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Abstract
The stochastic multi-armed bandit model captures the tradeoff between exploration and exploita-
tion. We study the effects of competition and cooperation on this tradeoff. Suppose there are two
arms, one predictable and one risky, and two players, Alice and Bob. In every round, each player
pulls an arm, receives the resulting reward, and observes the choice of the other player but not their
reward. Alice’s utility is ΓA + λΓB (and similarly for Bob), where ΓA is Alice’s total reward and
λ ∈ [−1, 1] is a cooperation parameter. At λ = −1 the players are competing in a zero-sum game,
at λ = 1, their interests are aligned, and at λ = 0, they are neutral: each player’s utility is their
own reward. The model is related to the economics literature on strategic experimentation, where
usually players observe each other’s rewards.

Suppose the predictable arm has success probability p and the risky arm has prior µ. If the
discount factor is β, then the value of p where a single player is indifferent between the arms is the
Gittins index g = g(µ, β) > m, where m is the mean of the risky arm.

Our first result answers, in this setting, a fundamental question posed by Rothschild (1974).
We show that competing and neutral players eventually settle on the same arm (even though it may
not be the best arm) in every Nash equilibrium, while this can fail for players with aligned interests.

Moreover, we show that competing players explore less than a single player: there is p∗ ∈
(m, g) so that for all p > p∗, the players stay at the predictable arm. However, the players are
not myopic: they still explore for some p > m. On the other hand, cooperating players (with
λ = 1) explore more than a single player. We also show that neutral players learn from each other,
receiving strictly higher total rewards than they would playing alone, for all p ∈ (p∗, g), where p∗

is the threshold above which competing players do not explore.

Keywords: bandit learning, multiplayer learning, Nash equilibrium, zero-sum games, cooperating
players, strategic experimentation

1. Introduction

The multi-armed bandit learning problem is a paradigm that captures the tradeoffs between explo-
ration and exploitation (Gittins et al. (2011); Bubeck and Cesa-Bianchi (2012); Slivkins (2019);
Lattimore and Szepesvari (2019)). We study the effects of competition and cooperation on explo-
ration in a multiplayer stochastic bandit problem, where multiple players are selecting arms and
receiving the corresponding rewards in each round. Examples of scenarios that can be captured by
this model include competing firms in a saturated market, which can be seen as a zero-sum game
where the utility of a player is the difference between their rewards and the rewards of the oppo-
nent. At the other extreme, the interaction of organisms that are (almost) genetically identical, such
as ants and bees, can be modeled by a fully cooperative game (Hamilton (1964)) where the utility
of a player is the sum of the rewards of all players.
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We consider a unifying framework that interpolates between these extremes, and focus on the
so-called one-armed bandit problem, where the choices are playing a predictable arm or a risky one.
The feedback received by each player is their own reward and the action taken by the other player.
If Alice’s total reward is ΓA and Bob’s total reward is ΓB , then Alice’s utility is ΓA + λΓB and
similarly for Bob, where λ ∈ R. We study three choices for λ: the zero-sum case (λ = −1), the
fully aligned case (λ = 1), and the neutral setting (λ = 0).

We study the long term behavior of the players, and show that both neutral and competing
eventually settle on the same arm (even though it may not be the best arm) in every Nash equilibrium
(Theorem 1). However, this can fail for cooperating players, where there are Nash equilibria in
which one of the players switches infinitely often between the arms.

Rothschild (1974) studied the theory of market pricing using a two-armed bandit model and
asked the question of whether players eventually settle on the same arm. Aoyagi (1998, 2011)
answered this question positively in the model with imperfect monitoring, where players can see
each other’s actions but only their own rewards, under an assumption on the distributions. To the
best of our knowledge, our paper is the first progress on the Rothschild conjecture since Aoyagi’s
work.

A key question in the zero sum scenario is to quantify the value of information obtained by ex-
ploring (i.e. experimenting with the risky arm). Note that while Alice does not know Bob’s rewards,
she may try to infer them from his actions, which in turn may lead to Bob trying to change his ac-
tions to hide information from her. We find that under optimal play, information is less valuable in
the zero-sum game than in the one player setting, which leads to reduced exploration compared to
the one player optimum (Theorem 3). However, Theorem 7 shows that information still has pos-
itive value. Our model is close to the games of incomplete information analyzed by Aumann and
Maschler (1995), where a player may forego some rewards to hide information from their opponent.

In contrast to the zero-sum scenario, we show that exploration is increased in the fully coop-
erative setting compared to the single player optimum (Theorem 10). We also study the neutral
regime and find that in a range of parameters, with probability 1 the players explore in every Nash
equilibrium. Moreover, if the equilibrium is also perfect Bayesian, then the players learn from each
other: each player gets in expectation strictly higher total reward than they would when playing
alone (Theorem 13). A corollary is that with positive probability the players do not follow the same
trajectory in any perfect Bayesian equilibrium.

Another natural feedback model is perfect monitoring, where all players see the actions and
rewards of each other. This is not interesting in the zero sum case (see Remark 9), but in the neutral
and cooperative cases it is close to classic papers in the economics of strategic experimentation.
Bolton and Harris (1999), and Cripps et al. (2005) study strategic experimentation with perfect
monitoring, while Heidhues et al. (2015) study imperfect monitoring where players can additionally
communicate via cheap talk.

In statistical learning, there has been work on multi-player bandits (e.g., Lai et al. (2008); Liu
and Zhao (2010)), where multiple cooperating players select arms and then collect the correspond-
ing rewards. If the players collide at an arm, then they receive a reward of zero. A different line of
work studied the effects of competition on learning. For example, Mansour et al. (2018) consider a
setting where players arrive and depart over time, while Rosenberg et al. (2007) study multi-player
learning in the one-armed bandit model, where the move from the risky to the predictable arm is
irreversible.
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Figure 1: Different regions in which players explore depending on the success probability p of the left arm
as a function of the prior µ and the discount factor β. Here m is the mean of µ, while g = g(µ, β)

is the Gittins index of the right arm, p̃ is the threshold where for all p < p̃ competing players
explore, p∗ the threshold where for all p > p∗ competing players do not explore, p̂ the threshold
where for all p < p̂ cooperating players explore, and p◦ the threshold above which cooperating
players do not explore. M∗ is the maximum of the support of µ. Solid intervals are non-empty,
dotted intervals may be empty.

1.1. Model

Suppose there are two players, Alice and Bob, each of which pulls one of K arms in each round.
The rewards are drawn from {0, 1}: for each arm k there is a prior distribution µk so that the success
probability is picked (by Nature) from µk before the game starts. In the finite horizon version, the
players play for T + 1 rounds indexed from 0 to T . In the discounted version, the game continues
forever, but the players have value reduced by a factor of βt for the reward in round t, where
β ∈ (0, 1)1.

Rewards In every round, each player collects the reward from the arm they pulled (even if both
chose the same arm). We denote by γA(t) and γB(t) the random variable corresponding to the
reward received by Alice and Bob, respectively in round t ≥ 0. The total reward of player i
in a finite horizon game is Γi =

∑T
t=0 γi(t), while player i’s reward in the discounted game is

Γi =
∑∞

t=0 γi(t) ·βt. In every round, after selecting the arm to pull, each player observes their own
reward and the action taken by the other player, but not their reward.

Utilities The utility of each player is a combination of their own reward and the reward of the
other player. More precisely, there is a cooperation parameter λ ∈ [−1, 1] so that Alice’s utility is
uA = ΓA + λ · ΓB , while Bob’s utility is uB = ΓB + λ · ΓA. For λ = −1, we have a zero-sum

1. This can alternatively be interpreted as the game stopping with probability 1− β in each round.
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game while for λ = 1, the interests of the players are aligned. The case λ = 0 is the neutral regime
where each player’s utility is their own total reward.

Arms We focus on the so-called one-armed bandit problem, where there is a predictable left arm,
denoted L, with known success probability p and a risky right arm, denoted R, with a prior µ that
is not a point mass. A player is said to “explore” if that player selects the right arm at least once.
Denote by m =

∫ 1
0 x dµ(x) the mean of the prior µ, by w =

∫ 1
0 (x −m)2 dµ(x) > 0 the variance

of µ, and by M∗ the maximum of the support of µ:

M∗ = sup{x ∈ [0, 1] : µ(x, 1] > 0} (1)

Strategies A pure strategy for player i is a function Si :
⋃
t∈N Yt × Zit → {L,R}, where Yt is

the public history (i.e. the sequence of past actions of both players) until the end of round t− 1 and
Zit is the private history of player i, containing the bits observed by i until the end of round t − 1.
Thus the pure strategy tells player i which arm to play next given the public and private history. A
mixed strategy is a probability distribution over the set of pure strategies. The expected utility of a
player is computed using the player’s beliefs about the private information of the other player.For
more details on extensive form games, see Chapter 3 in Maschler et al. (2013).

1.2. Roadmap of the Paper

Section 2 includes more detailed discussion of related work. Section 3 studies the long term be-
havior of the players, showing that both neutral and competing eventually settle on the same arm in
every Nash equilibrium, while this can fail for cooperating players. Section 4 has the analysis for
competing players, showing that they explore less than a single player, but are also not completely
myopic. Section 5 studies fully cooperating players, showing they explore more than a single player.
Section 6 studies neutral players, showing that they learn from each other. Directions for future re-
search are described in Section 7. Background on the Gittins index is given in Section 8.

2. Related Work

This work is related to several streams of research. Bandit learning problems with multiple players
have been studied in the collision model, where players are pulling arms independently. The players
are cooperating—trying to maximize the sum of rewards—and can agree on a protocol before play,
but cannot communicate during the game. Whenever there is a collision at some arm, then no player
that selected that arm receives any reward. This is motivated by applications such as cognitive radio
networks, where interference at a channel destroys the signal for all the players involved. Several
research directions in this setting include designing algorithms that allow the players to maximize
the total reward, depending on whether the environment is adversarial (see Alatur et al. (2019), and
Bubeck et al. (2020)) or stochastic (e.g., Kalathil (2014), Lugosi and Mehrabian (2018), Bistritz
and Leshem (2018)), and on whether they receive feedback about the collision or not ( Avner and
Mannor (2014), Rosenski et al. (2016), Bonnefoi et al. (2017), Boursier and Perchet (2018). Hillel
et al. (2013) study exploration in multi-armed bandits in a setting with pure exploration, where
players collaborate to identify an ε-optimal arm.

Aoyagi (1998, 2011) studies bandit learning with the same feedback model as ours, when there
are multiple neutral players and two risky arms. The main result is that assuming a property on the
distributions of the arms, in any Nash equilibrium the players settle eventually on the same arm.
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This is related to Aumann’s agreement theorem Aumann (1976), which shows in a Bayesian setting
that rational players cannot agree to disagree. While this game is not captured by the formal model
of the theorem in Aumann (1976), the result is similar conceptually.

Bolton and Harris (1999) study a multiplayer learning problem in in the one-armed bandit model
with continuous time and perfect monitoring, where the players can observe each other’s past ac-
tions and rewards. The main effects observed in symmetric equilibria are a free rider effect and an
encouragement effect, where a player may explore more in order to encourage further exploration
from others. Cripps et al. (2005) characterize the unique Markovian equilibrium of the game. They
also show that asymmetric equilibria are more efficient than symmetric ones, as it is more useful for
the players to take turns experimenting.

Heidhues et al. (2015) study the discrete version of this model and establish that in any Nash
equilibrium, players stop experimenting once the common belief falls below a single-agent cut-
off. They also show that the total number of experiments performed in equilibrium differs from
the single-agent optimum by at most one. Heidhues et al. (2015) additionally study a model with
imperfect monitoring, where the players can observe each other’s actions but only their own rewards.
The players can also communicate via cheap talk. One of the main findings is that cheap talk is
incentive compatible and the socially optimal symmetric experimentation profile can be supported
as a perfect Bayesian equilibrium. Klein and Rady (2011) study the one-armed bandit model with
public monitoring, where the correlation across bandits is negative. Rosenberg et al. (2013) study
the model with imperfect monitoring, except the decision to switch from the risky arm to the safe
one is irreversible. As they write, “Dropping the assumption that payoffs are publicly observed
raises new issues. Player i would like to make inferences about player j’s observations on the basis
of player j’s actions, but cannot do so without knowing how player j’s decisions relate to player j’s
observations, that is, j’s strategy”.

Another line of work in economics studies the interplay between competition and innovation
(see, e.g., D’Aspremont and Jacquemin (1988)). Close to our high level direction is the work of
Besanko and Wu (2013), which studies the tradeoff between cooperation and competition in R&D
via learning in a one-armed bandit model, where the safe arm is the established product and the
risky arm is the novel product. Our model is also related to the literature on stochastic games with
imperfect monitoring (see, e.g., Abreu et al. (1990)). Rosenberg et al. (2009) study a model of
dynamic games with informational externalities and analyze the rate of experimentation, providing
conditions under which players eventually reach a consensus.

In evolutionary biology, there is a line of research dedicated to understanding the extremely high
levels of cooperation observed in social insects (see, e.g., Anderson (1984) and Boomsma (2007)),
including designing mathematical models to explain why eusociality would evolve from natural
selection (e.g., Nowak et al. (2010)). Social learning was studied in the context of understanding
altruistic behaviors such as sharing of information about food locations (see, e.g., Gruter et al.
(2010)).

