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Abstract
Distributed learning protocols are designed to train on distributed data without gathering

it all on a single centralized machine, thus contributing to the efficiency of the system and
enhancing its privacy. We study a central problem in distributed learning, called distributed
learning of halfspaces: let U ⊆ Rd be a known domain of size n and let h : Rd → R be an
unknown target affine function.1 A set of examples {(u, b)} is distributed between several parties,
where u ∈ U is a point and b = sign(h(u)) ∈ {±1} is its label. The parties’ goal is to agree on a
classifier f : U → {±1} such that f(u) = b for every input example (u, b).

We design a protocol for the distributed halfspace learning problem in the two-party setting,
communicating only Õ(d log n) bits. To this end, we introduce a new tool called halfspace
containers, that is closely related to bracketing numbers in statistics and to hyperplane cuttings
in discrete geometry, and allows for a compressed approximate representation of every halfspace.
We complement our upper bound result by an almost matching Ω̃(d log n) lower bound on the
communication complexity of any such protocol.

Since the distributed halfspace learning problem is closely related to the convex set disjointness
problem in communication complexity and the problem of distributed linear programming in
distributed optimization, we also derive upper and lower bounds of Õ(d2 log n) and Ω̃(d log n)
on the communication complexity of both of these basic problems.
Keywords: Distributed Learning, Communication Complexity

1. Introduction

Modern applications of machine learning often involve data obtained from several different sources.
For example, in healthcare related applications, data is collected from hospitals and labs in remote
locations. Another host of examples involves algorithms that are trained on personal data (e.g.,
a music recommendation app which is trained on preferences made by numerous users). The
collection of data in these applications may be costly or even infeasible due to its sheer size.

1. In practice, the domain U is defined implicitly by the representation of d-dimensional vectors which is used in the
protocol.
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Furthermore, data collection may be problematic from a privacy perspective in contexts where it
contains sensitive information (e.g., patients’ data, financial data, personal data on smartphones).

Such applications raise the need for algorithms that are able to train on distributed data without
gathering it all on a single centralized machine. Consequently, tech companies invest significant
efforts in developing suitable technologies; one notable example is Google’s Federated Learning
project (Konečný et al., 2016) which attempts to train a centralized model on data which is
distributed on different clients (say mobile phones). The high-level approach here is that each client
sends compressed updates to a centralized model.

1.1. Distributed Learning of Halfspaces

This work focuses on the problem of distributed learning of halfspaces (a.k.a linear classifiers).
Linear classifiers form the backbone of many popular learning algorithms and are very well
studied in the centralized setting: they date back to the seminal Perceptron Algorithm from the
50’s (Rosenblatt, 1958), and form the basis of more modern algorithms such as kernel machines
and neural nets.

In the distributed setting, (improper) learning of halfspaces refers to the following task: a set of
examples is distributed between several parties. Each example consists of a pair (u, b), where u ∈ U
is a feature vector2, b = sign(h(u)) ∈ {±1} is the label, and h : Rd → R is the (unknown) target
linear function. The parties’ goal is to agree3 on a classifier f : U → {±1} such that f(u) = b
for every input example (u, b), while minimizing the amount of communication4. In practice, the
domain U is often defined implicitly by the encoding used to represent and transmit d-dimensional
vectors. (So, if each entry is encoded using B bits in binary-representation then U is a grid of size
n = 2d·B .) For this reason, it is usually the case that the dimension d is much smaller than the
domain size n. This problem received considerable attention both in theory and practice, see, e.g.,
Jian-Pei Zhang et al. (2005); Navia-Vazquez et al. (2006); Chang et al. (2007); McDonald et al.
(2010); Forero et al. (2010); Daumé III et al. (2012); Balcan et al. (2012); Kane et al. (2019).

We give (a nearly) tight bound of Θ̃(d log n) on the communication complexity of this problem
in the two-party setting.

Theorem 1 (Informal) Let d, n ≥ 2 and let U ⊆ Rd be a domain with n points.
The communication complexity of distributed learning of halfspaces in the two-party setting
is Θ̃(d log n).

Although this result concerns the two-party setting, we note that the ideas and techniques used in its
proof can be extended to more complex distributed models. We focus here on the two-party setting
as it already requires substantial new ideas and provides a clean platform to demonstrate them. Our
result also addresses the case where the parties are required to have zero misclassification error,

2. In this context, it may be natural to think of the domain U as a grid, a discretized manifold, or any other domain that
arises naturally from euclidean representations of data.

3. The requirement that the parties agree on a consistent output hypothesis is important, as, for instance, it helps rule
out efficient “memorization-based” protocols where, e.g., each party simply memorizes its samples and outputs a
hypothesis consistent with the samples. This is because the party that memorizes its samples needs to send them to
the other party so that they agree on the same output hypothesis. In fact, our protocol in this paper satisfies an even
stronger property: the output hypothesis can be deduced from the transcript of the protocol. It can be shown that this
implies strong generalization bounds.

4. Note that f may not be consistent with any halfspace, as we consider improper learning.
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i.e., they want to output a hypothesis that correctly classifies all the points. Getting results for the
non-zero error case is also interesting. We defer generalizations for future work.

We view the Õ(d log n) upper bound as the main technical contribution of this paper. The
protocol achieving it is deterministic and exploits geometric tools we design for this purpose.
Furthermore, this protocol can be implemented efficiently (i.e., the internal computations take
poly(n, d) time). See Appendix B.4 for a more detailed discussion. The upper bound improves
upon a previous bound of O(d log2 n) by Daumé III et al. (2012) and Balcan et al. (2012) which
rely on distributed implementations of boosting algorithms.

The lower bound (which is tight up-to a “log d” term) also applies to randomized protocols and
uses a geometric embedding as well as a communication complexity-style direct sum argument. It
improves upon a previous lower bound of Ω(d + log n) by Kane et al. (2019). (We note however
that the bound by Kane et al. (2019) applies in a more general distributed model, see Section 1.4 for
more details.)

1.2. Convex Set Disjointness and Distributed LP Feasibility

To obtain the bounds in Theorem 1, we study the related Convex Set Disjointness problem,
introduced in this context by Kane et al. (2019). Convex Set Disjointness is a communication
problem over a set U ⊆ Rd, in which two parties, Alice and Bob, hold input sets X,Y ⊆ U . The
parties’ mutual goal is to decide whether conv(X) ∩ conv(Y ) = ∅, where conv(·) denotes the
convex hull operator. We denote this problem CSDU and will mostly be interested in the case where
n = |U | satisfies n� d.

CSD is equivalent to the problem of distributed Linear Programming feasibility in distributed
optimization. Linear Programming (LP) is one of the most basic primitives in optimization. In
the associated decision problem, called LP feasibility, the goal is to determine whether a system of
linear inequalities (also called constraints) is satisfiable. In distributed LP feasibility, the constraints
are partitioned between several parties. Indeed, LP feasibility is equivalent to CSD, albeit in a dual
formulation where constraints and points are interchanged: disjointness of the convex hulls amounts
to the existence of a separating hyperplane, which, from a dual perspective, corresponds to a point
that satisfies all of the constraints.

We improve the known bounds on the communication complexity of CSD and LP feasibility in
the two-party setting.

Theorem 2 (Informal) Let d, n ≥ 2 and let U ⊆ Rd be a domain with n points. Then,
the communication complexity of CSDU (and therefore also of the corresponding two-party LP
feasibility problem) is at most Õ(d2 log n) and at least Ω̃(d log n).

Our CSD upper bound is achieved by a deterministic protocol and improves upon two previous
bounds by Vempala et al. (2020): the first gives an O(d3 log2 n) upper bound for general sets U
and the other gives an O(d2 log2 d log n) bound for some natural special cases (see Section 1.4
for a more detailed comparison). Our lower bound applies even when the protocol is randomized
and improves upon Vempala et al. (2020) who derive a similar lower bound of Ω(d log n) in the
deterministic setting and a lower bound of Ω(log n) in the randomized setting.

3
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Settling the communication complexity of CSD (and therefore also of LP feasibility) is an
outstanding open problem5.

Connection to Distributed Learning. As mentioned above, we obtain our bounds for distributed
learning by studying the CSD problem. We note that our CSD protocol has the additional property
that when the convex hulls are disjoint, it generates a “certificate” for this fact (i.e., a separating
function f ). It is easy to see that any such protocol also solves the learning problem, where one
party only gets positive examples and the other only gets negative examples. We show that the
mixed case can also be handled.

While our CSD protocol can be used to solve the learning problem, the communication of this
protocol is off by a factor of d from our stated optimal result for the learning problem. To obtain the
optimal result, we consider a restricted version of CSD, called PromiseCSD, where we are promised
that if the convex hulls of X and Y intersect, then X and Y intersect. For this restricted problem
we are able to construct an optimal Õ(d log n) protocol. Observe that any certificate producing
PromiseCSD protocol also solves the learning problem, as in the learning problem we are promised
that there exists a separating hyperplane, and thus that the inputs are disjoint.

In the opposite direction, it is not hard to see that any learning algorithm can be used to decide
PromiseCSD (see Section 2.4). We also mention that a proper6 learning protocol can be used to
decide CSD. Therefore, obtaining the upper bound of Theorem 1 with a proper learner will improve
the upper bound of Theorem 2 and show that the Ω̃(d log n) lower bound is essentially tight.

Connections to classical communication complexity problems. The CSD problem can be seen
as a geometric interpolation between two central problems in communication complexity, namely,
Set Disjointness (when d ≥ n − 1), and Greater-Than (when d = 1). Indeed, if d ≥ n − 1
then one can pick the n points in U ⊆ Rd to be affinely independent, which implies that
X ∩Y = ∅ ⇐⇒ conv(X)∩ conv(Y ) = ∅. Therefore, in this case the communication complexity
of CSDU is the same as that of Set Disjointness, which is Θ(n) (Kalyanasundaram and Schintger,
1992). In the other extreme, if d = 1 then U is a set of n points on the real line and CSDU boils
down to comparing the two extreme points in Alice’s input with the two extreme points in Bob’s
input (see Figure 1). Thus, the case of d = 1 is equivalent to the Greater-Than problem on log n
bits, whose communication complexity is Θ(log n) in the deterministic setting and Θ(log log n) in
the randomized setting (with constant error) (Feige et al., 1994; Viola, 2013).

