in Vempala (2010a)).

Claim 41 Let {\; :i € [n]} and {v; : i € [n]} be the eigenvalues and eigenvectors of M .
Given any v € (0,1), we set a subspace Sy := span{v;|\; < (1 —v)o?}. Then there exists
hi € Hy, in the subspace Si, that agrees with h* with probability at least 1 — O(vy - k) over
the uncorrupted samples:
P h*(z) =h >1-0(v-k).

WP @) = (@) > 1= 0y b)
We use the following claim along with Lemma 40 to show that the algorithm (up to step 5)
recovers a subspace S| very close to Si.

Claim 42 Given v < 1/2 and a subspace Sy of dimension k with projection II*, let S} be
a subspace whose projection matriz II satisfies the following property: for every unit vector
v in Sy, ||ﬁvH2 >1—~ . Then for any h € Hy, in subspace Sy, there exists another h' € H,
in subspace S (given by a natural projection onto Sy) that agrees with h with probability at

least 1 — O(k - y/~v1og %) on an uncorrupted sample.

Proof For an intersection h(x) = Hle 1(w] x > 6;) in Sy, we have T*w; = w;. With-
out loss of generality, we assume ||w;ll = 1. Let w, = Ilw; for each ¢ and h'(z) =
Hle 1((w)) "= > 6;) be the projection of h(z) into S}. So

k
P[h(x) # B ()] < ZIP’ [1(wjx > 0;) # 1((w) Tz > ai)].

Next we bound each probability. Notice that (w})'z is a random variable drawn from
o - N(0,||wl]3) and w, x is drawn from (w!) "z + o - N(0, |w;||3 — ||w!||3). Note that |jw}|]3 >

(1 —5)% and ||w;||3 = 1. So for ¢ := 60+/vlog1/y

P 1(wj:czei) #1(@;)%2@)] < P [|g—9i| <ecl|+ P |g'|2c]
g~a-N(0,[|wil|3) '

~

a-N(0,[Jwi[3—wilI3)

< O(V/vlog1/79).
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We get the last inequality by using Gaussian anticoncentration for the first term, and
standard Gaussian tail bounds for the second term: since ||w;||3 — ||w![|3 < 27 from the
guarantee of S7, the second term is bounded by O(y/v1log(1/7)). Finally note that one can
always rescale {w)} (along with the thresholds) to be unit vectors without changing A'. W

Next we use the VC dimension to bound the empirical risk error.

Claim 43 Let S| be a subspace of dimension { with projection matriz I and consider a
fized h* € Hy, in subspace S;. Thenm = O(k-l1logk/e)? random Gaussian points x1,. .., Tm
satisfy that with probability 0.99, any h, an intersection of k halfspaces in Sy, will have

[h(Ilz) = > 1(h(Ilz) = h*(IIx)) +

=1

1
z~N(0,021I) m
Proof We first bound the VC dimension of intersections of at most k halfspaces by 2k(¢ +
1)log5k. The VC dimension of halfspaces in S is £ + 1. Then the intersections have VC
dimension at most 2k(¢+1)-log(5k). So by the learnability of VC dimension (Blumer et al.,
1989), the empirical error is ¢ for any h with probability at least 0.99. |

Finally we finish the proof of Theorem 38 assuming Lemma 40 and the above claims.
Proof of Theorem 38 Set n := O(Vk - 2 “2‘252) and v := ((k + 1)n)'/3. Let S* be the
subspace spanned by wy, ..., wg; by assumption II* is its projector. Let S be the subspace
spanned by the eigenvectors of M, whose corresponding eigenvalues are at most o2(1 —7);
note that the dimension of S; is at most k and S; C S*. Let h; € Hj, be the classifier in
the subspace S; given by Claim 41 that approximates h* up to error O(k - ).

Then we apply Lemma 40 to obtain S} and II such that ||[IIv]|2 > 1 — 2(k 4 1)n/v for

any unit vector v in Sy, since for our choice of 7, it holds that n > 2k6vVk/o + k26202 +
O(fbﬁ +kd/o - %) and my > (kd/o)m. For convenience, let h] be the projection
of hy in S} from Claim 42. From the guarantees in Claim 41 and 42, we have

i) = ()] 2 1= 0(yk) = O+ /& g ) (90)

x~N(0,021)

In the rest of this proof, we will focus on learning h], or a good proxy for it, using the

second part of samples in T5. For convenience, we use my = |T3| and (@, h(xl))z €[ms] to

denote the input. Since h* and h are fixed and my > (k?log k/£)?, we have with probability
at least 0.99,

1 &

. E_; LR (i) # b (@) < O vk + ke -/ EED dog(2y ). (97)

Recall that W is an e-net of unit vectors in S} : Vo € S1,Ju € W s.t. |[v —ulj2 <e. Let
T be an (¢0)-net of thresholds in [-5olog1/e,50log1/e]. So W x T is a net for halfspaces
in S1: for any halfspace 1(w'z > 6) with w € S}, exist w' € W and ¢ € T such that

Pl(w'z > 0) =1((w) "2z > 0')] > 1 — O(y/clog1/e)). Similarly, (W x T)®* gives a net
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for intersections of k halfspaces in subspace S]: for any intersection h of k halfspaces, exist
wy,...,wr € Wand 04,...,0, € T such that

k
x) = l(ijxZGj)] >1—0(kelogl/e).
x~N(0,021) e
Next we consider the empirical estimation over my Gaussian points for ma > (k% log k/v)?.

By Claim 43, we have

* _ _ 1 < * ) — .
By 1) = 1) = 31 (i) = o)) (99)

Now we consider the empirical estimation after perturbations. For adversarial pertur-
bations Z1, ..., T, we use ||ﬁ|]qH2 = O(k) to bound ||[TI(z; — Z;)|]2 < O(k6). Let us fix
h € H, in subspace S}; this could be h} or any classifier in the net (W x T)®*. For a random
x; ~ N(0,1), its adversarial perturbation #; changes its label in h only if w,' - (Ilz;) > 6;
and w, - (IIZ;) < 6; for some i € [k]. Since their difference w’ - (ILX; — I1X;) is always
bounded by |Jw||2 - [[TIX; — ILX;||s < x4 in absolute value. So Z; changes its label in h with
probability at most

~ 2Kk0
k-P||lw'(Iz;)| < ké| < k- :
z; [‘ ( Z)‘_ ] T 027
For mg random points z1, ..., Zm,, we have by standard concentration bounds,
= ~ ~ 2Kk0 1
P 1(h(II- z; h(Il-2;)) > k - 5 klog|W x T _
; (h(IL- i) 7 h(IT- 7)) 2 ovan 2T Vma - klog] =500 =T

For convenience, let err denote the normalized error k - 2\'/“i + 54/ klongLV:XT|, which is

O(k - k6/o + k*log = /\/m3). We apply a union bound over the net of classifiers to claim
that with probability at least 0.99,

— Z h(IL - ;) # h(II - Z;)) < err for any h € {(W x T)®F, h}‘} (99)
mg “

Plug this into Equation (98), we have

m2

P [hi(x) = h(x)] = n; SO (B F) = b ) £ £ 200 (100)
=1

We are ready to show the correctness of Algorithm 10. It will output a solution because
there exists h € (W x T)®* very close to hi:

ﬂ; > L({(I1F) = h(lIF;)) > Bhi(x) = h(x)] — 5 — 2err (Equation (100))

>1—0(k/elogl/e) —~v — 2err.