The theme of incentivizing exploration was studied, for example, by Kremer et al. (2013), and
Frazier et al. (2014), where the problem is that a principal wants to explore a set of arms, but the
exploration is done by a stream of myopic agents that have their own incentives and may prefer to
exploit instead. Mansour et al. (2015) design Bayesian incentive compatible mechanisms for such
settings.
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Aridor et al. (2019) empirically study the interplay between exploration and competition in a
model where multiple firms are competing for the same market of users and each firm commits to
a multi-armed bandit algorithm. The objective of each firm is to maximize its market share and the
question is when firms are incentivized to adopt better algorithms. Multi-armed bandit problems
with strategic arms have been studied theoretically by Braverman et al. (2019), in the setting where
each arm receives a reward for being pulled and the goal of the principal is to incentivize the arms
to pass on as much of their private rewards as possible to the principle.

Immorlica et al. (2011) study competitive versions of classic search and optimization problems
by converting them to zero-sum games. One of the open questions from Immorlica et al. (2011)
was whether competition between algorithms improves or degrades expected performance in that
framework, which was answered by Dehghani et al. (2016) for the ranking duel and a more general
class of dueling games.

3. Long Term Behavior

In this section we study the long term trajectories of the players in a Nash equilibrium for all values
of λ. We show that in every Nash equilibrium, competing and neutral players converge to playing
the same arm forever from some point on. For λ 6∈ [−1, 0], this can fail. The omitted material of
this section can be found in Appendix D.

Theorem 1 Consider two players, Alice and Bob, playing a one armed bandit problem with dis-
count factor β ∈ (0, 1). The left arm has success probability p and the right arm has prior distri-
bution µ such that µ(p) = 0. Then in any Nash equilibrium, in both the competing (λ = −1) and
neutral (λ = 0) cases, the players eventually settle on the same arm with probability 1.

The intuition behind the proof for neutral players is that if both players explore finitely many
times, then we are done. Otherwise, there is a player, say Alice, who explores infinitely many times.
Then Alice will eventually know which arm is better, so if she continues exploring we must have
Θ > p. Thus if Bob sees that Alice keeps exploring, he will eventually realize that Θ > p and will
join her at the right arm. Two obstacles make the proof delicate. The first is that the theorem applies
to all Nash equilibria, without assuming subgame perfection, so we need to rule out non-credible
threats (which do occur in the case λ = 1, see Example 1 below). The second obstacle is that Θ
might be very close to p, which delays the time at which Alice determines the better arm. This issue
did not arise in Aoyagi’s work since the distributions were discrete. We overcome this obstacle by
careful concentration arguments and Bayesian analysis; see sections D.2 and D.3 in the appendix.

In the zero-sum setting there is an additional difficulty compared to the neutral case: the players
might refrain from switching to the optimal arm in order to not trigger an adverse reaction from the
opponent. The key to overcoming this difficulty is realizing that it is impossible for both players to
benefit from repeatedly pulling the inferior arm. Each player might subjectively believe for some
time that they are playing the better arm, but if a player keeps exploring, then their subjective
evaluation of the risky arm will converge to the objective reality. The proof can be found in section
D.4 in the appendix.

The next example shows that when λ = 1 there are Nash equilibria where aligned players do
not settle on the same arm.
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Example 1 (Nash equilibria where players do not converge, λ = 1) Suppose Alice and Bob are
aligned players in a one-armed bandit problem with discount factor β, where the left arm has
success probability p and the right arm has prior distribution µ that is a point mass at m > p.

Then for every discount factor β > 1/2, there is a Nash equilibrium in which Bob visits both
arms infinitely often.

Let k ∈ N. Bob’s strategy SB is to play left in rounds 0, k, 2k, 3k, . . ., and right in the remaining
rounds. Alice’s strategy SA is to play right if Bob follows the trajectory above; if Bob ever deviates
from SB , then Alice switches to playing left forever. See section D.1 in Appendix D for a proof that
if k is large enough, then this is indeed a Nash equilibrium.

Note this Nash equilibrium is not Pareto optimal: both players could improve by a joint deviation
to always playing right. This Nash equilibrium is also not subgame perfect since it has a non-
credible threat by Alice (of playing left forever after any deviation by Bob).

4. Competitive Play

In this section we study the zero-sum game, corresponding to λ = −1. This is an extensive-form
game with an initial move by Nature; see Maschler et al. (2013); Karlin and Peres (2017). The game
has a value by Sion’s minimax theorem Sion (1958); moreover, the value is zero by symmetry.

Recall that in the discounted setting, the Gittins index g = g(µ, β) of the right arm is defined as
the infimum of the success probabilities p where playing always left is optimal for a single player.

Observation 1 If selecting L in every round is the only optimal strategy for a single player, then in
every optimal strategy for Alice in the zero sum game, she never explores, and similarly for Bob.

Proof If Alice explores with positive probability and Bob never explores, then her expected net
payoff will be negative by the hypothesis, since she is not learning anything from Bob’s actions.

We also give a simple lower bound on the Gittins index, the proof of which is included for
completeness in Appendix A, together with the other omitted proofs of this section. Recall that for
an arm with prior µ, we have g = g(µ, β) is the Gittins index of the arm, m is the mean, and w is
the variance of µ.

Lemma 2 Consider one arm with prior µ. Then g(µ, β) ≥ m+ βw/2.

Our first theorem shows that when using optimal strategies, competing players explore less than
a single player, for both discounted games and finite horizon.

Theorem 3 (Competing players explore less) Suppose arm L has a known probability p and arm
R has i.i.d. rewards with unknown success probability with prior µ (which is not a point mass).
Assume that Alice and Bob are playing optimally in the zero sum game with discount factor β. Then
there exists a threshold p∗ = p∗(µ, β,−1) < g, where g = g(µ, β) is the Gittins index of the right
arm, such that for all p > p∗, with probability 1 the players will not explore arm R. More precisely,
define

p∗ = p∗(µ, β, λ) = sup
{
p : arm R is explored in some Nash equilibrium

}
(2)

Then p∗(µ, β,−1) ≤ (mβ + g)/(1 + β), where m is the mean of µ.
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Remark 4 Note that the upper bound on p∗(µ, β,−1) tends to (m+ g)/2 as β → 1.

We establish the theorem by showing that a player using an optimal strategy is never the first
to explore. However, each player will need as part of their strategy a contingency plan for what to
do if the other player deviates from the main path. In fact, the strategy of always playing left is not
part of any equilibrium. If Bob always plays left, then Alice can play the one player optimum (of
pulling the arm with the highest Gittins index) and win.

Proof [Proof of Theorem 3] Consider the following strategy SB for Bob: play left until Alice selects
the right arm, say in some round k. Then play left again in round k+1, and then starting with round
k + 2 copy Alice’s move from the previous round. In particular, Bob never plays left first. Fix
an arbitrary pure strategy SA for Alice. If SA never explores first, then we are done. Otherwise,
suppose SA explores first in round k. Then Alice’s total reward ΓA = ΓA(SA, SB) has expectation

E(ΓA) =
k−1∑
t=0

p · βt +

∞∑
t=k

E(γA(t)) · βt .

Bob’s total reward ΓB = ΓB(SA, SB) has expectation

E(ΓB) =
k+1∑
t=0

p · βt +
∞∑

t=k+2

E(γB(t)) · βt =
k+1∑
t=0

p · βt +
∞∑

t=k+2

E(γA(t− 1)) · βt

=

k+1∑
t=0

p · βt +

∞∑
t=k+1

E(γA(t)) · βt+1 (3)

Note that E(γA(k)) = m. Then the difference in rewards is

E(ΓA)− E(ΓB) =

(
k−1∑
t=0

p · βt +m · βk +
∞∑

t=k+1

E(γA(t)) · βt
)
−

(
k+1∑
t=0

p · βt +
∞∑

t=k+1

E(γA(t)) · βt+1

)

= (mβ − p− pβ)βk + (1− β)βk ·

(
m+

∞∑
t=k+1

E(γA(t)) · βt
)

(4)

Since Bob is copying Alice, she is not learning anything from his actions, so her total reward from
round k+ 1 to∞ is at most the maximum reward that a single player can obtain, namely g/(1−β).
Thus we can bound the difference between the players by

E(ΓA)− E(ΓB) ≤
(
mβ − p(1 + β) + g

)
βk . (5)

The right hand side of inequality (5) is negative when

mβ − p(1 + β) + g < 0 ⇐⇒ p >
mβ + g

1 + β
. (6)

Note that (mβ + g)/(1 + β) ∈ (m, g) and the players do not explore arm R for any p above this
threshold. Thus p∗ ≤ (mβ + g)/(1 + β) as required.

We also show that competition reduces exploration for a large finite horizon.
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Theorem 5 (Competing players explore less, finite horizon) Suppose arm L has a known prob-
ability p and arm R has a known distribution µ with mean m. Let T be the horizon and M∗ the
maximum of the support of µ. We have

1. If p > (m+M∗)/2, then the players do not explore arm R.

2. However, for every p < M∗, if T is large enough, then a single player will explore given the
same two arms.

Remark 6 Part 2 of Theorem 5 is due to Bradt et al. (1956) (see page 1073) and included for
comparison. We can define in the finite horizon setting an index gT = g(µ, T ) as the infimum of
p where playing always left is optimal for a single player. Part 2 of Theorem 5 is equivalent to
limT→∞ gT = M∗. A similar proof shows that for any prior µ, we have limβ→1 g(µ, β) = M∗.

In the single player one-armed bandit, obtaining information about the risky arm can compensate
for a lower mean reward compared to the predictable arm. In the zero-sum case, the value of
acquiring information is less clear since it can be copied by the opponent in the next round. The
next theorem shows that such information still has value: competing players do not follow a myopic
policy of pulling the arm with the highest mean reward in each round.

Theorem 7 (Competing players are not completely myopic) In the setting of Theorem 3, there
exists a threshold p̃ = p̃(µ, β,−1) > m, such that for all p < p̃, with probability 1 both players
will explore arm R in the initial round of any optimal play. More precisely, define

p̃ = p̃(µ, β, λ) = inf
{
p : arm L is not explored in any Nash equilibrium

}
(7)

The proof shows that p̃(µ, β,−1) ≥ m+ βw/2, where w is the variance of µ.

Remark 8 Note that p̃ ≤ p∗ and we conjecture they are in fact equal.

Remark 9 In the feedback model with perfect monitoring, where players observe each other’s
actions and rewards, the myopic strategy of selecting the arm with the highest current mean (in
each round) is optimal. The reason is that exploration gives no future (informational) advantage to
the exploring player.

In Appendix E we show improved bounds for a uniform prior and a plot with the bounds.

5. Cooperative Play

In this section we study the scenario of λ = 1, where the players are cooperating. Cooperating
players aim to maximize the sum of their rewards and can agree on their strategies before the game
starts. Later the players cannot communicate beyond seeing each other’s actions. The omitted
proofs of this section can be found in Appendix B.

We show that when the players are cooperating they explore even more than a single player. In
particular, they explore even if the known arm has a probability p higher than the Gittins index of
the right arm.

Recall the definitions of m1 = 1
m

∫ 1
0 x

2 · dµ as posterior mean at the right arm after observing
1 in round zero, and of w = m · (m1 −m).
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Theorem 10 (Cooperating players explore more, discounted) Consider two cooperating play-
ers, Alice and Bob, playing a one armed bandit problem with discount factor β ∈ (0, 1). The left
arm has success probability p and the right arm has prior distribution µ that is not a point mass.
Then there exists p̂ > g = g(µ, β), so that for all p < p̂, at least one of the players explores the
right arm with positive probability under any optimal strategy pair maximizing their total reward.

Proof In this proof we write ΓA = ΓA(p) to emphasize the dependence on p. At p = g, by definition
of the Gittins index, Alice has a strategy starting at the right arm such that E(ΓA(g)) = g

1−β .
Suppose Bob responds by playing L in rounds zero and one, then from round two onwards copies
Alice’s previous move. Then by inequality (5), applied at p = g, we get E

(
ΓA(g) − ΓB(g)

)
≤

(m− g)β .

Therefore E
(

ΓA(g) + ΓB(g)
)

= 2E(ΓA(g)) − E
(

ΓA(g) − ΓB(g)
)
≥ 2g

1−β + (g − m)β .

Applying the same strategies at p = g + δ and comparing the total rewards to both players staying
left gives ∆p := E

(
ΓA(g) + ΓB(g)

)
− 2p/(1− β) = (g −m)β − 2δ/(1− β) . By Lemma 2, we

infer ∆p ≥ β2w/2− 2δ/(1− β) . This is positive provided that δ < β2w(1− β)/4 .

Recall the index gT for finite horizon was defined in Remark 6.

Theorem 11 (Cooperating players explore more, finite horizon) Consider two cooperating play-
ers, Alice and Bob, playing a one armed bandit problem. The left arm is known and has probability
p, while the right arm has a known distribution µ that is not a point mass. Let T be the horizon
and M∗ the maximum of the support of µ. Then there exists δ = δ(T ) > 0 so that optimal players
explore the right arm for all p < gT + δ.

Note that cooperating players do prefer the predictable arm for high enough values of p. Recall
that M∗ is the maximum of the support of µ.

Proposition 12 There is a threshold p◦ < M∗ so that cooperating players do not explore for any
p > p◦.

6. Neutral Play

In this section we study the scenario of λ = 0, where the players are only interested in their own
rewards. The omitted proofs of this section are in Appendix C.