1.3. Geometric Tools

In this paper, we take a geometric approach when designing our protocols. This is widely different
than the techniques used by previous works, who mainly focused on implementing distributed
versions of known learning algorithms. In this section, we describe some of the geometric tools
that go into our constructions.

Our protocol for PromiseCSDU uses the observation that if X and Y can be separated by a
hyperplane, then one of these sets is contained in a halfspace that contains at most n/2 points
from U . The protocol asks Alice and Bob to check if their input lies in such a halfspace, and if so
send this halfspace to the other party. The parties then ignore all the points outside the halfspace

5. Settling this problem may also shed light on the communication complexity of distributed versions of related
problems studied in the literature (i.e., super-linear lower bounds for different versions of distributed linear
programming, max-flow, and perfect matching).

6. That is, the function f output by the learning algorithm is consistent with a hyperplane.

4



DISTRIBUTED LEARNING OF HALFSPACES

yrightxrightyleftxleft

Figure 1: Convex Set Disjointness in 1D: the convex hull of Alice’s input (blue points) is disjoint
from the convex hull of Bob’s input (red points) if and only if xright < yleft or
yright < xleft. Thus, this case amounts to deciding (2 instances of) the Greater-Than
problem on log n bits. The disjointness condition does not hold for the depicted scenario,
and indeed, the convex hulls intersect.

and reduce the size of U by half. The protocol repeats this “divide and conquer” process log n
times, and sinceO(d log n) bits are required to specify a hyperplane (up-to equivalence), the overall
communication is O(d log2 n).

To get the optimal PromiseCSDU protocol, removing the extra log n factor, we design a new
tool called halfspace containers, that is also of independent interest (see an additional application
below). Roughly speaking, it allows us to get a compressed approximate representation of each
halfspace H . More formally, for U ⊆ Rd denote by HS(U) = {H ∩ U : H is a halfspace in Rd}
the family of all halfspaces restricted to U .

Theorem 3 (Halfspace Containers) Let U ⊆ Rd and ε > 0. Then, there exists a family C ⊆ 2U

of size (d/ε)O(d) such that

(∀H ∈ HS(U))(∃C ∈ C) : H ⊆ C and |C \H| ≤ ε|U |.

The set C in the above theorem is called a family of ε-containers for HS(U). Each container C ∈ C
in our construction has a rather simple form: it is the complement of an intersection of ≤ d
halfspaces. Additionally, our proof of Theorem 3 is constructive and implies a (randomized)
algorithm which, given an input halfspace H , finds in poly(n, d, 1/ε) time an ε-container C ∈ C
for it. (See Appendix B.4 for a more detailed discussion).

Theorem 3 extends to arbitrary distributions: for every probability measure P on Rd there is a
family C of subsets of Rd whose size is (d/ε)O(d) such that for every halfspace H there is C ∈ C
such that H ⊆ C and P (C \ H) ≤ ε. To see this, note that Theorem 3 handles the case when P
is finitely supported, and use the fact that each distribution can be approximated (in an appropriate
sense) by finitely supported distributions.

We also mention that a weaker object (that is insufficient for our purposes), obtained by
removing the requirement that H ⊆ C, and demanding that |H∆C| ≤ ε|U | is called an ε-cover
for HS(U). A classical result by Haussler implies that HS(U) (and, in fact, any family with VC
dimension d) has an ε-cover of size roughly (1/ε)d (Haussler, 1995). An interesting topic for
future study is whether our container construction can be improved to match Haussler’s parameters
and whether other natural VC classes have small containers (see discussion in Appendix B.1).
We remark that matching Haussler’s bound with respect to container will tighten our bounds by
removing the log d gap between the upper and lower bounds.

Bracketing Numbers in Statistics. Theorem 3 can be used to get a distribution-free bound on
the bracketing number of halfspaces. Bracketing is a technique for deriving uniform laws of large
numbers for empirical processes (see, e.g., Adams and Nobel (2010)). Let H be a family of events
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in a probability space (X ,Ω, P ). A pair of events F,G ⊆ X is called an ε-bracket for H ∈ H if
F ⊆ H ⊆ G and P (G \ F ) ≤ ε. A family of events B is an ε-bracketing for H if every H ∈ H
admits an ε-bracket in B. The ε-bracketing number of H (a.k.a, bracketing entropy) is defined as
log|B| for the smallest possible ε-bracketing B.

The key property is that if |B| is small then it implies a uniform law of large numbers with respect
to all events inH: let x1 . . . xn ∼ P be independent samples. A union bound over B implies that for
a sufficiently large n, Pn(B) ≈ P (B) simultaneously for all B ∈ B, where Pn(B) = |{i: xi∈B}|

n .
Consequently, by bracketing it follows that also Pn(H) ≈ P (H) for all H ∈ H. Note that this
reasoning applies even whenH is infinite (the crucial property is that B is small, which allows for a
union bound).

Brackets are typically used to prove distribution-dependent laws of large numbers. For example,
they imply a uniform law of large numbers for the family of convex sets in R2 when the underlying
distribution is uniform over [0, 1]2 (see page 22-24 in Pollard (1984)). Note that the family of
convex sets has an infinite VC dimension and thus one must use a distribution dependent argument.
Another notable advantage of brackets over other techniques such as VC dimension, Rademacher
complexity, covering numbers, and others is that brackets hold even when the random sample
x1 . . . xn ∼ P is not independent. As such, brackets are applicable to more general ergodic
processes (Adams and Nobel, 2010). For further reading, see the books (van der Vaart et al., 1996;
Dudley, 1999).

Theorem 3 implies a distribution-free bound of O(d log(d/ε)) on the bracketing number of
halfspaces in Rd as follows: given a halfspace H , construct an ε-bracket F,G for H by taking
F ⊇ H to be an ε

2 -container for H and G ⊆ H to be the complement of an ε
2 -container for the

complement of H (we use here the fact that a complement of a halfspace is a halfspace). Prior
to our work, it was known that halfspaces admit finite bracketing numbers, albeit in a distribution
dependent manner (i.e., the bound on |B| depends on the distribution P (Adams and Nobel, 2010)).

Dual Carathéodory. A key ingredient in our construction of the family of containers is a dual
variant of Carathéodory’s theorem which we prove.

Let Q ⊆ Rd be a polytope. There are two natural ways of representing Q: (i) as the convex
hull of its vertices, (ii) as an intersection of halfspaces. Carathéodory’s Theorem, a fundamental
statement in convex geometry (Carathéodory, 1907), implies that if Q is the convex hull of a few
vertices then it can be covered by a few simplices. Quantitatively, if Q has n vertices then it can be
covered by at most nd+1 sets of the form conv({x0, . . . , xd}), where the xi’s are vertices of Q.

How many subsimplices are needed in order to cover a polytope Q defined as the intersection
of n halfspaces? A bound of nd(d+1) follows by the previous bound7. We prove the following
theorem that achieves a quadratic improvement in the exponent:

Theorem 4 (Dual Carathéodory) Let Q ⊆ Rd be a polytope obtained as the intersection of n
halfspaces. Then,Q can be covered using at most nd subsimplices of the form conv({x0, . . . , xd}),
where the xi’s are vertices of Q.

1.4. Related Work

Lovăsz and Saks (1993) studied a variant of CSD where the goal is to decide whether the convex
hulls intersect in a point from U . This variant exhibits a very different behaviour, even in

7. The number of vertices inQ is at most nd, as every vertex is defined by d hyperplanes.
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dimension d = 2: indeed, if U is in convex position8 (say n points on the unit circle), then this
becomes equivalent to the classical Set Disjointness problem whose communication complexity
is Θ(n), whereas for our CSD, any planar instance U ⊆ R2 can be decided using O(log n) bits.

Variants of CSD were also considered by several works in distributed machine learning and
distributed optimization (see, e.g., Balcan et al. (2012); Daumé III et al. (2012); Chen et al. (2016);
Kane et al. (2019); Vempala et al. (2020)). Other variants in which the number of rounds is bounded
arise in space lower bounds for learning linear classifiers in streaming models (Dagan et al., 2019).

Kane et al. (2019) studied CSD in a more general communication model where the input
domain U = Rd is the entire (infinite) space, but the parties can transmit points from their input
sets for a unit cost of communication. They establish a Õ(d3 log n) upper bound and a Ω̃(d+ log n)
lower bound on the number of transmitted points/bits when the input subsets are of size n and the
dimension is d. These bounds translate9 to upper and lower bounds of Õ(d3 log2 n) and Ω̃(d+log n)
in the setting considered in this paper. We mention that Kane et al. (2019), as well as some of the
other previous papers (e.g., Balcan et al. (2012)), consider a more general set of concept classes and
also study the agnostic (non-realizable) setting, where the labeling may not be completely consistent
with any hypothesis in the class.

Recently, Vempala et al. (2020) published a thorough study of the communication complexity
of various optimization problems including LP feasibility, which, as explained above, is equivalent
to CSD. The main difference is that Vempala et al. (2020) do not consider arbitrary domains U , and
focus on the domain U which is implied by the standard representation of d dimensional vectors.
Thus, U in this case is a grid of size n, say [n1/d]d.

They derive a lower bound of Ω(log n) in the randomized setting (Theorem 9.2) and of
Ω(d log n) in the deterministic setting (Theorem 3.6), as well as several upper bounds. Their best
upper bound of O(d2 log2 d log n) (Theorem 11.3) is based on an implementation of the Center of
Gravity algorithm. This matches (up to an extra “log d” factor) the upper bound ofO(d2 log d log n)
given in this work, but does not apply to arbitrary domains10 U . The paper suggests a second
protocol based on Clarkson (1995)’s Algorithm that communicates O(d3 log2 n) bits (matching the
bound of Kane et al. (2019)) and whose analysis does extend to arbitrary domains U (Theorem
10.1).

Cutting Hyperplanes and Containers. There is an intimate relationship between containers and
the notion of cuttings from discrete geometry. Given n hyperplanes in Rd, an ε-cutting is a partition
of Rd into simplices with disjoint interiors such that the interior of each simplex intersects at most
ε · n of the hyperplanes. Cuttings provide a divide-and-conquer approach which is used to solve
a variety of geometric problems (Yao and Yao, 1985; Clarkson, 1987; Chazelle, 1993; Matouvsek,
2002).

Cuttings can also be used to prove Theorem 3. The construction is based on a duality argument
which views the n points in U as hyperplanes in a dual space. Then, one constructs an ε-cutting
for these n hyperplanes, and given a halfspace H in the primal space, a container for it is implied

8. A set U is in convex position if u /∈ conv(U \ {u}) for all u ∈ U .
9. The extra logn factor in the upper bound is because transmitting u ∈ U requires log|U | = logn bits.