(from the property of the net)

66



ADVERSARIALLY ROBUST Low DIMENSIONAL REPRESENTATIONS

At the same time, by equation (97), we also have

1 &

Z 1(hi( (I1z;) = h* (zi)) > — Z (hf(ﬁxl) = h*(z;))—err > 1=O(vk—+k+/(k + 1)n/~v)—err.

m
250

1
ma <

Thus with probability 0.9, we have
1 & ~
po Z 1(h(I1Z;) = h*(z;)) > 1 — O(vk + k\/(k + 1)n/v + k\/elog 1/ + err).
2z

We set the parameters and simplify the error: Let v = (k + 1)1/3771/3 such that ~ =

V(k+1)n/vy and € = 0.01-max(v3, k363 /03) s.t. \/elog1/e < max{~y,xd}. Since k < n'/2,
the error becomes

—O(ky+err)=1- O(k4/3 V3 4 k- ké/o + k*log( )/\ﬁ) —1— O(KY3 . 9V/3).
We finish the proof by showing any h in the net satisfying %2 ol (h(Hm )

1—c-k*/3.n1/3 is close to h*: Pxnq,nlMX) =h"(X)] > 1-O(K*3.9'/3). By equatlo (99),
we rewrite the guarantee of i into

— Z h(Ilz;) = R (zi)) > 1 - k3 3 —err.
m2

Furthermore, we use (97) to rewrite it as

m—z Z h(Ilz;) = hi(x D= 1—ck3- '3 —err—O(vk+k-/(k + 1)n/v - log~/(k + 1)n).

By Equation (98), we have

Ph(X)=h{(X)] =1 —c kY 13 —err —O(vk + k- \/(k + 1)/~ -log~/(k + 1)n) —

We combine it with (96) using triangle inequality to obtain

Ph(X) = h*(X)] > 1—c-k*3n' B —err—y—O(vk+k-\/(k + 1)1/~ -logv/(k + 1)n) = 1=0(k*/>.n/3).

This establishes the required (natural) accuracy bound on the classifier h. We now
show the classifier h that we output is adversarially robust to test-time perturbations.
Since ||I||so2 = O(k), we know the subspace spanned by the normals of halfspaces in h
also has || - a2 < |[H|lses2 = O(k). Since each wj is in the subspace with |willg= = O(k),
we know w; - (x — ) = O(rd) for any ¢ perturbation in ¢, norm. Using the Gaussian
anti-concentration again, we bound the probability of a flip in the label from z to z for all
valid 6-perturbations Z by P[h(z) # h(Z)] < O(kké /o). By triangle inequality, this implies
that the required robust error is at most ¢ + O(krd /o) < 2e. [ |
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E.1. Proof of Lemma 40

We first prove the following lemma which shows that that the robustness constraint ensures
that the value on M and M, are close.

Lemma 44 For any projection matriz Y of rank v with ||Y|;—qg < K2

probability 0.99

, we have with

a’nlogn N améﬁlogn)

N N
(101)

(Y, M, — M,)| < 2k6\/T0 4 K202 +v(my), where v(my) = O<

goes to 0 as the number of positive samples m4 — 0.

Proof For convenience, let uy = E[z | h*(z) = +], C, =X,11"7, C; = X11". Let
Z! = X4y — X, —(Cy—Cy) (and similarly for Z). Consider the following shifted covariance
matrices for the positive examples for the corrupted

1 L pr - L (R G (e — T
M, = m+BB = ((X+ Cy)(Xy = Cy) ) (102)
1
= ((X+ —C)(Xy = O+ 20 2] + (X4 = C)ZL + Z4 (X4 — C+)T>,
1
=M+ B+ (242] + (X = C)ZL + 24X, - )T, (103)
1 *
where £ = m7+(X+ —Cy)(Xy—Cy)T —E [@ —p) (@ =) | P () = ‘|‘] (104)

represents the sampling error in the covariance matrix among positive examples, even in the
absence of any corruptions. Moreover the samples (columns) of Xy — C, are distributed
according to a restriction of a spherical Gaussian onto a convex set. From Lemma 39, it
follows that the (population) variance of X in every direction is at most 0. Hence, the
operator norm
1 T T
I (X = C) (X = C4) || < || Myl + Hi(XJr - 04Xy - C4) - M+H
2
o“y/nlogn
<o?’+0 <7f & )
AVALLES

Recall that |[Y'/?||,2 = /Y ly=q < k. Hence, for any PSD matrix Y satisfying tr(Y) =
7,0 =Y < T and ||Y|je < K%
(VN = My)| < (Y2020 ) + 17, B+ 2(Y, 7 (X4 - 04) 2] )|

1
< e (V)|Bl + —[Y"2Z. |5 +

2
o mf+<Y1/QZ+,Y1/2<X+ - Cy))

1 1 1
<r|E[ + my ||Y1/QZ+”%7 +2ﬁ’\yl/22+”F : Wi ||Y1/2(X+ - Cy)lr
using [|Y1/2]|;2<k <IYV2 |- l(X+—C)l

< O<r02nlogn N okdy/nlogn
B VA LA My

) + 266 - /1o + K262,
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with probability 0.99. |

We now prove Lemma 40.
Proof [Proof of Lemma 40] Let 1 := 2x6+/ro + k2§? + v(m4) be the error in Lemma 44.
Also let IT* M IT* = ¥/; by Lemma 39 we have ¥’ < ¢2I. The optimal objective value of
the relaxation (92)

(IT*, %) = (IT*, My) > (Y, M) — 2 = (Y, 0] — ¢*II* + %) — 27
=7 — (Y,II*(¢%I — ¥/)[I*) — 2, using Lemma 44.
Hence (Y,IT*(oI — X)IT*) > (IT*, TT* (0*T — X/)IT*) — 2

ie., (II*(I — Y)II*, II* (01 — ¥)II*)

We have a unit vector v in the subspace given by IT* with v (62T — ¥/)v > o?\. Moreover
0=Y <1I,% <0?l.

(' (I-Y))(v' (6%] — X)) < (IT*(I — Y)II*, IT* (021 — X)II*) < 2
2
(1—v"Yv) 02\ < 2. Hence v'Yv>1— Tn? (105)
o
Let Y =31, )\ZululT be the eigendecomposition of Y with eigenvalues Ay > Ao > --- >
0, and A1 < 1. As in the algorithm let ¢ be the number of elgenvalues that are larger than
r/(r +1). Since tr(Y) = r, we have t < r. Note that II = St w . By monotonicity of

matrix norm ||IT*||;—q < cq(1 + 1/7)k?. Finally,

t n
2n r
1- O'T <v'Yv= § Ai (i, v § (ui, 0)? + A § (ui,v)? <1— |3 + mHHL’UH%
i=1 1=t+1
2 1
IIto|3 < M hence proving the lemma.

o2\’

E.2. Properties of test-time robust classifiers

The following claim shows that for any test-time robust classifier given by the intersection of
k = 2 halfspaces, the normals of the halfspaces are sparse. Moreover the subspace spanned
by the normals is robust. We remark that a simple statement holds for general k with a
dependence on the least (non-trivial) singular value of the matrix given by normals.

Claim 45 Let h:R" — {0, 1} represent a classifier given by h(z) = 1(w{ z > 0)-1(wy v >
0), where ||wi]2 = |[wz|2 = 1 and ||wy — wal2 = v € (0,2). Suppose for x ~ N(0,02I)
with h(z) = 1 (note that this happens with probability at least Q(1 — ~/2)), we have with
probability at least 2/3 that

Vo' € R" s.t. ||z —2'||; <6, h(Z) = h(x).
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Then there exists some universal constant ¢ > 0 such that we have max{||wi||q, [|wallg-} <
co/d. Moreover if II* is the projection matriz onto the span of wi,ws, we have that

Mgz < (¢/7) - 0/

Proof For z ~ N(0,02I) (even conditioned on h(z) = 1), we have that with probability at
least 0.9, |w{ x|, |wg 2| < O(0). Let &' = |lwi||g+ > |Jwal|y~ Without loss of generality. Hence
by norm duality, there exists a z with ||2||; = § such that w{ z = k. Thus if k§ > co (for a
large enough ¢ > 0), we have wir (r — z) < 0. Hence the adversarial perturbation & =z — z
misclassifies the point.