Recall the solution concepts are Nash equilibrium and perfect Bayesian equilibrium. For neutral
play the utility of each player is their total reward. The solution concepts will be Nash equilibrium
and perfect Bayesian equilibrium. Recall player i’s strategy σi is a best response to player j’s
strategy σj if no strategy σ′i achieves a higher expected utility against σj . A mixed strategy profile
(σA, σB) is a Bayesian Nash equilibrium if σi is a best response for each player i. For brevity, we
refer to such strategy profiles as Nash equilibria. A Perfect Bayesian Equilibrium is the version of
subgame perfect equilibrium for games with incomplete information. A pair of strategies (σA, σB)
is a perfect Bayesian equilibrium if (i) starting from any information set, subsequent play is optimal,
and (ii) beliefs are updated consistently with Bayes’ rule on every path of play that occurs with
positive probability. Such equilibria are guaranteed to exist in this setting (Fudenberg and Levine
(1983)).

10
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Observation 2 For all p < g(µ, β), in any Nash equilibrium, each player explores with strictly
positive probability.

We will say that players learn from each other under some strategies if the total expected reward
of each player is strictly higher than it would be for a single player using an optimal strategy. This
can happen if the players infer additional information from each other’s actions, beyond the bits that
they observe themselves.

Theorem 13 (Neutral players learn from each other, discounted) Consider two neutral players,
Alice and Bob, playing a one armed bandit problem with discount factor β ∈ (0, 1). The left arm
has success probability p and the right arm has prior distribution µ that is not a point mass. Then
in any Nash equilibrium:

1. For all p < g(µ, β), with probability 1 at least one player explores. Moreover, the probability
that no player explores by time t decays exponentially in t.

2. Suppose p ∈ (p∗, g), where p∗ is the threshold above which competing players do not ex-
plore 2. If the equilibrium is furthermore perfect Bayesian, then every (neutral) player has
expected reward strictly higher than a single player using an optimal strategy.

Corollary 14 In each perfect Bayesian equilibrium, with positive probability the players do not
have the same trajectory.

Proof The conclusion follows from part 2 of Theorem 13. If the players always had the same
trajectory, then the best total reward achievable would be the one player optimum.

In contrast, there exist Nash equilibria where the players have the same trajectory with probabil-
ity 1. Such play can be supported by using (non-credible) threats in case one of the players deviates
from the Nash equilibrium path (see Example 2 in Appendix C).

Observation 3 For p ≥ g(µ, β), there is a perfect Bayesian equilibrium where the players never
explore: the pair of strategies in which each player stays left no matter what happens is a perfect
Bayesian equilibrium. This is not a Nash equilibrium for p < g(µ, β), since a player can switch to
the single player optimum.

We show players also learn from each other in the finite horizon game. Recall gT is the index
for finite horizon T and M∗ is the maximum of the support of µ. Formally, we have:

Theorem 15 (Neutral players learn from each other, finite horizon) Consider two neutral play-
ers, Alice and Bob, playing a one armed bandit problem with horizon T . The left arm has success
probability p and the right arm has prior distribution µ that is not a point mass. Then in any
subgame perfect equilibrium:

1. For all p < M∗, with probability that converges to 1 as T grows, at least one player explores.
Moreover, the probability that no player explores by time t decays polynomially in t.

2. Suppose (m + M∗)/2 < p < M∗. Then every (neutral) player has expected reward strictly
higher than a single optimal player.

2. For the formal definition of p∗, see Theorem 3.

11
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7. Concluding Remarks and Questions

Several open questions arise from this work, such as understanding whether randomization is re-
quired sometimes, whether p∗ = p̃, and whether in the setting with multiple risky arms neutral and
competing players settle eventually on the same arm with probability 1 in every Nash equilibrium.
More precisely, we propose the following questions:

1. Do competing and neutral players always have optimal pure strategies or is randomization
required sometimes?

2. Recall the threshold p∗ = p∗(µ, β, λ), defined in Theorem 3, is the smallest number so that
for all p > p∗ and in all Nash equilibria, the players do not explore. Similarly, p̃ = p̃(µ, β, λ)
from Theorem 7, is the largest number so that for all p < p̃, the right arm is explored in some
Nash equilibrium.

(a) Observation 3 shows that for neutral players we have p̃(µ, β, 0) ≥ g(µ, β) and Theo-
rem 10 implies that p̃(µ, β, 1) > g(µ, β). Is p̃(µ, β, 0) > g(µ, β)?

(b) Is p∗ = p̃ true in general?

(c) Are p∗ and p̃ monotone in β and λ?

3. Consider the following variant of the model in this paper: each player learns the other player’s
rewards, but with a delay of k rounds. Can one describe explicitly Nash equilibria in this
variant as Bolton and Harris (1999) do in the model with perfect monitoring?

4. Can one induce more exploration in this model by incorporating patent protection? For ex-
ample, if Alice explores an arm for the first time, then a patent for her could mean that Bob
cannot pull that arm for k rounds afterwards, or alternatively, Bob should give Alice a fraction
α of his reward whenever he pulls that arm in the k rounds following her first exploration.

5. When there are multiple risky arms, do neutral and competing players eventually settle with
probability 1 on the same arm in every Nash equilibrium? For neutral players, this is a con-
jecture by Rothschild (1974) made explicit by Aoyagi (1998), who solved the case of two
arms with finitely supported priors.

6. Consider the setting with multiple risky arms. If there exist optimal pure strategies, can they
be obtained from an index analogous to the Gittins index for a single player?

8. Background on Gittins index

The Gittins index was first defined by Bradt et al. (1956) and its importance for the multi-armed
bandit problem was shown by Gittins and Jones (1974); see also Gittins (1979); Berry and Fristedt
(1985). The description below mainly follows Weber (1992).

In the classic multi-armed bandit problem, there is a gambler who can play any of n one-armed
bandit machines. The goal of the gambler is to play in a way that maximizes its expected total
discounted reward.

Let [n] = {1, . . . , n} be the set of bandits, each of which is a Markov process. The state of
bandit j at time step t ∈ {0, 1, . . . , } is denoted xj(t). When playing bandit j, the gambler receives

12
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reward Rj(xj(t)) and the state of bandit j changes in a known Markov fashion, while the states of
the other bandits remain unchanged.

A policy stipulates which bandit to play next, given the history of play and the rewards obtained
so far. Given policy π, let j(t) denote the bandit played at time step t. The goal is to find a policy
that maximizes the expected discounted reward, defined as

Vπ(x) = Eπ

[ ∞∑
t=0

βt ·Rj(t)
(
xj(t)

)
| x(0) = x

]
(8)

The solution to this optimization problem is described by functions Gj , which are known as
Gittins indices. Each function Gj only depends on the current state bandit j. Gittins and Jones
(1974) proved that playing bandit j at time t is optimal if and only if

Gj(xj(t)) = max
1≤i≤n

Gi
(
xi(t)

)
. (9)

The Gittins index has several equivalent definitions. The most convenient for us is the retirement
value of the arm. Suppose at every step the Gambler may choose to “retire” and receive a payment
p in the current step and in all subsequent steps. i Alternatively, he may select arm j and receive the
current reward at that arm, while maintaining the option to retire at any point in the future. Given
that arm j is currently at state xj , the Gittins index G(xj) is the infimum of the values p for which
retirement now is preferable.

Bernoulli bandits In the paper, we focus on a special case known as Bernoulli bandits, where the
rewards are 1 (successes) or 0 (failures). Arm j has a known prior µ0

j on [0, 1]; its success probability
Θj (unknown to the player) is drawn from µj , and each time arm j is selected, the reward is 1 with
probability Θj , independently of previous picks. The state of arm j at time t is described by a pair
(sj(t), fj(t)), where sj(t) and fj(t) are the number of successes and failures, respectively, obtained
at arm j until time t. The posterior distribution of the success probability Θj after step t is µtj which
has density proportional to θsj(t)(1− θ)fj(t) with respect to µ0

j , i.e., for Borel sets A ⊂ [0, 1],

µtj(A) =

∫
A θ

sj(t)(1− θ)fj(t) dµ0
j (θ)∫ 1

0 θ
sj(t)(1− θ)fj(t) dµ0

j (θ)
.

If the player selects arm j at time t + 1, then the expected reward from that move (given the
history) is the mean of the posterior ∫ 1

0
θdµtj(θ) .

That expected reward is also the transition probability from the state (sj(t), fj(t)) to the state
(sj(t) + 1, fj(t)). The transition probability to (sj(t), fj(t) + 1) is the complementary probability∫ 1

0 (1− θ)dµtj(θ) .
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Sébastien Bubeck, Yuanzhi Li, Yuval Peres, and Mark Sellke. Non-stochastic multi-player multi-
armed bandits: Optimal rate with collision information, sublinear without. In COLT, 2020.

Martin Cripps, Godfrey Keller, and Sven Rady. Strategic experimentation with exponential bandits.
Econometrica, 73(1):39–68, 2005.

Claude D’Aspremont and Alexis Jacquemin. Cooperative and noncooperative research and devel-
opment in duopoly with spillovers. The American Economic Review, 78(5):1133–1137, 1988.

Sina Dehghani, Mohammad Taghi Hajiaghayi, Hamid Mahini, and Saeed Seddighin. Price of com-
petition and dueling games. In 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 21:1–21:14, 2016.

Peter Frazier, David Kempe, Jon Kleinberg, and Robert Kleinberg. Incentivizing exploration. In
Proceedings of the Fifteenth ACM Conference on Economics and Computation, EC ’14, pages
5–22, New York, NY, USA, 2014. ACM.

Drew Fudenberg and David Levine. Subgame-perfect equilibria of finite- and infinite-horizon
games. Journal of Economic Theory, 31(2):251 – 268, 1983. ISSN 0022-0531.

J. C. Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical
Society, Series B, pages 148–177, 1979.

J.C. Gittins and D.M. Jones. A dynamic allocation index for the sequential design of experiments.
In J. Gani, editor, Progress in Statistics, pages 241–266. North-Holland, Amsterdam, 1974.

John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed Bandit Allocation Indices. Wiley,
2011.

Christoph Gruter, Ellouise Leadbeater, and Francis L. W. Ratnieks. Social learning: The importance
of copying others. Current Biology, 20(16), 2010.

W. D. Hamilton. The genetical evolution of social behaviour. i, ii. Journal of Theoretical Biology,
7(1):1–16, 1964.

Paul Heidhues, Sven Rady, and Philipp Strack. Strategic experimentation with private payoffs.
Journal of Economic Theory, 159:531–551, 2015.

15
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Appendix A. Competitive Play

In this section we include the omitted proofs for the scenario of λ = −1, where the players are
competing with each other.

Lemma 2 (restated). Consider one arm with prior µ. Then g(µ, β) ≥ m+ βw/2.

Proof Suppose Alice is playing the one-armed bandit game by herself where the right arm has
distribution µ that is not a point mass and left arm has known probability p = g = g(µ, β). Consider
the following strategy for Alice:

• Round zero: play right.

• Round one: play left if 0 was observed in round zero, and right if 1 was observed.

• Round two onwards: play left.

Then by the definition of g, we have that this strategy for Alice is at most as good as retiring and
receiving g forever, and so

g

1− β
≥ m+ (1−m) · gβ

1− β
+m

(
m1β +

gβ2

1− β

)
(10)

Recall that m ·m1 = m2 + w. Using this in (10) and rearranging, we obtain:

g ≥ m+
βw

1 +mβ
≥ m+

βw

2
(11)
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Theorem 5 [Competing players explore less, finite horizon] (restated). Suppose arm L has a known
probability p and arm R has a known distribution µ with mean m. Let T be the horizon and M∗

the maximum of the support of µ. We have

1. If p > (m+M∗)/2, then the players do not explore arm R.

2. However, for every p < M∗, if T is large enough, then a single player will explore given the
same two arms.

Proof For part 1 of the statement, we use the same strategy SB for Bob as in the proof of Theorem 3:
play left until Alice selects the right arm, say in some round k. Then play left again in round k + 1,
and then starting with round k + 2 copy Alice’s move from the previous round.

Fix an arbitrary pure strategy SA for Alice. If SA never plays right first we are done. If Alice
plays right for the first time in round k, then γA(k) = m. Her expected total reward can be written
as

E(ΓA) =

(
k−1∑
t=0

p

)
+m+

T∑
t=k+1

E(γA(t)) .

Since from round k + 2 Bob is copying Alice’s previous move, we have E(γB(t)) = E(γA(t− 1))
for all t ≥ k + 2. Then Bob’s total expected reward is

E(ΓB) = p · (k + 2) +

T∑
t=k+2

E(γB(t)) = p · (k + 2) +

T−1∑
t=k+1

E(γA(t)) .

If k = T , the difference in rewards is

E(ΓA)− E(ΓB) = E(γA(T ))− E(γB(T )) = m− p < 0 .

If k ≤ T − 1, by choice of p > (m+M∗)/2, the difference in rewards is bounded by

E(ΓA)− E(ΓB) = (m− p) +
(
E(γA(T ))− p

)
≤ m− 2p+ max{M∗, p} < 0 .

Thus Alice loses in expectation.

Part 2 of the statement holds since a single player (say Bob) optimizing his expected total reward
has an algorithm with sublinear regret. Formally, the expected mean of the best arm is

ξ = p · µ(0, p) +

∫ 1

p
x dµ(x) .