10. Specifically, their analysis exploits the assumed grid structure of U : their bound on the number of iterations of the
protocol uses bounds on determinants of matrices with entries from [n1/d]. In fact, already in the one-dimensional
case, if the domain U ⊆ R consists of n points which form a geometric progression (say U = {1, 2, 4, . . . , 2n}),
then the Center of Gravity protocol can transmit up to Ω(n) bits, which is exponentially larger than the O(logn)
optimal deterministic protocol, and double exponentially larger than the O(log log n) optimal randomized protocol.

7
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by the simplex in the constructed ε-cutting which contains the point dual to H . (So the number
of containers is equal to the number of simplices in the ε-cutting.) The analysis is based on point-
hyperplane duality which preserves the “above/below” relations (see, e.g., de Berg et al. (2008)).

An advantage of the construction given here is that it can be implemented in poly(n, d) time
(see Appendix B.4). This is in contrast to cuttings which take exp(d) time to construct. On the other
hand, the cutting-based construction yields a faster, O(d log n) time, routine for finding a container
given an input halfspace query. Thus, the cutting construction is appealing in contexts where many
halfspace queries are made (and then the cost of preprocessing is amortized over the many queries).
This is less suitable in the context of this paper since in our protocols the parties query a single
halfspace per a constructed family of containers and construct many different families of containers
(one family of containers per round in the protocol).

Another difference is that in the communication-complexity application considered in this paper
ε = 1/4 is a constant and we wish to minimize the dependence on d. However, in typical
applications of cuttings ε is the main parameter which is assumed to be small and d is treated
as a constant.

It will be interesting to further explore the relationship between cuttings, containers, and
brackets.

2. Proofs Overview

In this section we overview the proofs and highlight some of the more technical arguments. We
defer the full proof to the Appendix. We begin by overviewing the proof of Theorem 3, the halfspace
container theorem, which forms the crux of our communication protocols. Then, we sketch our CSD
protocol in Section 2.2 and our CSD lower bound in Section 2.3, thus proving Theorem 2. Finally,
in Section 2.4, we use our constructions for CSD and outline the upper and lower bound proofs for
the distributed halfspace learning problem, thus proving Theorem 1.

2.1. Halfspace Containers (Theorem 3)

Let U ⊆ Rd be a domain with n points. We want to show that for every ε > 0, there is a collection
C of (roughly) (d/ε)d sets called containers, such that for every halfspace H there is a container
C ∈ C such that H ⊆ C and C \ H contains at most ε · n points from U . It will be more
convenient to prove the following equivalent statement in which H and C switch roles: there is
a collection C of (roughly) (d/ε)d sets, such that for every halfspace H there is C ∈ C such that
C ⊆ H and H \ C contains at most ε · n points from U . Indeed, these statements are equivalent,
because the complement of a halfspace is a halfspace, and so taking the complements of all sets in
a family C with the above property yields the desired family of containers.

A natural way of constructing a set C that is contained in H but “approximates” it well, is to
take C = ∩Hi, where the intersection is over all halfspacesHi that are equivalent toH with respect
to U . That is, halfspaces Hi such that Hi ∩ U = H ∩ U . However, the set C of all such C’s is too
large, as each C may be the intersection of many halfspaces Hi. We next show that we can use sets
of the form C = ∩i≤d+1H

′
i that are obtained as the intersection of only d+ 1 halfspaces H ′i, where

each halfspace H ′i is “roughly equivalent” to H .

Constructing an ε-net. The first step in the construction is to pick a “small” V ⊆ U which forms
an ε-net to sets of the form H0 \ (∩i≤d+1Hi), where the Hi’s are halfspaces. That is, V satisfies

8
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that for every set B of the form B = H0 \ (∩i≤d+1Hi), if B contains at least ε · n points from U
then B ∩ V 6= ∅. By standard arguments from VC theory, a random subset V ⊆ U of size roughly
d2/ε will satisfy this property.

Once we have such an ε-net V , the idea is to associate with any given halfspace H a set of d+ 1
halfspaces H1, . . . ,Hd+1 which are induced by V such that

(i) ∩i≤d+1Hi ⊆ H , and

(ii) H \ (∩i≤d+1Hi) does not contain any point from V .

Since V is an ε-net, property (ii) implies thatH\(∩i≤d+1Hi) contains at most ε·n points from U , as
needed. The ε-net V will effectively represent our set U from now on, although |V | is significantly
smaller.

The Auxiliary Dual Polytope. To derive the halfspaces H1, . . . ,Hd+1 which satisfy the above
properties (i) and (ii), we consider the dual space in which each halfspace {x ∈ Rd : a · x ≤ b} is
associated with the d+ 1 dimensional vector (a, b) ∈ Rd+1.

Consider the set P = P(H) of all halfspaces that are equivalent to H with respect to the ε-
net V . That is, P ⊆ Rd+1 contains representations of all halfspaces H ′ such that H ′ ∩ V = H ∩ V
(we stress that such halfspaces can have a different intersection with the domain U ). Note that P
is a convex set which is defined11 by |V | linear inequalities, as each v ∈ V corresponds to a linear
inequality posing that v ∈ H ⇐⇒ v ∈ H ′. For an illustration, see Figure 3.

Now, by Carathéodory Theorem, there are d + 2 vertices of P such that the vector associated
with H is in their convex hull. By the definition of P , these d + 2 vertices correspond to
halfspaces Hi ⊆ Rd such that Hi ∩ V = H ∩ V . We claim that these Hi’s satisfy the above
properties (i) and (ii). Indeed, since H is in their convex hull, it can be shown that ∩iHi ⊆ H ,
which amounts to (i), and since the Hi’s are in P , we have that Hi ∩ V = H ∩ V for every i, which
implies (ii).

An Inferior Bound. Let us now see how to get an inferior bound of |V |O(d2) = (d/ε)O(d2)

on the size of C, by counting the number of possible d + 2 tuples H1, . . . ,Hd+1. How many
polytopes P(H) are there, counting over all possible halfspaces H? The constraints defining the
polytope P(H) are determined by the intersection V ∩ H . Therefore, since there are O(|V |d)
distinct intersections of V with halfspaces, we get that there are O(|V |d) such polytopes P(H).
Now, given a fixed P(H), how many vertices does it have? P(H) is defined by |V | constraints and
therefore has at most |V |d+1 vertices (each vertex is determined by d+ 1 constraints).

If we consider all possible d+2 tuples of vertices of P(H) as possible halfspacesH1, . . . ,Hd+1

which have H in their convex hull, the number of such tuples is bounded by |V |(d+1)(d+2). The
bound we get for |C| is O(|V |d) · |V |(d+1)(d+2) = (d/ε)O(d2).

To remove the extra d factor from the exponent, we exploit the Dual Carathéodory Theorem
(Theorem 4), which asserts that if a polytope Q ⊆ Rd is defined by n linear inequalities, then
it can be covered by nd subsimplices. In our context, Q = P(H), the number of constraints n
is |V | ≈ d2/ε, and the dimension is d + 1. Thus, the theorem enables us to find a collection of
just |V |O(d) tuples of d + 2 vertices H1, . . . ,Hd+1 such that every point in P(H), including H
itself, is in the convex hull of one of these tuples.

11. In the complete proof we will define P with O(d) more constraints in order to ensure boundedness.
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Proof of Dual Carathéodory. We prove the theorem in a constructive manner, using a process
from computational geometry called Bottom Vertex Triangulation (Clarkson, 1988; Goodman and
O’Rourke, 2004). In a nutshell, given a point a ∈ Q, we use the Bottom Vertex Triangulation
process to encode the names of d + 1 vertices of Q whose convex hull contains a. The encoding
is a sequence of d linear inequalities, each being one of the n linear inequalities that define Q.
This implies that the polytope can be covered using at most nd subsimplices, corresponding to the
number of sequences of length d out of a set of size n.

In more detail, the sequence of linear inequalities is defined as follows (see Figure 4 for an
illustration): given the input point a, let x0 be the bottom-most12 vertex of Q, and shoot a ray
starting at x0 which passes through a until it hits a facetQ1 ofQ in a point a1 ∈ Q1. Append to the
constructed sequence the number of the linear inequality which became tight as a result of hitting
Q1. Continue recursively, applying the same process to Q1 (i.e., shoot a ray from Q1’s bottom
vertex x1 which passes through a1 until it hits a facetQ2 at a2, etc.). We refer the reader to Figure 6
for a formal description of this process. It can be shown that a is in the convex hull of the vertices
x0, x1, . . . , xd.

We note that an alternative (but non-constructive) proof of the Dual Carathéodory theorem can
be derived from the upper bound theorem for polytopes McMullen (1970). This proof, however,
will not allow for an efficient construction of containers.

2.2. The Protocol for CSD (Theorem 2)

Equipped with ε-containers for halfspaces, we turn to design a protocol for CSD. We note that
even in the simple (but non trivial) case d = 2,13 it was shown by Kane et al. (2019) that any “low
communication” protocol must have Ω̃(log n) rounds of communication14. Thus, to reach our goal
of constructing a protocol with only a logarithmic dependence on n, we need the communication in
every round to be independent of n (in particular, one cannot even specify one point in U ).

We construct a CSD protocol with O(d2 log d log n) communication in two steps:

Step (i): An O(d log d log n) protocol for PromiseCSD (Theorem 21). Let PromiseCSDU
denote the variant of CSD in which it is promised that the inputs X,Y satisfy:

(i) conv(X) ∩ conv(Y ) = ∅, or

(ii) X ∩ Y 6= ∅.

In particular, the output of the protocol is not restricted in the remaining case when X ∩ Y = ∅ and
conv(X) ∩ conv(Y ) 6= ∅.

We next explain how PromiseCSDU can be solved withO(d log d log n) bits of communication.
Observe that if conv(X) ∩ conv(Y ) = ∅, then X and Y can be separated by a hyperplane and one
of the two halfspaces it defines contains at most n/2 points from U . This suggests the following
approach: Alice and Bob each privately checks if their input lies in a halfspace which contains
at most n/2 points from U . If there is no such halfspace, then, by the above reasoning, it must

12. Or any other canonical vertex.
13. The case of d = 1 is easy, d = 2 is more sophisticated, and d = 3 seems to require a general approach.
14. We mention that Kane et al. (2019) also present a natural protocol based on boosting/multiplicative-weights update

rule with Θ(log2 n) communication complexity. Such quadratic dependence is also exhibited by other approaches
(e.g., the protocol by Vempala et al. (2020) which is based on Clarkson’s algorithm). These protocols consist of
Θ(logn) rounds and Ω̃(logn) bits are communicated in every round.

