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Abstract
We consider the problem of the Zinkevich (2003)-style dynamic regret minimization in online
learning with exp-concave losses. We show that whenever improper learning is allowed, a Strongly
Adaptive online learner achieves the dynamic regret of Õ∗(n1/3C

2/3
n ∨ 1) where Cn is the total

variation (a.k.a. path length) of the an arbitrary sequence of comparators that may not be known
to the learner ahead of time. Achieving this rate was highly nontrivial even for square losses in
1D where the best known upper bound was O(

√
nCn ∨ log n) (Yuan and Lamperski, 2019). Our

new proof techniques make elegant use of the intricate structures of the primal and dual variables
imposed by the KKT conditions and could be of independent interest. Finally, we apply our results
to the classical statistical problem of locally adaptive non-parametric regression (Mammen, 1991;
Donoho and Johnstone, 1998) and obtain a stronger and more flexible algorithm that do not require
any statistical assumptions or any hyperparameter tuning.
Keywords: Non-stationary Online Learning, Dynamic Regret, Strongly Adaptive methods, Online
Non-parametric Regression

1. Introduction

We consider a generic online learning framework which is modelled as an interactive n step game
between a learner and adversary. At each time step t, the learner predicts a pt ∈ D ⊆ Rd. Then the
adversary reveals a loss function ft : Rd → R. The objective of the learner is to minimise its regret
against a predefined set of strategiesW that is known to the learner before the start of the game. We
call a learning algorithm to be proper when D = W . Further when D = W are convex sets and
the losses ft are convex in D, the generic learning framework reduces to the one studied in Online
Convex Optimization (OCO) (Hazan, 2016). On the other hand, we call the learning algorithm to be
improper when D ⊃ W . A commonly used metric to measure the performance of the learner is its
static regret defined as

Rn =

n∑
t=1

ft(pt)− inf
w∈W

n∑
t=1

ft(w).

A sub-linear static regret implies that the average loss incurred by the learner converges to that of the
best comparator strategy in hindsight.

A canonical example of an improper algorithm can be found in an online linear regression setting
where ft(u) = (yt − xTt u)2 with |yt|≤ 1, ‖xt‖2≤ 1 and we are interested in controlling the static
regret against against a set of linear predictors with bounded norm,W = {w ∈ Rd : ‖w‖2≤ 1}.
One popular learning algorithm in this framework is the Vovk-Azoury-Warmuth (VAW) forecaster
(Vovk, 1997; Azoury and Warmuth, 2004) (or see Section 11.8 in (Cesa-Bianchi and Lugosi, 2006)).
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The VAW forecaster attains an O(d log n) static regret againstW . However predictions of VAW at
time t denoted by ut may not necessarily satisfy ‖ut‖2≤ 1 hence making it an improper algorithm.

The notion of static regret is not befitting for non-stationary environments – such as financial
markets – where it could be inappropriate to compete against a fixed comparator due to the changes
in the dynamics of the environment. The work of (Zinkevich, 2003) introduces the notion of dynamic
regret defined as

Rnw1,...,wn
:=

n∑
t=1

ft(pt)− ft(wt), (1)

for any sequence of comparators wt in W . The dynamic regret bounds are usually expressed in
literature as a function of number of time steps and some path variation metric that captures the
degree of non-stationarity in the comparator sequence. In this paper, we study the following path
variation:

TV (w1, . . . ,wn) :=

n∑
t=2

‖wt −wt−1‖1.

The maximum dynamic regret against all comparator sequences whose path variation is bounded by
a number Cn can then be defined as

Rn(Cn) := sup
w1,...,wn

TV (w1,...,wn)≤Cn

Rnw1,...,wn
.

There is a complementary body of work on Strongly Adaptive (SA) algorithms (Daniely et al.,
2015) where the static regret in any sub-interval of [n] := {1, . . . , n} is controlled (see Section 2 for
a review). Hence SA algorithms have the nice property of being globally and locally optimal. The
work of (Zhang et al., 2018b) exploits this property of SA algorithms to control their dynamic regret
in terms of a variational metric that measures how much the losses ft change over time. In particular,
whenever the losses have extra curvature properties such as strong convexity or exp-concavity, they
show that one can get fast dynamic regret rates. However, it was unclear if SA methods can lead
to optimal dynamic regret guarantees in terms of the path length of the comparator sequence — an
open question raised in (Zhang et al., 2018b).

The works of (Zhang et al., 2018a) and (Yuan and Lamperski, 2019) attains a dynamic regret
of O∗(

√
n(1 + Cn)) and O∗(

√
nCn ∨ log n) respectively, where O∗(·) hides dependence on the

dimension and (a ∨ b) = max{a, b}. However, we show a lower bound of Ω∗(n1/3C
2/3
n ∨ log n) in

Proposition 11 applicable to the case when losses are strongly convex / exp-concave. Hence, there is a
large gap between this lower bound and existing upper bounds. In this work, we show that whenever
improper learning is allowed and when the loss functions are strongly convex / exp-concave, one can
leverage SA algorithms to attain the sharp rate of Õ∗(n1/3C

2/3
n ∨ log n) for Rn(Cn) where Õ∗(·)

hides dependence in the dimension and factors of log n (see section 4 for formal statements and
complete list of assumptions). Further, the SA algorithms need not require the apriori knowledge of
Cn to attain this rate.

As a concrete use case, we show that our results have interesting implications to the problem
of online Total Variation (TV) denoising. The offline version of TV-denoising problem has seen
many influential applications in the signal processing community. For example, algorithms that use
TV-regularization has been deployed in every cellphone, digital camera and medical imaging devices
(we refer readers to the book (Chambolle et al., 2010) and the references therein) as well as other
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tasks beyond the context of images such as change-point detection, semisupervised learning and
graph partitioning.

We proceed to formally introduce the non-paramteric regression problem behind TV-denoising.
Define a non-parametric class of TV bounded sequences as

T V(Cn) :=

{
(w1, . . . , wn) :

n∑
t=2

|wt − wt−1|≤ Cn
}
,

where
∑n

t=2|wt − wt−1| is termed as the TV of the sequence w1:n := (w1, . . . , wn). In the offline
TV-denoising problem we are given n observations of the form yt = wt + εt where εt are iid zero
mean subgaussian noise, t ∈ [n] and w1:n is an unknown sequence in T V(Cn). We are interested
in coming up with estimates ŵt such that RT V(Cn) := E

[∑n
t=1(ŵt − wt)2

]
is controlled. Several

non-parametric regression algorithms such as Trend Filtering (Tibshirani, 2014) are known to achieve
a near minimax optimal rate of Õ(n1/3C

2/3
n ) for RT V(Cn) where Õ(·) hides dependence on factors

of log n.
We can instantiate an online version of the above non-parametric regression problem behind

TV-denoising into our learning framework with slight modifications. We consider a TV class with
bounded sequences

T VB(Cn) :=

{
w1:n :

n∑
t=2

|wt − wt−1|≤ Cn, |wt|≤ B ∀t ∈ [n]

}
. (2)

When viewed through our online learning framework, we take ft(x) = (yt − x)2 where |yt|≤ B,
D = W = [−B,B]. Labels y1:n is a fixed sequence in contrast to the stochastic noise setting
discussed earlier, and we are hoping to compete with the best approximation from sequences in
T VB(Cn) for all Cn ≥ 0 at the same time. We remark that to compete with the entire T V(Cn) class
it is sufficient to compete with T VB(Cn) due to the property |yt|≤ B. We show in Section 3 that by
using appropriate SA algorithms, one can attain a dynamic regret of Rn(Cn) = Õ(n1/3C

2/3
n ). This

in turn implies the minimax estimation rate in the iid stochastic setting (see Appendix A for details).
Further our results have the added advantage of providing an oracle inequality. We conclude this
section by summarizing our key contributions below.

• We show that Follow-the-Leading-History (FLH) algorithm (Hazan and Seshadhri, 2007) with
Follow The Leader (FTL) as base learners can achieve the optimal minimax regret (modulo
log n factors) of Õ(n1/3C

2/3
n B4/3 ∨ B2 log n) for the problem of online non-parametric

regression with TV bounded sequences – T VB(Cn) – as the reference class. The policy is
adaptive to the TV budget Cn. Further, we demonstrate that the same policy is minimax
optimal for smoother non-parametric sequence classes such as Sobolev class or Holder class.

• When improper learning is allowed and when the loss functions revealed by the adversary
are exp-concave, strongly smooth and Lipschitz on a box that encloses the set of comparators
W , (see Section 4) we show that FLH with ONS as base learners attains a dynamic regret of
Õ
(
d3.5(n1/3C

2/3
n ∨ 1)

)
when Cn ≥ 1/n and O(d1.5 log n) otherwise, without prior knowl-

edge of Cn – the path variation of the comparator sequence. This rate is shown to be minimax
optimal modulo polynomial factors of log n and d.
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• The proof of the regret bound is facilitated by exploiting a number of distinct structures of
primal and dual variables in KKT conditions of the optimization problem solved by the offline
oracle. We believe that this style of analysis can be useful in bounding the regret of online
algorithms in a broader context.

2. Related Work

We begin by recalling works that are most relevant to our setting. We reserve the term OCO setting
whenW = D and loss functions are convex in D.

For an arbitrary comparator sequence inW denoted byw1:n := (w1, . . . ,wn),(Zinkevich, 2003)
introduces a path variational defined as

Pn(w1, . . . ,wn) =

n∑
t=1

‖wt −wt−1‖2. (3)

They show that in the OCO setting, the Online Gradient Descent (OGD) algorithm can attain a
dynamic regret (Eq.(1)) of O(

√
n(1 + Pn)), but if Pn is known1, O(

√
n(1 + Pn)) can be achieved

by simply increasing the learning rate appropriately. By hedging over a collection of OGD algorithms
defined by exponential grid of step sizes, (Zhang et al., 2018a) proposes an algorithm that achieves a
faster rate of O(

√
n(1 + Pn)) which is shown to be minimax optimal when the loss functions are

convex. (Yuan and Lamperski, 2019) proposes strategies that can attain regret rates of O(
√
nPn ∨

log n) and O(
√
dnPn ∨ d log n) for strongly convex and exp-concave losses respectively. However,

this regret rate is only optimal when Pn approaches n or Pn = O(1/n).
(Besbes et al., 2015) introduces the functional variation defined as

Dn :=

n∑
t=2

max
w∈W

|ft(w)− ft−1(w)|. (4)

They show that by using a restarted variant of OGD, one can attain the dynamic regret rate of
O(n2/3D

1/3
n ) and Õ(

√
nDn) for convex and strongly convex losses respectively using noisy-gradient

feedback. This setting is incompatible to ours as it exploits smoothness in f1, ..., fn while we allow
f1, ..., fn to be arbitrary. Moreover, they need to know Dn.

There is a parallel line of work (Hazan and Seshadhri, 2007; Daniely et al., 2015; Adamskiy
et al., 2016) that focuses on controlling the static regret in any sub-interval of [n] . In particular,
(Daniely et al., 2015) proposes the notion of Strongly Adaptive algorithms. An algorithm is said to
be Strongly Adaptive (SA) if for every continuous interval I ⊆ [n], the static regret incurred by the
algorithm is O(poly(log n)R∗(|I|)) where R∗(|I|) is the value of minimax static regret incurred in
an interval of length |I|. In this viewpoint, the algorithms proposed by (Hazan and Seshadhri, 2007)
for strongly convex / exp-concave losses are in fact Strongly Adaptive.

(Zhang et al., 2018b) shows that SA methods enjoys a dynamic regret of Õ(n2/3D
1/3
n ) for convex

functions and Õ(
√
nDn) and Õ(

√
dnDn) for strongly convex and exp-concave losses respectively

without prior knowledge of Dn. We refer the reader to Appendix A for a discussion on various other
dynamic regret minimization strategies such as (Jadbabaie et al., 2015; Yang et al., 2016; Mokhtari
et al., 2016; Chen et al., 2018; Zhao et al., 2020).

1. In a sense that we are to only compete with sequences with path length ≤ Pn, rather than simultaneously competing
with all sequences Pn > 0.
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The setting of learning with squared error losses we consider in Section 3 can be regarded
as an online version of the batch Total Variation denoising problem. The corresponding offline
problem has been studied extensively in the non-parametric regression literature. Many algorithms
such as Wavelet Smoothing (Donoho and Johnstone, 1998), Locally Adaptive Regression Splines
(van de Geer, 1990) and Trend Filtering (Kim et al., 2009; Tibshirani, 2014; Wang et al., 2014, 2016;
Guntuboyina et al., 2017) have been shown to acheive the optimal minimax rates of Õ(n1/3C

2/3
n )

under squared error loss where n is the number of samples and Cn is the TV of the ground truth.
All of these estimators have a key property of local adaptivity where the estimators are able to
detect abrupt local fluctuations in the ground truth signal and adjust the amount of smoothing to be
applied which is essential for optimally estimating TV bounded sequences that can exhibit spatially
in-homogeneous degree of smoothness.

(Baby and Wang, 2019; Baby et al., 2021) studies the problem of estimating TV bounded
sequences in an online stochastic optimization framework. They assume that the labels revealed
by the adversary is the noisy realization of a ground truth sequence that belongs to a TV (Cn) ball.
However, the absence of such statistical assumptions on revealed labels in our setting makes the
problem significantly more challenging. Interestingly, a lower bound from (Baby and Wang, 2019)
implies that the meta-hedge algorithm of (Zhang et al., 2018a) requires Ω(

√
nPn) dynamic regret

even if the loss functions are strongly convex, despite the fact that OGD achieves O(log n) static
regret. Extension to higher order TV classes are considered in (Baby and Wang, 2020).

We refer the reader to Appendix A for an elaborate description on how our TV-denoising
framework fits under the umbrella of online non-parametric regression framework developed by
(Rakhlin and Sridharan, 2014) and others (Gaillard and Gerchinovitz, 2015; Koolen et al., 2015;
Kotłowski et al., 2016).

3. Performance guarantees for squared error losses

In this section, we focus on the online TV-denoising problem which is a special case of our online
learning framework with squared error losses as discussed in Section 1. This will help to build the
intuitions behind the analysis for general exp-concave losses as well. All unspecified proofs of this
section are deferred to Appendix C. We consider the following interaction protocol.

• At time t ∈ [n] learner predicts xt ∈ D = [−B,B].

• Adversary reveals a label yt ∈ [−B,B].

• Learner suffers loss (yt − xt)2.

We define the comparator class as the set of TV bounded sequences that takes values inW =
[−B,B] as in Eq.(2). The performance of the learner is measured using dynamic regret against the
sequences that belongs to T VB(Cn), for all Cn > 0 simultaneously.

The main SA method that we will be relying on throughout this paper is the FLH algorithm
from (Hazan and Seshadhri, 2007). We provide a description of this algorithm in Appendix B for
completeness. We have the following regret guarantee for FLH with Follow-the-Leader (FTL) as
base learners (in this case, FTL is equivalent to simple online averaging).
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Theorem 1 Let xt be the prediction at time t of FLH with learning rate ζ = 1/(8B2) and base
learners as FTL. Then for any compararator (w1, . . . , wn) ∈ T VB(Cn)

n∑
t=1

(yt − xt)2 − (yt − wt)2 = Õ
(
n1/3C2/3

n B4/3 ∨B2
)
,

where the labels obey |yt|≤ B, Õ(·) hides dependence on logarithmic factors of horizon n and
a ∨ b := max{a, b}.

Remark 2 (Adaptivity to Cn and (non-stochastic) oracle inequality) We remark that FLH-FTL
does not require Cn as an input thus Theorem 1 implies the following oracle inequality

n∑
t=1

(yt − xt)2 ≤ min
w1,...,wn

n∑
t=1

(yt − wt)2 + Õ
(
n1/3TV(w1:n)2/3B4/3 ∨B2

)
.

Such result is not known for any algorithm even in the offline case when y1, ..., yn is known. Notice
that wt does not need to be constrained because −B ≤ yt ≤ B.

The strongest oracle inequality for TV-denoising to our knowledge is that of (Guntuboyina
et al., 2017; Ortelli and van de Geer, 2019), which shows that the fused-lasso estimator with
tuning parameter λ obeys

∑n
t=1(yt−xt)2 ≤ minw1,...,wn

∑n
t=1(yt−wt)2 +O (λTV(w1:n)) , under

additional stochastic assumptions of yt. Our results eliminate the need to choose hyperparameter λ
all together and achieve the same rate achievable by the optimal choice of λ.