If p < M∗, then ξ > p. Bob’s expected reward when playing optimally can be bounded from below
by using a low regret algorithm (see, e.g., Bubeck and Cesa-Bianchi (2012)), which gives

E(ΓB) ≥ ξ · (T + 1)− C ·
√
T + 1, for some constant C ≥ 0

We want that
ξ · (T + 1)− C ·

√
T + 1 > p · (T + 1)
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This will hold if

T >
C2

(ξ − p)2
.

For such values of T , a regret minimizing algorithm will do better than playing left forever (in
expectation).

Theorem 7 [Competing players are not completely myopic] (restated). In the setting of Theorem
3, there exists a threshold p̃ = p̃(µ, β,−1) > m, such that for all p < p̃, with probability 1 both
players will explore arm R in the initial round of any optimal play. More precisely, define

p̃ = p̃(µ, β, λ) = inf
{
p : arm L is not explored in any Nash equilibrium

}
(12)

Proof Recall that m =
∫ 1

0 x dµ(x) and w =
∫ 1

0 (x −m)2 dµ(x). Let SA and SB denote strategies
for Alice and Bob, respectively. Define

v
(p)
0 = v0 = sup

SA

inf
SB

E(ΓA(SA, SB)− ΓB(SA, SB)).

We will show there is a threshold p∗ = p∗(m,w, β) > m such that for p < p∗ we have v(p)
0 > 0.

Take any mixed strategy of Alice in which she plays R in round zero and consider what happens
from round one onwards. First recall that if Alice saw 1 in round zero, then the posterior mean is

m1 =
1

m
·
∫ 1

0
x2 · dµ(x) .

If Alice saw 0, then the posterior mean is

m0 =
1

1−m
·
∫ 1

0
x(1− x) · dµ(x) .

Note that m · (m1 −m) = (1−m) · (m−m0) = w.
Let vt(x, y) = vpt (x, y) denote the net value for Alice (= maxmin over mixed strategies) from

the beginning of round t, when in round 1 she plays x and Bob plays y. Here, since we will let Alice
declare her strategy first, we have y ∈ {L,R} (that is, y = L means that Bob plays left in round 1
no matter what; similarly y = R means that he plays right in round 1) and x ∈ {L,R, S}, where S
is the following Alice round 1 strategy:

• Play left upon seeing 0 in round zero.

• Play right upon seeing 1 in round zero.

Write δ = p − m ≥ 0. Then v0(x, y) = −δ + v1(x, y). Let ṽt(x, y) be defined in the same
way as vt(x, y) when Bob knows Alice’s record in round zero. Clearly, ṽt(x, y) ≤ vt(x, y), for all
strategies x, y.

By comparing the information available to the players based on the strategies played in rounds
0 and 1, observe:

• v2(x, L) ≥ 0 for all x ∈ {L,R, S}.
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• v2(R, y) ≥ 0 for all y ∈ {L,R}.

Next we bound Alice’s net value at round zero if Bob plays L and Alice plays strategy S:

v0(S,L) = −δ + βm(m1 − p) + v2(S,L) ≥ −δ + βm(m1 −m+ δ) = δ(βm− 1) + βw .
(13)

If Bob plays L in round one and Alice plays R in round one no matter what bit she observed at round
zero, then we have:

v0(R,L) = −δ + β · (−δ) + v2(R,L) ≥ −2δ . (14)

If both players play right in round one we get

v0(R,R) = −δ + v2(R,R) . (15)

We establish a few facts about the net gains of the players.

Lemma 16 ṽ2(L,R) = −v2(R,R).

Proof Recall that by definition of ṽ2(L,R), Bob knows two results from the right arm, while Alice
knows only one. For v2(R,R) this is reversed, since in this case Alice knows two results from the
right arm while Bob knows only one.

Lemma 17 v2(S,R) ≥ ṽ2(S,R) ≥ ṽ2(L,R) = −v2(R,R).

Proof Note the first inequality holds since for ṽ2(S,R) Alice tells Bob the bit she saw in round
zero, while in the case of v2(S,R) she does not. The second inequality holds since by playing
strategy S Alice has at least as much information as when playing L in round one, so she will do at
least as well under S as she would do under L from round onwards.

By decomposing v0(S,R) into the payoff obtained in rounds zero, one, and the payoff from round
two onwards, we obtain

v2(R,R) + v0(S,R) ≥ −δ + (1−m)β(p−m0)

= −δ + β(1−m)(m−m0 + δ)

= δ [β(1−m)− 1] + βw (16)

Denote by R+S
2 the mixed strategy of Alice for round one in which she plays strategy R with

probability 1/2 and strategy S with probability 1/2. By (15) and (16), we have

v0

(
R+ S

2
, R

)
≥ δ

[
β(1−m)

2
− 1

]
+
βw

2
≥ βw

2
− δ (17)

By (14) and (13), we obtain

v0

(
R+ S

2
, L

)
≥ δ

[
βm

2
− 1

]
+
βw

2
≥ βw

2
− δ (18)

Thus we can take p̃ = m+ βw/2, which completes the proof.
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Appendix B. Cooperative Play

In this section we include the omitted proofs for the scenario of λ = 1, where the players are
cooperating.

Theorem 11 [Cooperating players explore more, finite horizon] (restated). Consider two cooper-
ating players, Alice and Bob, playing a one armed bandit problem. The left arm is known and has
probability p, while the right arm has a known distribution µ that is not a point mass. Let T be the
horizon and M∗ the maximum of the support of µ. Then there exists δ = δ(T ) > 0 so that optimal
players explore the right arm for all p < gT + δ.

Proof Consider the same strategy for the players as in Theorem 5: Alice plays the one player
optimal, while Bob plays left in rounds zero and one, and then from round two onwards he copies
Alice’s move from the previous round. The expected total reward of Alice is

E(ΓA) = m+
T∑
t=1

E(γA(t)) .

Bob’s expected reward is

E(ΓB) = 2p+

T∑
t=2

E(γA(t− 1)) = 2p+

T−1∑
t=1

E(γA(t)) .

On the other hand, the expected total reward of the players if they never explore is 2p(T + 1). The
difference between the two strategies is

∆ = E(ΓA) + E(ΓB)− 2p(T + 1) = 2p+ 2 ·
T∑
t=0

E(γA(t))−m− E(γA(T ))− 2p(T + 1) .

Given that Alice is playing her single player optimal strategy, we have that for all p ≥ gT her total
reward is bounded as follows:

∑T
t=0 E(γA(t)) ≥ gT · (T + 1). Then

∆ ≥ 2p+ 2gT · (T + 1)−m− E(γA(T ))− 2p(T + 1) = 2gT · (T + 1)−m− E(γA(T ))− 2pT .

Taking p = gT + δ for δ ≥ 0, the previous inequality is equivalent to

∆ ≥ 2gT −m− E(ΓA(T ))− 2δT .

For ∆ to be strictly positive it suffices that

E(γA(T )) < 2gT −m− 2δT (19)

Recall that limT→∞ gT = M∗ (Remark 6). Moreover, Alice’s expected reward in the last round
satisfies E(γA(T )) ≤M∗ when p < M∗.

Let α = (M∗ − m)/4. Then there exists T0 = T0(α) so that for all T ≥ T0, we have
|gT −M∗| < α. For all such T , by choice of α we have that

2gT −m− E(γA(T )) > 2(M∗ − α)−m−M∗ =
M∗ −m

2
> 0
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Then inequality (19) holds for all δ < (M∗ −m)/(4T ) as required.

Proposition 12 (restated). There is a threshold p◦ < M∗ so that cooperating players do not explore
for any p > p◦.

Proof When m < p, the best case scenario for the cooperating players is that one of them (say
Alice) plays right in round zero while Bob stays at left, and then from round one onwards both play
right and the mean of the right arm is M∗ from round one onwards. Then any strategies SA and SB
of the cooperating players will give at most this total reward, so:

E(Γ(SA)) + E(Γ(SB)) ≤ p+m+
2βM∗

1− β
The total reward of both players staying at the left arm is 2p/(1 − β) which is more than any
strategies involving exploration when

p+m+
2βM∗

1− β
<

2p

1− β
⇐⇒ p >

(1− β)m+ 2βM∗

1 + β

Setting p◦ = ((1− β)m+ 2βM∗) /(1 + β) gives the required statement.

Appendix C. Neutral Play

In this section we include the omitted proofs for the scenario of λ = 0, where the players are neutral,
each maximizing their own rewards.

Observation 2 (restated). For all p < g(µ, β), in any Nash equilibrium, each player explores with
strictly positive probability.

Proof Suppose there is a Nash equilibrium with strategies (SA, SB), in which one player - say
Alice - explores with probability zero. Then E(ΓA(SA, SB)) = p/(1− β).

Consider now the modified Alice strategy S′A of pulling the arm with the highest Gittins index
in each round (ignoring any information from Bob). Then since p < g(µ, β), there is α ∈ (p, g)
so that E(ΓA(S′A, SB)) = α/(1− β) This is strictly higher than p/(1− β), so S′A is an improving
deviation, in contradiction with (SA, SB) being an equilibrium. Then Alice explores with strictly
positive probability.

Theorem 13 [Neutral players learn from each other, discounted] (restated). Consider two neutral
players, Alice and Bob, playing a one armed bandit problem with discount factor β ∈ (0, 1). The
left arm has success probability p and the right arm has prior distribution µ that is not a point mass.
Then in any Nash equilibrium:

1. For all p < g(µ, β), with probability 1 at least one player explores. Moreover, the probability
that no player explores by time t decays exponentially in t.

2. Suppose p ∈ (p∗, g), where p∗ is the threshold above which competing players do not ex-
plore 3. If the equilibrium is furthermore perfect Bayesian, then every (neutral) player has
expected reward strictly higher than a single player using an optimal strategy.

3. For the formal definition of p∗, see Theorem 3.
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Proof Let α ∈ (p, g) denote the expected reward per round of a single player that follows the
strategy of pulling the arm with the highest Gittins index in each round.

Part 1: Assume p < g = g(µ, β). Since p < α, there exists ε > 0 so that p + ε < α. Let
Λ = α/(1 − β) denote the expected total reward achievable by a single optimal player. Fix a pair
of strategies (SA, SB) that define a Nash equilibrium. Let Φk = P(Dc

k), where

Dk =
{

No player explores in rounds {0, . . . , k − 1} under strategies (SA, SB) .
}

Since (SA, SB) is an equilibrium, we can bound the expected reward of a single player by

Λ ≤ (1− Φk)

[
k−1∑
t=0

p · βt +
∞∑
t=k

1 · βt
]

Rearranging the terms gives

Λ ≤
k−1∑
t=0

βt
[
(1− Φk)p+ Φk

]
+
∞∑
t=k

βt .

Expanding the terms in the right hand side, we get a bound on α:

α ≤ (1− βk)
[
p+ Φk(1− p)

]
+ βk =⇒ α− p

1− p
− βk ≤ Φk .

Choose k so that βk ≤ (α− p)/2. Then

Φk ≥
α− p

2
=⇒ P(Dk) ≤ 1− α− p

2
.

The same argument gives that for every ` ≥ 0 we have P(Dk(`+1) | Dk`) ≤ 1 − (α − p)/2, so

inductively we obtain P(Dk`) ≤
(

1− (α− p)/2
)`

. This implies the required bound for Dt:

P(Dt) ≤
(

1− α− p
2

)bt/kc
.

Part 2: Assume that p ∈ (p∗, g), where p∗ is the threshold from equation (2) such that competing
players do not explore for any p > p∗. In any perfect Bayesian equilibrium, the total expected
reward of each player is at least α/(1− β), i.e. the single player optimum.

Suppose towards a contradiction that there was a perfect Bayesian equilibrium with strategies
(SA, SB) where at least one of the players - say Bob - was getting exactly the expected reward of a
single optimal player: E(ΓB) = α/(1− β). Note that Alice must explore with positive probability
regardless of what Bob does, since the single player optimum does better than never exploring.
Consider now the following strategy S′B for Bob: stay left in every round until Alice explores for
the first time. If Alice’s exploration occurs in some round k, then from round k + 1 onwards, let
Bob use the optimal strategy that he would play when competing against Alice in the corresponding
zero-sum game that starts at round k (where Alice is forced to play right and Bob left in round k,
and both play optimally afterwards). By Theorem 3, if Alice does explore the right arm at k, then
when p ∈ (p∗, g) Bob wins against Alice.
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Let Γ′A and Γ′B be the total rewards of the players under strategies (SA, S
′
B). Since the equi-

librium is perfect Bayesian, we have E(Γ′A) ≥ α/(1 − β). Moreover, since Alice is not learning
anything from Bob’s strategy S′B , she can only realize this minimum expected value by using an
optimal strategy for a single player, which requires exploring with positive probability.

We classify the trajectories realizable under strategies (SA, S
′
B) in two types, depending on

whether Alice explores the right arm or not on that trajectory:

1. Alice does not explore: then Bob always plays left too, so they get the same reward.

2. Alice explores: then Bob’s expected reward is strictly greater than Alice’s total reward on
that trajectory (since he wins in the corresponding zero sum game that starts with Alice’s first
exploration).

Taking expectation over all possible trajectories and noting that Alice explores with positive prob-
ability, we get that Bob’s deviation S′B ensures he gets expected total reward strictly greater than
Alice, so E(Γ′B) > E(Γ′A) ≥ α/(1 − β) = E(ΓB) . Thus deviation S′B is profitable, in contradic-
tion with (SA, SB) being an equilibrium. Then both players get strictly more than the single player
optimum.