10
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Figure 2: Example of a case where the algorithm for PromiseCSD does not extend to the general
case of CSD: the convex hull of the red points intersects the convex hull of the blue points.
Since the halfspace on the right of the dashed hyperplane contains all the blue points and
less than half of the total, the parties may decide to remove all the points to the left of the
hyperplane. However, once these points are removed, the convex hulls of the remaining
red and blue points are disjoint.

be the case that conv(X) ∩ conv(Y ) 6= ∅ and the protocol terminates. Else, since there are nO(d)

halfspaces up to equivalences15, they can agree on such a halfspace usingO(d log n) bits and remove
all domain points outside this halfspace.

Alice and Bob can iteratively proceed in this manner and in every step remove at least half of
the (remaining) points while maintaining that all points in X ∩ Y ⊆ U are never being removed.
The implied protocol consists of O(log n) rounds, each communicating O(d log n) bits, for a total
of O(d log2 n) communicated bits, which is log n factor away from the stated bound.

Our final protocol uses a similar recursive approach, but transmits only O(d log d) bits in each
round. This is achieved by using halfspace containers (Theorem 3). Specifically, instead of finding
a halfspace which contains the entire input of one of the players, they find an ε-container for this
halfspace with ε = 1/4. This allows to reduce the domain size by a factor of 1/2 + 1/4 = 3/4
in each round, and, by Theorem 3, requires only O(d log d) bits per round. Note that the use of
containers, as opposed to an approximating16 set from an ε-cover, is crucial here.

One may be tempted to try a similar approach for the non-promise variant. However, note that
points in conv(X)∩conv(Y ) that are not inX∩Y may be removed by the protocol. Indeed, Figure 2
depicts a situation where the protocol starts with sets X,Y with conv(X) ∩ conv(Y ) 6= ∅ and
removes some of the points in U to obtain a domain U ′ in which conv(X∩U ′)∩conv(Y ∩U ′) = ∅.
This shows that without the promise, this approach fails.

Step (ii): Reducing CSD to PromiseCSD (Theorem 24). Clearly, PromiseCSDU can only be
easier to decide than CSDU . In the opposite direction, it turns out that it is not much harder.
Specifically, one can reduce CSDU to PromiseCSDV , where V is a domain obtained from U by
adding carefully chosen points to ensure that for every X,Y ⊆ U , if conv(X) ∩ conv(Y ) 6= ∅
then conv(X) ∩ conv(Y ) contains a point in V . Now, if X,Y ⊆ U are the inputs for CSDU , then
conv(X) ∩ V, conv(Y ) ∩ V ⊆ V are valid inputs for PromiseCSDV .

The naive attempt of obtaining V from U by going over all pairs of sets X,Y ⊆ U with
conv(X) ∩ conv(Y ) 6= ∅ and adding an auxiliary point from conv(X) ∩ conv(Y ) to V results
in the addition of too many points. Instead, we prove a “symmetric variant of Carathéodory’s
Theorem” (Theorem 23), which asserts that if conv(X)∩ conv(Y ) 6= ∅ then there are X ′ ⊆ X and
Y ′ ⊆ Y such that |X ′| + |Y ′| ≤ d + 2 and conv(X ′) ∩ conv(Y ′) 6= ∅. It is therefore sufficient to
only go over pairs of sets X ′, Y ′ ⊆ U such that |X ′|+ |Y ′| ≤ d+ 2 and add to V an auxiliary point
in conv(X ′) ∩ conv(Y ′). Note that by doing so, we automatically cover all possible inputs X and

15. Recall that two halfspaces are equivalent if they have the same intersection with U .
16. I.e. a set with at most εn points from U in its symmetric difference with the halfspace.
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Y to the parties without knowing what they happen to be. Moreover, this only requires the addition
of (2n)d+2 points and implies the stated upper bound of O(d2 log d log n) for CSDU (as n is now
n + (2n)d+2 and the dimension d remains the same). We remark that by the classic Carethéodory
Theorem, it suffices to go over all pairs of intersecting simplices. This yields a bound of (2n)2d+2

on the number additional points which is off by a factor of 2. While the latter inferior bound is
sufficient for the reduction, we include the tighter bound and the symmetric variant of Carathéodory
as they may be of independent interest.

2.3. Lower Bound for CSD (Theorem 2)

We prove an Ω(d log(n/d)) lower bound for PromiseCSD, which clearly also holds for CSD.

Embedding DISJ in PromiseCSD with d = 2. The first part in the lower bound is a reduction
from the Set Disjointness problem (denoted DISJ) on logm bits to planar PromiseCSD with m
points. This is achieved by fixing m points in a convex position, say on the unit circle, and
identifying each logm bit-string z with one of the m points, call it vz. Next, given inputs x,y ∈
{0, 1}logm, Alice maps her input to the singleton set {vx}, whereas Bob maps his input to the set
of all vz such that z ∩ y 6= ∅. Note that Alice’s point is in Bob’s set if and only if x ∩ y 6= ∅.
Moreover, since the m points are in convex position, Alice’s point is in Bob’s set if and only if
the point cannot be separated from the set by a hyperplane; i.e., if and only if their convex hulls
intersect. See Figure 5 for an illustration of this construction.

Dimension lifting via direct sum. The second part of the lower bound is to lift the planar
construction to higher dimensions using a “direct sum argument”. Let d ∈ N and set m = 3n/d.
Observe that solving d/3 copies of DISJ on logm coordinates (deciding if all pairs of inputs
are disjoint or whether there exists an intersecting pair) is as hard as solving DISJ on d logm/3
coordinates, which is known to admit a randomized communication complexity lower bound
of Ω(d logm) = Ω(d log(n/d)). Thus, solving d/3 copies of our planer PromiseCSD with m
points also requires at least Ω(d log(n/d)) communication bits.

We next claim that solving PromiseCSD with dimension d and dm/3 points is at least as
hard as solving d/3 copies of the planar PromiseCSD with m points: consider the mapping gi :
R2 → Rd that for every i ∈ [d/3] takes a point v = (v1, v2) ∈ R2 and outputs the vector
(0, 0, · · · , 0, v1, v2, 1, 0, 0, · · · , 0) in Rd, where v1 is in position 3(i − 1) + 1. Given d/3 input
pairs {(Xi, Yi)}i∈[d] to the planar PromiseCSD, we construct inputs X and Y for PromiseCSD in d
dimensions: let X = {gi(xi)}i∈[d/3],xi∈Xi

and Y = {gi(yi)}i∈[d/3],yi∈Yi . It is not hard to see that
since we embed the inputs to different copies of the planar problem in different coordinates of the
d-dimensional problem, it holds that(

∀i : conv(Xi) ∩ conv(Yi) = ∅
)
⇐⇒ conv(X) ∩ conv(Y ) = ∅.

2.4. Learning Halfspaces (Theorem 1)

Protocol. Observe that our O(d log d log n) protocol for PromiseCSD has the property that when
the convex hulls of X,Y are disjoint, a function f : U → {±1} certifying this fact can be derived
from its execution (i.e., f(u) = +1 for every u ∈ X and f(u) = −1 for every u ∈ Y ). Therefore,
as explained in Section 1.2, this protocol immediately yields a learning protocol in the case when
Alice only has negative examples and Bob only has positive examples. The case where both Alice

12
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and Bob may have mixed examples is more subtle, but the protocol and analysis remain rather
simple (see Appendix E.1).

Lower bound. We claim that the Ω(d log(n/d)) lower bound for PromiseCSD also applies to our
learning problem. We will show that every protocol for the learning problem implies a protocol
for PromiseCSD: let X,Y be the inputs for PromiseCSD. Run the learning protocol with inputs
in the set X labeled +1 and inputs in the set Y labeled −1 to obtain a separator f . Have Alice
check that f is positive on X , and have Bob check that f is negative on Y . If this is the case, f is a
witness to the fact that X ∩Y = ∅. Otherwise, since we assume that the learning protocol is always
correct, it must be the case that the convex hulls of X and Y cannot be separated. Observe that the
argument crucially exploits the fact that X and Y are inputs to PromiseCSD (rather than to CSD),
which enables an improper learner to be applied.
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Appendix A. Preliminaries

A.1. Notation

We use capital letters to denotes sets (e.g., X,Y, U ). We denote by calligraphic capital letters
families of sets (e.g., C,F). We use bold small letters to denote vectors (e.g., x,y). We sometimes
write x(k) to stress that the vector x consists of k coordinates, numbered 1 to k. If x is a vector, we
denote by xi the ith coordinate in x.

For d ∈ N, let HSd denote the family of all halfspaces in Rd. For U ⊆ Rd let HS(U) = {H∩U :
H ∈ HSd} denote the family of all halfspaces restricted to U .

A.2. Problems Definitions

A.2.1. CONVEX SET DISJOINTNESS

Definition 5 (CSDU ) Let U ⊆ Rd be a finite set. The convex set disjointness function
CSDU (X,Y ) : 2U × 2U → {0, 1} is defined as:

CSDU (X,Y ) =

{
0 , conv(X) ∩ conv(Y ) 6= φ

1 , otherwise.
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Definition 6 (PromiseCSDU ) Let U ⊆ Rd be finite. The partial function PromiseCSDU (X,Y ) :
2
U × 2U → {0, 1} is defined as:

PromiseCSDU (X,Y ) =

{
0 , X ∩ Y 6= φ

1 , conv(X) ∩ conv(Y ) = φ.

A.2.2. LEARNING HALFSPACES

Let U ⊆ Rd be a set. An example is a pair of the form (u, b) ∈ U × {±1}. An example (u, b) is
called positive if b = +1 and negative if b = −1. A set of examples S ⊆ U × {±1} is called a
sample. The problem of two-party distributed learning of halfspaces over U refers to the following
search problem: Alice’s and Bob’s inputs are samples Sa, Sb ⊆ U × {±1} such that there exists
a halfspace which contains all the positive examples in Sa ∪ Sb and does not contain any negative
examples in Sa ∪ Sb. The parties’ goal is to output a function f : U → {±1} such that f(u) = b
for every example (u, b) ∈ Sa ∪ Sb. If the protocol always outputs f such that f is an indicator of a
halfspace, then the protocol is called a proper learning protocol. Otherwise it is called an improper
learning protocol.