For the sake of clarity we next present the strategy we adopt for proving Theorem 1. We also highlight
the main technical challenges that are needed to be overcome along the way. This is followed by
some useful lemmas and proof of the main theorem in Section 3.2.

3.1. Proof strategy for Theorem 1

Let u1, . . . , un be the offline optimal sequence (see Lemma 3) in T VB(Cn) which attains the
minimum cumulative squared error loss. Note that this offline optimal can depend on the entire
sequence of labels y1, . . . , yn chosen by the adversary.

Consider a partitioning of [n] into M sub-intervals {[is, it]}Mi=1. We will also use the number i to
refer to the interval [is, it]. For the interval i, define the quantities: ni = it−is+1, ȳi = 1

ni

∑it
j=is

yj ,
ūi = 1

ni

∑it
j=is

uj .
We start by the following regret decomposition.

Rn =

M∑
i=1

it∑
j=is

(xj − yj)2 − (yj − ȳi)2︸ ︷︷ ︸
T1,i

+

M∑
i=1

it∑
j=is

(yj − ȳi)2 − (yj − ūi)2︸ ︷︷ ︸
T2,i

+

M∑
i=1

it∑
j=is

(yj − ūi)2 − (yj − uj)2︸ ︷︷ ︸
T3,i

(5)

Now the task of bounding Rn reduces to bounding T1,i, T2,i, T3,i for each bin and adding them
up across all M bins. Let Ci be the TV within bin i incurred by the offline optimal. In Lemma 5, we
exhibit a partitioning P of [n] into M = O(n1/3C

2/3
n B−2/3) bins such that Ci ≤ B/

√
ni for each

bin.
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Due to strong adaptivity of FLH, the term T1,i = O(B2 log n) since it is the static regret
against the fixed comapartor ȳi. Hence adding them across all bins in the partition P yields∑M

i=1 T1,i = Õ(n1/3C
2/3
n B4/3).

By exploiting the KKT conditions satisfied by the offline optimal and using strong smoothness,
we show in Lemma 9 that T3,i can be at-most O(niC

2
i + λCi) in general. Here λ ≥ 0 is the optimal

dual variable arising from the KKT conditions (Lemma 3). Since Ci = O(B/
√
ni) for bins in the

partition P , we have niC2
i = O(B2). However, it is not possible to bound λCi = O(1) since λ can

be even Θ(n) in some cases (See Example 21 in Appendix C).
This is where the term T2,i plays a crucial role. Note that since ȳi is the minimizer of g(x) =∑it
j=is

(yj − x)2, we conclude that T2,i ≤ 0. For simplicity of exposition, let’s assume that T2,i <
0, deferring formal arguments for the general case to Section 3.2. We show that this negative
term diminishes the λCi arising from the bound on T3,i to a quantity that is O(1). Specifically,
T2,i + T3,i = O(B2) even though individually |T2,i|, |T3,i| can be very large. The desired regret
bound now follows by summing it across all M = O(n1/3C

2/3
n B−2/3) bins in P .

3.2. Regret Analysis

Define the sign function as sign(x) = 1 if x > 0; −1 if x < 0; and some u ∈ [−1, 1] if x = 0. For
a vector x ∈ Rd, sign(x) ∈ Rd is defined by the coordinate-wise application of this rule. We start
by presenting a sequence of useful lemmas.

Lemma 3 (characterization of offline optimal) Consider the following convex optimization prob-
lem (where z̃1, ..., z̃n−1 are introduced as dummy variables)

min
ũ1, ... ,ũn,z̃1, ... ,z̃n−1

1

2

n∑
t=1

(yt − ũt)2

s.t. z̃t = ũt+1 − ũt ∀t ∈ [n− 1],

n−1∑
t=1

|z̃t|≤ Cn (6a)

Let u1, . . . , un, z1, . . . , zn−1 be the optimal primal variables and let λ ≥ 0 be the optimal dual
variable corresponding to the last constraint (6a). By the KKT conditions, we have

• stationarity: yt = ut − λ(st − st−1), where st ∈ ∂|zt| (a subgradient). Specifically,
st = sign(ut+1 − ut) if |ut+1 − ut|> 0 and st is some value in [−1, 1] otherwise. For
convenience of notations later, we also define sn = s0 = 0.

• complementary slackness: λ (
∑n

t=2|ut − ut−1|−Cn) = 0.

Remark 4 We enumerate some elementary observations about the optimal primal variables in
Lemma 3 that will be used throughout.

P1 For any time point t, if the optimal solution ut+1 > ut, then st = 1. Similarly st = −1
whenever ut+1 < ut. If ut = ut+1, the st can be any number in [−1, 1].

P2 Consider a sub-interval [a, b] with 2 ≤ a ≤ n− 1 such that the optimal solution jumps at both
the end points. i.e uk 6= uk−1 for k ∈ {b+ 1, a}. Define ∆sa→b := sb − sa−1. Then either
|∆sa→b|= 0 or |∆sa→b|= 2 since sa−1 ∈ {−1, 1} and sb ∈ {−1, 1}.
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P3 Consider a sub-interval [1, b] with b < n such that ub+1 6= ub. Then |∆s1→b|= 1 since s0 = 0
by convention (Lemma 3). Similarly for a sub-interval [a, n] with a > 1, such that ua−1 6= ua,
we have |∆sa→n|= 1.

Terminology. We will refer to the optimal primal variables u1, . . . , un in Lemma 3 as the offline
optimal sequence in this section.

Next, we exhibit a useful partitioning scheme of the interval [n].

Lemma 5 (key partition) Initialize Q ← Φ. Starting from time 1, spawn a new bin [is, it] whenever∑it+1
j=is+1|uj − uj−1|> B/

√
ni, where ni = it − is + 2. Add the spawned bin [is, it] toQ. Consider

the following post processing routine.

1. Initialize P ← Φ.

2. For i ∈ [|Q|]:

• if uit = uit+1:

(a) Let p be the largest time point with up:it being constant and let q be the smallest
time point with uit+1:q being constant.

(b) Add bin [is, p− 1] to P .
(c) If (i+ 1)t > q then add [p, q] to P and set (i+ 1)s ← q + 1.
(d) Goto Step 2.

• Add [is, it] to P . Goto Step 2.

Let M := |P|. We have M = O
(

1 ∨ n1/3C
2/3
n B−2/3

)
. Further for any bin [is, it] ∈ P , it

holds that
∑it

j=is+1|uj − uj−1|≤ B/
√
ni where ni = it − is + 1.

Remark 6 Consider a bin [is, it] ∈ P . Let ∆si := sit − sis−1. By virtue of the post processing
routine of Lemma 5, the bin [is, it] will conform to either of the cases P2 or P3 in Remark 4. So we
have |∆si|> 0 implies |∆si|≥ 1.

We emphasize that the bins [is, it] we consider in Eq. (5) belong to the partition P of Lemma 5.
We proceed to bound T1,i, T2,i and T3,i in the regret decomposition of Eq.(5).

Lemma 7 (bounding T1,i) Assume that we run FLH with the settings described in Theorem 1. For
any bin i we have T1,i = O

(
B2 log n

)
Lemma 8 (bounding T2,i) Define Ci :=

∑it
j=is+1|uj − uj−1|, the TV within bin i incurred by the

offline optimal solution. Let ∆si := sit − sis−1 and ni := it − is + 1. We have T2,i ≤ −λ
2(∆si)

2

ni
.

Lemma 9 (bounding T3,i) Let Ci and ∆si be as in Lemma 8.

Case(a) If |∆si|> 0 then T3,i ≤ B2 + 6λCi.
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Case(b) If ∆si = 0 with sis−1 = sit = 1 and the offline optimal u is non-decreasing within bin i,
then T3,i ≤ B2.

Case(c) If ∆si = 0 with sis−1 = sit = −1 and the offline optimal u is non-increasing within bin i,
then T3,i ≤ B2.

Proof of Theorem 1 Tree diagrams that represent the flow of arguments in the proof is displayed in
Fig.3 and 4 in Appendix C. We start from the regret decomposition in Eq. (5).
Case (a) in Lemma 9. First we handle case(a) in Lemma 9 where |∆si|> 0. Define Ti :=
T1,i + T2,i + T3,i. From Lemmas 7, 8 and 9 we have

Ti ≤ O
(
B2 log n

)
− λ2(∆si)

2

ni
+B2 + 6λCi

≤ O
(
B2 log n

)
− λ2(∆si)

2

ni
+ 6λCi

≤(a) O
(
B2 log n

)
+

9niC
2
i

(∆si)2
−
(
λ∆si√
ni
− 3Ci

√
ni

∆si

)2

≤(b) O(B2 log n) + 9B2

≤ O(B2 log n),

where line (a) is obtained by completing the square. For line (b) we dropped the negative term used
Remark 6 to conclude |∆si|≥ 1. Further niC2

i ≤ B2 for bins in the partition P of Lemma 5.
Case (b) and (c) in Lemma 9. To handle case (b) and case (c) in Lemma 9 where ∆si = 0 and
monotonic, we have T1,i = O(B2 log n) due to Lemma 7, T2,i ≤ 0 due to Lemma 8 and T3,i ≤ B2

due to Lemma 9. So Ti ≤ O
(
B2 log n

)
+B2 ≤ O(B2 log n).

Other cases:
(A1) Consider the case when ∆si = 0 with sis−1 = sit = −1 and the offline optimal u is

non-decreasing within bin i. If the sequence is constant within the bin, then trivially we have
Ti = O

(
B2 log n

)
due to Strongly Adaptivity of FLH. Otherwise, we the split the original bin into

two sub-bins [is, k] and [k + 1, it] such that sk = 1 with uk+1 > uk. See config (a) in Fig.1 for an
illustration. Then the two sub-bins falls into the category of case (a) in Lemma 9. By bounding the
regret within each sub-bin separately by following the previous arguments for case (a) and adding
them up, we can get Ti ≤ O

(
B2 log n

)
regret for the original bin. The arguments for the case when

∆si = 0 with sis−1 = sit = 1 and the offline optimal u is non-increasing within bin i are similar.
(A2) To handle the case when ∆si = 0 and the optimal sequence is not monotonic, we split the

bin into two parts. Consider the case sit = sis−1 = 1. We can split uis:it as uis:k and uk+1:it such
that the sequence uis:k is non-decreasing and sk = −1 with uk > uk+1. See config (b) in Fig.1 for
an illustration. Notice that both the sub-bins uis:k and uk+1:it now falls into the category of case(a)
in Lemma 9. Adding the bounds within these sub-bins by following the treatment for case (a) above
yields Ti ≤ O

(
B2 log n

)
. The arguments for the scenario sit = sis−1 = −1 are similar.

Now the theorem follows by summing
∑M

i=1 Ti for the M = O
(

1 ∨ n1/3C
2/3
n B−2/3

)
bins in

the partition P of Lemma 5.

The previous results generalize to online TV-denoising framework in higher dimensions.

9



BABY WANG

is k it

config (a)

sis−1 = −1, sit = −1,∆si = 0

is k it

config (b)

sis−1 = 1, sit = 1,∆si = 0

Figure 1: Examples of configurations referred in the proof of Theorem 1. The blue dots corresponds
to the offline optimal sequence.

Proposition 10 (Extension to higher dimensions) Consider a protocol where at each time the
learner predicts a vector xt ∈ Rd after which the adversary reveals yt such that ‖yt‖∞≤ B.
Consider a comparator sequence of vectors w1, . . . ,wn such that TV (w1:n) :=

∑n
t=2‖wt −

wt−1‖1≤ Cn. By running d instances of FLH with learning rate ζ = 1/(8B2) and FTL as base
learners, where instance i, i ∈ [d], predicts xt[i] at time t, we have

Rn(w1:n) :=
n∑
j=1

‖yt − xt‖22−‖yt −wt‖22= Õ
(
dB2 log n ∨ d1/3n1/3C2/3

n B4/3
)
.

Proposition 11 (Lower bound) Assume the protocol and notations of Proposition 10. For any
algorithm, we have

sup
w1:n:TV (w1:n)≤Cn

Rn(w1:n) = Ω
(
dB2 log n ∨ d1/3n1/3C2/3

n B4/3
)
.

By comparing the upper and lower bounds, we conclude that the FLH-FTL strategy in Proposition
10 is minimax optimal (modulo log factors) wrt all parameters d, n,B and Cn.

Remark 12 Several other non-parametric sequence classes such as the Holder ball HB(B′n) =
{w1:n : ‖Dw1:n‖∞≤ B′n, ‖w1:n‖∞≤ B} and Sobolev ball SB(C ′n) = {w1:n : ‖Dw1:n‖2≤
C ′n, ‖w1:n‖∞≤ B} can be shown to embedded inside a T VB(Cn) ball for appropriate choices
of Cn, Bn and B′n (see (Baby and Wang, 2019)) with all classes having the same minimax rates of
estimation in the iid setting. So the minimax optimality on TV ball for FLH with FTL as base learners
implies minimax optimality on the embedded Holder and Sobolev balls as well.

4. Performance guarantees for exp-concave losses

We begin by listing all the assumptions we make about the loss functions.

EC-1 Without loss of generality, we assume 0 ∈ W . Let B := supx∈W‖x‖∞. Define D− := {x ∈
Rd : ‖x‖∞≤ B}. The loss functions ft(x) : Rd → R are G Lipschitz in D−.

10
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EC-2 The loss functions are β strongly smooth in D = {x ∈ Rd : ‖x‖∞≤ B + G}. i.e ft(y) ≤
ft(x)+(y−x)T∇ft(x)+ β

2 ‖x−y‖22, for all x,y ∈ D. We assume without loss of generality
that β ≥ 1.

EC-3 The loss functions are α exp-concave in D. i.e ft(y) ≥ ft(x) + (y − x)T∇ft(x) +
α
2

(
(y − x)T∇ft(x)

)2 for all x,y ∈ D.

EC-4 The loss functions ft(x) : Rd → R are G† Lipschitz in D.

Below, we give an example of a family of loss functions that satisfy the above assumptions.

Example 13 (Generalized linear models) Let ft(x) = g(vTt x), where g : R → R is a convex
function and vt is a feature vector. Let ‖vt‖2≤ R. Assume that for all x ∈ D− we have |g′t(vTt x)|≤
a. Further for all x ∈ D, let |g′t(vTt x)|≤ a+, g′′t (vTt x) ≤ b, g′′t (vTt x) ≥ c > 0. Then Assumptions
EC 1-5 are satisfied by by the losses ft with G = aR, β = bR2, α = c/((a+)2) and G† = Ra+.

We are interested in characterizing the maximum dynamic regret

R+
n (Cn) := sup

w1,...,wn∈D−∑n
t=2‖wt−wt−1‖1≤Cn

n∑
t=1

ft(xt)− ft(wt),

where xt are the predictions of the learner. SinceW ⊆ D−, the dynamic regret against comparators
in D− trivially upperbounds the dynamic regret againstW . The algorithms that we study throughout
this section are improper in the sense that the predictions of the algorithms belong to D ⊃ W .

Before diving into the details, we remark that our main focus is to get optimal dependence on
n and Cn. The dimension d is considered as a constant problem parameter and we do not try to
optimize its polynomial dependence. All unspecified proofs of this section are given in Appendix D.

We have the following regret guarantee for exp-concave losses.

Theorem 14 By using the base learner as ONS with parameter ζ = min
{

1
4G†(2B

√
d+2G/β)

, α
}

,

decision set D and choosing learning rate η = α, FLH obeys R+
n (Cn) = Õ

(
d3.5(n1/3C

2/3
n ∨ 1)

)
if Cn > 1/n and O(d1.5 log n) otherwise. Here a ∨ b := max{a, b} and Õ(·) hides dependence on
the constants B,G,G†, α and factors of log n.