Let IT* be the projection matrix onto the span of wi,ws. Let u be any vector in the
subspace given by II*. It is easy to see that since ||w; — wall2 > 7, u can be expressed
as a linear combination u = ajw; + aswy where a2 + a3 = O(1/4%). This is because
the minimum singular value of the matrix with columns wy,ws is at least (). Hence
llullg« < |ai|llwillgx + |og|||wa|lqg+ < O(k/v). This proves the lemma.

Appendix F. Trading off Natural Accuracy for Adversarial Robustness
in Classification via Robust Projections

In many other natural scenarios it might be desirable to trade off natural accuracy for
significant robustness to test-time perturbations. In this section we demonstrate how our
techniques can be used for this purpose.

We study the simple binary classification setting under a natural Gaussian model (An-
derson, 2003) for data generation. that was studied in recent works (Tsipras et al., 2018;
Schmidt et al., 2018). In this model positive examples are drawn from a Gaussian distribu-
tion with mean 1 and covariance matrix Y, whereas the negative examples are drawn from
a Gaussian with mean ps and the same covariance Y. It is easy to see that if the means are
well separated, e.g., if ||u1 — p2ll2 > Q(y/log1/e)/||X]||, then the Bayes optimal classifier
will have error at most e. The works of Tsipras et al. (2018); Schmidt et al. (2018) used this
simple model to study adversarial robustness and demonstrate that in many settings there
is a natural tradeoff between the error and the robust error of any classifier (at test time);
in particular there are settings where no robust classifier can achieve high natural accuracy.
We continue this line of investigation and demonstrate that in many natural settings there
do exists adversarially robust classifiers that also have small (natural) error. Furthermore,
our algorithmic techniques can be used to learn such classifiers whereas standard approaches
will fail.

To demonstrate this, we will consider settings where the means 1, s remain reasonable
well separated when projected onto a robust subspace II*, albeit by a smaller amount.
Furthermore, the component of vector p; — po orthogonal to II* will be spread out, as
measured by the analytic sparsity ¢4+/¢> (where ¢ = oo, this is ¢1 /¢y sparsity). In such a
setting, an adversary can make a small ¢, perturbation to a fresh test example and make
the error of the Bayes optimal classifier close to half. On the other hand, projecting the
data onto the robust subspace IT* first and performing classification in the subspace will
let us tradeoff a small amount of natural accuracy for significant robustness gains. We now
formally define the Gaussian model.
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Gaussian Data Model M (ug, po2,¥). In the Gaussian model an example label pair
(z,y) € R" x {—1,+1} is generated as follows. Pick y = 1 with probability 1/2 and y = —1
with probability 1/2. Conditioned on y generate = as

Y N(p2,%), ify = -1

We will use (x,y) ~ M(pu1,p2,%) to denote a labeled example generated via the above
process. Given a positive-definite matrix A, we will use A™ to denote the Penrose-Moore
pseudoinverse of A. Given a classifier f : R™ — {—1, 41} we define the error of f to be the
standard classification error given by

GTT(f) = P(:Jc,y)wM(m,uz,E) [f(x) 7é y] (106)

We will measure perturbations in ¢; norm for ¢ > 2 and for a given perturbation radius
0 > 0, we define the robust error of f to be

errrob(f) = P(x,y)NM(u1,u2,E) dz e B5(0) : f(.%’ + Z) 7& Yl where B5(0) = {Z : ||z||q < 5}
(107)

To demonstrate this, we make the following natural assumptions on the structure of the
above Gaussian model. We suspect that these results will hold in more general settings
as well. For notational convenience, ||| will be used by default to denote the 2 norm for
vectors, and the spectral norm for matrices, in the rest of the section.

Assumptions 1.

1. Mean Separation. For a fixed e,¢; € (0,1) and a constant ¢ > 1, there exists a rank-r
projection IT* with ||II*||so—2 < K, 6 > 0, and «, 8 € (0, 1), such that

[ — )l = e10g () VI (108)

1 KOS
T — > log (—— by — 109
I = )| = ey flog () VIS + 25 (109)
o?|[8] < o, (IEI1) < 57|15 (110)
2. Spread Condition. Let v be the vector defined as v = X (u; — p2). Then we have
that

0.1(3—

1
[v]lgr > n® 2 o], (111)

3. 9 satisfies the following bound

5o \/\zurr(z;)%(ul — ) 12)

T_1 .
n A(5—7)
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The constant 0.1 in (111) above is chosen for ease of exposition and in general one can
define a similar condition in terms of n¢ for a small constant ¢ > 0.

Bayes Optimal Classifier: For the Gaussian model above, the Bayes optimal clas-
sification for a point x is obtained by comparing the density functions p(z|y = 1) and
p(z|y = —1). In particular we have that

plzly=1) e (@m) T @—m)

p(zly = 1) T e~ (w—p2) TSt (w—p2)

The above corresponds to the classifier
I (@) = sgn((z = p2) "= (@ — o) = (@ = ) " @ — )
1 1
= sgn(I(ZH)3 @ — w)|? ~ |(Z)3 (@ = m)|1?). (113)

Robust Projection-based Classifier: In a similar manner we define the robust classifier
that performs classification after projection onto II*. When projected onto IT*, the condi-
tional distribution of z is again Gaussian with means either IT*; or IT* ugy depending on y,
and the covariance matrix being I' = II*XII*. Then we define the robust classifier as

e () = sgn (| (CHA0 (@ — o) — (O30 (@ — ) ). (114)

The assumptions in (108) and (109) ensure that the means are separated in the ambient
space as well as when projected onto the robust subspace IT*. This will ensure that f*(x)
has error at most ¢ and at the same time fr+(x) is not too much worse and has error at
most € + £1. The assumption in (110) will be used to argue that adversarial perturbations
do not hurt the robust classifier fii=(x) and its robust error also remains at most & + ;.
Finally, the assumptions in (111) and (112) will be used to show that orthogonal to IT* the
vector p1 — peo is spread out and an adversary can take advantage of this fact to design
test-time perturbations that make the robust error of the Bayes optimal classifier close to
half. Notice that the assumptions allow for a fairly large range of the perturbation radius
J as stated in (112). We next formalize these arguments.

F.1. Trading off Natural Accuracy for More Robustness Statistically

Proposition 46 (Non-robustness of the Bayes-optimal classifier) If the Gaussian
model M(u1, po,X) satisfies Assumptions I then for the Bayes optimal classifier f*(z) de-
fined in (113) it holds that

Proof We first analyze the error of f*. From (113) we have
« 1 1 1
err(f) = 2B [I 5D @ = ) I < IS = )l

2
2B [IEDE @ - m)l? < 12D @ - )]

D=
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Using the fact that when z ~ N(u, X)) then we have that (Z*)% (x — p) is distributed as Ilg
where g ~ N(0,I) and II is the orthogonal projection onto the subspace spanned by the
singular vectors of . Then we get have

a1 1
err(£) = SPyunion [Ty + (5)3 (1 = o) |2 < M)

1 1
+ 5Py g + (5 (a2 = )| < 1|12
1
= Pyonon g+ (51)F (1 — o)|* < [I11g]]
1 1 1
= Pyunion (M9, (593 (2 = ) = S (55 (a2 — )]
Since (Ilg, (Z+)%(/ﬁ2 — p1)) is a Gaussian with mean zero and variance H(Z*)%(/@ —m1)|I%,

we know from standard facts about Gaussian distribution that with probability at least
1 — ¢, it holds that

{119, (54)% (2 — )] < ¢y g ()N (z — )

for a universal constant ¢ > 0. Furthermore, (108) implies that

1 1 1
»)2 — > — cy/log(—).
[(E7)2 (n2 — pa)|| > HEIIHM pall > ey g(&,)

Setting ¢ > 2¢’ we get that

err(f*) = Byion [{TTg, (593 (2 — ) 2 51503 (s — )7

<e.