A.3. VC Theory

We will use two basic results from VC theory. Recall that the VC dimension of a family F ⊆ 2
X is

the size of the largest Y ⊆ X such that {F ∩ Y : F ∈ F} = 2
Y . An ε-net for F is a set N ⊆ X

such that N ∩ F 6= ∅ for all F ∈ F with |F | ≥ ε|X|. A useful property of families with small
VC-dimension is that they have small ε-nets.

Theorem 7 (ε-net theorem) (Haussler and Welzl, 1986; Vapnik and Chervonenkis, 2015) Let
F ⊆ 2

X be a family with VC dimension d and let ε > 0. Then, there exists an ε-net for F of
size O

(
d log(1/ε)

ε

)
.

We will also use the following lemma which bounds the growth in the VC dimension under set
operations:

Lemma 8 (VC of k-fold compositions) (Blumer et al., 1989) Let F1 . . .Fk be a sequence of
families with VC dimension at most d, and let ?1 . . . ?k−1 be a sequence of binary operations on
sets (e.g. ?1 = ∩, ?2 = ∪, ?3 = ∆, and so forth). Set

F?k =
{
F1 ?1 (F2 ?2 . . . (Fk−1 ?k−1 Fk)) : Fi ∈ Fi

}
.

Then, the VC dimension of F?k is at most O(kd log d).

This Lemma allows to use the VC dimension of F to bound the VC dimension of more complex
families, e.g., {(

F1 \ (∩100i=2Fi)
)
∪ F101 : Fi ∈ F

}
.
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A.4. Communication Complexity

We use standard notation and terminology from Yao’s communication complexity model (Yao,
1979), and refer the reader to (Kushilevitz and Nisan, 1997) for a textbook introduction. For a
(possibly partial) function f , we denote by D(f) the deterministic communication complexity of f ,
and by Rε(f) the randomized communication complexity of f with error probability ε ≥ 0. We set
R(f) = R1/3(f).

A.4.1. COMMUNICATION PROBLEMS

Definition 9 (DISJn) The disjointness function DISJn : {0, 1}n × {0, 1}n → {0, 1} is defined as:

DISJn(x,y) =

{
0 ,∃i : xi = yi = 1

1 , otherwise.

Definition 10 (ANDk) For a function f : X × Y → {0, 1}, the function ANDk ◦ f : X k × Yk →
{0, 1} is defined as:

ANDk ◦ f(x(k),y(k)) =

k∧
i=1

f(xi, yi).

A.4.2. REDUCTIONS

All functions in this section may be partial. We denote by dom(f) the domain of the (possibly
partial) function f .

Definition 11 (Reduction) We say a function f1 : X1 × Y1 → {0, 1} reduces to a function f2 :
X2 × Y2 → {0, 1} (denoted f1 � f2) if there exist functions α : X1 → X2 and β : Y1 → Y2 such
that for all (x, y) ∈ dom(f1):

f1(x, y) = f2(α(x), β(y)).

We use the phrase “reduction functions” to refer to the functions α, β. If f2 is a partial function, we
further require that (α(x), β(y)) ∈ dom(f2).

The following results are straightforward:

Observation 12 For functions f1, f2, and f3, we have (f1 � f2) ∧ (f2 � f3) =⇒ f1 � f3.

Observation 13 For functions f1, f2, we have f1 � f2 =⇒ Rε(f1) ≤ Rε(f2) for all ε ≥ 0.

Lemma 14 For functions f1, f2, if f1 � f2, then for any k > 0, we have ANDk ◦ f1 � ANDk ◦ f2.

Proof Since f1 � f2, we know that there exists reduction functions α, β such that for all
(x, y) ∈ dom(f1):

f1(x, y) = f2(α(x), β(y)).

Define:

α∗(x(k)) = (α(x1), α(x2), · · · , α(xk)),
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β∗(y(k)) = (β(y1), β(y2), · · · , β(yk)).

Note that

ANDk ◦ f1(x,y) =
∧
i∈[k]

f1(xi, yi)

=
∧
i∈[k]

f2(α(xi), β(yi)) = ANDk ◦ f2(α∗(x), β∗(y)).

Appendix B. A Container Lemma for Halfspaces

The protocols in this paper hinge on ε-containers17 (defined below). This is a variant of the notion
of ε-covers, which we recall next: an ε-cover for a family F ⊆ 2X is a family C ⊆ 2X such that
for every F ∈ F there is C ∈ C such that the symmetric difference18 between C and F is of size at
most ε|X|. In other words, the hamming balls of radius ε|X| around C cover F . Note that this is a
special instance of the notion of ε-cover in metric spaces. In the case of containers, we also require
that F ⊆ C:

Definition 15 (Containers) Let X be a finite set and let F ⊆ 2X be a family of subsets. A family
C ⊆ 2X is a family of ε-containers for F if

(∀F ∈ F)(∃C ∈ C) : F ⊆ C and |C \ F | ≤ ε|X|.

Note that every set of ε-containers is in particular an ε-cover (but not vice versa).

A Container Lemma for Halfspaces. A classical result by Haussler implies that HS(U), the
family of all halfspaces restricted to U , has an ε-cover of size roughly (1/ε)d (Haussler, 1995). A
remarkable property of this ε-cover is that its size depends only on ε and d; in particular, it does not
depend on |U |.

Theorem 16 below (equivalent to Theorem 3), which one of our main technical contributions,
establishes a similar statement for ε-containers.

Theorem 16 (halfspace containers) Let U ⊆ Rd and ε > 0. Then, there exists a set of ε-
containers for HS(U) of size (d/ε)O(d).

Before proving Theorem 16, we first discuss how it relates to Haussler’s result Haussler (1995).

B.1. Comparison with Haussler’s Packing Lemma

As mentioned above, Theorem 16 is closely related to a result by Haussler (1995), which asserts that
every family F ⊆ 2

X with VC dimension d (e.g., d− 1 dimensional halfspaces) has an ε-cover of
size roughly (1/ε)d. We note that unlike Haussler’s result, Theorem 16 does not extend to arbitrary
VC classes (below is a counterexample with VC dimension 2). This is also reflected in our proof of
Theorem 16 which exploits the dual variant of Carathéodory’s Theorem (Theorem 4), which does
not extend to arbitrary VC classes.

17. This notation is inspired by a similar notion that arises in Graph Theory (see, e.g., Balogh et al. (2018) and references
within).

18. Equivalently, the hamming distance between the indicator vectors.
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Example. Consider a projective plane P of order n with N = n2 + n+ 1 points and N lines. In
particular the following holds: (i) for every pair of points there is a unique line containing them, (ii)
every pair of lines intersects in one point, (iii) every line contains exactly n points, (iv) and every
point is contained in exactly n lines.

Let F be the family
{L : L is a line in P}.

One can verify that F has VC dimension 2. Set ε = 1/4. Since each line contains n = O(
√
N)

points, then for a sufficiently large N , the existence of a set of ε-containers for F of size t amounts
to the following statement:

There exist t sets of size at most N/3 each, such that every line in P is contained in at least one of
them.

Therefore, by averaging, one of these t sets contains at least N/t lines L1, L2, . . . LN/t. Denote
such a set by C. Assume towards contradiction that t depends only on ε = 1/4 and d = 2, and in
particular that t ≤ N/n = θ(n). Now, since every two lines intersect in one point it follows that

|∪N/ti=1Li| ≥ n+ (n− 1) + . . .+ 1 (because |Li \ ∪j<iLj | ≥ n− (i− 1))

≥ n2/2,

where in the first inequality we used that N/t ≥ n. Thus, since C contains this union:

n2/2 ≤ |C| ≤ N/3 = (n2 + n+ 1)/3,

which is a contradiction when n is sufficiently large. We note that this example was used in the
probability literature in the context of uniform laws of large number (which is intimately related to
brackets) (van Handel, 2013).

B.2. Proof of Halfspace Containers Theorem (Theorem 16)

The superset C′. Let C′ = {U \
(
∩di=1Hi) : Hi ∈ HSd}. It is easy to see that C′ ⊇ HS(U),

and therefore it is an ε-cover for HS(U), for every ε. However C′ is a much larger set than we can
afford. The final cover C will be a carefully selected subfamily of C′.

To select the subset C ⊆ C′, we use the following observation that provides a criteria to certify
that C is a set of ε-containers for HSd: it suffices to show that for every H ∈ HSd there is C ∈ C
such that C is an ε-container for F . Here, for any C,F ⊆ 2

X , we say that C is an ε-container for
F if F ⊆ C, and |C \ F | ≤ ε|X|.

Observation 17 Let F , C ⊆ 2
X . Let V be an ε-net for {C ′ \ F ′ : C ′ ∈ C, F ′ ∈ F}. Let C ∈ C

and F ∈ F such that

1. F ⊆ C and

2. C ∩ V = F ∩ V .

Then, C is an ε-container for F . (Namely, F ⊆ C, and |C \ F | ≤ ε|X|).

Proof Given items 1 in the observation, it remains to show that |C \F | ≤ ε|X|. This follows by the
second item, which implies that ∅ = (C ∩V ) \ (F ∩V ) = (C \F )∩V , and since V is an ε-net for
{C ′ \ F ′ : C ′ ∈ C, F ′ ∈ F}. We get that |C \ F | ≤ ε|X|, as required.

22



DISTRIBUTED LEARNING OF HALFSPACES

The ε-net V . Our selection of C ⊆ C′ hinges on Observation 17, and therefore we use an ε-net V
for the family C′′ = {C ′ \H ′ : C ′ ∈ C′, H ′ ∈ HSd} of size

|V | = O

(
d2 log d log(1/ε)

ε

)
.

(Note, in particular, that V is an ε-net for every subfamily of C′′). The bound on |V | follows from
Theorem 7 because the VC dimension of C′′ is O(d2 log d). This bound on the VC dimension of C′′
follows because the VC dimension of HSd is d+ 1, thus, due to Lemma 8, the VC dimension of C′
and C′′ is O(d2 log d).