Proof [proof sketch] Let u1, . . . ,un be the offline optimal sequence such that
∑n

t=1 ft(ut) is
minimum across all sequences that obeys: (a)

∑n
t=2‖ut − ut−1‖1≤ Cn; (b) ut ∈ D− for all t ∈ [n]

(see Lemma 29 in Appendix D for more details).
Let P be a partition of [n] into M = O∗(n1/3C

2/3
n ) bins obtained by a similar scheme in Lemma

5 where within each bin, we have
∑it

j=is+1‖uj −uj−1‖1≤ B/
√
ni. Let [is, it] denote the ith bin in

P and let ni be its length. Define ūi = 1
ni

∑it
j=is

uj and u̇i = ūi − 1
niβ

∑it
j=is
∇fj(ūi) where β is

as in Assumption EC-2. Let xj be the prediction made by FLH at time j. We start with following
regret decomposition.

R+
n (Cn) ≤

M∑
i=1

it∑
j=is

fj(xj)− fj(u̇i)︸ ︷︷ ︸
T1,i

+

M∑
i=1

it∑
j=is

fj(u̇i)− fj(ūi)︸ ︷︷ ︸
T2,i

+

M∑
i=1

it∑
j=is

fj(ūi)− fj(uj)︸ ︷︷ ︸
T3,i

(7)

11
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Unlike the squared error case, for the term T1,i, we do not compete with the minimizer of
g(x) :=

∑it
j=is

fj(x). Instead we compete with u̇i which is obtained by a one-step gradient descent
of g(x) from the point ūi where the step size is set as 1/(niβ).

Recall that the purpose of ȳi in Eq. (5) was to make T2,i non-positive thereby facilitating potential
cancellation of terms arising from the bound on T3,i. Since g(x) is niβ strongly smooth, by the well
known descent lemma in first order optimization (eg. see Eq. 3.5 in (Bubeck, 2015)), we can bound
T2,i in Eq. (7) with a “sufficiently negative” term − 1

2niβ
‖∇g(ūi)‖2 as well. Also, observe that

‖u̇‖∞ ≤ ‖ūi‖∞+

∑it
j=is
‖∇fj(ū)‖∞
niβ

≤ B +G,

where in the last line we used the fact ūi ∈ D− and the Lipschitzness assumption in EC-1 along with
β > 1 by assumption EC-2. So in T1,i the comaparator term u̇i ∈ D. The base learners of the FLH
produce predictions in D to compete with such a comparator hence making the overall algorithm
improper. We do not project u̇ to the setW , because doing so appears to make T2,i not negative
enough to adequately diminish the terms arising from T3,i.

Rest of the proof proceeds by introducing lemmas analogous to the squared error case, carefully
bounding T1,i + T2,i + T3,i for each bin in P and summing them up across all bins. However, we
remark that the analysis is significantly more involved in comparison to that of squared error case
due to dual variables introduced by the additional constraint that ut ∈ D−.

We first present the proof for the 1D-exp-concave case in Appendix D.1, which illustrates how
boundedness constraints are handled by the structures in the KKT-conditions (Lemma 23) and by
discussing various combinations (see Fig. 6-8). Then we present the full proof for the higher-
dimensional exp-concave losses in Appendix D.2, where the structure becomes too complex for us to
enumerate all combinations. We address this by constructing an iterative algorithm that generates
bins and prove that the algorithm is guaranteed to find a partition with cardinality O∗(n1/3C

2/3
n ) that

satisfies a number of additional properties that give rise to the regret bound we claim.

Proposition 15 For strongly convex losses, the regret bound can be improved to Õ
(
d2(n1/3C

2/3
n ∨ 1)

)
if Cn > 1/n and O(log n) otherwise by using OGD as base learners in the FLH procedure. See
Appendix D.2 for a proof.

By comparing with the lower bound in Proposition 11 we conclude that the dynamic regret bound
of Theorem 14 is minimax optimal (up to log n factors) in n and Cn.

Remark 16 (Implications in statistical methodology.) Example 13 and Theorem 14 extends the
locally-adaptive nonparametric regression theory that are typically studied for square loss to an
arbitrary strongly convex / exp-concave loss while allowing covariates (exogenous variables) to be
modeled. Moreover, the method enjoys strong oracle inequalities (e.g. Remark 2) that certifies the
predictive performance in a fully agnostic / model-misspecified setting with no stochastic assumptions.
In addition, the method does not introduce additional tuning parameters at all.

5. Conclusion and further discussions

In this paper, we considered the problem of dynamic regret minimization with exp-concave losses
and showed that SA methods are minimax optimal (modulo factors of log n and d) in a setting where

12
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improper learning is allowed. To the best of our knowledge this is the first work that attains optimal
dynamic regret rates under this setting. The resulting algorithms are adaptive to the path variation of
the comparator sequence. Further, our results have far reaching consequences in locally adaptive
non-parametric regression as mentioned in Remark 16.

An open problem to investigate is if SA methods can still perform optimally in a proper learning
setting. If we consider a very restrictive setup where the loss functions are exp-concave and for
each function, at-least one of the global optimal points lie in the comparator setW , it is indeed the
case. An example of this scenario is the squared error loss ft(x) = (yt − x)2 with |yt|≤ B and
W = [−B,B] as in the TV-denoising setup. On the other hand, if there exists an SA learner that
can guarantee O(log n) static regret against any point in Rd in any time interval, then our results
provides optimal proper learning when D =W = Rd.
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Appendix A. More on Related Work

Throughout this section, we refer to the variationals Pn in Eq.(3) and Dn in Eq.(4) where the
arguments are dropped for brevity. In the OCO setting, when the environment is benign, (Zhao
et al., 2020) replaces the

√
n dependence in the regret of O(

√
n(1 + Pn)) attained by (Zhang et al.,

2018b) with problem dependent quantities that could be much smaller than
√
n. Although the linear

smoother lower bound in Proposition 2 of (Baby and Wang, 2019) would imply that an OEGD
(Online Extra Gradient Descent) (Zhao et al., 2020) expert with any learning rate sequences require
Ω(
√
nPn) dynamic regret for the 1D-TV-denoising problem.

Interestingly in (Yuan and Lamperski, 2019) the authors mention that even in the one-dimensional
setting, a lower bound on dynamic regret for strongly convex / exp-concave losses that holds uniformly
for the entire range 0 ≤ Pn ≤ n is unknown. However, we find that one can combine the existing
lower bounds on univariate TV-denoising in a stochastic setting (Donoho and Johnstone, 1998)
with the lower bound construction of (Vovk, 2001) (or see Theorem 11.9 in (Cesa-Bianchi and
Lugosi, 2006)) for online learning with squared error losses to obtain an Ω(log n ∨ n1/3C

2/3
n ) in

one dimensions (see Appendix C for details). In this work, we show that SA methods can achieve
a regret that matches this lower bound (modulo polynomial factors of dimension and log n) when
losses are strongly convex / exp-concave.

When the loss functions are strongly convex, (Mokhtari et al., 2016) studies the dynamic regret
against the comparator points that are the unique minimizers of the revealed losses in the set W
(= D). Specifically when w∗t = argminx∈W ft(x), and C∗n :=

∑n
t=2‖w∗t − w∗t−1‖2, they show

that OGD can be used to get the rate of O(1 +C∗n) for the dynamic regret against the sequencew∗1:n.
However, as noted in (Zhang et al., 2018a), that even though this implies an O(1 +C∗n) bound on the
dynamic regret against arbitrary comparator sequences in Eq.(1), the resulting bound can be overly
pessimistic. As an example, in TV-denoising, ft(x) = (yt − x)2 where yt = wt + Noise. Even if wt
obeys that TV(w1:n) = O(1), we would still have E[C∗n] =

∑n
t=2E[|yt − yt−1|] ≥ Ω(n) , thus the

O(1 + C∗n) regret bound does not imply any non-trivial bounds in our setting, e.g., if we take the
comparator sequence to be w1, ..., wn.

Different variational measures capture different aspects of the online learning problem and are
not comparable in general. (Jadbabaie et al., 2015) introduces a policy that attains dynamic regret in
terms of Dn and Pn simultaneously. Various other interesting variational measures and strategies to
control dynamic regret can can be found in the works of (Yang et al., 2016; Chen et al., 2018).

The seminal work of (Hazan and Seshadhri, 2007) introduces the notion of weakly adaptive regret
which is defined as the maximum static regret incurred by the learning algorithm in any continuous
interval. They propose algorithms that obtain static regret guarantees of Õ(

√
n) for convex losses

and Õ(1) and Õ(d) for strongly convex and exp-concave losses respectively. This has been further
developed in (Adamskiy et al., 2016). However, one drawback of weakly adaptive regret stems from
its trivial regret guarantees on short intervals. For example, an Õ(

√
n) static regret guarantee on an

interval of length
√
n is meaningless. This drawback is overcame by the notion of Strongly Adaptive

regret as discussed in Section 2 by taking into account the length of the interval where the static
regret is computed.

(Zhang et al., 2018b) shows that SA methods enjoys a dynamic regret of Õ(n2/3D
1/3
n ) for convex

functions and Õ(
√
nDn) and Õ(

√
dnDn) for strongly convex and exp-concave losses respectively

in an OCO setting. Thus when combined with our results, we can conclude that SA methods are
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simultaneously optimal wrt to the dynamic regret based on Dn and Pn in an application that allows
improper learning.

Our online TV-denoising setting studied in Section 3 can be cast into the framework of (Rakhlin
and Sridharan, 2014). They study the regret against non-parametric function classes under squared
error loss as follows

R′n =

n∑
t=1

(ŷt − yt)2 − inf
f∈F

n∑
t=1

(f(xt)− yt)2.

Our TV-denoising setting setting becomes identical to (Rakhlin and Sridharan, 2014) if one takes the
comparator class F to be space of TV bounded functions and when the features xt are revealed in
an isotonic order: x1 ≤ . . . ≤ xn. All the results can be trivially extended to the case of arbitrary
covariates that may be non-isotonically revealed by maintaining online averages across all intervals
in a Geometric Cover on [n] and using the specialist aggregation scheme in (Adamskiy et al., 2016)
(see (Baby et al., 2021) for an illustration of this idea in a stochastic setting). We do not follow this
path for the sake of simplicity of exposition.

The results of (Rakhlin and Sridharan, 2014) establish the minimax rates for the quantityR′n when
F is taken to be a Besov ball. It is known that a TV ball is sandwiched between two Besov spaces
(see for eg. (Donoho and Johnstone, 1998)) that have the same minimax rate for R′n. Hence results of
(Rakhlin and Sridharan, 2014) establishes that minimax regret of our problem is Õ(n1/3). However
their bounds don’t capture the correct dependence on Cn and are obtained by non-constructive
arguments. In contrary we obtain upper bounds with optimal dependence on both n and Cn by an
efficient algorithm.

(Kotłowski et al., 2016) proposes a policy that achieves a rate of Õ(n1/3) for R′n when F is the
family of isotonic functions that take values in [0, 1]. This class is indeed a subset of T VB(1). They
exploit the property that the optimal isotonic function is piecewise constant and within a constant
section, it takes the value equal to mean of labels yt within that section. However for our case the
offline problem solved by the oracle is an instance of a constrained fused LASSO which doesn’t
yield such nice closed form expression for value of optimal function within a constant section.

(Gaillard and Gerchinovitz, 2015) proposes a novel chaining algorithm that achieves optimal rate
for R′n when F is the family of Holder smooth functions. The functions residing in this class are
spatially homogeneous and more regular than the TV class. We show that our policy is also optimal
for regret against Holder ball embedded within a T VB space (see Remark 12). Interestingly the
generic forecaster they proposed can be shown to yield the optimal Õ(n1/3) rate for our problem.
However, the run-time of that policy is exponential.

Our setting is closely related to the setup studied in (Koolen et al., 2015). Their setting can be
viewed as competing against Sobolev sequences which are more regular than TV bounded sequences.
We show that our policy is also optimal for regret against Sobolev ball embedded within a TV
bounded space (see Remark 12).

We now proceed to explain how the model agnostic regret guarantees presented in this paper
imply minimax statistical estimation rate in a stochastic setting. When applied to squared error losses,
the FLH-FTL procedure can yield

n∑
t=1

(yt − xt)2 − (yt − wt)2 = Õ(n1/3C2/3
n ), (8)
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where xt are the predictions of FLH-FTL procedure and w1:n ∈ T VB(Cn) (see Eq.(2)). We
demonstrate how this implies minimax estimation in an iid setting which is the usual subject of study
in non-parametric regression among the statistics community. In the stochastic setting we have the
following observation model:

yt = wt + εt, t ∈ [n]

for some fixed w1:n ∈ T VB(Cn) and εt are iid zero mean subgaussian noise with magnitude at-most
B (We could relax the boundedness to be obeyed with high probability). We have,

n∑
t=1

E[(yt − xt)2]− E[(yt − wt)2] =

n∑
t=1

E[(xt − wt)2]− 2E[εt(xt − wt)] + E[ε2t ]− E[ε2t ]

=(a)

n∑
t=1

E[(xt − wt)2]− 2E[εt]E[(xt − wt)]

=

n∑
t=1

E[(xt − wt)2]

=(b) Õ(n1/3C2/3
n ),

where line (a) is due to the fact that xt and εt are mutually independent and line (b) is due to Eq.(8).
From (Baby and Wang, 2019), this is indeed the minimax rate of estimating w1:n under the stochastic
setting.

Thus we conclude that the model agnostic regret guarantees presented in this paper implies
minimax estimation rate in a stochastic setting and hence the former is strictly stronger.

Appendix B. Preliminaries

In this section, we recall the Follow-the-Leading-History (FLH) algorithm from (Hazan and Seshadhri,
2007) along with some basic definitions.

Definition 17 (Strong convexity) Loss functions ft are said to be H strongly convex in the domain
D if it satisfies

ft(y) ≥ ft(x) + (y − x)T∇ft(x) +
H

2
‖x− y‖2,

for all x,y ∈ D.

FLH enjoys the following guarantee against any base learner.

Proposition 18 (Hazan and Seshadhri, 2007) Suppose the loss functions are exp-concave with
parameter α. For any interval I = [r, s] in time, the algorithm FLH Fig.2 with learning rate ζ = α
gives O(α−1(log r + log|I|)) regret against the base learner in hindsight.

Definition 19 ((Daniely et al., 2015)) An algorithm is said to be Strongly Adaptive (SA) if for every
contiguous interval I ⊆ [n], the static regret incurred by the algorithm is O(poly(log n)Γ∗(|I|))
where Γ∗(|I|) is the value of minimax static regret incurred in an interval of length |I|.
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FLH: inputs - Learning rate ζ and n base learners E1, . . . , En

1. For each t, vt = (v
(1)
t , . . . , v

(t)
t ) is a probability vector in Rt. Initialize v(1)

1 = 1.

2. In round t, set ∀j ≤ t, xjt ← Ej(t) (the prediction of the jth bas learner at time t).
Play xt =

∑t
j=1 v

(j)
t x

(j)
t .

3. After receiving ft, set v̂(t+1)
t+1 = 0 and perform update for 1 ≤ i ≤ t:

v̂
(i)
t+1 =

v
(i)
t e−ζft(x

(i)
t )∑t

j=1 v
(j)
t e−ζft(x

(j)
t )

4. Addition step - Set v(t+1)
t+1 to 1/(t+ 1) and for i 6= t+ 1:

v
(i)
t+1 = (1− (t+ 1)−1)v̂

(i)
t+1

Figure 2: FLH algorithm

It is known from (Hazan et al., 2007) that OGD and ONS achieves static regret of O(log n) and
O(d log n) for strongly convex and exp-concave losses respectively. Hence in view of Proposition
18 and Definition 19, we can conclude that:

• FLH with OGD as base learners is an SA algorithm for strongly convex losses.

• FLH with ONS as base learners is an SA algorithm for exp-concave losses. (We treat dimension
d as a constant problem parameter and consider minimaxity only wrt n.)

We have the following guarantee on runtime.

Proposition 20 (Hazan and Seshadhri, 2007) Let ρ be the per round run time of base learners and
rn be the static regret suffered by the base learners over n rounds. Then FLH procedure has a
runtime of O(ρn) per round. To improve the runtime one can use AFLH procedure from (Hazan and
Seshadhri, 2007) that incurs O(ρ log n) runtime overhead per round and suffers O(rn log n) static
regret in any interval.

Appendix C. Proofs for Section 3

We start by providing an example of a scenario where λ in Lemma 3 can scale linearly with n.