Next we analyze the robust error of f*. We have

X 1 1 1
errval{") = GPenns | s IR+ 2 = )P = I+ 2 = )P 2 O
EASYoF)
1 1 1
5P | s EH3 @+ 2= )2 |(EH)3a + 2 — p)? 2 0)
z€Bs(0)

Again from symmetry we can rewrite this as

* [ 1 1 _1
errrob(f*) = Pguno,1) S;Iz )||H9 +(Z1) 22| = [[Tg + (5F)2 (1 — p2) + 3722 > 0}
-z€B;(0

=Pgun(o,1) _(Hg, (1)

N

(12— )+ sup (52, (543 (2 — ) 2 S5z — )P
z€Bs(0)

N

_ 1 1
=Pyno.n) (g, (32 (p2 = 1)) + 0112 F (2 — pa) g > §H(Z+)5(M2 - Ml)HQ]-
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We will next show that 0||SF (2 — p1)|lg= > 3| (Z*)% (2 — p1)]|?, thereby establishing that
errrop(f*) > 1/2. From (111) we have that

1_1
315 (2 — p)llgr > on® T (g — ) |2
1 . .
> VIBINET)2 (1 — p2)||[|12F (2 — p1)]|2, [ using the lower bound on § in (112)]
+\3 2
> [[(X7)2 (u2 — pa)”
|

Proposition 47 (Guarantees for the Robust Projection-based classifier) If the Gaus-
sian model M (1, p2, X)) satisfies Assumptions I then for the robust classifier fi«(x) defined
in (114) it holds that

err(fi+) <e+eq
errrob(fl’[*) <e+ter.
Proof Notice that IT*z is distributed as N (IT*u,I') when x ~ N(u, ), where I' = IT*XIT*.

Hence similar to the calculation in Proposition 46 we have that fi«(z) has error at most
€ + €1 provided
N 1
Tz = 1) = e log () VI
From (109) and noticing that ||I'|| < ||X|| we get that err(fi+) < e+ e1. Next we analyze
the robust error of the classifier. Again from the calculations in the previous lemma we
have err.op( fi+):

. 1o R . 1 1o
=Pyn.n) [<H g, (D)0 (g — 1)) + S‘E%@ 2, TTI (g — 1)) > §||(F+)2H (2 — p1)|?|-
zeBs

Next notice that

sup ("2, TTIT" (2 — p1)) < sup [[I2|[[TFIT* (2 — pa) |
z€Bs(0) 2€B5(0)
1 *
[(CF) 211 (2 — i) ||
ay/|[X]]

. [from (110)]

Notice that (IT*g, (F*)%H* (e — p1)) is a Gaussian that with probability at least 1 —e — &4

1
e+eq1

takes a value at most ¢|| (F+)%H* (12— 1)1 /1og ( ). Hence to ensure that erryp(fi+) <
€ + €1 it is enough to have

KO
ay/[|Z]]

where u = (F+)%H* (2 — p11). The bound follows from (109) and noticing that (110) implies
that

1 1
Sllull* > ¢y Jlog (——) Jull +

—— Jal,

N

BVIEN

1 *
lull = [[(CF) 2T (2 — )| > 1T (p2 = ) -
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F.2. Efficient Algorithms for Finding a Robust Classifier

Next we discuss how our techniques from Section B.3 can be used to find a robust classifier in
the Gaussian model discussed above. Given labeled examples, the first step of the learning
algorithm is to use standard estimators for mean, covariance of single Gaussians on both
the positive and negative examples separately, to find approximate Parameters ,&1,1 f2, 3.
Our recovery guarantee will depend on 1,72 such that ||(1 —II*)(X7)2||s <y [[(X1)2] and
o (IT*(SH)21T*) > 45 (S+)2 | In this case the SDP from (45) when run on 3F implies that
we will obtain a rank-r subspace II such that ||f[LH* | < O(%) Using the same analysis as
above we can then show that the classifier

Fa) = sgn (1031w = o) | = 1031w — ) 1?).

where I' = IISI1. The learning algorithm is described below. To analyze the robust classifier
we mildly strengthen Assumptions I below, to account for the error in the estimate of IT*.
Assumptions I1.

e For a fixed € € (0,1) and a constant ¢ > 1, there exists a rank-r projection IT* with
|ITT*||cos2 < K, 6 > 0, and «, 8,71,72 € (0,1), such that

10v1 1 K6
T (1 — p2) || = —= 1 — pall > ey flog (=) V2] +
72 €

(115)

Q?|Z|| < o (I SIT) < 82|13 (116)
(I — ) (E5) 2] < mll(E4)7] (117)
o (IT(£1)311) > 72/(Z7) 3. (118)

O[,

2 _ 8

Here o/ =/« .
Y2

RobustClassification((z1,41), - - -, (Tm, Ym))
Input: Labeled examples (z1,91), ..., (Tm, Ym)-

1. Use the first 7 examples to get estimates of ,&1,,&2,2 from standard estimators
applied to positive and negative examples separately.

2. Use the algorithm from Corollary 21 with A = (i]"")é to get II.
3. Define I' = II11.
4. Return the classifier

fa) = sgn (03T — o) |2 = (0311w = i) 2).

Figure 11: Adversarially Robust Classification.
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A natural illustrative example to keep in mind is the case when the two Gaussians are
in the parallel pancake orientation (Brubaker and Vempala, 2008), where the variance is
small along one direction u e.g., the x-axis (more generally, the variance is small along a
robust subspace), and the variance in all the orthogonal directions are very large. If u is
sparse (robust), and in addition the vector between the means has a reasonable projection
on to u, then our algorithmic techniques can approximate u well with another sparse vector
u. Performing classification after projecting onto o will lead to a significantly more robust
classifier without hurting the natural accuracy a lot.

Next we state and prove our main theorem regarding the Algorithm in Figure 11.

Theorem 48 Givene € (0,1), perturbation radius 6 > 0, and m = poly(n,1/e,1/||S%|,1/||u1—
u2||) labeled examples from the Gaussian data model M(u1, pe,X) satisfying Assumptions

11, the algorithm in Figure 11 runs in polynomial time and with high probability outputs a
classifier fr(x) such that err.op(fy) < .

Proof By taking the empirical mean and covariance of the positive and negative examples
with € set to be ¢ = min (g/poly(n, [|[T|), (1/72)|l1 — pel|) we get estimates fi1, fio,
such that

= full <€, lpa — froll <€, and [|£ =3 <€
The above combined with (116) and (117) implies that
* [  — 1
(I (57)311%) 2 (1= o(1)) 32l ()3
RPN 1
(7 =T) ()2 < (14 o(1)nll(EF)2].

Hence, Corollary 21 implies that step 2 of Algorithm 11 will output IT such that ||[TI-IT*|| <

%. Next, to establish that fg has robust error at most ¢, we need to verify that (109),

(110) from Assumptions I hold with miuy, fiz, ¥ and II. We have
JFLSTT| > TS — [|(61 - )S]|
T *¥ (T * g
> [[IFXI]| — TSI — 1) || — 4£||EH

2
* * * /% * Y
2 I — I (2 = D)) — 85 [|=]

71
> 2|3 - &2 - 8=
V2
> (1 - o(1)) <a2 - gﬂ) S]] [from (110)].
Y2

Finally, we have

ITI(fy — fi2) || > |T(p1 — o) || — 2¢'
> I (1 — p2)|| = 28" = ||(IT = TI%) (p1 — o) |
* et
> || (p1 — p2) || — 26" — 4—=]|p1 — pa|
Y2
1 KO
> cy/log (=) V12 + o [from (115)].