The family of containers C. Next we construct C. The construction is based on an encoding-
decoding scheme: given a halfspaceH ∈ HS(U), the scheme encodesH into a bit-string b = b(H)
of length t = O(d log|V |). The bit-string b is then decoded to a set C = C(b) ∈ C′ satisfying
the two items in Observation 17 with respect to V – and therefore C is an ε-container of H . The
upper bound on the length t of b implies that the collection {C(b) : b ∈ {0, 1}t} ⊆ C′ is a set of
ε-containers for HS(U) of size 2t = 2O(d log|V |) = |V |O(d) = (d/ε)O(d).

Let H ∈ HS(U). Let a ∈ Rd, ‖a‖∞ ≤ 1 and b ∈ R, |b| ≤ 1 be such that

H = {u ∈ U : 〈a, u〉 < b}.

Since U is finite, we may assume without loss of generality that there exists a universal19 small
constant ε > 0 such that 〈a, u〉 < b− ε for every u ∈ H and 〈a, u〉 > b+ ε for every u ∈ U \H .

The rest of the proof is devoted to constructing an ε-container C for H by first constructing b =
b(H) and then C = C(b).

The auxiliary polytope P . The definition of b(H) uses a polytope P that we define next. Recall
that V ⊆ U is an ε-net for C′′ = {C ′ \H ′ : C ′ ∈ C′, H ′ ∈ HSd}. Let V − = V ∩H = {v ∈ V :
〈a, v〉 < b}, V + = V \H = {v ∈ V : 〈a, v〉 ≥ b}. Define P ⊆ Rd+1:

P =
{

(α, β) ∈ Rd×R
∣∣∣ (‖(α, β)‖∞ ≤ 1

)
∧
(
∀v ∈ V + : 〈α, v〉 ≥ β+ε

)
∧
(
∀v ∈ V − : 〈α, v〉 ≤ β−ε

)}
.

Observe that P contains a representation (α, β) for each halfspace H ′ = {u ∈ U : 〈α, u〉 < β}
such that H ′ ∩ V = H ∩ V = V −, and only such representations. The constraint ‖(α, β)‖∞ ≤ 1
ensures that P ⊆ Rd+1 is bounded, a property which will enable us to apply Theorem 4 to P . Note
that P is a closed polytope which is defined by |V | + 2(d + 1) linear inequalities (the constraint
‖(α, β)‖∞ ≤ 1 amounts to 2(d+ 1) linear inequalities). Moreover, note that P is non-empty, since
(a, b) ∈ P (see Figure 3).

The encoding b(H). The bit-string b = b(H) encodes the polytope P , as well as the names of
d + 2 vertices x0, . . . ,xd+1 of P such that (a, b) ∈ conv({x0, . . . ,xd+1}) (the existence of such
vertices is promised by the Carathéodory’s Theorem).

The polytopeP can be encoded usingO(d log(d/ε)) bits, asP is determined by V − = H∩V ∈
HS(V ), and V − can be described using log|HS(V )| ≤ d log|V | + 1 = O(d log(d/ε)) bits, where
the first inequality is because |HS(V )| ≤ 2|V |d (see, e.g., (Gärtner and Welzl, 1994)).

19. I.e., depends only on U .
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The points x0, . . . ,xd+1 can be naively conveyed using O(d2 log(d/ε)) bits20. To obtain a
more compressed representation of these points, we use the dual version of Carathéodory Theorem
(Theorem 4). Since P ⊆ Rd+1 is defined as the intersection of |V |+2(d+1) halfspaces, Theorem 4
shows such vertices x0, . . . ,xd+1 can be represented using log(|V |+2(d+1))d+1 = O(d log(d/ε))
bits. Thus, total length of b is some O(d log(d/ε)), which implies an upper bound of |C| ≤
(d/ε)O(d) on the number of containers.

The decoding C(b). The next lemma shows how an ε-container C = C(b) for H can be derived
from b, thus concluding the proof of Theorem 16.

Lemma 18 Let H = {u ∈ U : 〈a, u〉 < b} as above. Let (α0, β0), . . . , (αd+1, βd+1) be
vertices of P such that (a, b) ∈ conv({(αi, βi)}). Then, the set C = U \ (

⋂d+2
i=1 Hi), where

Hi = {x : 〈αi, x〉 ≥ βi}, satisfies the two items in Observation 17 with respect to H .

Proof
(i) H ⊆ C: let u ∈ H . Therefore, u ∈ U and 〈a, u〉 < b. Now, since (a, b) is a convex

combination of the (αi, βi)’s, it must be the case that 〈αi, u〉 < βi for some i ∈ {0, . . . , d+ 1}, i.e.,
that u /∈ Hi. The reason is that we can write a =

∑d+1
i=0 γiαi and b =

∑d+1
i=0 γiβi where γi ∈ [0, 1].

Thus, if 〈αi, u〉 ≥ βi for all i ∈ {0, . . . , d+ 1}, then 〈a, u〉 = 〈
∑d+1

i=0 γiαi, u〉 =
∑d+1

i=0 γi〈αi, u〉 ≥∑d+1
i=0 γiβi = b, contradicting the fact that 〈a, u〉 < b. Since there exists i ∈ {0, . . . , d + 1} such

that u /∈ Hi, we get u /∈
⋂
iHi. This implies u ∈ C, as required.

(ii) C ∩ V = H ∩ V : For every i ∈ {0, . . . , d + 1}, since (αi, βi) ∈ P , it follows that
V \Hi = H̄i ∩ V = H ∩ V = V −. This implies H ∩ V = V − = V \ (

⋂m
i=1Hi) = C ∩ V , as

required.

B.3. Proof of Dual Carathéodory Theorem (Theorem 4)

The Encoding-Decoding Procedure. Let Q ⊆ Rd be a polytope which is defined by n linear
inequalities and let a ∈ Q. The proof boils down to an encoding and encoding procedures which
are based on bottom vertex triangulation (Clarkson, 1988; Goodman and O’Rourke, 2004) and are
described in Figure 6.

The encoding procedure receives Q and a ∈ Q as inputs and outputs a sequence S of d out
of the n linear inequalities used to define Q. The decoding procedure receives Q and S as inputs
and output a sequence x0, . . . ,xd of vertices of Q such that a ∈ conv({x0, . . . ,xd}). That is, S
encodes a subpolytope defined by d + 1 vertices that contains a. Since there are at most nd such
sequences S and since every point a ∈ Q is contained in one of the encoded subpolytopes, this will
imply that Q can be covered by nd such subpolytopes as required.

We use the following convention: for every polytope Q′, fix a pivot vertex p(Q′) ∈ Q′
(for example, p(Q′) can be the bottom vertex in Q, or the smallest vertex with respect to the
lexicographical order, etcetera). Also, let dim(Q′) denote the dimension of Q′ (i.e., the dimension
of the affine span21 of Q).

20. To see this, observe that the number of vertices in P is O(
(|V |+2(d+1)

d+1

)
) = exp(d log(d/ε)), because P is defined

by |V | + 2(d + 1) constraints, and each vertex is determined by d + 1 constraints. Therefore, each vertex can be
described using O(d log(d/ε)) bits, and d + 2 vertices can be represented by O(d2 log(d/ε)) bits.

21. Recall that the affine span of a set A is the minimal affine subspace that contains A.
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A Dual Carathéodory’s Theorem

Encoding:
Input: a polytope Q ∈ Rd which is defined by n constraints (linear inequalities) and a point
a ∈ Q.
Output: a sequence S of d constraints which encodes vertices x0, . . . ,xd ∈ Q such that
a ∈ conv({x0, . . . ,xd}).

(1) Initialize Q0 = Q, a0 = a, x0 = p(Q0), and S = ε (the empty sequence).
(p(Q′) denotes the bottom vertex of a polytope Q′.)

(2) For i = 1, . . . , d:

(2.1) Extend the ray that starts at xi−1 and passes through ai−1 until it hits the
boundary of Qi−1.

(2.2) Set ai to be the point on the boundary ofQi−1 that the ray hits. SetQi to be thea

facet of Qi−1 that contains ai and set xi = p(Qi+1).

(2.3) Append to S the linear inequality which is tightened by Qi.

(3) Output S.

Decoding:
Input: a polytope Q ∈ Rd which is defined by n constraints (linear inequalities) and a
sequence S of d constraints.
Output: a sequence of vertices x0, . . . ,xd ∈ Q.

(1) Initialize Q0 = Q, x0 = p(Q0).

(2) For i = 1, . . . , d:

(2.1) Set Qi to be the facet of Qi−1 which is defined by tightening the i’th constraint
in S.

2.2 Set xi = p(Qi).

(3) Output x0, . . . ,xd.

a. If ai+1 belongs to several facets (i.e., it sits on a face whose dimension is < d− 1) then pickQi+1 to be any
facet that contains it.

Figure 6: The encoding and decoding procedures for the Dual Carathéodory’s Theorem.
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Analysis. The description of the encoding and decoding procedures appears in Figure 6. We
finish the proof by showing that a ∈ conv({x0, . . . ,xd}). This follows by induction on dim(Q):
the base case of dim(Q) = 0 is trivial. For the induction step, assume that the claim holds for every
polytope of dimension strictly less than k, and prove the claim for dim(Q) = k: by construction, a
is a convex combination of x0 and a1. Since dim(Q1) = k − 1, by the induction hypothesis, a1 is
in the convex hull of x1 . . .xd. This implies that a is in the convex hull of x0 . . .xd, as required.

B.4. The Computational Complexity of Finding Containers

The proofs of Theorem 16 and Theorem 4 imply a polynomial time algorithm for finding containers.
In more detail, given a universe U ⊆ Rd, during preprocessing we sample the ε-net V of size
Õ(d2/ε) (this is the only step which requires randomness; thus, the whole algorithm can be
derandomized if such an ε-net can be found deterministically). Assume now that we are given
a halfspace H as an input and we wish to compute an ε-container of H . We proceed as in the
above proof by determining the auxiliary polytope P (in O(|V |) time), and detecting the vertices
x0, . . . ,xd whose convex-hull containsH , as in the proof of Theorem 4, which also takes poly(|V |)
time22. Once the vertices x0, . . . ,xd are retrieved, a containerC forH is obtained as in Theorem 18.

The computational complexity of our protocols. As a consequence it follows that also our
protocols for learning halfspaces and for convex set disjointness can be implemented efficiently, at
least if we assume that Alice and Bob have access to shared randomness. (The shared randomness
is needed in order for Alice and Bob to agree on an ε-net V which is used to define the set of
containers in each round.)