Example 21 Consider the T V(Cn) class with Cn = 1 and n ≥ 6. Let the offline optimal be given
by the step sequence u1 = . . . = u(n/2)−1 = 0 and un/2 = . . . = un = 1. Our aim is to generate
a sequence of labels yt such that this sequence u is indeed the offline optimal in the class T V(1)
along with the property that the optimal dual variable λ scales linearly with the horizon n.

Clearly we must have s(n/2)−1 = 1. For some appropriate parameter ε, consider the following
sign assignment:
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• s(n/2)−2 = 1− ε, s(n/2)−3 = 1− 2ε, . . . , s1 = 1− ((n/2)− 2)ε,

• sn−1 = ε, sn−2 = 2ε, . . . , sn/2 = (n/2)ε.

By setting ε = 2/n for n ≥ 6, we get a consistent sign assignment because st ∈ [−1, 1] for all
1 ≤ t ≤ (n/2)− 2 which corresponds to the portion where ut = 0; s(n/2)−1 = 1; and st ∈ [−1, 1]
for all n/2 ≤ t ≤ n− 1 which corresponds to the portion where ut = 1.

By taking λ = n/2 the adversary can generate labels yt according to the stationarity condition
in Lemma 3 as follows:

• y1 = −2,

• yt = −1, for 2 ≤ t ≤ (n/2)− 1,

• yn/2 = 1,

• yt = 2, for (n/2) + 1 ≤ t ≤ n.

Since the TV of the sequence u is 1, the complementary slackness is also satisfied. Thus we
conclude that if the labels yt ∈ [−2, 2] are generated as above, the offline optimal sequence in
T V(1) class is given by the step sequence u. Furthermore, the optimal dual variable λ = n/2 scales
linearly with the horizon.

Lemma 3 (characterization of offline optimal) Consider the following convex optimization problem
(where z̃1, ..., z̃n−1 are introduced as dummy variables)

min
ũ1, ... ,ũn,z̃1, ... ,z̃n−1

1

2

n∑
t=1

(yt − ũt)2

s.t. z̃t = ũt+1 − ũt ∀t ∈ [n− 1],

n−1∑
t=1

|z̃t|≤ Cn (6a)

Let u1, . . . , un, z1, . . . , zn−1 be the optimal primal variables and let λ ≥ 0 be the optimal dual
variable corresponding to the last constraint (6a). By the KKT conditions, we have

• stationarity: yt = ut − λ(st − st−1), where st ∈ ∂|zt| (a subgradient). Specifically,
st = sign(ut+1 − ut) if |ut+1 − ut|> 0 and st is some value in [−1, 1] otherwise. For
convenience of notations later, we also define sn = s0 = 0.

• complementary slackness: λ (
∑n

t=2|ut − ut−1|−Cn) = 0.

Proof We can form the Lagrangian of the optimization problem as:

L(ũ, z̃, ṽ, λ̃) =
1

2

n∑
t=1

(yt − ũt)2 + λ̃

(
n−1∑
t=1

|z̃t|−Cn
)

+

n−1∑
t=1

ṽt(ũt+1 − ũt − z̃t),
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for dual variables λ̃ > 0 and ṽ ∈ Rn−1 unconstrained. Let the (u, z,v, λ) be the optimal primal and
dual variables. By stationarity conditions, we have

ut − yt = vt − vt−1,

where we take v0 = vn = 0 and

vt = λst

Combining the above two equations and the complementary slackness rule yields the lemma.

Lemma 5 (key partition) Initialize Q ← Φ. Starting from time 1, spawn a new bin [is, it] whenever∑it+1
j=is+1|uj − uj−1|> B/

√
ni, where ni = it − is + 2. Add the spawned bin [is, it] toQ. Consider

the following post processing routine.

1. Initialize P ← Φ.

2. For i ∈ [|Q|]:

• if uit = uit+1:

(a) Let p be the largest time point with up:it being constant and let q be the smallest
time point with uit+1:q being constant.

(b) Add bin [is, p− 1] to P .
(c) If (i+ 1)t > q then add [p, q] to P and set (i+ 1)s ← q + 1.
(d) Goto Step 2.

• Add [is, it] to P . Goto Step 2.

Let M := |P|. We have M = O
(

1 ∨ n1/3C
2/3
n B−2/3

)
. Further for any bin [is, it] ∈ P , it

holds that
∑it

j=is+1|uj − uj−1|≤ B/
√
ni where ni = it − is + 1.

Proof Let’s use the notation TV [a, b] to denote the TV incurred by the optimal solution sequence in
the interval [a, b]. Let Q = {[

¯
t1, t̄1], . . . , [

¯
tN , t̄N ]} with

¯
t1 := 1 and t̄N := n. Let nj := t̄j −

¯
tj + 1

We have,

N−1∑
j=1

TV [
¯
tj , t̄j + 1] ≤ Cn.

By construction we have TV [
¯
tj , t̄j + 1] > ν/

√
nj . So,

Cn ≥
N−1∑
j=1

ν/
√
nj

≥ (N − 1)3/2ν/
√
n,
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where the last line follows by Jensen’s inequality. Rearranging gives the bound onN = O
(

1 ∨ n1/3C
2/3
n B−2/3

)
.

Now the post processing step only increases the number of bins by O(N). Thus we get M =

O
(

1 ∨ n1/3C
2/3
n B−2/3

)
.

Lemma 7 (bounding T1,i) Assume that we run FLH with the settings described in Theorem 1. For
any bin i we have T1,i = O

(
B2 log n

)
Proof Note that FTL with squared error losses outputs predictions which are online averages of the
past labels that the algorithm has seen so far. Hence the predictions of all base learners as well as
FLH belong to the interval [−B,B]. It is known that (see for eg. (Cesa-Bianchi and Lugosi, 2006),
Chapter 3) squared error losses are 1/(8B2) exp-concave in the interval [−B,B] . Further FTL
with squared error losses suffers only logarithmic regret of O(B2 log n) ((Cesa-Bianchi and Lugosi,
2006), Chapter 3).

Hence due to the adaptive regret bound of FLH (Theorem 3.2 in (Hazan and Seshadhri, 2007))
by setting the learning rate ζ = 1/(8B2), we have that the static regret of FLH in any interval [is, it]
is also O(log n). This proves the lemma.

Lemma 8 (bounding T2,i) Define Ci :=
∑it

j=is+1|uj − uj−1|, the TV within bin i incurred by the

offline optimal solution. Let ∆si := sit − sis−1 and ni := it − is + 1. We have T2,i ≤ −λ
2(∆si)

2

ni
.

Proof From the stationarity conditions in Lemma 3, we can write

ūi − ȳi =
λ∆si
ni

. (9)

Further,

it∑
j=is

(yj − ȳi)2 − (yj − ūi)2 = ni(ūi − ȳi)2 + 2

it∑
j=is

(yj − ūi)(ūi − ȳi)

= −ni(ūi − ȳi)2

Now plugging in Eq. (9) yields the lemma.

Lemma 9 (bounding T3,i) Let Ci and ∆si be as in Lemma 8.

Case(a) If |∆si|> 0 then T3,i ≤ B2 + 6λCi.

Case(b) If ∆si = 0 with sis−1 = sit = 1 and the offline optimal u is non-decreasing within bin i,
then T3,i ≤ B2.

Case(c) If ∆si = 0 with sis−1 = sit = −1 and the offline optimal u is non-increasing within bin i,
then T3,i ≤ B2.
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Proof Applying stationarity conditions, we have

T3,i =

it∑
j=is

(yj − ūi)2 − (yj − uj)2

=

it∑
j=is

(uj − ūi)(2yj − ūi − uj)

=

it∑
j=is

(uj − ūi)(2yj − 2uj + uj − ūi)

=

it∑
j=is

(uj − ūi)2 + 2λ(uj − ūi)(sj−1 − sj)

≤ niC2
i +

it∑
j=is

2λ(uj − ūi)(sj−1 − sj), (10)

where in the last line we used |uj − ūi|≤ Ci. Also observe that niC2
i ≤ B2 for bins in the partition

P by Lemma 5. Now by expanding the second term followed by a regrouping of the terms in the
summation, we can write

it∑
j=is

2λ(uj − ūi)(sj−1 − sj) = 2λ (sis−1(uis − ūi)− sit(uit − ūi)) + 2λ

it∑
j=is+1

|uj − uj−1|

= 2λCi + 2λ (sis−1(uis − ūi)− sit(uit − ūi)) (11)

Now we discuss the three cases.

Case (a) When |∆si|> 0, then by triangle inequality we have
2λ (sis−1(uis − ūi)− sit(uit − ūi)) ≤ 4λCi.

Case (b) In this case we have 2λ (sis−1(uis − ūi)− sit(uit − ūi)) = λ(uis − uit) = −2λCi since
the sequence is non-decreasing within the bin. Hence this term cancels with the corresponding
additive term of 2λCi in Eq. (11).

Case (c) By similar logic as in case (b) we can once again write
2λ (sis−1(uis − ūi)− sit(uit − ūi)) = −2λCi.

Substituting the bound of each case into (10). we obtain the expression as stated.

Proposition 10 (Extension to higher dimensions) Consider a protocol where at each time the
learner predicts a vector xt ∈ Rd after which the adversary reveals yt such that ‖yt‖∞≤ B.
Consider a comparator sequence of vectors w1, . . . ,wn such that TV (w1:n) :=

∑n
t=2‖wt −

wt−1‖1≤ Cn. By running d instances of FLH with learning rate ζ = 1/(8B2) and FTL as base
learners, where instance i, i ∈ [d], predicts xt[i] at time t, we have

Rn(w1:n) :=

n∑
j=1

‖yt − xt‖22−‖yt −wt‖22= Õ
(
dB2 log n ∨ d1/3n1/3C2/3

n B4/3
)
.
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Proof Let u1, . . . ,un be the offline optimal sequence. Let Cn[k] =
∑n

t=2|ut[k]− ut−1[k]| be its
TV allocated to coordinate k. WLOG, let’s assume the FLH for coordinates k ∈ [k′] for k′ ≤ d
incurs Õ

(
n1/3(Cn[k])2/3B4/3

)
regret and the regret incurred by FLH for coordinates k > k′ is

O(log n). Since squared error losses decomposes coordinate-wise, we have

Rn(w1:n) ≤ sup
w1:n:TV (w1:n)≤Cn

Rn(w1:n)

= Rn(u1:n)

= (d− k′)B2 log n+
k′∑
k=1

Õ
(
n1/3(Cn[k])2/3B4/3

)

≤ (d− k′)B2 log n+ Õ

n1/3(k′)1/3B4/3

(
k′∑
k=1

Cn[k]

)2/3
 ,

where the last line follows by Holder’s inequality xTy ≤ ‖x‖3‖y‖3/2, where we treat x as just a
vector of ones in Rk′ . The above expression can be further upper bounded by
Õ
(

2dB2 log n ∨ 2d1/3n1/3C
2/3
n B4/3

)
.

Proposition 11 (Lower bound) Assume the protocol and notations of Proposition 10. For any
algorithm, we have

sup
w1:n:TV (w1:n)≤Cn

Rn(w1:n) = Ω
(
dB2 log n ∨ d1/3n1/3C2/3

n B4/3
)
.

Proof Consider a fixed (but unknown) sequence u1, . . . ,un such that TV (u1:n) ≤ Cn with
‖ut‖∞ ≤ B/2 and TV along the coordinate k ∈ [d], TV (u1:n[k]) ≤ Cn/d for all k. Let the
labels be yt = ut + εt where each coordinate of εt is generated by iid U [−B/2, B/2]. Further
ε1, . . . , εn are also iid. Then by the results of (Donoho and Johnstone, 1998), for any prediction
strategy that produces outputs xt, we have

sup
w1:n:TV (w1:n)≤Cn

Rn(w1:n) ≥
d∑

k=1

n∑
t=1

E
[
(yt[k]− xt[k])2 − (yt[k]− ut[k])2

]
=(a)

d∑
k=1

n∑
t=1

E
[
(ut[k]− xt[k])2

]
=

d∑
k=1

Ω(n1/3(Cn/d)2/3B4/3)

= Ω(d1/3n1/3C2/3
n B4/3),

where in line (a) we used the fact thatxt[k] is independent of yt[k] and yt[k]−ut[k] ∼ U [−B/2, B/2].
The dB2 log n part of the lower bound is implied by the lower bound construction of Vovk (Vovk,

2001) (or cf. proof of Theorem 11.9 in (Cesa-Bianchi and Lugosi, 2006)).
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Not monotonic

∆si = 0

Monotonic

sit = 1
sis−1 = 1

Non-decreasing

sit = −1
sis−1 = −1

Non-increasing

sit = −1
sis−1 = −1

Non-decreasing

sit = 1
sis−1 = 1

Non-increasing

(A2)

case (b) and (c) case (b) and (c) (A1) Similar to (A1)

Figure 3: Various configurations of the optimal sequence within a bin [is, it] with ∆si = 0. The leaf
nodes indicate the labels of the paragraphs in the Proof of Theorem 1 to handle each scenario.

∆si 6= 0

case (a)

Figure 4: A configuration of optimal sequence within a bin [is, it] with |∆si|6= 0. The leaf node
indicate the label of the paragraph in the Proof of Theorem 1 to handle this scenario.

Close comparison to lower bound in (Baby and Wang, 2019). For the case of 1D forecasting
of TV bounded sequences, (Baby and Wang, 2019) consider a stochastic setting where the labels
obey yt = wt + εt for some iid σ subgaussian noise εt and wt ∈ T VB(Cn). They provide a lower
bound of Ω̃

(
(nB2 ∧ nσ2 ∧ n1/3C

2/3
n σ4/3) + (nB2 ∧BCn) +B2

)
where (a ∧ b) = min{a, b}.

In accordance with the proof of Proposition 11, we can take σ = B/2 and w1:n ∈ T VB/2(Cn) to
translate this lower bound into our setting for 1D case to get a lower bound of:

Rn(Cn) = Ω̃
(

(nB2 ∧ n1/3C2/3
n B4/3) + (nB2 ∧BCn) +B2

)
. (12)

Any learner must have to incur O(B2) loss in the first round. Combining this with the upper
bound in Theorem 1 along with the trvial regret bound of O(nB2) we can get a refined regret upper
bound of:

Rn(Cn) = Õ
(

(nB2 ∧ n1/3C2/3
n B4/3

)
+B2). (13)
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Comparing Eq.(12) and (13) seems to falsely suggest that during the regime where n1/3C
2/3
n B4/3 <

BCn < nB2 upper bound in Eq.(13) is smaller than the lower bound in Eq.(12). But n1/3C
2/3
n B4/3 <

BCn happens when Cn > nB, in which case BCn < nB2 is not satisfied. Hence we conclude that
this regime is not realisable implying no contradictions.

Close comparison to lower bound in (Yuan and Lamperski, 2019). Proposition 1 of (Yuan
and Lamperski, 2019) considers squared error losses in 1D and show that when Cn = n

2+γ
4−γ for all

γ ∈ (0, 1), the dynamic regret obeys

Rn(Cn) = Ω
(

log n ∨ (nCn)γ/2
)
.

We proceed to show that our lower bound of Ω(log n ∨ n1/3C
2/3
n ) is tighter than this. Whenever

Cn = n
2+γ
4−γ , we have

(nCn)γ/2 = n
3γ
4−γ ,

and,

n1/3C2/3
n = n

8+γ
12−3γ .

It can be verified that for all γ ∈ (0, 1), n
3γ
4−γ ≤ n

8+γ
12−3γ making our lower bound tighter.

Appendix D. Proofs for Section 4

D.1. One dimensional setting

In the section, we adopt all the notations used in Section 3. For the sake of simplicity of exposition,
we first present the results in one dimensional setting and extend it later to higher dimensions. We
have the following guarantee in one dimension.

Theorem 22 (d = 1) By using the base learner as ONS with parameter ζ = min
{

1
4G†(2B+2G/β)

, α
}

and decision set D and choosing learning rate η = α, FLH guarantees a dynamic regret Rn(Cn) =

Õ
(
n1/3C

2/3
n ∨ log n

)
.

We start the analysis by inspecting the KKT conditions.