€

76



ADVERSARIALLY ROBUST Low DIMENSIONAL REPRESENTATIONS

To demonstrate the applicability of Theorem 48 we instantiate it for a special case when
3. = I —0II"* for a constant 6 < 1 and IT* being a rank-r x-robust projection matrix. In this
case the assumptions simplify to get the following corollary that we state for the case of
q = co. We remark that this particular instantiation is only used to demonstrate the flavour
of the condition; in this specialized setting one can of course use our knowledge of the form
of covariance matrix to just find IT* (by subtracting off the identity matrix), instead of our
algorithm in step 2.

Corollary 49 Let s < 1 be a fized constant and M(pu1, 2, %) be the Gaussian data model
with ¥ = I — 011" with 0 € (0,s) such that

. 1
T (G1 = )| = 10V = Ol 1 — piz]| = ey[log(2) + w6

% . K
(2 = T0) (1 = p2) [y = (0™ + T¢Ik — pll;
where ¢ is constant that depends on s. If § satisfies

llper — pal| <5< |IT* (e — pe2) ||

n0-1 K ’

then we have that the robust error of the Bayes optimal classifier satisfies erryop(f*) > % On
the other hand given m = poly(n,1/e,1/0) labeled examples from the Gaussian data model
M(p1, p2, X) satisfying Assumptions 11, the algorithm in Figure 11 runs in polynomial time
and with high probability outputs a classifier fg(x) such that errpop(fr) < €.

Appendix G. Related Work

Adversarial Robustness. Existing theoretical work on adversarial robustness has al-
most exclusively focused on supervised learning, and in particular on binary classification.
These works include the study of adversarial counterparts of notions such as VC dimen-
sion and Rademacher complexity (Cullina et al., 2018; Khim and Loh, 2018; Yin et al.,
2018), evidence of computational barriers (Bubeck et al., 2018b,a; Nakkiran, 2019; Deg-
wekar et al., 2019) and statistical barriers towards ensuring both low test error and low
adversarial test error (Tsipras et al., 2018), and computationally efficient algorithms for
adversarially robust learning of restricted classes such as degree-1 and degree-2 polyno-
mial threshold functions (Awasthi et al., 2019). Furthermore, recent works also provide
evidence that adversarially robust supervised learning requires more training data than its
non-robust counterpart (Schmidt et al., 2018; Montasser et al., 2019; Min et al., 2020).
The closest to our work is the result of Garg et al. (2018) that studies a particular
formulation of adversarially robust features. The authors consider computing, given i.i.d.
samples from a distribution, a map f such that, with high probability over a new example
x drawn from the same distribution, points close to x get a nearby mapping (in {2 distance)
under f. While similar in motivation to our work, the results in Garg et al. (2018) do
not aim to minimize the projection error and simply require the projection f to be mean
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zero and variance one to avoid trivial solutions. Furthermore, the authors look at a specific
type of spectral embedding given by the top eigenvectors of the Laplacian of an appropriate
graph constructed on the training data. The bounds presented for this embedding depend
on the eigenvalue gap present in the Laplacian matrix. Finally, it is not clear how to
efficiently use the embedding on new test points, as it involves recomputing the Laplacian
by incorporating the new point into the training set.

Low Rank Approximations. There is a large body of work in randomized numerical
linear algebra on methods such as column subset selection and CUR decompositions (Kan-
nan and Vempala, 2017; Boutsidis et al., 2009; Deshpande and Rademacher, 2010; Boutsidis
et al., 2014; Drineas et al., 2008; Boutsidis and Woodruff, 2017; Song et al., 2017) that aim
to approximate a given matrix via a low dimensional subspace spanned by a small number
of rows/columns of the matrix. However these algorithms do not necessarily yield robust
representations; in particular the subspace that is spanned may not be robust in our sense
(¢ — 2 operator norm).

Sparse PCA. The problem of sparse PCA has been studied both in average-case and
worst-case settings.

Average-case setting: In the high dimensional regime where the number of samples is
much less than the dimensionality, several works have pointed out inconsistent behavior
of PCA (Paul, 2007; Nadler et al., 2008; Johnstone and Lu, 2009). As a result this led
to the study of the sparse PCA problem where it is assumed that the leading eigenvector
is sparse. This problem is typically studied under an average case model known as the
spiked covariance model (Johnstone et al., 2001)!°. In this model the data is assumed to
be generated from a Gaussian with covariance matrix I 4+ fvv", where the leading eigen-
vector v is assumed to be a sparse vector and 6 is a parameter characterizing the signal
strength. There have been several works that study minimax rates of estimating the leading
eigenvector (and eigenspaces) under the spiked covariance model and for various notions of
sparsity (Amini and Wainwright, 2009; Ma et al., 2013; Cai et al., 2013; Shen et al., 2013;
Vu and Lei, 2012, 2013). More distantly related works include linearly transformed spiked
models (Dobriban et al., 2020), where the focus is on deriving the Bayes optimal robust
classifiers and recovering the unobserved signals of interest under noisy linear transforms.
Worst-case setting: There has also been work on the worst-case version of the problem in
the special case when the rank » = 1, but for the maximization variant of the sparse PCA
objective (Chan et al., 2016). For the maximization objective, the £y and ¢; versions (for
capturing sparsity) are within a factor of 2 from each other (see Section 10.3.3 of Vershynin
(2018)). Even when 7 = 1 the best known polynomial time algorithm gives a O(n'/?) factor
approximation in the worst-case (for both the ¢; and ¢y versions) (Chan et al., 2016).
Moreover no constant factor approximation is possible assuming the SSE conjecture (Chan
et al., 2016). Appendix H.3 shows how this also immediately implies computational hardness
of our minimization version (3). The recent work of (Chowdhury et al., 2020) also studies
the maximization version of the fp-sparse PCA problem and presents bicriteria algorithms
for the sparsity and the quality of the returned solution. However, none of those results
translate to multiplicative factor approximation algorithms for the minimization variant of

10. Such “spiked” models (signal plus noise) have a long history in statistics (Anderson, 2003) (first edition
in 1962), viewed as certain types of factor models.
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the problem that we study. More importantly, these works are restricted to the rank r =1
setting, while we study the more general version of the problem.

Robustness to Corruptions in the Training Data. There is large body of work, span-
ning both the theoretical computer science and the statistical communities, that formulates
and studies robustness to training data corruptions in the context of both supervised and
unsupervised learning (Valiant, 1985; Kearns and Li, 1993; Huber, 2011; Diakonikolas and
Kane, 2019). However they do not study the notion of adversarial perturbations to the
data, to the best of our knowledge.

There is also a large body of work on Robust Optimization (Ben-Tal et al., 2009),
where the input is uncertain and is assumed to belong to a structured wuncertainty set.
In robust optimization one looks for a single solution that is simultaneously good for all
inputs in the uncertainty set, leading to a max-min formulation of the problem. In our
model of corruption, we are interested in instance wise guarantees - for every input A and
its corruption A, the algorithm is required to output a solution that is good for A (the
solution is not required to be simultaneously good for all possible corruptions fl) Moreover
the resilience of a solution for A to corruptions implies structural properties that can be
leveraged algorithmically. Moreover we are not aware of any results related to PCA in this
context.