Example 2 (Perfect Bayesian vs. Nash equilibrium) There is a Nash equilibrium in which both
players follow the same trajectory and play the one player optimal strategy of pulling the arm with
the highest Gittins index in each round.

To see why this is the case, define the strategies of the players as follows:

• Pull the arm with the highest Gittins index in each round, breaking ties in favor of the left arm
if both arms have the same index, as long as the other player did the same in the previous
round.

• If in some round k one of the players, say Alice, chooses a different action, then Bob switches
to playing left forever from round k + 1 onwards (and similarly if Bob deviates).

Note that with these strategies, if Alice deviates in some round k, then she cannot learn anything
from Bob in rounds {k + 1, k + 2, . . .}. Alice also did not learn anything from Bob in rounds 0 to
k− 1 since they had the same trajectory and in round k since she cannot see Bob’s reward in round
k and his reward at k does not affect his subsequent actions. Then Alice’s expected reward overall
cannot be better than the single player optimum, so the deviation is not strictly improving. Thus the
strategies form a Nash equilibrium.

Theorem 15 [Neutral players learn from each other, finite horizon] (restated). Consider two neutral
players, Alice and Bob, playing a one armed bandit problem with horizon T . The left arm has
success probability p and the right arm has prior distribution µ that is not a point mass. Then in
any subgame perfect equilibrium:

1. For all p < M∗, with probability that converges to 1 as T grows, at least one player explores.
Moreover, the probability that no player explores by time t decays polynomially in t.

2. Suppose (m + M∗)/2 < p < M∗. Then every (neutral) player has expected reward strictly
higher than a single optimal player.
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Proof Recall gT denotes the index of the right arm. Let α · (T + 1) be the expected reward of an
optimal single player, where α ∈ (p, gT ).

Part 1: Let p < M∗. We show there exist ψ = ψ(µ, p) > 0 and C <∞ so that the inequality

P
(

No player explores in rounds {0, . . . , T} under (SA, SB)
)
≤ C · T−ψ

holds for all Nash equilibria (SA, SB).
First, since p < M∗, there exist T1 and α > p so that for all T ≥ T1, the single player optimum

over rounds {0, . . . , T} is in expectation at least α · (T + 1).
For a sequence {Tj} monotonically decreasing (to be specified later) and for T > T1, write

Dj =
{

No player explores in rounds {0, . . . , T} under (SA, SB)
}

.

Figure 2: Depiction of the intervals induced by the sequence Tj and the events Dj .

Fix j and let k = Tj+1 − Tj . A depiction of the intervals induced by the sequence Tj is given
in Figure 2. Write Φj = P(Dc

j | Dj+1). Since (SA, SB) is a Nash equilibrium,

α · (Tj + 1) ≤ (1− Φj) ·
[
pk + Tj + 1

]
+ Φj ·

[
Tj+1 + 1

]
α · (k + Tj + 1) ≤ Tj + 1 + Φj · (1− p) · k + p · k .

This implies the inequality:

Φj · (1− p) · k ≥ (α− p)k − (1− α)(Tj + 1) .

Choose k such that (α− p) · k ∈
[
Tj + 1, Tj + 2

]
. We obtain

0 ≤ Tj+1 −
(

1 +
1

α− p

)
Tj ≤

2

α− p
(20)

Then

α · Tj ≤ k · Φj ≤ Φj ·
(
Tj + 2

α− p

)
=⇒ Φj ≥

α(α− p)Tj
Tj + 2

≥ α(α− p)
2

.

Now suppose T ∈ (T`, T`+1). Then

P(D`−1) ≤ P(D`−1|D`) ≤ 1− α(α− p)
2

=⇒ P(D`) ≤
(

1− α(α− p)
2

)`−1

(21)
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Since {Tj} grows exponentially, by (20), the claim follows from (21).

Part 2: The proof is similar to the discounted case, so we give a sketch highlighting the differences.
Let (SA, SB) be a perfect Bayesian equilibrium where Bob gets exactly the single player optimum:
E(ΓB) = α · (T + 1). Since the horizon T is large, Alice explores with positive probability (see
part 2 of Theorem 5).

Consider deviation S′B for Bob: stay left in every round until Alice explores for the first time
(e.g. in round k), and from round k+ 1 onwards, use the optimal zero-sum strategy. Let Γ′A and Γ′B
be the total rewards under (SA, S

′
B). Since the equilibrium is perfect Bayesian, E(Γ′A) ≥ α·(T+1).

Alice is not learning from Bob under S′B , so she must explore with positive probability. We classify
the trajectories realizable under (SA, S

′
B) in two types:

1. Alice does not explore: then Bob always plays left too, so they get the same total reward.

2. Alice explores: then by Theorem 5, Bob gets strictly more than Alice for p > (m+M∗)/2.

Taking expectation over all possible trajectories and noting that Alice explores with positive proba-
bility, it follows that Bob’s deviation S′B ensures he gets expected total reward strictly greater than
Alice. Then we get E(Γ′B) > E(Γ′A) ≥ α·(T+1) = E(ΓB) . Then Bob’s deviation S′B is profitable,
in contradiction with the choice of equilibrium strategies (SA, SB).

Appendix D. Long Term Behavior

We show that in every Nash equilibrium, competing and neutral players converge to playing the
same arm forever from some point on. For λ 6∈ [−1, 0], this can fail.

D.1. Nash Equilibria with Oscillations

In this section we construct Nash equilibria with oscillations when λ > 0 and λ < −1. The next
example shows that for λ > 0 there cannot be a general theorem that the players settle on the same
arm in every Nash equilibrium. The construction shows that for every λ > 0 and every sufficiently
large discount factor β < 1, there is a Nash equilibrium in which one of the players alternates
between the two arms infinitely often.

Proposition 18 (Nash equilibria where players do not converge, λ > 0) Suppose Alice and Bob
are playing a one-armed bandit problem with discount factor β, where the left arm has success
probability p and the right arm has prior distribution µ that is a point mass at m > p.

Then for every λ > 0, for any discount factor β > 1/(1 + λ), there is a Nash equilibrium in
which Bob visits both arms infinitely often.

Proof Let k ∈ N. Define strategies (SA, SB) by:

1. Bob’s strategy SB is to visit the left arm in rounds 0, k, 2k, 3k, . . ., and the right arm in the
remaining rounds, no matter what Alice does.

2. Alice’s strategy SA is to stay at the right arm if Bob follows the trajectory above. If Bob ever
deviates from SB for the first time in some round `, then Alice plays left forever starting with
round `+ 1.
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To show the strategies are in Nash equilibrium, consider first the total rewards ΓA and ΓB obtained
by Alice and Bob, respectively, on the main path under strategy pair (SA, SB) starting from round
zero:

ΓA =
m

1− β
and ΓB =

m

1− β
− m− p

1− βk

It is clear that Alice has no incentive to deviate, since her deviation does not change Bob’s behavior
and adding any round of playing the left arm only worsens her own total rewards. Consider next any
strategy S′B of Bob that deviates from SB in some round `. Observe first that the best case deviation
for Bob is when he deviates in some round ` divisible by k so that instead of playing left in the next
round he plays right. Then w.l.o.g. ` = 0. The expected total rewards under (SA, S

′
B) starting from

round zero are
Γ′A = m+ β · p

1− β
and Γ′B ≤

m

1− β
Then Bob’s utility under strategy pairs (SA, SB) and (SA, S

′
B), respectively, is

uB =
(1 + λ) ·m

1− β
− m− p

1− βk
and u′B ≤

m

1− β
+ λ

(
m+ β · p

1− β

)
If β > 1/(1 + λ) and k is large enough, then 1− β < β · λ · (1− βk). This implies that u′B < uB ,
so (SA, SB) is indeed a Nash equilibrium.

Figure 3: Trajectories of the players on the main line under strategies (SA, SB) for λ > 0 and
k = 5. The circles represent time units 0, 1, 2, . . .. The left arm has success probability p
and the right arm has prior distribution which is a point mass at m > p.

Note this Nash equilibrium is not Pareto optimal: both players could improve their utility by a
joint deviation to always playing right. This Nash equilibrium is also not subgame perfect because
it involves a non-credible threat by Alice (of playing left forever after any deviation by Bob).
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Remark 19 In the example discussed above, if β < 1/(1 + λ), then the only Nash equilibrium is
where both players always play right.

Proposition 18 does not preclude the possibility that the players settle on the same arm in every
perfect Bayesian equilibrium when λ > 0.

For every λ < −1, there are perfect Bayesian equilibria where the players do not settle on the
same arm in the long term (for some choice of µ and β), and where a player oscillates infinitely
often between the arms.

Proposition 20 (Perfect equilibria where competing players do not converge, λ < −1) Suppose
Alice and Bob are playing a one-armed bandit problem with discount factor β, where the left arm
has success probability p and the right arm has prior distribution µ which is a point mass atm > p.
For every λ < −1, if the discount factor satisfies β2 · |λ| > 1, then there is a perfect Bayesian
equilibrium in which Bob visits both arms infinitely often.

Note in this case there is no uncertainty since both arms are known, so perfect Bayesian equilibria
coincide with subgame perfect equilibria.

Proof [Proof of Proposition 20] Suppose Alice fixes a trajectory τ for Bob that requires him to play
right in rounds 0, k, 2k, 3k, . . ., and to play left in all other rounds. Let SA be the Alice strategy of
playing left as long as Bob follows trajectory τ , while if Bob ever deviates from τ in some round s,
then SA switches to playing right forever from round s+ 1 onwards. Let SB be the Bob strategy of
following trajectory τ , unless Alice ever deviates from playing left in some round s; in that case, SB
switches to playing right forever from round s+ 1 onwards. Whenever the players find themselves
off the main line given by this prescription, they just play right forever.

We claim that (SA, SB) represent a subgame perfect equilibrium. The expected total rewards of
the players under (SA, SB) on the main line of play are:

E(ΓA(SA, SB)) =
p

1− β
and E(ΓB(SA, SB)) =

m− p
1− βk

+
p

1− β
(22)

Then the expected utilities are:

E(uA(SA, SB)) = (1 + λ) · p

1− β
+ λ · m− p

1− βk

E(uB(SA, SB)) = (1 + λ) · p

1− β
+
m− p
1− βk

(23)

To check the equilibrium property, it will suffice to compare the utility each player i gets when
following Si with the utility obtained when deviating to playing left forever or to playing right
forever. Note the response of the other player to any deviation is to switch to playing right forever,
thus if there is an improving deviation S′i for player i, then there is an improving deviation S′′i in
which i plays a fixed arm forever. Moreover, since the right arm is always better, that deviation will
be to play right forever.

If Bob switches to playing right from some round on, then the highest gain can be obtained
when the switch takes place from round 1 onwards. In this case, Alice will play right forever from
round 2. Thus

E(ΓA(SA, Right)) = p+ βp+ β2 · m

1− β
and E(ΓB(SA, Right)) =

m

1− β
(24)
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Figure 4: Trajectories of the players on the main line under strategies (SA, SB) for λ < −1 and
k = 4. The circles represent time units 0, 1, 2, . . ..

Bob’s expected utility is

E(uB(SA, Right)) = (1 + λ) · m

1− β
+ λ · [(p−m)(1 + β)] (25)

From equations (25) and (23), we get that E(uB(SA, Right)) < E(uB(SA, SB)) whenever

1 + β + . . .+ βk−1 >
1 + λ(1 + β)

1 + λ
=
|λ| · (1 + β)− 1

|λ| − 1
(26)

Such a k exists whenever |λ|β > 1.
For Alice the best time to deviate is just before SB tells Bob to play right (in round k − 1).

E(u′A(k − 1,∞)) =
m

1− β
+ λ ·

[
p+ β · m

1− β

]
(27)

On the other hand, under strategies (SA, SB), Alice’s utility from round i on is

E(uA(k − 1,∞)) =
p

1− β
+ λp+ λβ ·

(
m− p
1− βk

+
p

1− β

)
(28)
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Comparing Alice’s utility before and after the deviation, we obtain

E(u′A(k − 1,∞)) < E(uA(k − 1,∞))

m− p
1− β

+
λβ(m− p)

1− β
<
λβ(m− p)

1− βk
⇐⇒

1 + λβ < λβ · 1− β
1− βk

=
λβ

1 + β + . . .+ βk−1
⇐⇒

1 + β + . . .+ βk−1 >
|λ|β
|λ|β − 1

(29)

This holds whenever |λ|β2 > 1 and k is large enough.

D.2. A Concentration Lemma

Lemma 21 Suppose Alice is playing a one armed bandit problem, where the left arm has success
probability p and the right arm has prior distribution µ that is not a point mass. Let R∞ denote
Alice’s total number of pulls of the right arm, Rn the number of pulls by time n, and wn the number
of successes in the first min{n,R∞} draws by Alice.

Then for each ε > 0 and k ∈ N, we have

P
((
|wk − kΘ| > kε

)
∩
(
R∞ ≥ k

))
≤ 2e−2kε2 (30)

Proof Recall we are working in the probability space where Θ is picked according to µ and every
toss of the risky arm is a Bernoulli variable with parameter Θ.