Lemma 23 (characterization of offline optimal) Consider the following convex optimization prob-
lem.

min
ũ1, ... ,ũn,z̃1, ... ,z̃n−1

n∑
t=1

ft(ũt)

s.t. z̃t = ũt+1 − ũt ∀t ∈ [n− 1],

n−1∑
t=1

|z̃t|≤ Cn, (14a)

−B ≤ ũt ∀t ∈ [n], (14b)

ũt ≤ B ∀t ∈ [n], (14c)
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Let u1, . . . , un, z1, . . . , zn−1 be the optimal primal variables and let λ ≥ 0 be the optimal dual
variable corresponding to the constraint (14a). Further, let γ−t ≥ 0, γ+

t ≥ 0 be the optimal dual
variables that correspond to constraints (14b) and (14c) respectively for all t ∈ [n]. By the KKT
conditions, we have

• stationarity: ∇ft(ut) = λ (st − st−1) + γ−t − γ+
t , where st ∈ ∂|zt| (a subgradient). Specifi-

cally, st = sign(ut+1 − ut) if |ut+1 − ut|> 0 and st is some value in [−1, 1] otherwise. For
convenience of notations later, we also define sn = s0 = 0.

• complementary slackness: (a) λ (
∑n

t=2|ut − ut−1|−Cn) = 0; (b) γ−t (ut + B) = 0 and
γ+
t (ut −B) = 0 for all t ∈ [n]

Terminology. We will refer to the optimal primal variables u1, . . . , un in Lemma 23 as the
offline optimal sequence in this section.

Next, we record an easy corollary of Lemma 5.

Corollary 24 (key partition) Assume the notations of Lemma 5. Create a partition of P of [n] with
the procedure mentioned in Lemma 5 . Then for any [is, it] ∈ P , we have

• (TV constraint)
∑it

j=is+1|uj − uj−1|≤ B/
√
ni,

• (Bins bound) M := |P|= O(n1/3C
2/3
n ).

• (Structural property) If is > 1 then uis 6= uis−1. Similarly if it < n then uit 6= uit+1.

Now we make an important observation regrading the dual variables γ−j and γ+
j . The following

property will be used several times in the proofs to follow.

Lemma 25 Define Γ+
i :=

∑it
j=is

γ+
j and Γ−i :=

∑it
j=is

γ−j . Consider a bin [is, it] ∈ P , where P is
the partition of [n] constructed in Corollary 24. Then at-least one of the following is always satisfied.

• γ−j = 0 for all j ∈ [is, it].

• γ+
j = 0 for all j ∈ [is, it].

Consequently we have
∑it

j=is
|γ−j |+|γ+

j |=
∣∣Γ−i − Γ+

i

∣∣, for any bin [is, it] ∈ P .

Proof From the properties of the partition P in Corollary 24, we have that the TV of the offline
optimal incurred within each bin is at-mostB/

√
ni ≤ B. Hence within bin [is, it] ∈ P , if the optimal

sequence attains the value −B at some time point, it can never attain the value B and vice-versa.
So due to complementary slackness rule in Lemma 23, either γ+

j = 0 or γ−j = 0 uniformly for all
j ∈ [is, it]. The last line in the statement of lemma follows by recalling that γ−j ≥ 0 and γ+

j ≥ 0
from Lemma 23.

For convenience, we recall here the regret decomposition of Eq.(7) specified to one dimensional
setting. Let P be a partition of [n] into M bins as specified in Corollary 24. Let [is, it] denote the
ith bin in P and let ni be its length. Define ūi = 1

ni

∑it
j=is

uj and u̇i = ūi − 1
niβ

∑it
j=is
∇fj(ūi)
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where β is as in Assumption EC-2. Let xj be the prediction made by FLH at time j. We start with
following regret decomposition.

Rn(Cn) ≤
M∑
i=1

it∑
j=is

fj(xj)− fj(u̇i)︸ ︷︷ ︸
T1,i

+
M∑
i=1

it∑
j=is

fj(u̇i)− fj(ūi)︸ ︷︷ ︸
T2,i

+
M∑
i=1

it∑
j=is

fj(ūi)− fj(uj)︸ ︷︷ ︸
T3,i

.

We proceed to bound the terms T1,i, T2,i, T3,i for the bins that belong to the partition P .

Lemma 26 (bounding T1,i) Let the experts in FLH be the ONS algorithms with parameter

ζ = min
{

1
4G†(2B+2G)

, α
}

and decision set D. Also choose learning rate η = α, for FLH. Then for
any bin [is, it] we have,

it∑
j=is

fj(xj)− fj(u̇i) = O

(
BG† log n+GG† log n+

log n

α

)
= O(log n).

Proof First we proceed to bound |u̇i|. Since |∇fj(uj)|≤ G by Assumption EC-1, we have

|u̇i| ≤ |ūi|+
G

β

≤ B +G,

since β ≥ 1 by Assumption EC-2. For any x ∈ D, we have |x− u̇i|≤ 2B+2G by triangle inequality.
By Assumption EC-4 we have |∇fj(x)|≤ G† for any x ∈ D. Also, recall that by Assumption

EC-3, the loss functions fj are α exp-concave in the domain D. Let pj be the predictions of ONS in

the interval [is, it]. If we choose ζ = min
{

1
4G†(2B+2G)

, α
}

as the parameter of the ONS, Theorem
2 of (Hazan et al., 2007) implies that

it∑
j=is

fj(pj)− fj(u̇i) = O
(
BG† log n+GG† log n

)
= O (log n) .

Now the Lemma is implied by the SA regret bound of FLH (Theorem 3.2 of (Hazan and Seshadhri,
2007)).

Lemma 27 (bounding T2,i). For a bin [is, it] ∈ P , let Ci, ni and ∆si be as in Lemma 8 and
Γ+
i ,Γ

−
i be as in Lemma 25. We have

it∑
j=is

fj(u̇i)− fj(ūi) ≤
−
(
λ∆si + Γ−i − Γ+

i

)2
2niβ

+ λ|∆si|Ci + |Γ−i − Γ+
i |Ci.
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Proof We start with the short proof the descent lemma. Let g(x) be a L strongly smooth function.
Let x+ = x− µ∇f(x) for some µ > 0. Then we have

g(x+)− g(x) ≤ (∇g(x))2

(
L

2
µ2 − µ

)
=
−(∇g(x))2

2L
,

by choosing µ = 1/L. By taking g(x) =
∑it

j=is
fj(x) and noting that g is niβ gradient Lipschitz

due to Assumption EC-2, we get

T2,i :=

it∑
j=is

fj(u̇i)− fj(ūi)

≤
−
(∑it

j=is
∇fj(ūi)

)2

2niβ

=
−1

2niβ

 it∑
j=is

∇fj(uj) +∇fj(ūi)−∇fj(uj)

2

≤ −1

2niβ

 it∑
j=is

∇fj(uj)

2

+
1

niβ

∣∣∣∣∣∣
it∑

j=is

∇fj(uj)

∣∣∣∣∣∣
∣∣∣∣∣∣
it∑

j=is

∇fj(ūi)−∇fj(uj)

∣∣∣∣∣∣ .
From the KKT conditions in Lemma 23 we have

∑it
j=is
∇fj(uj) = λ∆si + Γ−i − Γ+

i . Since fj are
β-gradient Lipschitz and |ūi − uj |≤ Ci, we also have∣∣∣∣∣∣

it∑
j=is

∇fj(ūi)−∇fj(uj)

∣∣∣∣∣∣ ≤ niβCi.
Substituting these we get,

T2,i ≤
−
(
λ∆si + Γ−i − Γ+

i

)2
2niβ

+ λ|∆si|Ci + |Γ−i − Γ+
i |Ci.

Lemma 28 (bounding T3,i) For a bin [is, it] ∈ P , let Ci, ni and ∆si be as in Lemma 8 and Γ+
i ,Γ

−
i

be as in Lemma 25.
case(a) If |∆si|> 0 then we have,

it∑
j=is

fj(ūi)− fj(uj) ≤
βniC

2
i

2
+ 3λCi + |Γ−i − Γ+

i |Ci.
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case(b) If ∆si = 0 with sis−1 = sit = 1 and the offline optimal u is non-decreasing within bin i
with −B < ui < B for all i ∈ [is, it], then

it∑
j=is

fj(ūi)− fj(uj) ≤
βniC

2
i

2
.

case(c) If ∆si = 0 with sis−1 = sit = −1 and the offline optimal u is non-increasing within bin i
with −B < ui < B for all i ∈ [is, it], then

it∑
j=is

fj(ūi)− fj(uj) ≤
βniC

2
i

2
.

Proof Due to strong smoothness, we have

T3,i :=

it∑
j=is

fj(ūi)− fj(uj)

≤
it∑

j=is

∇fj(uj)(ūi − uj) +
β

2
(ūi − uj)2

≤ βniC
2
i

2
+

it∑
j=is

∇fj(uj)(ūi − uj).

Now by expanding the second term and using the structure of gradients as in Lemma 23 followed by
a regrouping of the terms in the summation we can write,

it∑
j=is

∇fj(uj)(ūi − uj) = λ (sis−1(uis − ūi)− sit(uit − ūi)) + λ

it∑
j=is+1

|uj − uj−1|

+

it∑
j=is

(γ−j − γ+
j )(ūi − uj)

≤ λ (sis−1(uis − ūi)− sit(uit − ūi)) + λCi + |Γ−i − Γ+
i |Ci, (15)

where the last line follows due to Lemma 25 and |ūi − uj |≤ Ci for all j ∈ [is, it].
Now we consider three cases in the statement of the lemma.
case (a) When |∆si|> 0, then by triangle inequality we have

λ (sis−1(uis − ūi)− sit(uit − ūi)) ≤ 2λCi.
case (b) In this case we have

λ (sis−1(uis − ūi)− sit(uit − ūi)) = λ(uis − uit) = −λCi since the sequence is non-decreasing
within the bin. Hence this term cancels with the corresponding additive term of λCi in Eq. (15).
Further γ−j = γ+

j = 0 since −B < uj < B for all j ∈ [is, it].
case (c) By similar logic as in case (b) we can once again write

λ (sis−1(uis − ūi)− sit(uit − ūi)) = −λCi.
Putting everything together now yields the lemma.
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Proof of Theorem 22. The strategy of the proof is to bound the regret incurred within each time
interval [is, it] ∈ P where P is as in Corollary 24 and add them up towards the end. We annotate
several key paragraphs for the purposes of referring the arguments contained in them at later points.

If the the partition P contains only one bin, then we split it into at-most two bins [1, a] and
[a+1, n] such that the optimal sequence is constant within [1, a] and hence regret incurred within this
bin is Õ(1) by Strong Adaptivity of FLH. The regret incurred in the bin [a+ 1, it] can be bounded by
using the arguments below. So in what follows we assume for a bin [is, it] either is > 1 or it < n.

By virtue of Lemma 25, any bin [is, it] ∈ P will have either γ−j = 0 for all j ∈ [is, it] or γ+
j = 0

for all j ∈ [is, it]. Below we bound the regret for bins with γ+
j = 0 uniformly for all j ∈ [is, it]. The

arguments for the alternate case where γ−j = 0 follows similarly. Figures 6, 7 and 8 sketch the floor
plan of the proof pictorially. Throughout the proof, we will use the properties in Corollary 24 in
conjunction with the observations in Remark 6.

(S1): Consider a bin with ∆si = 0 with sit = sis−1 = 1 and the optimal sequence is non-
decreasing within the bin. By the structural property of Corollary 24, this happens when uis > uis−1,
uit+1 > uit where 1 < is < it < n. Since the sequence is non-decreasing, it never attains −B
within this bin. Hence this is the same situation as in case (b) of Lemma 28. We have T1,i = Õ(1)
due to Lemma 26. T2,i = 0 due to Lemma 27 as Γ+

i = Γ−j = 0 since the sequence never attains
±B within the current bin combined with the fact that ∆si = 0. T3,i = O(1) due to Lemma 28
combined with the fact that Ci ≤ B/

√
ni due to Corollary 24. So the total regret within the current

bin is bounded by T1,i + T2,i + T3,i = Õ(1).
The total regret for a bin satisfying case (c) of Lemma 28 can be bound using similar arguments

as above.
The three cases where (i) ∆si = 0 with sis−1 = sit = −1 and the offline optimal u is non-

decreasing within bin i; (ii) ∆si = 0 with sis−1 = sit = 1 and the offline optimal u is non-increasing
within bin i and (iii) ∆si = 0 and u is not monotonic will be covered shortly in the arguments to
follow.

Consider a bin with |∆si|> 0 and γ+
j = 0 uniformly. From Lemmas 27 and 28 and using the

fact that |∆si|≤ 2 we have,

T2,i + T3,i ≤
βniC

2
i

2
+
−λ2(∆si)

2

2niβ
+ 7λCi︸ ︷︷ ︸

(1)

+

(
−Γ−i

)2
2niβ

+ 2Γ−i Ci︸ ︷︷ ︸
(2)

−λ∆siΓ
−
i

niβ
.

By completing the squares with the terms (1) and (2) in the above display and dropping the negative
terms, we get

T2,i + T3,i ≤
βniC

2
i

2
+

49C2
i niβ

2(∆si)2
+ 2βniC

2
i −

λ∆siΓ
−
i

niβ

≤ 27B2β − λ∆siΓ
−
i

niβ
,

where in last line we used the facts that Ci ≤ B/
√
ni by Corollary 24 and |∆si|> 1 whenever

|∆si|6= 0 by Remark 6.
Define Ti :=

∑it
j=is

fj(xj)− fj(uj). Notice that:

• (A1): When Γ−i = 0 and |∆si|> 0, combining Lemma 26 we have Ti = Õ(1);
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• (A2): Similarly when ∆si > 0, we get Ti = Õ(1) as Γ−i ≥ 0 by Lemma 23.

In what follows, we try to split an original bin [is, it] with ∆si < 0 into sub-bins that satisfy the
above conditions (A1) or (A2).

If optimal sequence is uniformly constant, we can appeal to the static regret guarantee of FLH
to get logarithmic regret over n rounds. So we assume that the optimal sequence is not constant
uniformly in the analysis below.

Next, we consider the case when ∆si < 0. We start with the following observation.
(B1): Consider a bin [is, it] that satisfies the structural property in Corollary 24. When either

is > 1 or it < n and ∆si < 0, then sit ∈ {−1, 0} and sis−1 ∈ {0, 1} with at-least one of them
being non-zero.

Since by our assumption |P|> 1, is and it can’t be 1 and n simultaneously. So for any bin [is, it]
with ∆si < 0, observation (B1) has to be satisfied.

When ∆si < 0, we can have three cases as follows.
Case (1): If the optimal solution is constant (i.e Ci = 0) within the bin i. Then we trivially get

Ti = Õ(1).
Case (2): If the optimal solution is monotonic within bin i (see config (a) in Fig.5 for an example

of this configuration). Then we split the original bin [is, it] into at-most 2 bins. Let j1, j2 be such
that um = −B∀m ∈ [is, j1− 1]∪ [j2 + 1, it] and uj1 > −B, uj2 > −B. If uis > −B, then j1 = is
and [is, j1 − 1] is viewed as an empty interval. Similar logic applies for the right interval [j2 + 1, it].
Since the optimal sequence is monotonic within [is, it], either j1 = is or j2 = it. Without loss of
generality let’s assume that j2 = it. We proceed to bound the regret incurred within each of the two
sub-bins separately.

Let’s annotate bin [is, j1 − 1] by i(1) and bin [j1, it] by i(2). For the bin i(1), the optimal solution
is constant and hence the regret Ti(1) = Õ(1). For the bin i(2), notice that γ−j = 0 ∀j ∈ [j1, it] since
the sequence is monotonic with uj1 > −B and since our assumption j2 = it implies uj2 > −B.
Hence we have Γ−

i(2)
= 0. Since sj1−1 ∈ {0, 1} and by observation (B1), sit ∈ {−1, 0} with at-least

one of them being non-zero, we have |∆si|6= 0. Hence the bin i(2) falls into the category (A1). So
Ti(2) = Õ(1). Adding the regret incurred in each sub-bin separately yields Ti = Õ(1).