Robust variants of PCA. The problem of robust PCA has received significant attention
in recent years (De La Torre and Black, 2003; Candes et al., 2011; Chandrasekaran et al.,
2011). Here one assumes that a given corrupted matrix A is a sum of two matrices, the true
matrix A that is low-rank and a sparse corruption matrix S with sparsity pattern being es-
sentially random. The corruptions, although sparse, can be unbounded in magnitude. This
necessitates an incoherence type assumption that the “mass” or the principal components
of A is spread out — recovery of A is impossible under unbounded sparse corruptions when
the signal is localized or sparse. On the other hand, the corruptions may not be sparse in
our case. In particular, every data point (in fact every entry of A) could be corrupted up to
some specified magnitude §. Here as our results show (particularly Theorem 2), localization
(or sparsity) of the signal is crucial in tolerating adversarial perturbations in the training
data (e.g., a spread out signal can be completely overwhelmed by the corruption in each
entry of A). The very recent works of Awasthi et al. (2020a); d’Orsi et al. (2020) study
a well-studied average-case model for sparse PCA under the same notion of training-time
corruptions that we study in this work. The work of Awasthi et al. (2020a) builds on the
current paper and characterizes the recovery error in terms of the ¢ — 2 operator norm,
while the authors of d’Orsi et al. (2020) focus on r = 1 and characterize some computational
vs statistical tradeoffs for this average-case model. On the other hand, our results apply to
higher rank settings and for worst case data.

Huber’s Contamination Model. In statistics, Huber’s e-contamination model (Huber,
2011) is the most widely studied. In this model the dataset is assumed to be generated i.i.d.
from a mixture namely, (1 — ¢)P + Q. Here P is the true distribution and is assumed to
be well behaved, for example the Gaussian distribution, and @ is an arbitrary distribution
modeling the noise. The study of this model has led to insightful results for a variety
of problems. Recently, there have been many exciting developments in designing robust
estimators of mean and covariance that are also computationally efficient (Diakonikolas
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et al., 2019; Lai et al., 2016; Charikar et al., 2017; Diakonikolas and Kane, 2019). We
would like to point out that in these works (and several other recent works), the model of
corruption is different than ours. In particular, rather than assuming that the data contains
a few outliers (Huber’s model), in our model an adversary can potentially corrupt every
data point up to magnitude § (measured in ¢, norm for g > 2).

Clustering. From the computational point of view, the work of Dasgupta (1999) for-
mulated the goal of clustering data generated from a mixture of well-separated Gaussians.
There is a large body of work on designing efficient algorithms for clustering in this setting,
both for Gaussians and more general distributions (Arora and Kannan, 2005; Vempala
and Wang, 2004; Achlioptas and McSherry, 2005; Moitra and Valiant, 2010; Belkin and
Sinha, 2010). See recent works (Regev and Vijayaraghavan, 2017; Hopkins and Li, 2018;
Diakonikolas et al., 2018b; Kothari and Steinhardt, 2018) for a detailed discussion. The
work of Kumar and Kannan (2010) abstracted out a common property of datasets (spectral
stability as defined in (72)) that captures mixtures of well separated Gaussians, the planted
partitioning model, and other well clustered instances. They showed that a single algorithm,
namely the popular Lloyd’s algorithm, with the right initialization, provably computes op-
timal solution for such stable instances. The separation factor needed for Lloyd’s to work
in Kumar and Kannan (2010) was later improved by Awasthi and Sheffet (2012).  Vi-
jayaraghavan et al. (2017) study Euclidean k-means clustering on instances that satisfy a
notion of additive perturbation stability or resilience, where the optimal solution is stable
even when each point is moved by a small amount. Analogously, in our problem the co — 2
norm and sparsity captures the stability of the solution to small perturbations in £, norm.
However the perturbations in Dutta et al. are measured in ¢ norm, and the problem flavor
and algorithms are very different.

Building on robust algorithms for mean estimation, there have also been works to per-
form robust clustering of well separated instances under Huber’s contamination model and
its variants (Brubaker, 2009; Diakonikolas et al., 2018b; Kothari and Steinhardt, 2018;
Kothari and Steurer, 2018; Hopkins and Li, 2018). There have also been works in analyzing
the EM algorithm for Gaussian mixtures ( see e.g., (Balakrishnan et al., 2017)). While
motivated by the study of the phenomenon of robustness, the above results do not provide
guarantees in our model of corruption. As in the case of mean estimation, these results
are designed to be robust to a small number of outliers (e.g., a small constant fraction) in
the training set. In our corruption model on the other hand, every data point could be
potentially corrupted up to magnitude § (measured in ¢, norm for ¢ > 2).

Appendix H. Auxillary and additional claims
H.1. Counterexamples

Claim 50 The matriz norms ||-||q (entry-wise 4 norm) and ||-||cc—o00, [|:[[1—1 are not
monotone.

Proof Let v = ﬁl, where 1 = (1,1,...,1). Consider the matrix M = I — %11T. Note
that [[vlls = 1 and M = 0. Clearly [[I[|y = >, ;[l;;| = n. On the other hand, when
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q€[1,2),

n

. . . n _
ML= ML =" (1=0(i)*)T+>_ [o(i)|?|v(j)]? = HvHqurn(l—%)q—ﬁ = (n—1)n'"4n(1-1)? > n.
i.j i=1 i#]

Note that this particular instance is symmetric, and each column contributes equally;

hence || M]|4 g = %HM |4, and similarly for I. Hence, the same counterexample also works
for 1 — ¢ and co — ¢* operator norms where ¢ € [1,2). [ |

Claim 51 The matriz norms ||-||co—2 and ||-||2—1 are not monotone.

Proof We consider a similar pair of matrices as the above claim:

1
A = diag(u) where u = (2,...,2,1,...,1) and M = A— —11".
——— —— n
n/3 2n/3

It will be easier to reason about || M ||oo—2 and || Al co—2. Recall ||Alloc—2 = maxy,, . <1l Ayll2;

since A is a diagonal matrix, the maximum value is 7 := /4 - (1/3) +2/3 - y/n, and it is
attained by every vector in {£1}". To establish the claim, we now show that for a specific
vector y € {£1}", ||[Myll2 > ||Ay]|2.

Consider y = (1,...,1,—1,...,—1)
—— ———
n/3 2n/3
(Ly)=—2n, and My = (2+3%,....24+ 1, -1+% ... -1+13)
n/3 2n/3
Hence Myl = 1/ (})n- (52 + (})n- (3
1
=7 +n(g) > 7 = Ayl
as required. Hence ||Al|co—2 < ||M||co—2, which violates the monotonicity property. [ |

H.2. What do robust projection matrices look like?

Our robustness parameter ||IT||oc—2 (||II||4—2 for general ¢ > 2) generalizes analytic notions
of sparsity for the subspace associated with the orthogonal projector II (see Lemma 7). For
the purposes of this discussion let us restrict our attention to ¢ = co. As mentioned earlier,
for a r = 1-dimensional subspace this exactly corresponds to the ¢; sparsity of the unit
vector v in that subspace. The ||II||oo—2 of a projector is the largest ¢; norm among unit
vectors (in 5 norm) that belong to the subspace. We remark that for higher-dimensional
subspaces, there are several other notions of sparsity that have been explored (Vu and Lei,
2013; Wang et al., 2014), typically measured for a fixed orthonormal basis V' € R™*" of
the subspace (so I = VV'T). Some of the notions that have been considered include the
entry-wise norm ||V||; (the sum of the ¢; norms of the basis vectors), the maximum ¢; norm
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among the columns of V', the sparsity of the diagonal of II and the sum of the row ¢ norms
of V, among other quantities. Many of these quantities are the same for » = 1 but may
vary by factors of \/r or more depending on the quantity. On the other hand, the quantity
||IT]|4—2 is a basis-independent quantity that only depends on the subspace.