This gives an advantage over the construction of containers using cuttings, which requires
preprocessing time which is exponential in d. The benefit of the cuttings-construction is that once
preprocessing is done, finding the container for an input halfspace H is done very fast in O(d log n)
time. Thus, if it is assumed that many such queries will be made, the cost of preprocessing will be
amortized over the (many) queries. In the application considered in this paper only one query is
made per a constructed family of containers. (In each round Alice and Bob construct a family of
containers and then at most one of them computes a container, see Figure 7).

Appendix C. Protocols for CSD

In this section, we prove the following upper bound on the communication complexity of the CSD
problem and its promise variant PromiseCSD:

Theorem 19 Let d, n ∈ N, and let U ⊆ Rd be a domain with n points. Then,

D(PromiseCSDU ) = O(d log d log n).

Theorem 20 Let d, n ∈ N, and let U ⊆ Rd be a domain with n points. Then,

D(CSDU ) = O(d2 log d log n).

Observe that Theorem 20 implies the upper bound in Theorem 2.

22. Note that this requires solving d + 1 linear programs, as we need to compute the bottom vertex p(Q′) for the faces
Q′ which are encountered in the algorithm in Figure 6.
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C.1. The Protocol for PromiseCSD (Theorem 19)

We next prove the following lemma, which implies Theorem 19.

Lemma 21 Let U ⊆ Rd with |U | = n. Then, the protocol in Figure 7 witnesses that
D(PromiseCSDU ) = O(d log d log n). Furthermore, for inputs X,Y ⊆ U such that conv(X) ∩
conv(Y ) = ∅, the protocol outputs a function h : U → {±1} such that X ⊆ h−1(−1) and
Y ⊆ h−1(+1).

The function h promised by the above lemma will later be used for learning halfspaces.
Proof A complete description of the protocol is presented in Figure 7. The correctness is based on
the following simple observation:

Observation 22 Consider the sets Ui, Xi, Yi in the “While” loop in item (2) of the protocol in
Figure 7.

1. If conv(Xi) ∩ conv(Yi) = ∅ then there is a halfspace H ∈ HS(Ui) such that |H| ≤ |Ui|/2,
and either Xi ⊆ H or Yi ⊆ H .

2. Xi ∩ Yi = Xi+1 ∩ Yi+1.

The first item follows since conv(Xi) ∩ conv(Yi) = ∅ implies that there is a hyperplane that
separates Xi from Yi, and therefore one of the two halfspaces defined by this hyperplane contains
at most half of the points in Ui.

The second item follows since C ∈ Ci either contains Xi or Yi. If C ⊇ Xi then Xi+1 = Xi and
Yi+1 = Yi ∩ C ⊇ Yi ∩Xi. Otherwise, C ⊇ Yi and Xi+1 = Xi ∩ C ⊇ Xi ∩ Yi and Yi+1 = Yi. In
both cases, Xi ∩ Yi = Xi+1 ∩ Yi+1.

Correctness. We first assume that conv(X) ∩ conv(Y ) = ∅. Consider iteration i of the “While”
loop. SinceXi ⊆ X and Yi ⊆ Y , it holds that conv(Xi)∩conv(Yi) ⊆ conv(X)∩conv(Y ) = ∅. By
the first item of Observation 22, either Alice or Bob always find a containerC ∈ Ci in item (2.2), and
therefore the protocol will reach items (2.4) and (2.5). Since the protocol will never reach item (2.3),
the “While” loop will eventually terminate with |Ui| = 0 and item (3) will be reached, outputting
“1” as required. To see that the output function h satisfies X ⊆ h−1(−1), Y ⊆ h−1(1), note that at
the i’th step, h is defined over all points in U \Ui and satisfiesX \Xi ∈ h−1(−1), Y \Yi ∈ h−1(1).
Thus, the requirement is met since at the last iteration i∗ we have Ui∗ = Xi∗ = Yi∗ = ∅.

Next, assume that X ∩ Y 6= ∅. In this case, the protocol must terminate in item (2.3) within
the “While” loop. This is because, by the second item of Observation 22, |Xi ∩ Yi| is a positive
constant for all i while |Ui| decreases, thus eventually Xi ∩ Yi becomes larger than 3

4 |Ui|. When
this happens, no party can find a set C satisfying the requirements of (2.2) and the protocol outputs
“0”.

Communication Complexity. The “While” loop in item (2) proceeds for at most O(log n)
iterations; this is because in each iteration Ui shrinks by a multiplicative factor of at most 3/4.
In each of the iterations the parties exchange log|Ci| + O(1) bits, which is bounded by O(d log d)
bits. Thus, the total number of bits communicated is O(d log d log n).
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The O(d log d log n)-bits Deterministic Protocol for PromiseCSDU

Let U ⊆ Rd and let n = |U |.
Alice’s input: X ⊆ U ,
Bob’s input: Y ⊆ U .
Output: if X ∩ Y 6= ∅ output “0”,
if conv(X) ∩ conv(Y ) = ∅ output “1” as well as a function h : U → {±1} such
that X ⊆ h−1(−1) and Y ⊆ h−1(+1) (h will be used in our learning protocol).

(1) Set i = 1, U1 = U,X1 = X,Y1 = Y , ε = 1/4, and f as the empty function.

(2) While |Ui| > 0:

(2.1) Without communication, the parties agree on a set Ci of ε-containers HS(Ui),
such that |Ci| = (d/ε)O(d) (as in Theorem 16).

(2.2) Each of Alice and Bob checks whether there is C ∈ Ci such that |C| ≤ 3
4 |Ui| and

C contains their current set; namely, Alice looks for such a C ∈ Ci that contains
Xi and Bob looks for such a C ∈ Ci that contains Yi.

(2.3) If both Alice and Bob cannot find such a C then the protocol terminates with
output “0”.

(2.4) Else, if Alice found C then she communicates it to Bob (using O(d log d) bits),
and the parties do:

(2.4.1) set Xi+1 = Xi ∩ C, Yi+1 = Yi ∩ C, Ui+1 = Ui ∩ C,
(2.4.2) extend h to Ui \ C by setting h(u) = 0 for all u ∈ Ui \ C,
(2.4.3) increment i← i+ 1 and go to (2).

(2.5) Similarly, if Bob found C then he communicates it to Alice (using O(d log d)
bits), and the parties do:

(2.4.1) set Xi+1 = Xi ∩ C, Yi+1 = Yi ∩ C, Ui+1 = Ui ∩ C,
(2.4.2) extend h to Ui \ C by setting h(u) = 1 for all u ∈ Ui \ C,
(2.4.3) increment i← i+ 1 and go to (2).

(3) Output “1” and the function h.

Figure 7: The protocol for PromiseCSD.
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C.2. The Protocol for CSD (Theorem 20)

In this section we show how to use a protocol for PromiseCSD to solve CSD with some loss in
the parameters. To this end, we will prove a geometric theorem we call “a symmetric variant of
Carathéodory’s Theorem”.

C.2.1. SYMMETRIC CARATHÉODORY

Carathéodory’s Theorem concerns a relation between a point x and a set Y such that x ∈ conv(Y ).
The following simple generalization provides a symmetric relation between two set X,Y such that
conv(X) ∩ conv(Y ) 6= ∅.

Proposition 23 (A symmetric variant of Carathéodory’s Theorem) Let X,Y ⊆ Rd such that
conv(X) ∩ conv(Y ) 6= ∅. Then conv(S1) ∩ conv(S2) 6= ∅ for some S1 ⊆ X,S2 ⊆ Y such that
|S1|+ |S2| ≤ d+ 2.

Note that Carathéodory’s Theorem boils down to the case where X = {x} (and hence conv(X) ∩
conv(Y ) 6= ∅ =⇒ x ∈ conv(Y )).
Proof [Proof of Theorem 23] The proof follows an argument similar to the linear algebraic proof
of Carathéodory’s Theorem. Assume z ∈ conv(X) ∩ conv(Y ) can be represented as a convex
combination of d1 points x1 . . . xd1 ∈ X and as a convex combination of d2 points y1 . . . yd2 ∈ Y
such that d1 + d2 > d + 2. Consider the system of linear equalities in d1 + d2 variables
α1 . . . αd1 , β1 . . . βd2 defined by the constraints (i)

∑
αixi =

∑
βjyj , and (ii)

∑
αi =

∑
βj = 0.

This system has d1 + d2 > d+ 2 variables and only d+ 2 constraints (d constraints from (i) and 2
more constraints from (ii)). Thus, it has a solution such that not all αi’s and βj’s are 0. Consequently,
one can shift z by a sufficiently small scaling of the vector v =

∑
αixi =

∑
βiyi, so that one of

the coefficients of the xi’s or the yj’s vanishes. This process can be repeated until d1 + d2 ≤ d+ 2,
which yields the desired sets S1 ⊆ X,S2 ⊆ Y .

Remark. Theorem 23 establishes a tight bound of d + 2 on the coVC number of halfspaces in Rd.
The coVC number is a combinatorial parameter which characterizes the concept classes that can be
properly learned using polylogarithmic communication complexity (see Kane et al. (2019)). It is
defined as follows: let H ⊆ {±1}X be an hypothesis class over a domain X . Its coVC number is
the smallest number k such that every sample S ⊆ X × {±1} which is not realizable23 by H has a
subsample S′ ⊆ S of size |S′| ≤ k which is not realizable by H . A weaker upper bound of 2d+ 2
on the coVC number of halfspaces was given by Kane et al. (2019) (see Example 1 in their paper).

C.2.2. REDUCING CSD TO PromiseCSD

The next lemma implies that a bound of C = C(n, d) on the communication complexity of the
promise variant implies a bound of C ′(n, d) = C((2n)d+2, d) on the communication complexity
of the non-promise variant. The lemma implies Theorem 20 by plugging (2n)d+2 instead of n in
Lemma 21.

23. A sample S is realizable with respect to H if there is h ∈ H such that h(x) = y for every (x, y) ∈ S.
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Lemma 24 For any U ⊆ Rd of size n there is V ⊆ Rd of size at most (2n)d+2 such that

CSDU � PromiseCSDV .

(Recall that “�” denotes a reduction with zero communication, see Definition 11).

Proof
The set V is defined as follows: for any S1, S2 ⊆ U such that conv(S1) ∩ conv(S2) 6= ∅ and

|S1| + |S2| ≤ d + 2 add to V (any) point x = x(S1, S2) ∈ conv(S1) ∩ conv(S2). Note that
indeed |V | ≤

∑
d1+d2=d+2

(|U |
d1

)(|U |
d2

)
≤ (2n)d+2. Next, given inputs X,Y ⊆ U for CSDU , Alice

and Bob transform them to

α(X) = conv(X) ∩ V and β(Y ) = conv(Y ) ∩ V.