Case (3): Consider the alternate case where we have ∆si < 0 and the sequence is not monotonic
(see config (b) in Fig. 5 for an example of this configuration). We split the original bin [is, it]
into at-most three sub-bins [is, j1 − 1], [j1, j2], [j2 + 1, it] such that (i) If uis = −B, then um =
−B ∀m ∈ [is, j1 − 1] and uj1 > −B. If uis > −B, then we take j1 = is and view [is, j1 − 1] as
empty interval. (ii) j2 is the smallest point in [j1, it] such that sj2 = −1 and uj2 > uj2+1.

Let’s annotate bins [is, j1 − 1], [j1, j2], [j2 + 1, it] by i(1), i(2), i(3) respectively. If bin i(1) is not
empty, then we have Ti(1) = Õ(1) since u is constant within that bin.

Since ∆si < 0, we must have sj1−1 ∈ {0, 1} even if j1 = is. By construction the sequence
u never attains the value −B in the bin i(2) since uj1 > −B and j2 is the first time point since j1
after which the optimal sequence jumps downwards. So we have Γi(2) = 0. Further we also have
|∆si(2) |> 0 within bin i(2). So we get Ti(2) = Õ(1) since i(2) falls into category (A1)

For simplicity let’s assume that uit > −B, otherwise we can create another bin that ends at time
it where optimal solution assumes a constant value of −B and proceed with similar arguments as
before to bound the regret in the constant interval.

(S2): If the sequence u is not monotonic in i(3), we split the bin i(3) into two parts [j2 +
1, j3], [j3 + 1, it] such that j3 is the largest point in [j2 + 1, it] with sj3 = 1 and uj3 < uj3+1.
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Let’s annotate the bins [j2 + 1, j3], [j3 + 1, it] by q(1), q(2) respectively. We have ∆sq(1) > 0 since
sj3 = 1 and sj2 = −1. Hence the bins q(1) falls into the category(A2) mentioned before and we
get Tq(1) = Õ(1). Notice that sit ∈ {−1, 0} as ∆si < 0. Since j3 is the largest point in [j2 + 1, it]
with sj3 = 1 and it is assumed before that uit > −B, we conclude that the sequence in the interval
q(2) is a non-increasing sequence that never attains the value −B. So Γ−

q(2)
= 0. Further we have

|∆sq(2) |> 1 . So Tq(2) = Õ(1) since q(2) falls into the category (A1). We pause to remark that the
arguments we used to bound the regret in the bin i(3) can be used to bound the regret of any bin
[rs, rt] ∈ P with ∆sr = 0 and the sequence u being not monotonic within bin r.

Note that since uj2+1 < uj2 , bin i(3) satisfies the structural property of Corollary 24. So if the
sequence u is non-increasing in bin i(3) and sit = −1, it fits into case (c) of Lemma 28. So we can
bound Ti(3) = Õ(1) using arguments presented in (S1).

If the sequence u is monotonic in bin i(3) and sit = 0 (which happens when it = n), then we
have ∆si(3) = 0− (−1) = 1 > 0. So bin i(3) falls into the category(A2) mentioned before. Hence
the regret Ti(3) = Õ(1).

(S3): If the sequence u is non-decreasing in bin i(3), we split the bin into two intervals [j2 +
1, k], [k+1, it] such that k is any point in [j2 +1, it] with sk = 1 and uk+1 > uk. (This configuration
is similar to that of config (a) in Fig.1). Annotate [j2 + 1, k], [k + 1, it] by q(1), q(2) respectively. In
bin q(1) we have ∆sq(1) = 2 and hence Tq(1) = Õ(1) since q(1) falls into the category (A2). Within
bin q(2) due to the assumption that uit > −B, we have Γ−

q(2)
= 0. We also have |∆sq(2) |> 0 and

consequently q(2) falls into category (A1). So we have Tq(2) = Õ(1). We pause to remark that the
arguments we used to bound the regret in bin i(3) for the case where u is non-decreasing, can also be
used to bound the regret of any bin [rs, rt] with ∆sr = 0 and srt = srs−1 = −1 and the sequence
u is non-decreasing. The regret for the alternate case where ∆sr = 0 and srt = srs−1 = 1 and the
sequence u is non-increasing can be bounded similarly using a mirrored argument.

So summarizing, in case (3) we get Ti = Õ(1). Since the intermediate splitting operations can
only increase the number of bins to at-most 6M , adding the regret across all O(M) bins in Corollary
24 yields the Theorem.

is = 1 j1 it

config (a)

−B

s0 = 0, sit = −1,∆si = −1

is j2 j3 it

config (b)

−B

sis−1 = 1, sit = −1,∆si = −2

Figure 5: Examples of configurations referred in the proof of Theorem 22. The blue dots corresponds
to the offline optimal sequence.
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Not monotonic

∆si = 0

Monotonic

sit = 1
sis−1 = 1

Non-decreasing

sit = −1
sis−1 = −1

Non-increasing

sit = −1
sis−1 = −1

Non-decreasing

sit = 1
sis−1 = 1

Non-increasing

Similar to (S2)

(S1) Similar to (S1) Similar to (S3) Mirrored (S3)

Figure 6: Various configurations of the optimal sequence within a bin [is, it] with ∆si = 0. The leaf
nodes indicate the arguments used in the proof of Theorem 22 to handle each scenario.

Γ−i = 0

∆si < 0

Γ−i > 0

constant Monotonic Not monotonic(A1)

Case (1) Case (2) Case (3)

Figure 7: Various configurations of optimal sequence within a bin [is, it] with ∆si < 0. The leaf
nodes indicate the arguments used in the proof of Theorem 22 to handle each scenario.
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∆si > 0

(A2)

Figure 8: A configuration of optimal sequence within a bin [is, it] with ∆si > 0. The leaf node
indicate the arguments used in the proof of Theorem 22 to handle each scenario.

D.2. Multi dimensional setting

We start by inspecting the KKT conditions.

Lemma 29 (characterization of offline optimal) Consider the following convex optimization prob-
lem.

min
ũ1, ... ,ũn,z̃1, ... ,z̃n−1

n∑
t=1

ft(ũt)

s.t. z̃t = ũt+1 − ũt ∀t ∈ [n− 1],

n−1∑
t=1

‖z̃t‖1≤ Cn, (16a)

‖ũt‖∞≤ B ∀t ∈ [n], (16b)

Let u1, . . . ,un, z1, . . . ,zn−1 ∈ Rd be the optimal primal variables and let λ ≥ 0 be the optimal
dual variable corresponding to the constraint (16a). Further, let γ+

t ,γ
−
t ∈ Rd with γ+

t ≥ 0 and
γ−t ≥ 0 be the optimal dual variables that correspond to constraint (16b). Specifically for k ∈ [d],
γ+
t [k] corresponds to the dual variable for the constraint ut[k] ≤ B induced by the relation (16b).

Similarly γ−t [k] corresponds to the constraint −B ≤ ut[k]. By the KKT conditions, we have

• stationarity: ∇ft(ut) = λ (st − st−1) + γ−t − γ+
t , where st ∈ ∂|zt| (a subgradient).

Specifically, st[k] = sign(ut+1[k]−ut[k]) if |ut+1[k]−ut[k]|> 0 and st[k] is some value in
[−1, 1] otherwise. For convenience of notations later, we also define sn = s0 = 0.

• complementary slackness: (a) λ (
∑n

t=2‖ut − ut−1‖1−Cn) = 0; (b) γ−t [k](ut[k] +B) = 0
and γ+

t [k](ut[k]−B) = 0 for all t ∈ [n] and all k ∈ [d].

The proof of the above lemma is similar to the 1D case and hence omitted.
Terminology. We will refer to the optimal primal variables u1, . . . ,un in Lemma 29 as the offline
optimal sequence in this section.

Next, we claim the existence of a partitioning of [n] with some useful properties.

Lemma 30 (key partition) There exist a partitioning P of [n] intoM = O(dn1/3C
2/3
n ) intervals viz

{[is, it]}Mi=1 such that for any interval [is, it] ∈ P ,Ci ≤ B/
√
ni whereCi :=

∑it
j=is+1‖uj−uj−1‖1

and ni is the length of the interval.
Define Γ+

i :=
∑it

j=is
γ+
j and Γ−i :=

∑it
j=is

γ−j . Let ∆si = sit −sis−1, where s is as defined in
Section 3.2. We also have that each bin [is, it] ∈ P satisfies at-least one of the following properties.
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Property 1 Across each coordinate k ∈ [d], the sequence uj [k], j ∈ [is, it] is either non-decreasing or
non-increasing.

Property 2 ‖λ∆si + Γ−i − Γ+
i ‖2≥ λ/4.

The proof of the above lemma is deferred to Section E.
We recall Eq.(7) here for convenience. Let P be a partition of [n] into M bins obtained in

Lemma 30 Let [is, it] denote the ith bin in P and let ni be its length. Define ūi = 1
ni

∑it
j=is

uj and
u̇i = ūi − 1

niβ

∑it
j=is
∇fj(ūi) where β is as in Assumption EC-2. Let xj be the prediction made

by FLH at time j. We start with following regret decomposition.

Rn(Cn) ≤
M∑
i=1

it∑
j=is

fj(xj)− fj(u̇i)︸ ︷︷ ︸
T1,i

+
M∑
i=1

it∑
j=is

fj(u̇i)− fj(ūi)︸ ︷︷ ︸
T2,i

+
M∑
i=1

it∑
j=is

fj(ūi)− fj(uj)︸ ︷︷ ︸
T3,i

.

Lemma 31 (bounding T1,i) Let the experts in FLH be the ONS algorithms with parameter

ζ = min
{

1
4G†(2B

√
d+2G

√
d)
, α
}

and decision set D. Also choose learning rate η = α, for FLH.

Then for any bin [is, it] we have,

it∑
j=is

fj(xj)− fj(u̇i) = O

(
d3/2BG† log n+ d3/2GG† log n+

log n

α

)
= O(d3/2 log n),

where xj ∈ Rd are the outputs of FLH.

Proof First we proceed to bound ‖u̇i‖∞. Since ‖∇fj(uj)‖2≤ G by Assumption EC-1, we have

‖u̇i‖∞ ≤ ‖ūi‖∞+
G

β

≤ B +
G

β

≤ B +G,

where we used β > 1 from Assumption EC-2.
For any x ∈ D, we have ‖x − u̇i‖2≤ 2B

√
d + 2G

√
d by triangle inequality and the fact

‖y‖2≤
√
d‖y‖∞.

By Assumption EC-4 we have ‖∇fj(x)‖2≤ G† for any x ∈ D. Also, recall that by Assumption
EC-3, the loss functions fj are α exp-concave in the domain D. Let pj , j ∈ [is, it] be the predictions

of an ONS algorithm when run in the interval [is, it]. If we choose ζ = min
{

1
4G†(2B

√
d+2G

√
d)
, α
}

as the parameter of the ONS, Theorem 2 of (Hazan et al., 2007) implies that

it∑
j=is

fj(pj)− fj(u̇i) = O

(
d3/2BG† log n+ d3/2GG† log n+

log n

α

)
= O

(
d3/2 log n

)
.
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Now the Lemma is implied by the SA regret bound of FLH (Theorem 3.2 of (Hazan and Seshadhri,
2007)).

For strongly convex, losses the tern T1,i can enjoy a better bound.

Lemma 32 (bounding T1,i for strongly convex losses) Suppose that the losses are H strongly
convex. Take experts in FLH as OGD with step size 1/(Hn) and decision set D. Also choose
learning rate η = H/(G†)2, for FLH. Then for any bin [is, it] we have,

it∑
j=is

fj(xj)− fj(u̇i) = O

(
(G†)2 log n

H

)
,

where xj ∈ Rd are the outputs of FLH.

Proof [Proof Sketch] The lemma follows by using the regret bound of OGD with strongly convex
losses from (Hazan et al., 2007) and following similar lines of arguments as in Lemma 31.

We state the next lemma to be generically valid for any bin which is not necessarily a member of P .

Some notations. For a bin [a, b], introduce the notations ∆sa→b := s(ub+1 −ub)− s(ua −ua−1),
Γ+
a→b =

∑b
j=a γ

+
j and Γ−a→b :=

∑b
j=a γ

−
j . na→b := b − a + 1. ūa→b = 1

na→b

∑b
j=a uj and

u̇a→b = ūa→b − 1
βna→b

∑b
j=a∇fj(ūa→b).

Lemma 33 For any bin [a, b], we have

T2,[a,b] :=
b∑

j=a

fj(u̇a→b)− fj(ūi)

≤ −‖λ∆sa→b + Γ−a→b − Γ+
a→b‖22

2na→bβ
+ ‖λ∆sa→b + Γ−a→b − Γ+

a→b‖1Ca→b.

Proof Let g(x) be a α-strongly smooth function. Let x+ = x− µ∇f(x) for some µ > 0. Then we
have

g(x+)− g(x) ≤ ‖∇g(x)‖22
(α

2
µ2 − µ

)
=
−‖∇g(x)‖22

2α
,
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by choosing µ = 1/α. By taking g(x) =
∑b

j=a fj(x) and noting that g is niβ gradient Lipschitz
due to Assumption SC-2, we get

T2,[a,b] :=
b∑

j=a

fj(u̇a→b)− fj(ūa→b)

≤
−
∥∥∥∑b

j=a∇fj(ūa→b)
∥∥∥2

2

2na→bβ

=
−1

2na→bβ

∥∥∥∥∥∥
b∑

j=a

∇fj(uj) +∇fj(ūa→b)−∇fj(uj)

∥∥∥∥∥∥
2

2

≤ −1

2na→bβ

∥∥∥∥∥∥
b∑

j=a

∇fj(uj)

∥∥∥∥∥∥
2

2

+
1

na→bβ

∥∥∥∥∥∥
b∑

j=a

∇fj(uj)

∥∥∥∥∥∥
1

∥∥∥∥∥∥
b∑

j=a

∇fj(ūa→b)−∇fj(uj)

∥∥∥∥∥∥
2

,

where we used 〈x,y〉 ≤ ‖x‖2‖y‖2≤ ‖x‖1‖y‖2 and dropped a negative term from expanding the
squared norm. From the KKT conditions in Lemma 29 we have

∑b
j=a∇fj(uj) = λ∆sa→b +

Γ−a→b − Γ+
a→b. Since fj are β-gradient Lipschitz and ‖ūa→b − uj‖2≤ ‖ūa→b − uj‖1≤ Ca→b, we

also have ∥∥∥∥∥∥
b∑

j=a

∇fj(ūa→b)−∇fj(uj)

∥∥∥∥∥∥
2

≤ na→bβCa→b.

Substituting these we get the statement of the lemma.

Lemma 34 For any bin [is, it] ∈ P , we have

it∑
j=is

fj(ūi)− fj(uj) ≤
βniC

2
i

2
+ 5λCi +

∥∥λ∆si + Γ−i − Γ+
i

∥∥
2
Ci.

Proof Due to strong smoothness, we have

T3,i :=

it∑
j=is

fj(ūi)− fj(uj)

≤(a)

it∑
j=is

〈∇fj(uj), ūi − uj〉+
β

2
‖ūi − uj‖21

≤ βniC
2
i

2
+

it∑
j=is

〈∇fj(uj), ūi − uj〉, (17)

where in line (a) we used ‖ūi − uj‖2≤ ‖ūi − uj‖1.
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Further,
it∑

j=is

〈∇fj(uj), ūi − uj〉 = λ (〈sis−1,uis − ūi〉 − 〈sit ,uit − ūi〉)

+ λ

it∑
j=is+1

‖uj − uj−1‖1+

it∑
j=is

〈γ−j − γ+
j , ūi − uj〉

By triangle and Holder’s inequalities, the first two terms can be bounded by 3λCi (recall that
‖ut − ūi‖1≤ Ci for all t ∈ [is, it] ). Let’s proceed to bound the last term in the above display.
From Lemma 30, we have Ci ≤ B/

√
ni. So the TV incurred across each coordinate of the optimal

solution is at-most B. Using similar arguments as in Lemma 25, the complementary slackness in
Lemma 29 implies that for each k ∈ [d], if γ−j [k] > 0 for at-least one j ∈ [is, it] then γ+

j [k] = 0 for
all j ∈ [is, it]. Similarly for each k ∈ [d], if γ+

j [k] > 0 for at-least one j ∈ [is, it] then γ−j [k] = 0
for all j ∈ [is, it]. This observation allows us to write,

it∑
j=is

|γ−j [k]− γ+
j [k]| =

∣∣Γ−i [k]− Γ+
i [k]

∣∣ (18)

Define Cki :=
∑it

j=is+1|uj [k]− uj−1[k]|. We have,

it∑
j=is

〈γ−j − γ+
j , ūi − uj〉 =

d∑
k=1

it∑
j=is

(γ−j [k]− γ+
j [k])(ūi[k]− uj [k])

≤(a)

d∑
k=1

∣∣Γ−i [k]− Γ+
i [k]

∣∣Cki
=

d∑
k=1

(
λ∆si[k] sign

(
Γ−i [k]− Γ+

i [k]
)

+ sign
(
Γ−i [k]− Γ+

i [k]
) (

Γ−i [k]− Γ+
i [k]

))
Cki

−
d∑

k=1

λ∆si[k] sign
(
Γ−i [k]− Γ+

i [k]
)
Cki

≤(b)

∥∥λ∆si + Γ−i − Γ+
i

∥∥
2
Ci + 2λCi,

where in line (a) we applied 〈x,y〉 ≤ ‖x‖1‖y‖∞ along with the Eq. (18). In line (b) we applied
〈x,y〉 ≤ ‖x‖2‖y‖1 for the first term and 〈x,y〉 ≤ ‖x‖∞‖y‖1 for the second term. Putting
everything together yields the Lemma.