The goal is to show the next inequality holds for every k:

P
((
|wk − kΘ| > kε

)
∩
(
R∞ ≥ k

)
| Θ
)
≤ 2e−2kε2 (31)

Fix a value of k. It will be enough to show that the following inequality holds for every n:

P
((
|wk − kΘ| > kε

)
∩
(
Rn ≥ k

)
| Θ
)
≤ 2e−2kε2 (32)

We define an auxiliary variable w̃k to represent the number of successes in the first k pulls, but
where the pulls are padded in case their number is too low. That is, if Rn ≥ k, then w̃k = wk.
Otherwise, if Rn < k, then add another k − Rn pulls after time n and let w̃k denote the number of
successes in the first k pulls defined this way. Note the containment((

|wk − kΘ| > kε
)
∩
(
Rn ≥ k

))
⊆
(
|w̃k − k ·Θ| > kε

)
.

Using Hoeffding’s inequality applied to the k pulls of the risky arm, we have

P
(
|w̃k − k ·Θ| > kε | Θ

)
≤ 2e−2kε2 (33)

This implies inequality (32), and so (31) also holds. Taking expectation in (31) implies the required
inequality (30).
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D.3. Neutral Players in the Long Term

Theorem 22 (Neutral players eventually settle on the same arm) Consider two neutral players,
Alice and Bob, playing a one armed bandit problem with discount factor β ∈ (0, 1). The left arm
has success probability p and the right arm has prior distribution µ such that µ(p) = 0. Then in
any Nash equilibrium, with probability 1 the players eventually settle on the same arm.

Proof [Proof of Theorem 22] Let (SA, SB) be an arbitrary pair of strategies in Nash equilibrium.
For each round n, letH i

n be the history from player i’s point of view up to round n; this contains
the actions of both players until the end of round n − 1, the rewards of player i in the first n − 1
rounds, and the action prescribed to player i by strategy Si for round n. Let N be a stopping time
for player i.

Let Θ̂i
k be the empirical mean of the success probability at the right arm as observed by player

i after k explorations, defined if Ri∞ ≥ k, where Ri∞ is player i’s total number of pulls of the right
arm.

Let ε ∈ (0, 1/2). Pick δ ∈ (0, ε) such that µ([p− 3δ, p+ 3δ]) < ε. Let δ1 ∈ (0, δ) be such that
µ([p− 3δ1, p+ 3δ1]) ≤ ε2δ/2.

We start by showing that if Alice explores at least k times, for k large enough, then she will
settle afterwards on the better of the two arms with high probability. Then we will study Bob’s
behavior and show that he will also pick the better of the two arms if at least one of the players
explores k times.

We bound Alice’s expected value for pulling the right arm in the future by considering three
cases, depending on the value of Θ̂A

k .

Case 1: Θ̂A
k ≤ p− 2δ. The goal will be to show that the following event has small probability

D̃1 = {(RA∞ ≥ k + 1) ∩ (Θ̂A
k ≤ p− 2δ)}.

Let N be the (random) time of the k+ 1-st exploration by Alice, if it exists, and otherwise N =∞.
Define the random variable

ΨA
k = P

(
(|wk − kΘ| > kδ) ∩ (RA∞ ≥ k + 1) | HA

N

)
(34)

Using Lemma 21, we get E(ΨA
k ) ≤ 2e−2kδ2 . From this we deduce by Markov’s inequality that

P(ΨA
k ≥ e−kδ

2
) ≤ 2e−kδ

2
(35)

We define the event D1 = {ΨA
k ≤ e−kδ

2} ∩ D̃1. By Lemma 21, we have

P(D̃1 \D1) ≤ 2e−kδ
2

(36)

If |Θ̂A
k − Θ| ≤ δ and D1 holds, then Θ ≤ p − δ. Let ΓA(N,∞) =

∑∞
j=0 β

j · γA(N + j) denote
Alice’s total normalized reward starting from round N under strategy SA. Then Alice’s total reward
satisfies:

1D1 E
[
ΓA(N,∞) | HA

N ,Θ
]
≤ 1D1

[
1|Θ−Θ̂A

k |≤δ

(
p− δ +

pβ

1− β

)
+ 1|Θ−Θ̂A

k |>δ
1

1− β

]
(37)
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Taking expectation over Θ gives (since D1 ⊆ {RA∞ ≥ k + 1}):

1D1 E
[
ΓA(N,∞) | HA

N

]
≤ 1D1

[
p− δ +

pβ

1− β
+ P

(
{RA∞ ≥ k + 1} ∩ |Θ− Θ̂A

k | > δ | HA
N

)
· 1

1− β

]
= 1D1

[ p

1− β
− δ + ΨA

k ·
1

1− β

]
≤ 1D1

[ p

1− β
− δ +

e−kδ
2

1− β

]
(38)

Consider an alternative strategy S′A as follows: play SA until time N when it is about to do its
k + 1-st exploration. If Θ̂A

k ≤ p − 2δ and ΨA
k ≤ e−kδ

2
, then play left forever, otherwise continue

with SA. Note that S′A differs from SA only on the event D1.
Using inequality (38), on the event D1 we have that for all k > δ−2 · log 1/(δ(1− β)):

E
[
ΓA(N,∞)− Γ′A(N,∞) | HA

N

]
≤
(e−kδ2

1− β
− δ
)
< 0 (39)

Since the original strategies (SA, SB) are in equilibrium, we have

0 ≤ E(ΓA)− E(Γ′A) = E
[
βNΓA(N,∞)− βNΓ′A(N,∞)

]
= E

[
βN1D1 E

(
ΓA(N,∞)− ΓA′(N,∞) | HA

N

)]
(40)

This forces P(D1) = 0 by (39). By inequality (36), we get that P(D̃1) ≤ 2e−kδ
2
.

Case 2: Θ̂A
k ≥ p + 2δ. Define M as the first round after the k-th exploration at which Alice does

not explore. If there is no such time, then M =∞. The goal will be to bound the probability of the
event

D̃2 = {(M <∞) ∩ (Θ̂A
k ≥ p+ 2δ)} (41)

Recall HA
M is the history from Alice’s point of view until the beginning of round M and ΦA

k as
the random variable

ΦA
k = P

(
(|wk − kΘ| > kε) ∩ (M <∞) | HA

M

)
(42)

Using Lemma 21, we get E(ΦA
k ) ≤ 2e−2kε2 . From this we deduce by Markov’s inequality that

P(ΦA
k ≥ e−kε

2
) ≤ 2e−kε

2
(43)

Define the event D2 = {ΦA
k ≤ e−kδ

2} ∩ D̃2. By Lemma 21, we have P(D̃2 \D2) ≤ 2e−kδ
2
.

Consider Alice’s strategy SA. If M is finite, then at round M Alice is playing left by definition.
We will upper bound Alice’s total reward from round M onwards and compare it to the expected
reward obtained by playing right in all rounds t ≥ M . The following inequality is immediate:
max{Θ, p} ≤ Θ+p ·1Θ<p . By taking expectation and conditioning on the history, on the eventD2
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we get E(1Θ<p | HA
M ) ≤ e−kδ

2
. Then on the event D2, Alice’s expected total reward from round

M onwards under strategy SA satisfies

E
[
ΓA(M,∞) | HA

M

]
≤ p+

β

1− β
· E(Θ | HA

M ) +
β · p
1− β

· P
(

(Θ < p) ∩ (M <∞) | HA
M

)
≤ p+

β

1− β
· E(Θ | HA

M ) +
β · p
1− β

· ΦA
k (44)

On the other hand, on the event D2, by playing right forever starting with round M , Alice’s
expected reward is Γ′A, which has expectation:

E
[
Γ′A(M,∞) | HA

M

]
=

E(Θ | HA
M )

1− β
(45)

If Θ̂A
k −Θ ≤ δ and the event D2 holds, then Θ ≥ p+ δ. On the event D2 we have

E
[
Θ | HA

M

]
≥ p+ δ − e−kδ2 (46)

By combining inequalities (44), (45), and (46), we get that on the eventD2 the following inequalities
hold for all k large enough so that e−kδ

2
< δ(1− β).

E
[
ΓA(M,∞) | HA

M

]
− E

[
Γ′A(M,∞) | HA

M

]
≤ p+

β · p
1− β

· ΦA
k +

β

1− β
· E(Θ | HA

M )−
E(Θ | HA

M )

1− β

≤ p+
βp

1− β
· e−kδ2 − E(Θ | HA

M )

≤ p+
β

1− β
· e−kδ2 − p− δ + e−kδ

2

=
e−kδ

2

1− β
− δ < 0 (47)

Consider the alternative strategy S′A defined as follows: play SA until time M when it is about
to play left. If ΦA

k ≤ e−kδ
2

and Θ̂A
k ≥ p + 2δ, then play right forever. Otherwise, continue with

SA. Similarly to Case 1, since (SA, SB) is an equilibrium, we obtain that E(ΓA) − E(Γ′A) ≥ 0.
Moreover, the strategies SA and S′A have different rewards only on the event D2, so

0 ≤ E(ΓA)− E(Γ′A) = E
[
ΓA(M,∞)− Γ′A(M,∞)

]
= E

[
βM1D2 E

(
ΓA(M,∞)− Γ′A(M,∞) | HA

M

)]
(48)

By (47), we get P(D2) = 0. Recall P(D̃2 \D2) ≤ 2e−kδ
2
. Then P(D̃2) ≤ 2e−kδ

2
.

Case 3: Θ ∈ [p− 3δ, p+ 3δ]. By choice of δ, we have µ([p− 3δ, p+ 3δ]) < ε.

Case 4: |Θ− Θ̂A
k | > δ and RA∞ ≥ k. By Lemma 21, this happens with probability at most 2ε2.

Let τAk be the round in which Alice explores for the k-th time (ifRA∞ < k, then τAk =∞). From
cases (1− 4), we obtain that for k additionally satisfying the inequality e−kδ

2
< ε we have

P
(
∃ t > τAk : Alice pulls the worse arm at time t

)
≤ 7ε (49)
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We consider now Bob’s behavior and show that if Alice explores at least k + 1 times, then Bob
will explore at all later times with high probability. Let Q > τAk+1 be the first round after τAk+1

where SB plays left; if there is no such round, then Q =∞.
Let H̃Q be Alice’s public history (i.e. containing the sequence of arms she played, but not her

rewards) running from round 0 until the end of round Q − 1. If Q = ∞, then H̃Q is the whole
history. Note that H̃Q is observable by Bob.

Let µ
H̃Q

denote Bob’s posterior distribution for Θ (at the end of round Q− 1) given H̃Q:

µ
H̃Q

(a, b) = P
(

Θ ∈ (a, b) | H̃Q

)
· 1Q<∞ (50)

For Q <∞, the history H̃Q is said to be “good” if µ
H̃Q

(
p, p+ 2δ

)
<
√
ε and µ

H̃Q

(
0, p
)
< εδ.

Define strategy S′B as follows: play SB until the beginning of round Q, when SB plays left. If the
history is good, then play right forever. Otherwise, continue with SB . The goal will be to compare
the total reward ΓB from strategy SB with the reward Γ′B from S′B .

Taking expectation over the history in (50) gives E
[
µ
H̃Q

(
a, b
)]

= P
(
{Θ ∈ (a, b)}∩{Q <∞}

)
.

We additionally require that
6e−kδ

2
1

1− β
≤ ε2δ/2 .

By choice of δ, δ1, and k, we get

• E
[
µ
H̃Q

(
p, p+ 2δ

)]
≤ µ

(
p, p+ 2δ

)
≤ ε

• E
[
µ
H̃Q

(
0, p
)]
≤ P

(
{Θ ∈ [0, p]} ∩ {RA∞ ≥ k + 1}

)
≤ µ(p− 3δ1, p) +

6e−kδ
2
1

1− β
≤ ε2δ (51)

Applying Markov’s inequality in (51) gives: P
(
µ
H̃Q

(
p, p + 2δ

)
≥
√
ε, Q < ∞

)
≤
√
ε and

P
(
µ
H̃Q

(
0, p
)
≥ εδ, Q <∞

)
≤ ε. Combining these implies:

P
(
(Q <∞) ∩ (H̃Q is bad)

)
≤ 2
√
ε . (52)

We claim that P
(
Q <∞ and H̃Q is good

)
= 0. On the event that H̃Q is good, we have

E
[
ΓB(Q,∞) | H̃Q

]
≤ p+

β

1− β
E
[
max(Θ, p) | H̃Q

]
≤ p+

β

1− β

(
E
[
Θ | H̃Q

]
+ p · P(Θ < p | H̃Q)

)
≤ p+

β

1− β
E
[
Θ | H̃Q

]
+ εδ (53)

On the other hand, the reward from strategy S′B on the event that H̃Q is good is

E
[
Γ′B(Q,∞) | H̃Q

]
=

E
[
Θ | H̃Q

]
1− β

. (54)
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Using inequalities (53) and (54), the difference between the rewards under SB and S′B from round
Q onwards given a good history H̃Q satisfies the inequality:

∆(H̃Q) = E
[
ΓB(Q,∞)− Γ′B(Q,∞) | H̃Q

]
≤ p− E

[
Θ | H̃Q

]
+ εδ (55)

For any good history H̃Q, we can bound E[Θ | H̃Q] as follows:

E
[
Θ | H̃Q

]
≥ (p+ 2δ) · µ

H̃Q

(
p+ 2δ, 1

)
+ p · µ

H̃Q

(
p, p+ 2δ

)
= p · µ

H̃Q

(
p, 1
)

+ 2δ · µ
H̃Q

(
p+ 2δ, 1

)
(56)

Then on the event that H̃Q is good: E[Θ | H̃Q] ≥ p(1 − εδ) + δ ≥ p + δ/2. Replacing in (55)
implies that

∆(H̃Q) = E
[
ΓB(Q,∞)− Γ′B(Q,∞) | H̃Q

]
< −δ/3 (57)

for all good histories H̃Q when ε < 1/2. Then the difference between the rewards under strategies
SB and S′B satisfies

0 ≤ E(ΓB − Γ′B) = E
[
βQ ·∆(H̃Q) · 1{H̃Q is good}

]
. (58)

This forces P
(
(H̃Q is good) ∩ (Q <∞)

)
= 0. Combining (52) and (58) implies

P(Q <∞) ≤ 2
√
ε (59)

By (59), the probability that Alice explores infinitely often and Bob plays left infinitely often is
bounded by 2

√
ε for every ε, so the probability is zero. Similarly with roles reversed.