Consider three different subspaces (or projectors) given by the orthonormal basis V1, Va, V3 €
R™" of the following form (think of k = vk, r < x); assume that the signs of the entries

are chosen randomly in a way that also satisfies the necessary orthogonality properties (e.g.,
random Fourier characters over {£1}¥).

H_

<
o
(@)

41 41 1 41
%%% vk NG Vo Vk
%Y vk : '
Vi VE VR ST S H R 7

. v v Tk
:|:1:|::1 +1 Oiﬁ vl 07%

=17 % vl R . A o

0 0 - 0 ; =
: 0 0 0 0 0 0
0 0 0

The main difference between Vi, Vs is that in V5 the sparse basis vectors have disjoint
support, whereas in V; they are commonly supported. However, there is an alternate basis
for the subspace V5 which looks like Vi, but basis dependent quantities get very different
values for V7, V5. In the third example, the first » — 1 basis vectors are extremely sparse
with ¢; norm O(,/r), whereas only one of the basis vectors has ¢; sparsity Vk. Many
aggregate notions of sparsity like ||V||; take very different values for V4 and V3 that differ
by a /r factor. Our robustness parameter ||II||so_s2 ~ vk for all of them; this is because
each of these subspaces are supported on at most k co-ordinates (and a spread out vector of
this form exists), so the maximum ¢; length among unit 5 norm vector is vk. Finally we
remark that as mentioned in Figure 1 (and shown in Awasthi et al. (2020b)), many natural
data sets have such robust low-dimensional projections with small error.

H.3. Computational Lower Bound

The main result in this section is to show that it is NP-hard to solve Program (13) in
Section B exactly for ¢ = co under the small set expansion(SSE) hypothesis.

Conjecture 52 (SSE hypothesis (Raghavendra and Steurer, 2010)) For any n >

0, there is § > 0 such that it is NP-hard to distinguish between the following two cases given
a graph G = (v, E):

o Yes: Some subset S CV with |S| = on has expansion % <n

o No: Any set S CV with |S| < 26n has lE(“‘gTY\Sl >1—n
Based on SSE hypothesis, we state the hardness of solving Program (13) as follows.

Theorem 53 [t is SSE-hard to solve problem (13) given ¢ = oco,r = 1.

82



ADVERSARIALLY ROBUST Low DIMENSIONAL REPRESENTATIONS

We note the objective in problem (13) is the same as ||A||% — maxy(AA",II) and use the
hardness of maxy(AA ", II) to finish the proof.

Theorem 54 (Theorem 4 in Chan et al. (2016)) [t is SSE-hard to solve the follow-
mg progmm given k and a matricx A € R™"™ with any constant approximation ratio:

| Az]3.

llzll2= 1 Hr||0<k
Next we state the relation between the £y-sparse and f;-sparse programs.

Theorem 55 ((Vershynin, 2018)) Given any matrix A € R™™ and any k > 1, let

PTy, = ma; |Az||3 and OPT,, = max |Az||3. Then we have OPTy, <
llll2= 1||$H0<k lzll2=1, |zl <vk

OPT,, <2-OPTy,.

Finally we finish the proof of Theorem 53.

Proof of Theorem 53 For contradiction, suppose there is an algorithm that solves prob-
lem (13) for ¢ = co and any . Given a matrix A and k, since

max (AAT|II) = max (AAT 2z ™)
L[ oo —2<r lll2=1, |zl <VE
for rank 1 projection matrices, the algorithm for problem (13) also solves max | Az ()3

lellz=1z1 <VE
by the reformulation (5). Because of Theorem 55, this gives a 0.5 approximation of

max  ||Ax||3, which refutes the SSE hypothesis based on Theorem 54. [ ]
lzllz=1,[lzlo<k

Notice that the above proof only establishes computational hardness for exact minimiza-
tion of (13) under the small set expansion conjecture. It would be interesting to establish
hardness of approximation results for this problem.

H.4. Proof of Lemma 30
Proof By assumption we know that ||A — C|| < oy/m. This implies that
A -IFA| < [|[A = O +[|C — T A]|

— A C| +]I(C - A)]
<24~ C| < 20v/m.

Since we set 7 = 20y/m, from the guarantee of Theorem 25, we know that if the algorithm
outputs BAD INPUT , the data must be poisoned, i.e., [|[A — Al| > 20\/m. Next suppose
that the algorithm outputs a projection matrix II. Setting i := MEAN(IIA), and 1 to be
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the all-ones vector (1,1,...,1)" we have that
A RS :
= plle = — || >4, — 1Ay
7=1
1| — 1| — .
<l s -], o o -y
S*HlT(A A2 + — ZH T(Aj — 4j)]2

1
Next we make a crucial observation that if IT is good for A then it is also good for A and

hence [|A — IIA[| is small. This is formally established in Lemma 56. Applying the lemma
on A and A with II} =IT*, IIy =11, k1 = K, ko = ¢¢k, and € = 4do/m/||A|| we get that

4 - 114] < (e + V4] + 8"
Substituting into (119) we get that
= nlle < (e + VAIAL 4850 1 s
\f Ve
< (e+ \[)7 + 8\[ + ¢qkd (by writing || Al in terms of ¢)
< O(cg)(o + R(S)(l + %) (120)

Next, notice that by triangle inequality,
Al <llA=Cl+ I
< (o + [[ul)vm.

LAl 1 lelly 2
g < = s}
\/; dov/m ~ 2 L o )

Substituting into (120) we get that

Hence we get that

1
Il < Oleg) (o +s) (14 (14 121)2) (121)
(5
< 0(eg) (1 + =) max (0, /ol ). (122)
From the above we get the relative error guarantee of

Tl (123)

HuH HMH
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Note: We would like to point out that for robust mean estimation, our analysis also shows
that in step 2 of the algorithm above, we can replace MEAN(ITA) with MEAN(A). This is
because if the algorithm did not output BAD INPUT then ||A — IIA||s//m < 20 and hence
mean of A and that of IIA will be close. However, in this case, the subspace spanned by
the output vector, i.e., MEAN(A) might not be robust and hence susceptible to test-time
perturbations.

Lemma 56 Fizq>2,0 >0,k > 1. Let A and A be two n x m matrices, each representing
m data points in n dimensions such that for every j € [m], columns A; and /Nlj are close,
i.e., ||Aj — Ajll, < 8. Furthermore, assume that there exist projection matrices, 1} = vo !
and My = wu' such that ||I1||;—2 < k1 and ||Uallgs2 < ko and that |A — T A| < e1||A]
and ||A — T A|| < e5||A||. Then, letting e = €1 + €2 and k = k1 + ko, it also holds that

4~ Thaa] <0G+ VAl + 22" (124)
1A - T Al < 0 +va) ] + S0/ (125)

NG

Proof We will show the desired bound on ||A—TII3A|| and by symmetry the same bound will
also apply to ||A—1II; A||. Notice that both II; and Iy are projections onto one dimensional
subspaces and a bound on ||||;—2 norm of the projection matrices implies that [|v|[s+ < k1
and [Ju|| g+ < k2, where ¢* is such that 1/g+1/¢* = 1. Next, let II be the projection matrix
onto the subspace spanned by v and u. By triangle inequality we have that

A =1L Al < ||A — ITA[| 4 |TIA — I Al
< ||A — HA|| + ||TA — T A|| + ||[TI, A — T, A|
< ||A - TA| + |[ITA — TA| + ||TTA — o A|| + ||TI2 A — T A|. (126)

Recall the standard fact that if P, and P» are projection matrices on to subspaces S and
Sy such that S; C Sy, then for any matrix B, ||PyB|| < ||P2B||. Using this we to get that