Lemma 35 Let splitMonotonic in Fig.9 be run with an input [is, it]. Then the partition S it
return obeys |S|= O(d).

Proof From the psuedo-code in Fig. 9 it is obvious that each coordinate can contribute to increasing
the bin count by O(1). Hence the overall bin count in S is O(d).

An illustrative example of the input and output of splitMonotonic is given in Fig. 10.
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splitMonotonic: Inputs - (1) an interval [is, it] such that the offline optimal is monotonic
across each coordinate k ∈ [d]; (2) offline optimal sequences u1:n and the sequence of
subgradients (dual variables) s1:n−1 (recall that s0 = sn = 0 by convention.).

1. Initialize T ← Φ, S ← Φ.

2. Add is, it to T .

3. For each coordinate k ∈ [d]:

(a) If u[k] is constant in [is, it], then skip the current coordinate.

(b) Initialize z1 ← is, z2 ← it.

(c) If uis [k] = ±B, let z1 be the first time point in [is, it] where uz1 [k] 6= ±B. Add
z1 − 1, z1 to T .

(d) If uit [k] = ±B, let z2 be the last time point in [is, it] where uz2 [k] 6= ±B. Add
z2, z2 + 1 to T .

(e) If u[k] is non-decreasing in [is, it] then let p ≥ z1 be the first point with
sp−1[k] = 1. If p > z1, add p− 1, p to T .

(f) Ifu[k] is non-decreasing in [is, it] then let q ≤ z2 be the last point with sq[k] = 1.
If q < z2, add q, q + 1 to T .

(g) If u[k] is non-increasing in [is, it] then let p ≥ z1 be the first point with
sp−1[k] = −1. If p > z1, add p− 1, p to T .

(h) If u[k] is non-increasing in [is, it] then let q ≤ z2 be the last point with sq[k] =
−1. If q < z2, add q, q + 1 to T .

4. For each entry t in T :

(a) If t appears more than 2 times, delete some occurences of t such that t only
appears 2 times in T .

5. Sort T in non-decreasing order. For each consecutive points s, t ∈ T , add [s, t] to S.

6. Return the partition S.

Figure 9: splitMonotonic procedure
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is a1 a2 a3 it

coordinate 1

coordinate 2

coordinate 3

Figure 10: An example of the partitioning created by splitMonotonic (See Fig. 9). The partition
S returned by splitMonotonic is {[is, a1 − 1], [a1, a2 − 1], [a2, a3 − 1], [a3, it]}. Blue dots
indicate the offline optimal sequence.

Theorem 14 By using the base learner as ONS with parameter ζ = min
{

1
4G†(2B

√
d+2G/β)

, α
}

,

decision set D and choosing learning rate η = α, FLH obeys R+
n (Cn) = Õ

(
d3.5(n1/3C

2/3
n ∨ 1)

)
if Cn > 1/n and O(d1.5 log n) otherwise. Here a ∨ b := max{a, b} and Õ(·) hides dependence on
the constants B,G,G†, α and factors of log n.

Proof Consider a bin [is, it] ∈ P . By Lemma 30, the bin has to satisfy one of the two Properties.
Let’s first focus on the scenario where [is, it] satisfies Property 2.

Combining the results of Lemmas 33, 34 we can write,
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T2,i + T3,i ≤
−‖λ∆si + Γ−i − Γ+

i ‖22
2niβ

+ ‖λ∆si + Γ−i − Γ+
i ‖2Ci

+
βniC

2
i

2
+ 5λCi +

∥∥λ∆si + Γ−i − Γ+
i

∥∥
2
Ci

≤(a)
βB2

2
− ‖λ∆si + Γ−i − Γ+

i ‖22
2niβ

+ 7
(∥∥λ∆si + Γ−i − Γ+

i

∥∥
2
∨ λ
)
Ci

=
βB2

2
−
(
‖λ∆si + Γ−i − Γ+

i ‖2√
2niβ

−
7Ci
√
niβ

(∥∥λ∆si + Γ−i − Γ+
i

∥∥
2
∨ λ
)

‖λ∆si + Γ−i − Γ+
i ‖2
√

2

)2

+
49niβC

2
i

2

(∥∥λ∆si + Γ−i − Γ+
i

∥∥
2
∨ λ

‖λ∆si + Γ−i − Γ+
i ‖2

)2

≤(b)
βB2

2
+ 392βniC

2
i

≤ 393βB2,

where in line (a) we used Ci ≤ B/
√
ni for partitions in P (Lemma 30). In line (b) we used

‖λ∆si+Γ−i −Γ+
i ‖2∨λ

‖λ∆si+Γ−i −Γ+
i ‖2

≥ 4 since ‖λ∆si + Γ−i − Γ+
i ‖2≥ λ/4 by Property 2 of Lemma 30.

Now using Lemma 31, for the bins [is, it] that satisfy property 2, we can write

T1,i + T2,i + T3,i = Õ(d1.5). (19)

Now suppose that the bin [
¯
t, t̄] satisfies Property 1 in Lemma 30. In this case, via a call to

splitMonotonic function with the input interval as [
¯
t, t̄], we split the original bin into O(d)

sub-bins (see Lemma 35). Further for a fixed k, if uj [k], j ∈ [
¯
t, t̄] is non-decreasing, then we can

group those consecutive sub-bins into at-most three categories: (a) a section of time where uj [k] is
constant; (b) a section of time where uj [k] is non-decreasing; (c) a section of time where uj [k] is
constant.

We proceed to define these sections formally (where p,m, q are indices defined for convenience)

• For section (a) let A = {[
¯
t,

¯
t−p − 1], [

¯
t−p, t̄−p], . . . [

¯
t0, t̄0]}

• For section (b) let B = {[
¯
t1, t̄1], . . . , [

¯
tm, t̄m]}

• For section (c) let C = {[
¯
tm+1, t̄m+1], . . . , [t̄q + 1, t̄]}

As mentioned before, these sections are constructed so that the oflline optimal satisfy the
following properties.

(i) uj [k] j ∈ [
¯
t, t̄0] is constant.

(ii) u
¯
t1 [k] > u

¯
t1−1[k] and u

¯
tm+1 [k] > u

¯
tm+1−1[k].

(iii) uj [k] j ∈ [
¯
t1, t̄m] is non-decreasing.
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(iv) uj [k] j ∈ [
¯
tm+1, t̄] is constant.

We remark that the grouping may be different for different coordinates k. Further some of A,B or C
can be empty. In the example we gave in Fig. 10:

• For coordinate 1 A = φ, B = φ, C = {[is, a1 − 1], [a1, a2 − 1], [a2, a3 − 1], [a3, it]}.
• For coordinate 2 A = [is, a1 − 1], B = φ, C = {[a1, a2 − 1], [a2, a3 − 1], [a3, it]}.
• For coordinate 3 A = {[is, a1 − 1], [a1, a2 − 1]}, B = {[a2, a3 − 1]}, C = {[a3, it]}
We fill focus on the aforementioned scenario where uj [k], j ∈ [

¯
t, t̄] is non-decreasing. The

arguments for the case where uj [k], j ∈ [
¯
t, t̄] is non-increasing are similar. Further similar to the

proof of Theorem 22, we give arguments for the case where γ+
j [k] = 0 for all j in the interval [

¯
t, t̄]

stating that arguments for the case γ−j [k] = 0 uniformly in [
¯
t, t̄] are similar.

From Lemma 33, we have
b∑

j=a

fj(u̇a→b)− fj(ūa→b) ≤
−‖λ∆sa→b + Γ−a→b − Γ+

a→b‖22
2na→bβ

+ ‖λ∆sa→b + Γ−a→b − Γ+
a→b‖1Ca→b.

(20)

Observe that the relation in Eq. (17) holds for any generic bin [a, b] that may not be a member of
P (replacing Ci, ni, ūi with Ca→b, na→b, ūa→b). So

T3,[a,b] :=
b∑

j=a

fj(ūa→b)− fj(uj) ≤
d∑

k=1

βna→bC
2
a→b

2d
+

b∑
j=a

〈∇fj(uj), ūa→b − uj〉. (21)

Note that Eq. (20) and (21) decompose coordinate-wise. So for the bin [
¯
t, t̄] ∈ P where the optimal

sequence is monotonic across each coordinate, our strategy is to bound

Sa→b[k] :=
−
(
λ∆sa→b[k] + Γ−a→b[k]− Γ+

a→b[k]
)2

2na→bβ
+ |λ∆sa→b[k] + Γ−a→b[k]− Γ+

a→b[k]|Ca→b

+
βna→bC

2
a→b

2d
+

b∑
j=a

∇fj(uj)[k](ūa→b[k]− uj [k]), (22)

for each k ∈ [d] and [a, b] ∈ A ∪ B ∪ C and finally adding them across all coordinates to bound∑d
k=1 Sa→b[k]. Doing so will result in a bound on T2,[a,b] +T3,[a,b]. Further, T1,[a,b] can be bound by

strongly adaptive regret. This enables us to bound
∑

[a,b]∈A∪B∪C T1,[a,b] + T2,[a,b] + T3,[a,b] thereby
leading to a regret bound in the parent bin [

¯
t, t̄] ∈ P which was the input interval for the call to

splitMonotonic that we started with.
Let C[a,b][k] be the TV of offline optimal incurred in the interval any interval [a, b] along

coordinate k. First we focus on the bins in B. If B is not empty, then γj [k] = 0 ∀j ∈ [
¯
t1 → t̄m] due

to property (ii) and (iii) above. By using the stationarity conditions in Lemma 29, we can write∑
[a,b]∈B

b∑
j=a

∇fj(uj)[k](ūa→b[k]− uj [k]) = λC
¯
t1→t̄m [k] + λ

(
s
¯
t1−1[k]u

¯
t1 [k]− st̄m [k]ut̄m [k]

)
+
∑

[a,b]∈B

λūa→b[k]∆sa→b[k].
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So we have,

∑
[a,b]∈B

Sa→b[k] ≤
βn

¯
t1→t̄mC

2

¯
t1→t̄m

2d
+ λC

¯
t1→t̄m [k] + λ

(
s
¯
t1−1[k]u

¯
t1 [k]− st̄m [k]ut̄m [k]

)
+
∑

[a,b]∈B

−λ2(∆sa→b[k])2

2na→bβ
+ λ|∆sa→b[k]|C

¯
t1→t̄m + λūa→b[k]∆sa→b[k]

≤(a)

βn
¯
t→t̄C

2

¯
t→t̄

2d
+ λC

¯
t1→t̄m [k] + λ

(
s
¯
t1−1[k]u

¯
t1 [k]− st̄m [k]ut̄m [k]

)
+
∑

[a,b]∈B

−λ2(∆sa→b[k])2

2na→bβ
+ λ|∆sa→b[k]|C

¯
t→t̄ + λūa→b[k]∆sa→b[k]

≤(b)
βB2

2d
+
∑

[a,b]∈B

−λ2(∆sa→b[k])2

2na→bβ
+ λ|∆sa→b[k]|C

¯
t→t̄ + λūa→b[k]∆sa→b[k],

where in line (a) we used the fact thatC
¯
t1→t̄m ≤ C

¯
t→t̄ and n

¯
t1→t̄m ≤ n

¯
t→t̄ since [

¯
t1, t̄m] is contained

within [
¯
t, t̄]. In line (b) we used C

¯
t→t̄ ≤ B/√n

¯
t→t̄ (since [

¯
t, t̄] ∈ P) along with the fact that

λ
(
s

¯
t1−1[k]u

¯
t1 [k]− st̄m [k]ut̄m [k]

)
= −λC

¯
t1→t̄m since

s
¯
t1−1[k] = st̄m = 1 due to property (ii) and (iii) above.

Define ǔB := 1
|B|
∑

[a,b]∈B ūa→b. Observe that since s
¯
t1−1[k] = st̄m [k] = 1, we can write∑

[a,b]∈B∆sa→b[k] = 0 by the telescoping structure.
By noting that we can subtract 0 = λǔB[k]

∑
(a,b)∈B∆sa→b[k] and that |ūa→b[k] − ǔB[k]|≤

C
¯
t→t̄, we have

∑
[a,b]∈B

Sa→b[k] ≤ βB2

2d
+
∑

[a,b]∈B

−λ2(∆sa→b[k])2

2na→bβ
+ λ|∆sa→b[k]|C

¯
t→t̄ + λ (ūa→b[k]− ǔB[k]) ∆sa→b[k]

≤ βB2

2d
+
∑

[a,b]∈B

−λ2(∆sa→b[k])2

2na→bβ
+ 2λ|∆sa→b[k]|C

¯
t→t̄

=
βB2

2d
+
∑

[a,b]∈B

−
(
λ∆sa→b[k]√

2na→bβ
− C

¯
t→t̄
√

2na→bβ

)2

+ 2βna→bC
2

¯
t→t̄

≤ βB2

2d
+ 2βn

¯
t→t̄C

2

¯
t→t̄

≤ βB2

2d
+ 2βB2

≤ 3βB2.

Next, we address bins present inA and C. We provide the arguments for bounding
∑

[a,b]∈A Sa→b[k].
Bounding the sum for bins in C can be done using similar arguments.

Observe that by property (i) above, the sequence uj [k] for j ∈ [is, t̄0] is a constant. So the last
term in Eq. (22) is zero for any Sa→b[k] where [a, b] ∈ A. Now proceeding similar to above by
completing the squares and dropping the negative terms, we get
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∑
[a,b]∈A

Sa→b[k] ≤
∑

[a,b]∈A

(
−
(
λ∆sa→b[k] + Γ−a→b[k]− Γ+

a→b[k]
)2

2na→bβ

+|λ∆sa→b[k] + Γ−a→b[k]− Γ+
a→b[k]|Ca→b +

βna→bC
2
a→b

2d

)

=
∑

[a,b]∈A

−(λ∆sa→b[k] + Γ−a→b[k]− Γ+
a→b[k]√

2na→bβ
− Ca→b

√
na→bβ

2

)2

+
na→bβC

2
a→b

2
+
βna→bC

2
a→b

2d


≤

∑
[a,b]∈A

na→bβC
2

¯
t→t̄

≤ n
¯
t→t̄βC

2

¯
t→t̄

≤ βB2.

Similarly it can be shown that
∑

[a,b]∈C Sa→b[k] = O(1). Recalling that |A|+|B|+|C|= O(d) we
have

T2,[
¯
t,t̄] + T3,[

¯
t,t̄] ≤

d∑
k=1

∑
[a,b]∈A∪B∪C

Sa→b[k] = O(d).

From Lemma 31 we have

T1,[
¯
t,t̄] = Õ(d2.5), (23)

for bins [
¯
t, t̄] ∈ P that satisfy property 2 in Lemma 30.