Now we can conclude the proof of convergence to the same arm. If both players explore finitely
many times, then they converge to the left arm. Otherwise, one of the players - say Alice - explores
infinitely often. This implies that Bob plays right for all but finitely many rounds. Reversing the
roles, Alice also plays right for all but finitely many rounds.

We give an example showing why the ΨA
k condition is needed. In this example, the empirical

mean ΘA
k is significantly below p, yet the posterior mean is larger than p.

Example 3 Let p = 0.7 and µ be the uniform distribution on [0, 1/4] ∪ [3/4, 1]. Suppose that in
some history Alice obtains after k observations a value of Θ̂A

k = 0.65 < p. Then since µ has zero
mass in [1/4, 3/4], it is much more likely that Θ ∈ [3/4, 1] rather than Θ ∈ [0, 1/4]. In this case,
ΨA
k is large and the strategy S′A does not tell Alice to stop exploring, even though Θ̂A

k < p− 2δ for
small δ > 0.

D.4. Competing Players in the Long Term

Theorem 23 (Competing players eventually settle on the same arm) Consider two competing
players, Alice and Bob, playing a one armed bandit problem with discount factor β ∈ (0, 1). The
left arm has success probability p and the right arm has prior distribution µ with µ(p) = 0. Then
in any Nash equilibrium, with probability 1 the players eventually settle on the same arm.
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In this setting there is an additional difficulty compared to the neutral case: players might refrain
from switching to the optimal arm in order to not trigger an adverse reaction from the opponent.
The key to overcoming this difficulty is realizing that it is impossible for both players to benefit
from repeatedly pulling the inferior arm. Each player might subjectively believe for some time that
they are playing the better arm, but if a player keeps exploring, then their subjective evaluation of
the risky arm will converge to the objective reality.

Proof [Proof of Theorem 23] Let (SA, SB) be an optimal strategy pair. Note the strategies may be
randomized.

As in the neutral case, for each n, letH i
n be the history from player i’s point of view up to round

n. Let N be a stopping time for player i; this means that for every fixed n, the event N = n is
determined by H i

n. Then H i
N is a history for player i up to round N .

Recall Θ̂i
k is the fraction of successes in the first k explorations by player i and Ri∞ is the total

number of explorations by player i.

Define the events Λf = {Alice explores infinitely often and Bob explores finitely many times}
and Λ∞ = {Both players explore infinitely often}.

Choose the following parameters:

ε ∈
(

0,
1− β

2

)
and δ ∈ (0, ε) such that µ([p− 10δ, p+ 10δ]) < ε and µ(p− 8δ) = 0 (60)

Case 1: Θ < p. We consider two sub-cases, depending on whether both players explore infinitely
often or only one player does (note that on the event that both players explore finitely often the
conclusion holds immediately).

Case 1.a: Θ < p, Alice explores infinitely often and Bob finitely many times (i.e., Λf holds).
Define the event Sk = {Bob explores at or after Alice’s k-th exploration}. Let

ε1 = δ(1− β)/4 .

Let N` be the time of Alice’s `-th exploration if it exists, and otherwise N` = ∞. Let B1(k)
be the collection of histories HA

Nk
such that P(Λf ∩ Sk | HA

Nk
) > ε1 and B2(k) the collection of

histories HA
Nk

for which P(Λcf | HA
Nk

) > ε1. Applying the Levy zero-one law gives

lim
k→∞

P
(

Λf ∩
(
HA
Nk
∈ B2(k)

))
= 0 . (61)

We also have
⋂∞
k=0(Λf ∩ Sk) = ∅ by the definition of Λf and Sk. Together with (61), this implies

that for large enough k the next two conditions are satisfied:

P(Λf ∩ Sk) ≤ δε1 and P
(

Λf ∩
(
HA
Nk
∈ B2(k)

))
≤ ε1 . (62)

Fix k so that (62) is satisfied for all k′ ≥ k. Letting k′ = k + 1 and taking expectation over the
history gives

P(Λf ∩ Sk+1) = E(P(Λf ∩ Sk+1) | HA
Nk+1

) ≤ δε1 .
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The collection of bad histories is defined as B = B1(k+ 1)∪B2(k+ 1). Note that if the history
HA
Nk+1

is good, then

P(Sk+1 | HA
Nk+1

) = P(Λcf | HA
Nk+1

) + P(Λf ∩ Sk | HA
Nk+1

) ≤ 2ε1 (63)

By Markov’s inequality, we obtain:

P(HA
Nk+1

∈ B1(k + 1)) = P
(
P(Λf ∩ Sk+1 | HA

Nk+1
) > ε1

)
≤

E(P(Λf ∩ Sk+1 | HA
Nk+1

))

ε1
≤ δε1

ε1
= δ (64)

By (64) and (62), we have

P(Λf ∩ (HA
Nk+1

is bad)) ≤ ε1 + δ (65)

Then we can define, similarly to Theorem 22, the event D̃1 and the random variable ΨA
k (both

from Alice’s point of view):

D̃1 = {(RA∞ ≥ k + 1) ∩ (Θ̂A
k ≤ p− 2δ)}

ΨA
k = P

(
(|wk − kΘ| > kδ) ∩ (RA∞ ≥ k + 1) | HA

Nk+1

)
Define the event

D1 = {ΨA
k ≤ e−kδ

2} ∩ D̃1 ∩ {HA
Nk+1

is good} .

Using inequality (38) in Theorem 22, we get that Alice’s total reward from round Nk+1 on is
bounded as follows:

1D1 E
[
ΓA(Nk+1,∞) | HA

Nk+1

]
≤ 1D1

[ p

1− β
− δ +

e−kδ
2

1− β

]
(66)

Bob’s expected total reward given Alice’s information is bounded, using (63), by

1D1 E
[
ΓB(Nk+1,∞) | HA

Nk+1

]
≥ 1D1

[ p

1− β
· (1− 2ε1)

]
(67)

Combining inequalities (66) and (67) implies that Alice’s expected utility satisfies

1D1 E
[
uA(Nk+1,∞) | HA

Nk+1

]
= 1D1 E

[
ΓA(Nk+1,∞)− ΓB(Nk+1,∞) | HA

Nk+1

]
≤ 1D1

[ p

1− β
− δ +

e−kδ
2

1− β
− p

1− β
· (1− δ(1− β)/2)

]
= 1D1

[pδ
2
− δ +

e−kδ
2

1− β

]
(68)

We require k to be large enough so that

e−kδ
2

1− β
≤ δε (69)
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Consider instead the following strategy S′A for Alice: play SA until time Nk+1 when it is about to
do its k + 1-st exploration. If Θ̂A

k ≤ p − 2δ and ΨA
k ≤ e−kδ

2
and {HA

Nk+1
is good}, then play left

forever. (In other words, Alice deviates from SA exactly on the event D1.) Otherwise, continue
with SA. Then Alice’s expected utility from round Nk+1 on under strategy pair (S′A, SB) satisfies

1D1 E
[
u′A(Nk+1,∞) | HA

Nk+1

]
≥ 1D1

[ p

1− β
−
( p

1− β
+
e−kδ

2

1− β

)]
= 1D1

[−e−kδ2
1− β

]
(70)

From inequalities (68), (69) (70), we get that on the event D1, for ε < 1/4, the inequality
u′A(Nk+1,∞) > uA(Nk+1,∞) holds. Since the original strategy pair (SA, SB) is optimal, we get
that P(D1) = 0.

Now consider the event
(
Λf ∩ (Θ < p)

)
\D1 and note that it is contained in the union of the

following events:

• Θ ∈ [p− 3δ, p]. Note that µ([p− 3δ, p]) < ε.

• Λf∩(|Θ̂A
k −Θ| > δ). By Lemma 4, the probability of this event is bounded by 2e−2kδ2 ≤ 2δε.

• ΨA
k > e−kδ

2
. By inequality (35), the probability of this event is at most 2e−kδ

2 ≤ 2δε.

• Λf ∩ (HA
Nk+1

is bad). By (65), the probability of this event is at most ε1 + δ.

Since P(D1) = 0, we conclude that

P
(

Λf ∩ (Θ < p)
)

= P
((

Λf ∩ (Θ < p)
)
\D1

)
≤ 7ε

Thus taking ε→ 0 gives P(Λf ∩ (Θ < p)) = 0, so case (1.a) occurs with probability zero.

Case 1.b: Θ < p, Both players explore infinitely often (i.e., Λ∞ holds).

For each random time N ∈ N at which player i has explored at least k times, define

Ψi
k = P

(
(|Θ̂i

k −Θ| > δ) ∩ (Ri∞ ≥ k + 1) | H i
N

)
For each player i and each ` ∈ N, let τ i` be the (random) time of the `-th exploration by that

player. Let N be the first time strictly greater than max{τAk , τBk } at which Alice explores. If there
is no such time, then N =∞.

Define the event

D = {Θ̂A
k < p− 8δ} ∩ {ΨA

k ≤ δ} ∩ {max (τAk , τ
B
k ) < N <∞}.

Let uAN (SA, SB) = ΓA(N,∞) − ΓB(N,∞) be Alice’s normalized expected utility from round N
onwards under (SA, SB) and define uAN (Left, SB) similarly when she plays left forever from round
N on the event D. Since strategy pair (SA, SB) is optimal, Alice does at least as well by playing
SA as she would do by playing left from round N onwards on the event D:

E
[
uAN (SA, SB)1D | HA

N

]
≥ E

[
uAN (Left, SB)1D | HA

N

]
≥
(
p− E

[
γB(N) | HA

N

]
− β · e−kδ2

1− β

)
1D, (71)
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since Bob’s action at time N is not influenced by Alice’s action at time N . On the other hand,
Alice’s utility can be bounded from above by

E
[
uAN (SA, SB)1D | HA

N

]
≤ E

[
γA(N)1D | HA

N

]
− E

[
γB(N)1D | HA

N

]
+ E

[
uAN+1(SA, SB)1D | HA

N

]
Alice’s expected reward in round N on the event D is at most

E
[
γA(N)1D | HA

N

]
≤ E

[
Θ · 1D | HA

N

]
= E

[
Θ · 1D1|Θ̂A

k −Θ|>δ | H
A
N

]
+ E

[
Θ · 1D1|Θ̂A

k −Θ|≤δ | H
A
N

]
≤ ΨA

k · 1D + E
[
(p− 7δ)1D | HA

N

]
≤ (p− 6δ)1D (72)

Then we can bound Alice’s normalized expected utility from round N on by

E
[
uAN (SA, SB)1D | HA

N

]
≤ (p− 6δ)1D − E

[
γB(N)1D | HA

N

]
+ E

[
uAN+1(SA, SB)1D | HA

N

]
(73)

Let η ∈ (0, δ) so that µ([p− 8δ− 2η, p− 8δ+ 2η]) < δ(1− β)ε. Select k large enough so that

e−kη
2

1− β
≤ δε (74)

Comparing inequality (73) to (71) yields

E
[
uAN+1(SA, SB)1D | HA

N

]
≥
(

6δ − β · e−kδ

1− β

)
1D ≥ 5δ · 1D (75)

Taking expectation over the history gives

E
[
uAN+1(SA, SB)1D

]
≥ 5δ · P(D) (76)

Define the event
D∗ =

{
Θ < p− 8δ

}
∩
{

max (τAk , τ
B
k ) < N <∞

}
.

We argue that the event D∗ is well approximated by the event D by showing their symmetric differ-
ence is small. By the choice of k in (74), we have

P(ΨA
k ≥ δ) ≤ 2δ(1− β)ε and P(|Θ̂A

k −Θ| > η) ≤ 2δ(1− β)ε .

The symmetric difference is included in the union of the following events:

D∗4D ⊂
{

Θ ∈
[
p− 8δ − 2η, p− 8δ + 2η

]}
∪
{
|Θ̂A

k −Θ| > η
}
∪
{

ΨA
k ≥ δ

}
By choice of δ, η, and k, we obtain

P(D∗4D) = E
(
|1D − 1D∗ |

)
≤ 5δ(1− β)ε
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This implies that

E
[
uAN+1(SA, SB)|1D∗ − 1D|

]
≤ 1

1− β
· 5δ(1− β)ε = 5δε (77)

Combining (77) with (76) implies

E
[
uAN+1(SA, SB)1D∗

]
≥ 5δ · P(D)− 5δε (78)

Define an event similar to D for Bob:

D′ =
{(

Θ̂B
k < p− 8δ

)
∩
(
ΨB
k ≤ δ

)
∩
(
max{τAk , τBk } < N

)}
Then Bob’s normalized expected utility from round N onwards given his history satisfies

E
[
uBN+1(SA, SB) · 1D′ | HB

N

]
≥ E

[
uBN+1(SA, Left) · 1D′ | HB

N

]
(79)

≥ −e
−kδ2

1− β
1D′ ≥ −δε (80)

A similar argument to the proof of (77) gives

E
[
uBN+1(SA, SB)1D∗

]
≥ −δε− 5δε (81)

Since the game is zero-sum, adding (78) and (81) gives

0 = E
[
uAN+1(SA, SB)1D∗

]
+ E

[
uBN+1(SA, SB)1D∗

]
≥ 5δ · P(D)− 11δε

This implies that P(D) ≤ 3ε.