[A—IIA| < [|A - ILAJ < e [|A] (127)
and,

|24 — TLA| < |TA - Af + || A - 14|
< 2|04 — A|| < 2e5]|4]. (128)

From the closeness of A and A and the robustness of II5 we also know that
[T A — T Al| < || TTg||g—20v/m < Kady/m. (129)
Substituting (127), (128), and (129) into (126) we get that

|A =TI Al < e1||All + 2e2|| Al + K2dv/m + ||TTA — TTA]. (130)
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Note that if ||[[IA — ITA|| < kdy/m/\/z, then we have the desired bound on ||A — Iy A||. We
now look at the case when ||IIA — ITA|| > x6,/m/+/e. Notice that II is the union of robust
subspaces and A — A has columns bounded in ¢ norm. Hence, the only way ||ITTA —ITA|| can
be very large is if the ||[|4—2 norm of the projection matrix of a union of two subspaces (II)
is much larger than the [|||;—2 norm of the projection matrices of individual subspaces (II
and Ilz). For this to happen the two subspaces must be very close to each other and then
we can bound ||A — IIsA|| in a different way. Formally, we have that
|IA — HA|| = max |[TI(A— A) - 2|
zi[|z]|=1

m

= max || ) zII(A; — Aj)|
1

z:]|z]|=1

J]=
m

max S5 I0(4 - A4))|

AN (131)

Next we establish an upper bound on ||II]|;—2 in terms of the distance between subspaces
II; =vv' and Iy = wu'. Suppose ||u — v|| = v and that u-v > 0 (otherwise we work with
—u). We also know that ||v|l;+ < k1 and ||ullg« < k2. Now, [[II||4—2 is the maximum ¢*
norm of any unit vector in the span of v and u. We can write any such vector z as

IA

IN

Z = o1V + ang
where 02 + a2 = 1 and v+ = “=“  Next we have that

= Tu=(ao)oll*

lu = (u-v)ol® =1~ (u-v)®
2

2

>l—u-v=

|

Hence we get that for any z in the span of v and u

lllgr < floll”” + [lv*

q*

IN

v)

V2
w1+ (el + o

2v2
— K.
Y
The above also establishes that /2
2
[Mllg—2 < 27”-

Substituting into (131) we get that

|TTA — TIA|| < 2‘7@,-;5\/%. (132)
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Hence, if ||[IIA — ITA| > kd\/m/+/z we must have that
o~ ull = < 2V3VE (133)
In this case we can bound ||A — I A|| as

A —ILA| < [[A - ILA| + [[(IL — L) A
< e All + [Ty — TLz|[| Al
<ellAll+ o —uuT |||l Al
= <A+ 50+ 0o -0 + 50— W+ w4
<e|All + 2|lv — ul|||A|| (by triangle inequality and the fact that ||v + u| < 2)
< el Al +2v]|A]
< el All + 4v2VEl|All.

Tightness of the Guarantee in Theorem 30. We close out this section by showing that
the dependence on \/co||u|| in our bound on mean estimation is necessary even information
theoretically. In what follows A will be an n x m matrix with 4 = MEAN(A) such that
IT* = pp'" /||p)|? has small norm, i.e., ||I1*||oo—s2 = #. Furthermore, let C' = 1" and define
o =[|A—C|/v/m. We will prove the following.

Theorem 57 Fix g = occ. Let M be the set of n x m matrices A with mean u that satisfies
lull € [1,2], variance o* around the mean that satisfies o € (0,1/6], and the subspace
spanned by p being k-robust. Call a perturbation A of A € M of be valid if ||A — Al|o < 6.
Then, any algorithm that takes as input a valid perturbation A of a matric A € M and
either certifies that the data is poisoned, i.c., |A — A|| > 8a+/m or outputs an estimate i
of i must incur an error of

. K0
= ill = (1 + =) max(o, V/olul) )
where j1 = MEAN(A).

Proof We will establish the lower bound by constructing two matrices A and A, both of
which lie in the set M, satisfy ||A — A|| = & for k6 = O(c), but have means separated by
Q(max(c, \/0ftmax) ), Where figayx is the maximum /3 norm among MEAN(A) and MEAN(A).
In this case, given either A or A as input, any provably robust certification procedure cannot
output BAD INPUT and must output an estimate j, thereby making Q(max(c, \/0fimax))
error on either A or A. We next describe our construction.

For a k to be determined later, let yy = (1/vVk,1/VE,...,1/VE,0,0,...,0). Hence, u;
is a unit length sparse vector with ||u1||; = vk. We define the set of m points in A by
generating i.i.d. points of the form p; 4+ g, where g is a mean zero Gaussian with variance 0
in the first k coordinates and variance o2 in the other coordinates. Then it is a standard fact
that with high probability ||A— 117 || < 20v/m and that MEAN(A) will be ov/d/m = o(c)-
close to 1. Next we define the set of points in A to be /Nlj = Aj+0dsgn(u1), where sgn(puy)
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is a +1 vector representing the sign of the corresponding coordinate of py. Here we can

arbitrarily set sgn(0) to be +1. It is easy to see that MEAN(A) will be o(o)-close to
po = p1 + 8sgn(u1), and that ||A — el | < 204/m. Next notice that

2] = 14 6%n + 5vVk
2l = VE + 6VE.

By setting vk = 30 and én = Vk we ensure that ||us|| € [1,2] and ||u2; < 2vk. Hence
we get that for the matrix TT = poug /||p2]|?, [|1]|sos2 < 2vk. Hence, both A and A lie in
the set M with sparsity bound k = 2VEk. Furthermore, the fact that Wk = 30, ensures
that k6 < 60. Finally, notice that the difference between two means is

1 = pall = 5/ = VaR* = VBa = Q((1+ ") max(o, /i) ).
|

We end this section by showing that via an (inefficient) algorithm one can get the same
guarantee for mean estimation as in Theorem 30 without the need for certification.

Theorem 58 (Information Theoretic Upper Bound) Let A be an n X m matriz rep-
resenting m data points in n dimensions and let p be the mean of the data points in the
matriz A with C representing the n x m matriz with each column being p. Let II* =
pi' /|| il|? be the one dimensional subspace denoting the projection onto p and assume that
|IIT*||g—2 < K, for some q¢ > 2. Let A be the given input such that for every column j € [m]
we have ||A; —fleq < §. Furthermore, let % > 0 be a given upper bound on the variance of
the data around the mean, i.e., |A—C|| < ov/m. Then there is an (inefficient) exponential
time algorithm that takes A as input and outputs an estimate [i of the true mean pu such
that

. KO
It = plla < Oleq) (1 + =) max (o, /o)

where cq is a constant that depends on q. In particular, the above implies a relative error
guarantee of

1t — pll2 Ko o o
———= < O(cg)(1 + —)max ( —, /7 -
il ! o <HMH HMH)

Proof In order to establish the theorem above we first optimize (70) exactly. Let A’ be
the matrix and II be the projection that achieve the minimum of (70). Then we have that

|A"—TIA'|| < ||A — T Al
Furthermore, we also have that

[A—IFA[ < J[A = C|| + [|C — I A
<2(A-C
< 20v/m.
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Hence both A and A’ have good projections onto rank-1 subspaces. Plugging into Lemma 56

we get that

8Kkd
14~ 114] < 0(e + va) ] + 2L,

where e = 20/m/||A||. Hence, letting i = MEAN(ITA’) we get from (119) that
. 1
lp = Al < —=|lA — TLA|| + g0

NG
<O(e + \/E)T/A% + Sﬁf/\gm

+ cqK0.

The rest of the argument proceeds exactly as in the Proof of Theorem 30 by writing || Al

in terms of ¢, as done in (120).
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