Comparing Eq. (19) and (23) we conclude that

T1,i + T2,i + T3,i = Õ(d2.5), (24)

for all bins [is, it] in the partition P of Lemma 30. Since |P|= O(dn1/3C
2/3
n ), adding the above

bound across all bins leads to the theorem.
If Cn ≤ 1/n, then we have

n∑
t=1

ft(xj)− ft(ut) ≤
n∑
t=1

ft(xj)− ft(u1) +
n∑
t=1

ft(u1)− ft(ut)

≤(a) Õ(d1.5) +G†nCn

= Õ(d1.5)

where line (a) follows from the fact that ft is G† Lipschitz in D.
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Proposition 15 For strongly convex losses, the regret bound can be improved to Õ
(
d2(n1/3C

2/3
n ∨ 1)

)
if Cn > 1/n and O(log n) otherwise by using OGD as base learners in the FLH procedure. See
Appendix D.2 for a proof.

Proof [Proof Sketch] First we consider the case where the offline optimal in monotonic in each
coordinate of a bin in P . The static regret in any bin for strongly convex losses is O(log n) by
Lemma 32 (as opposed to Õ(d1.5) for exp-concave losses). Hence Eq.(23) can be re-written as
T1,[

¯
t,t̄] = Õ(d). By following similar arguments as in proof of Theorem 14, we can re-write Eq.(24)

as

T1,i + T2,i + T3,i = Õ(d).

If the offline optimal is not monotonic, in each coordinate, we can write

T1,i + T2,i + T3,i = Õ(1),

by following similar arguments for the corresponding case in the proof of Theorem 14.
Finally we sum across all |P|= O(dn1/3C

2/3
n ). The case Cn ≤ 1/n can be handled similar to

that of the exp-concave case.

Appendix E. Technical Lemmas

We start by describing a partitioning procedure namely generateBins.

generateBins: Inputs - the offline optimal sequence.

Step 1 InitializeQ ← Φ. Starting from time 1, spawn a new bin [is, it] whenever
∑it+1

j=is+1‖uj−
uj−1‖1> B/

√
ni, where ni = it − is + 1. Add the spawned bin [is, it] to Q.

Step 2 Initialize P ← Φ,R ← Φ.

Step 3 For each bin [is, it] ∈ Q:

(a) Let ∆si = sit − sis−1. Γ+
i =

∑it
j=is

γ+
j . Γ−i =

∑it
j=is

γ−j .

(b) If for each k ∈ [d], the sequence uk is monotonic in [is, it], then remove [is, it] from
Q and add it to P .

(c) If there exists one coordinate k ∈ [d] such that sis−1[k] ∈ [−1,−1/4] and sit [k] ∈
[0, 1] and γ+

j [k] = 0 ∀j ∈ [is, it], then remove [is, it] from Q and add it to P . Goto
Step 3.

(d) If there exists one coordinate k ∈ [d] such that sis−1[k] ∈ [−1/4, 0] and sit [k] ∈
[1/4, 1] and γ+

j [k] = 0 ∀j ∈ [is, it], then remove [is, it] from Q and add it to P .
Goto Step 3.

(e) If there exists one coordinate k ∈ [d] such that uk is non-monotonic in [is, it] and
sis−1[k] ∈ [−1/4, 1] and sit [k] ∈ [−1/4, 1] and γ+

j [k] = 0 ∀j ∈ [is, it] then:

i. Initialize z ← is. Remove [is, it] from Q.
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ii. if uis [k] = −B, then split [is, it] into [is, a] and [a+ 1, it] where a is the first
time point within [is, it] such that ua[k] > −B. Add [is, a − 1] to Q. Set
z ← a.

iii. Let j be the first time in [z, it] such that sj−1[k] = −1 with uj [k] < uj−1[k].
Add [z, j − 1] and [j, it] to P . Goto Step 3.

(f) If there exists one coordinate k ∈ [d] such that uk is non-monotonic in [is, it] and
sis−1[k], sit [k] ∈ [−1/4, 1/4] and γ+

j [k] = 0 ∀j ∈ [is, it] then:

i. Initialize z ← is. Remove [is, it] from Q.
ii. if uis [k] = −B, then split [is, it] into [is, a] and [a + 1, it] where a is the

first time point within [is, it] such that ua[k] > −B. Add [is, a] to Q. Set
z ← a+ 1.

iii. Let j be the first time in [z, it] such that sj−1[k] = −1 with uj [k] < uj−1[k]. .
Add [z, j − 1] and [j, it] to P . Goto Step 3.

(g) If there exists one coordinate k ∈ [d] uk is non-monotonic in [is, it] and such that
sis−1[k] ∈ [−1,−1/4] and sit [k] ∈ [−1, 1/4] and γ+

j [k] = 0 ∀j ∈ [is, it] then:

i. Initialize z ← it. Remove [is, it] from Q.
ii. If uit [k] = −B, then split [is, it] into [is, a] and [a+ 1, it] where a is the last

time point within [is, it] such that ua[k] > −B. Add [a + 1, it] to Q. Set
z ← a.

iii. Let j be the last time in [is, z] such that sj−1[k] = 1 with uj [k] > uj−1[k]..
Add [is, j − 1] and [j, z] to P . Goto Step 3.

(h) If there exists a coordinate k ∈ [d] such that uk is non-monotonic in [is, it] and
sis−1[k] ∈ [−1/4, 1] and sit [k] ∈ [−1, 1/4] and γ+

j [k] = 0,∀j ∈ [is, it] then:

i. Initialize p← is − 1. Remove [is, it] from Q.
ii. If uis [k] = −B, then let p be the largest point in [is, it] such that ut[k] =
−B ∀t ∈ [is, p]. Add [is, p] to Q.

iii. Let j be the first point in [p + 1, it] with sj−1[k] = −1 with uj−1[k] > −B
and uj [k] < uj−1[k]. Add [p+ 1, j − 1] to P .

iv. If ur[k] is monotonic in [j, it], add [j, it] to Q. Goto Step 3.
v. Initialize q ← it + 1.

vi. If uit [k] = −B, let q be smallest point in [j, it] such that ur[k] = −B ∀r ∈
[q, it]. Add [q, it] to Q.

vii. Let h be the last time point in [j, q − 1] such that sh−1[k] = 1 with uh[k] >
uh−1[k]. Add [j, h− 1] to P .

viii. If h < q − 1, add [h, q − 1] to P .
ix. Goto Step 3.

(i) If there exists one coordinate k ∈ [d] such that sis−1[k] ∈ [0, 1] and sit [k] ∈
[−1,−1/4] and γ−j = 0 ∀j ∈ [is, it], then remove [is, it] from Q and add it to P .
Goto Step 3.
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(j) If there exists one coordinate k ∈ [d] such that sis−1[k] ∈ [1/4, 1] and sit [k] ∈
[−1/4, 0] and γ−j = 0 ∀j ∈ [is, it], then remove [is, it] from Q and add it to P .
Goto Step 3.

(k) If there exists one coordinate k ∈ [d] such that uk is non-monotonic in [is, it] and
sis−1[k], sit [k] ∈ [−1, 1/4] and γ−j = 0 ∀j ∈ [is, it] and there exists a coordinate
j ∈ [is, it] such that sj−1[k] = 1 and uj−1[k] < B then:

i. Initialize p← is. Remove [is, it] from Q.
ii. If uis [k] = B, then let p be the largest point in [is, it] such that ut[k] = B ∀t ∈

[is, p]. Add [is, p] to Q.
iii. Let j be the first point in [p+1, it] such that sj−1[k] = 1 with uj−1[k] < uj [k].

Add [p+ 1, j − 1] to P . Add [j, iq] to Q. Goto Step 3.

(l) If there exists one coordinate k ∈ [d] such that uk is non-monotonic in [is, it] and
sis−1[k], sit [k] ∈ [−1/4, 1] and γ−j = 0 ∀j ∈ [is, it] and there exists a j ∈ [is, it]
such that uj [k]− uj−1[k] = −1 and uj [k] < B then:

i. Initialize z1 ← is, z2 ← it. Remove [is, it] from Q.
ii. If uis [k] = B, then let p1 be the last point in [is, it] such that ut[k] = B ∀t ∈

[is, p1]. Set z1 ← p1 + 1. Add [is, p] to Q.
iii. If uit [k] = B, then let p2 be the smallest point in [is, it] such that ut[k] =

B ∀t ∈ [p2, it]. Set z2 ← p2 − 1. Add [p2, it] to Q.
iv. Let j be the last point in [z1, z2] such that sj−1[k] = −1 and uj [k] < B with
uj−1[k] > uj [k]. Add [z1, j − 1] and [j, z2] to P . Goto Step 3.

(m) If there exists one coordinate k ∈ [d] such that uk is non-monotonic in [is, it] and
sis−1[k] ∈ [−1, 1/4] and sit [k] ∈ [−1/4, 1] and γ−j = 0 ∀j ∈ [is, it] then:

i. Initialize p← is − 1. Remove [is, it] from Q.
ii. If uis [k] = B, then let p be the last time point such that ut[k] = B ∀t ∈ [is, p].

Add [is, p] to Q.
iii. Let j be the first point in [p + 1, it] such that sj−1[k] = 1 with uj−1[k] < B

with uj−1[k] < uj [k]. Add [p+ 1, j − 1] to P .
iv. If ur[k] is monotonic in [j, it], add [j, it] to Q. Goto Step 3.
v. Initialize q ← it + 1.

vi. If uit [k] = B, let q be smallest point in [j, it] such that ur[k] = B ∀r ∈ [q, it].
Add [q, it] to Q.

vii. Let h be the last time point in [j, q−1] such that sh−1[k] = −1 with uh−1[k] >
uh[k]. Add [j, h− 1] to P .

viii. If h < q − 1, add [h, q − 1] to P .
ix. Goto Step 3.

Step 4 Return P .

Lemma 36 The partitioning routine generateBins halts. Further we have |P|= O(dn1/3C
2/3
n ).

Proof We need to argue that the loop in Step 3 halts.
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FACT1: Notice that in the loop of Step 3, we add a bin to Q only if u[k̃] is monotonic in that bin
for a coordinate k̃. Once such a bin is added, in the later steps we do not create new bins across the
previous coordinate k̃.

FACT2: Step 1 ensures that within each bin we consider, a TV of at-most B will only be incurred.
Due to Lemma 25, this TV constraint implies that both γ+[k] and γ−[k] cannot be simultaneously
non-zero within any bin [is, it]. Consequently we consider all possible configurations of such TV
constrained bins in Steps 3(b-m). See Table 1 for a comprehensive summary.

Combining the previous two facts, we conclude that any time point in [n] will be into some bin
in P orR in at-most d (maybe non-consecutive) iterations of the loop in Step 3.

By using similar arguments as in proof of Lemma 5, we have |Q|= O(n1/3C
2/3
n ) after Step 1

gets finished. Due to FACT1, the loop in Step 3 can split a bin that was originally present in Q at the
end of Step 1 into at-most O(d) sub-bins. Hence |P| can be O(dn1/3C

2/3
n ) after Step 3.

Lemma 37 Let P be the partition produced by generateBins. Consider a bin [is, it] ∈ P .
Using the notations of Lemma 33, the bin [is, it] satisfy one of the following properties.

• Property 1: Across each coordinate k ∈ [d], the sequence uj [k], j ∈ [is, it] is non-decreasing
or non-increasing. Or,

• Property 2: ‖λ∆si + Γ−i − Γ+
i ‖2≥ λ/4.

Proof To prove the properties satisfied by each bin in P we inspect the steps in generateBins
and verify the stated properties. Below when we refer the coordinate k, we mean the same coordinate
that is used by the corresponding steps in generateBins. For a bin [a, b], we also recall the
notations ∆sa→b, Γ+

a→b and Γ−a→b. We use the short hands ∆si,Γ
+
i ,Γ

−
i as in Lemma 33 for a bin

referred by [is, it].

1. For the bin added in Step 3(c) we have ∆si[k] > 1/4. Also Γ−i [k] − Γ+
i [k] = Γ−i [k] ≥ 0.

Hence Property 2 is verified.

2. Step 3(d) can be verified as above.

3. In Step 3(e), we add [z, j − 1] and [j, it] to P . By construction, the u[k] solution do no attain
the value −B in [z, j − 1]. Hence Γ−z→j−1 − Γ+

z→j−1 = 0. Since sz−1[k] ∈ [−1/4, 1] and

sj−1[k] = −1, we have
∣∣∣λ∆sz→j−1[k] + Γ−z→j−1[k]− Γ+

z→j−1[k]
∣∣∣ > λ/4. Hence Property 2

is verified for [z, j−1]. For the bin [j, it] we have γ+
r [k] = 0, ∀r ∈ [j, it]. Since sj−1[k] = −1

and s2[k] ∈ [−1/4, 1], we have ∆sj→it [k] ≥ 1/4. So λ∆sj→it [k] + Γ−j→it [k]− Γ+
j→it [k] ≥

λ∆sj→it [k] ≥ λ/4. Thus Property 2 is verified for [j, it]. See Fig. 11 for an example of this
configuration.

4. Step 3(f) can be verified using similar arguments as above.

5. In Step 3(g) we add [is, j − 1] and [j, z] to P . Since s1[k] ∈ [−1,−1/4] and sj−1[k] = 1. So
we have ∆sis→j−1 ≥ 0 and hence Property 2 is satisfied for [is, j − 1]. By construction there
u[k] do not attain the value −B in [j, z]. So Γ−j→z[k]− Γ+

j→z = 0. Since sz[k] ∈ [−1, 1/4]
and sj−1[k] = 1, we conclude that Property 2 is satisfied for [j, z]. See Fig. 12 for an example
of this configuration.
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6. By construction of Step 3(h) γ−r [k] = 0 ∀r ∈ [p + 1, j − 1]. Thus Γ−p+1→j−1[k] −
Γ+
p+1→j−1[k] = 0. Since sj−1[k] = −1 and sp[k] ∈ [−1/4, 1], we can conclude that Property

2 is verified for [p + 1, j − 1]. Since sh−1[k] = 1 we have λ∆sj→h−1[k] + Γ−j→h−1[k] −
Γ+
j→h−1[k] ≥ λ∆sj→h−1[k] ≥ λ/4. Thus Property 2 is verified for [j, h− 1]. By construc-

tion, u[k] do not attain the value −B in [h, q − 1]. Hence Γ−h→q−1 − Γ+
h→q−1 = 0. Since

sq−1[k] ∈ [−1, 1/4] and sh−1[k] = 1, Property 2 is satisfied for [h, q − 1]. See Fig. 13 for an
example of this configuration.

The Properties stated in the Lemma can be verified for all bins that get added to P in steps 3(i-m)
using similar arguments as above.

Proof of Lemma 30. The proof is completed by the partitioning produced by generateBins and
results of Lemmas 36 and 37.

sis−1[k] sit [k] Γ+
i [k] = 0 Γ−i [k] = 0

[-1,-1/4] [-1,-1/4] (g) (k)
[-1/4,0] (g) (k)
[0,1/4] (g) (k)
[1/4,1] (c) (m)

[-1/4,0] [-1,-1/4] (h) (k)
[-1/4,0] (f) (l)
[0,1/4] (f) (l)
[1/4,1] (d) (l)

[0,1/4] [-1,-1/4] (h) (k)
[-1/4,0] (f) (k)
[0,1/4] (f) (k)
[1/4,1] (e) (l)

[1/4,1] [-1,-1/4] (h) (i)
[-1/4,0] (h) (j)
[0,1/4] (h) (l)
[1/4,1] (e) (l)

Table 1: Various configurations of a non-monotonic coordinate within a bin [is, it] and their as-
signments to the corresponding steps of generateBins routine for the cases γ+

j [k] = 0 for all
j ∈ [is, it] and γ−j [k] = 0 for all j ∈ [is, it].
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is j it

−B

sis−1[k] = 1
4, sj−1[k] = −1, sit[k] = 1

Figure 11: An example of a configuration corresponding Step 3(e) of generateBins. Here z = is.

is j it

−B

sis−1[k] = −3
4, sj−1[k] = 1, sit[k] = 1

4

Figure 12: An example of a configuration corresponding Step 3(g) of generateBins. Here z = it.

is j h it

−B

sis−1[k] = 1, sj−1[k] = −1, sh−1[k] = 1, sit[k] = −1

Figure 13: An example of a configuration corresponding Step 3(h) of generateBins. Here
p+ 1 = is, q = it + 1.
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