Note the containment{(
Θ < p− 9δ

)
∩
(
max{τAk , τBk } < N <∞

)}
⊂ D ∪

{(
|Θ− Θ̂A

k | ≥ δ
)
∪
(
ΨA
k > δ

)}
Since P(D) ≤ 3ε and P(|Θ− Θ̂A

k | ≥ δ) ≤ ε and P(ΨA
k > δ) ≤ ε, we get

P
((

Θ < p− 9δ
)
∩
(
max{τAk , τBk } < N <∞

))
≤ 5ε .

By the choice of δ, since
(
RA∞ = RB∞ =∞

)
⊆
(
max{τAk , τBk } < N <∞

)
, this implies that

P
((

Θ < p
)
∩
(
RA∞ = RB∞ =∞

))
≤ 6ε

Letting ε→ 0 implies that case (1.b) occurs with probability zero.

Case 2. Θ > p. We define M as a stopping time with the following property: M is the first time
where M > τAk and M > τBk and Bob plays left at time M under SB . If there is no such time, then
M =∞. Let S′B be the following Bob strategy: play SB until time M −1. From round M on, play
right.
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Similarly to the neutral players case, let H̃M be Alice’s public history (i.e. containing the
sequence of arms she played but not her rewards) running from round 0 until the end of round
M − 1. If M = ∞, then H̃M is the whole history. Note that H̃M is observable by both players at
the beginning of round M + 1. For M <∞, define

H̃M is good ⇐⇒ µ
H̃M

(
p, p+ 2δ

)
<
√
ε and µ

H̃M

(
0, p
)
< εδ .

Let D = {(H̃M is good) ∩ (M <∞)}.
By combining cases (1.a) and (1.b) for competing players, we get that

P
(

(Θ < p) ∩ (RA∞ =∞)) = 0

Thus, for sufficiently large k, we get

P
(

(Θ < p) ∩ (RA∞ ≥ k + 1)) < ε2δ . (82)

We follow the formulas from (50) to (52) of the analysis for neutral players, with the only change
that in (51) we use the bound from (82). Thus we obtain the same bound as in (52):

P
(
(M <∞) ∩ (H̃M is bad)

)
≤ 2
√
ε . (83)

Define S′B as the following Bob strategy: play SB until the end of round M − 1. At round M , if D
holds, then play right forever. Otherwise, continue with SB . On the eventD, since µ

H̃M
(0, p) < εδ,

by playing right forever from round M + 1 onwards Bob guarantees a minimal utility of at least

E
[(
uBM+1(SA, S

′
B)
)
1D | H̃M

]
≥ − εδ

1− β
· 1D

Let γi(M) be the reward of player i in roundM under strategies (SA, SB) and γ′i(M) the reward
of player i in round M under strategies (SA, S

′
B). Note that γA(M) = γ′A(M). Then

E
[(
uBM (SA, S

′
B)
)
1D | H̃M

]
= E

[(
γ′B(M)− γ′A(M)

)
1D | H̃M

]
+ E

[(
uBM+1(SA, S

′
B)
)
1D | H̃M

]
≥
(
p+

δ

2

)
1D − E

[(
γA(M)

)
1D | H̃M

]
− εδ

1− β
· 1D (84)

For strategy pair (SA, SB) we get

E
[(
uBM (SA, SB)

)
1D | H̃M

]
= E

[(
γB(M)− γA(M)

)
1D | H̃M

]
+ E

[(
uBM+1(SA, SB)

)
1D | H̃M

]
= p · 1D − E

[(
γA(M)

)
1D | H̃M

]
+ E

[(
uBM+1(SA, SB)

)
1D | H̃M

]
(85)

Since E
[(
uBM (SA, SB)

)
1D | H̃M

]
≥ E

[(
uBM (SA, S

′
B)
)
1D | H̃M

]
, by combining the previous

inequalities we obtain

p · 1D − E
[(
γA(M)

)
1D | H̃M

]
+ E

[(
uBM+1(SA, SB)

)
1D | H̃M

]
≥(

p+
δ

2

)
1D − E

[(
γA(M)

)
1D | H̃M

]
− εδ =⇒

E
[(
uBM+1(SA, SB)

)
1D | H̃M

]
≥ δ

2
· 1D (86)

41
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On the other hand, Alice can ensure a utility of at least−εδ/(1−β) from roundM +1 onwards
by always playing right, and so

E
[(
uAM+1(SA, SB)

)
1D | H̃M

]
≥ − εδ

1− β
· 1D (87)

Since the game is zero-sum, we obtain that

0 = E
[
uBM+1(SA, SB)

]
+ E

[
uAM+1(SA, SB)

]
≥
(δ

2
− εδ

1− β

)
· P(D) (88)

By choice of ε in (60) we have δ/2 − εδ/(1 − β) > 0, so P(D) = 0. Combined with inequality
(83), we get that P(M <∞) < 2

√
ε. This implies

P
(

(RA∞ = RB∞ =∞) ∩ {Bob plays left infinitely often}
)
< 2
√
ε

By letting ε → 0, we conclude the latter probability must be zero. By symmetry, we obtain that if
Bob and Alice explore infinitely often, then they both settle on the right arm from some point on
with probability 1.

Appendix E. Competitive Play – Improved Bounds for a Uniform Prior

In this section we give improved bounds for the thresholds in the case of an arm with a uniform
prior. In particular, we show that both players will explore the risky arm for all p < 5/9 and will
not explore for all p > 2−

√
2.

Proposition 24 Let arm L have a known probability p and arm R with a uniform prior that is
common knowledge. Then both players will explore arm R with positive probability for all p < 5/9
as the discount factor β → 1.

Proof To prove this, we consider the scenario where in round zero Bob is forced to play L and
Alice is forced to play R, while the players can play optimally afterwards. Then we show that Alice
wins for all p < 5/9 as β → 1 regardless of Bob’s strategy, which will imply that in any equilibrium
the players will both play the right arm in round zero.

Consider now the scenario where they are forced to play as described above and define the
following strategy for Alice:

1. If the bit observed in round zero is 0, then play L in round 1. Then

• If Bob played R in round 1, then play L in round 2 and from round 3 onwards copy
Bob’s arm from the previous round.

• If Bob played L in round 1, then play optimally from round 2 onwards.

2. Else, if the bit observed in round zero is 1, then play R again in round 1. Play optimally from
round 2 onwards.
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We show that Alice wins in expectation regardless of Bob’s counterstrategy. For round zero we have
E(γA(0)) = 1/2 and E(γB(0)) = p. Alice’s expected payoff in round 1 depends on whether she
got a 0 or a 1 in round zero: E(γA(1)) = 1/2 · p+ 1/2 · 2/3 = 1/2 · p+ 1/3.

To analyze Alice’s payoff in round two and Bob’s maximum expected reward overall we con-
sider two cases, depending on Bob’s move in round one. We assume that Bob plays optimally from
round two onwards. Note also that Bob’s decision for what arm to play in round one cannot depend
on Alice’s bit, so it is in fact determined at round zero.

Case 1: Bob plays R in round one. Denote by γA(t|1, R) Alice’s reward in round t given that she
saw a 1 in round zero and that Bob’s strategy is to play R in round one, and similarly for γA(t|0, R).
Then Alice’s expected total reward is:

E(ΓA) = E(γA(0)) + E(γA(1)) · β + E(γA(2)) · β2 +
∞∑
t=3

E(γA(t)) · βt =
1

2
+ β

(
p

2
+

1

3

)

+ β2

(
p

2
+

E(γA(2|1, R))

2

)
+

1

2

∞∑
t=3

E(γA(t|1, R)) · βt +
1

2

∞∑
t=3

E(γB(t− 1|0, R)) · βt .

(89)

Bob’s expected total reward is:

E(ΓB) = p+
1

2
· β +

1

2

∞∑
t=2

E(γB(t|0, R)) · βt +
1

2

∞∑
t=2

E(γB(t|1, R)) · βt (90)

In the case where Alice observes a 1 in round zero, then Alice has an advantage from round
two onwards, so E(γA(t|1, R)) ≥ E(γB(t|1, R)) for all t ≥ 2. Using this fact and simplifying the
expressions, we obtain that Alice’s net gain in the zero sum game is

E(ΓA)− E(ΓB) ≥ 1

2
+ β

(
p

2
+

1

3

)
+
pβ2

2
− p− β

2
− 1− β

2
·
∞∑
t=2

E(γB(t|0, R)) · βt

To bound E(γB(t|0, R)) we consider two scenarios, depending on whether Bob saw a zero or a
one in round 1. Moreover, by round two Bob knows the bit seen by Alice in round zero since her
behavior is different depending on that bit. Let X1 and X2 be two random variables with densities
3(1− x)2 and 6x(1− x) for all x ∈ [0, 1] respectively. Then

E(γB(t|0, R)) ≤ 2

3
· E(max(p,X1)) +

1

3
· E(max(p,X2)) = 1/3− 1/3 · p3

Then as β → 1, the difference in rewards is limβ→1 [E(ΓA)− E(ΓB)] ≥ 1/6 + p3/6 − p2/2.
Then Alice wins in expectation for all p ≤ 0.65.

Case 2: Bob plays L in round one. Note we will write again γA(t|b, L) to denote Alice’s reward in
round t given that Alice saw the bit b in round zero and Bob plays left in round one. Bob’s expected
total reward is E(ΓB)) = p+ p · β +

∑∞
t=2 E(γB(t)) · βt, while Alice’s is

E(ΓA) =
1

2
+ β

(
p

2
+

1

3

)
+

1

2
·
∞∑
t=2

E(γA(t|1, L)) · βt +
1

2
·
∞∑
t=2

E(γB(t− 1|0, L)) · βt.
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Again Alice has an informational advantage so she can at least equalize from round two onwards
regardless of the value of the bit observed in round zero, and so E(γA(t|b, L)) ≥ E(γB(t|b, L)) for
all t ≥ 2 and b ∈ {0, 1}. The difference in expected payoffs can be bounded in this case by E(ΓA)−
E(ΓB) ≥ 1/2 + β (p/2 + 1/3) − p(1 + β). Taking β → 1 gives limβ→1 [E(ΓA)− E(ΓB)] ≥
5/6− 3p/2. Then Alice wins for all p < 5/9 when Bob plays left.

Taking into account both cases implies the players explore for all p < 5/9 as required.

Proposition 25 Let arm L have a known probability p > 2−
√

2 and arm R with a uniform prior,
both of which are common knowledge. Then with probability 1 the players will not explore arm R
in any equilibrium.

Proof To analyze this, we study the game where round zero is fixed such that Alice is at the right
arm and Bob is at the left arm.

Consider the following strategy for Bob: stay at arm L in rounds zero and one, then in each
round t, where t ≥ 2, copy Alice’s move from round t − 1. Suppose Alice plays optimally given
Bob’s strategy. Then Alice’s expected total is: E(ΓA) = 1/2 +

∑∞
t=1 E(γA(t)) · βt. For Bob, note

that E(γB(t)) = E(γA(t− 1)) for all t ≥ 2. Then his expected total reward is

E(ΓB) = p · (1 + β) +

∞∑
t=2

E(γA(t− 1)) · βt = p · (1 + β) +
∞∑
t=1

E(γA(t)) · βt+1

Bob’s expected net gain is E(ΓB) − E(ΓA) = p · (1 + β) − 1/2 − (1 − β) ·
∑∞

t=1 E(γA(t)) · βt.
Let X be a random variable with a uniform prior. Then Alice’s expected value at round t can be
bounded by the expected maximum of p and X , so

E(γA(t)) ≤ E(max (p,X)) =

∫ p

0
p dx+

∫ 1

p
x dx =

1

2
+
p2

2
(91)

Using the bound on E(γA(t)) above gives

E(ΓB)− E(ΓA) ≥ p · (1 + β)− 1

2
− (1− β) ·

∞∑
t=1

(
1

2
+
p2

2

)
· βt

Taking β → 1 gives limβ→1 [E(ΓB)− E(ΓA)] ≥ 2p−1/2−
(
1/2 + 1/2 · p2

)
= 2p−1−1/2 ·p2.

Then for all p > 2−
√

2 Bob’s net gain is strictly positive, thus Alice is at a disadvantage by playing
the right arm in round zero. It follows that Alice is better off by playing the left arm in round zero,
and so the players will never explore arm R in any equilibrium.
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Figure 5: Bounds as a function of p ∈ [0.5, 1] where the right arm has a uniform prior and β → 1:
the red line shows the lower bound on Alice’s net gain given by the function lb(p) =
min{1/6 + p3/6− p2/2, 5/6− 3p/2} (Proposition 24) when in round zero she starts at
the right arm and Bob starts at left, after which they both play optimally. The green line
shows the corresponding upper bound on Alice’s net gain given by ub(p) = p2/2+1−2p
(Proposition 25).
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