Validity. To establish the validity of this reduction we need to show that

conv(X) ∩ conv(Y ) = ∅ =⇒ conv(α(X)) ∩ conv(β(Y )) = ∅, and

conv(X) ∩ conv(Y ) 6= ∅ =⇒ α(X) ∩ β(Y ) 6= ∅.

Indeed, if conv(X) ∩ conv(Y ) = ∅ then also conv(α(X)) ∩ conv(α(Y )) = ∅ (because α(X) ⊆
conv(X) and β(Y ) ⊆ conv(Y )).

The second assertion follows from Theorem 23. To see how Theorem 23 implies the second
assertion, assume that conv(X) ∩ conv(Y ) 6= ∅. By Theorem 23, there exists S1 ⊆ X,S2 ⊆ Y
with |S1| + |S2| ≤ d + 2 and conv(S1) ∩ conv(S2) 6= ∅. By construction, V contains a point
x = x(S1, S2) in conv(S1) ∩ conv(S2). It holds that x ∈ conv(S1) ∩ V ⊆ conv(X) ∩ V = α(X)
and x ∈ conv(S2) ∩ V ⊆ conv(Y ) ∩ V = β(Y ). Hence, α(X) ∩ β(Y ) 6= ∅, as claimed.

Appendix D. Lower Bound for Convex Set Disjointness

In this section we prove a lower bound on the randomized communication complexity
of PromiseCSD, and therefore also of CSD.

Theorem 25 Let d, n ≥ 2. There is a set U ⊆ Rd with n points such that R(PromiseCSDU ) ≥
Ω(d log(n/d)).

Observe that Theorem 25 implies the lower bound in Theorem 2.
The key ingredient in the proof of Theorem 25 is the following reduction:

Lemma 26 For any integers c, k > 0, there is a set U ⊆ R3c such that |U | = 2kc and

DISJck � PromiseCSDU .

We prove Theorem 26 below. Assuming Theorem 26, the following argument proves
Theorem 25.
Proof [Proof of Theorem 25] Fix d and n. For d = 2, the required lower bound follows from the
Ω(d + logn) lower bound of Kane et al. (2019). We therefore assume d ≥ 3. Set c = d/3 and
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set k such that n = 2kc. We assume without loss of generality that k, c are positive integers. By
Theorem 26, there is set U ⊆ Rd, |U | = n such that

DISJck � PromiseCSDU .

Using the the well known fact that R(DISJm) ≥ Ω(m) (see, e.g., Kalyanasundaram and
Schintger (1992)), and Observation 13, it follows that

R(PromiseCSDU ) ≥ Ω(ck) = Ω(d log(n/d)).

D.1. Proof of Theorem 26

Let c, k > 0 be arbitrary. To prove Theorem 26, we show that there exist sets U ⊆ R3c, V ⊆ R2

such that |U | = 2kc and |V | = 2k such that the following sequence of reductions holds

DISJck � ANDc ◦ DISJk � ANDc ◦ PromiseCSDV � PromiseCSDU .

Each of these reductions is proved separately below. Theorem 26 then follows using
Observation 12.

Proving DISJck � ANDc ◦DISJk. The first reduction in our sequence is essentially using the fact
that DISJm can be viewed as an AND of m simpler functions.

Lemma 27 DISJck � ANDc ◦ DISJk

Proof Let x∗,y∗ ∈ {0, 1}ck be an input for DISJck. We can view x∗ as a vector x(c) with entries
in Rk. Precisely, xi (respectively yi) is the ((i− 1)k + 1)st to (ik)th coordinates of x∗ (resp. y∗).
Let the reduction function α (resp. β) be the function that takes x∗ to x (resp. y∗ to y). Note that:

DISJck(x
∗,y∗) = 0 ⇐⇒ ∃i ∈ [ck] : x∗i = y∗i = 1

⇐⇒ ∃i ∈ [c], j ∈ [k] : xij = yij = 1

⇐⇒ ∃i ∈ [c] : DISJk(xi,yi) = 0

⇐⇒

(
c∧
i=1

DISJk(xi,yi)

)
= 0

⇐⇒ ANDc ◦ DISJk(x,y) = 0

⇐⇒ ANDc ◦ DISJk(α(x∗), β(y∗)) = 0.
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Proving ANDc ◦ DISJk � ANDc ◦ PromiseCSDV . By Theorem 14, the following result is
sufficient:

Lemma 28 For all k > 0, there exists V ⊆ R2, |V | = 2k such that DISJk � PromiseCSDV .

Proof We define the set V to consist of 2k points on the unit circle in R2. The crucial property
satisfied by these set of points is that every v ∈ V can be separated by a line from V \ {v} (i.e.,
these points are in convex position). Let us index the points in V by the vectors in {0, 1}k, i.e.,
V = {vx | x ∈ {0, 1}k} (see Figure 5).

We next define the functions α, β which witness the desired reduction. Define α : {0, 1}k → 2
V

by
α(x) = {vx}.

Next, define β : {0, 1}k → 2
V as

β(y) = {vz for z ∈ {0, 1}k such that ∃i ∈ [k] : zi = yi = 1}.

Observe that for every input x ∈ {0, 1}k, the set α(x) = {vx} is a singleton. Thus, for every
possible y ∈ {0, 1}k, it is either the case that vx ∈ β(y), or else, since x ∈ V and β(y) ⊆ V , and
due to the crucial property described above, it is the case that vx /∈ conv(β(y)). Equivalently, it is
either the case that α(x)∩ β(y) 6= ∅ or that conv(α(x))∩ conv(β(y)) = ∅, thus the sets α(x) and
β(y) are in the domain of PromiseCSDV .

We have

DISJk(x,y) = 0 ⇐⇒ ∃i ∈ [k] : xi = yi = 1

⇐⇒ α(x) ∩ β(y) 6= ∅
⇐⇒ PromiseCSDV (α(x), β(y)) = 0.

Proving ANDc ◦ PromiseCSDV � PromiseCSDU .

Lemma 29 Let V ⊆ R2, |V | = m. For all integers c > 0, there is a set U ⊆ R3c of size c ·m such
that

ANDc ◦ PromiseCSDV � PromiseCSDU .

Proof
We embed each of the c copies of PromiseCSDV in a disjoint triplet of coordinates of R3c.

Formally, for j ∈ [c], define the jth ‘lift’ function gj : R2 → R3c as:

gj((x1, x2)) = (0, 0, · · · , 0︸ ︷︷ ︸
3(j−1) times

, x1, x2, 1, 0, 0, · · · , 0︸ ︷︷ ︸
3(c−j) times

).

Define the set U = {gj(v) | j ∈ [c], v ∈ V }.
Let X(c),Y (c) be an input for ANDc ◦ PromiseCSDV . Define:

α(X) =
c⋃
j=1

gj(Xj) β(Y ) =

c⋃
j=1

gj(Yj).
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(Recall that Xj , Yj denote the j’th copies of X(c),Y (c) respectively.) We prove that α, β
define the desired reduction. First, assume that ANDc ◦ PromiseCSDV (X,Y ) = 1, that is,
∀j ∈ [c], conv(Xj) ∩ conv(Yj) = ∅. By the hyperplane separation theorem, for every j ∈ [c]
there exists an affine function lj : R2 → R of the form lj((x1, x2)) = lj + l′jx1 + l′′j x2 such
that lj(x) > 0 for all x ∈ Xj , while lj(y) < 0 for all y ∈ Yj .

Define the affine function l : R3c → R by l((x1, x2, · · · , x3c)) =
∑

i∈[c] ljx3j + l′jx3j−2 +

l′′j x3j−1. Observe that for all j ∈ [c], we have ∀(x1, x2) ∈ R2 : l(gj((x1, x2))) = lj((x1, x2)). This
implies that l(x) > 0 for all x ∈ α(X), while l(y) < 0 for all y ∈ β(Y ). Thus, α(X)∩β(Y ) = ∅,
implying PromiseCSDU (α(X), β(Y )) = 1.

For the other direction, assume that ANDc ◦ PromiseCSDV (X,Y ) = 0, that is, ∃j ∈ [c], z ∈
V : z ∈ Xj ∩ Yj . Then, gj(z) ∈ α(X) ∩ β(Y ), implying α(X) ∩ β(Y ) 6= ∅ and therefore also
PromiseCSDU (α(X), β(Y )) = 0.

Appendix E. Bound for Distributed Learning of Halfspaces

E.1. The Learning Protocol

We next prove the following upper bound for learning halfspaces, which implies the upper bound in
Theorem 1.

Theorem 30 Let d, n ∈ N, and let U ⊆ Rd be a domain with n points. Then, there exists a
deterministic protocol for the problem of two-party distributed learning of halfspaces over U with
communication complexity O(d log d log n).

Proof We present a learning protocol which relies on Theorem 19 and uses the protocol in Figure 7
as a black-box. The learning protocol is presented in Figure 8.

Analysis. First, note that the communication complexity is at most O(d log d log n) bits: indeed,
there is no communication in steps (3) and (6), each of steps (1) and (2) involves an application of
the protocol from Figure 7 which costs O(d log d log n) bits, and each of steps (4) and (5) involves
transmitting a separator from HS(U) which costs O(d log n) bits (since |HS(U)| ≤ O(nd), see
e.g. (Gärtner and Welzl, 1994)).

As for correctness, note that since it is assumed that the negative and positive examples in Sa∪Sb
are separated by a hyperplane, Theorem 19 implies that the functions f, g which are outputted in
steps (1) and (2) satisfy:

• f(u) = +1 for every (u,+1) ∈ Sa and f(u) = −1 for every (u,−1) ∈ Sb, and similarly

• g(u) = −1 for every (u,−1) ∈ Sa and g(u) = +1 for every (u,+1) ∈ Sb.

We will show that the h (the function outputted by the protocol) classifies correctly each of the
regions F+ ∩ G+, F− ∩ G−, F+ ∩ G−, and F− ∩ G+ (the definition of these regions appears in
the protocol). Since these 4 regions cover U , it will follow that h classifies correctly all examples.
Indeed F+ ∩ G+ contains only positive examples and F− ∩ G− contains only negative examples,
therefore h classifies correctly these regions. As for F+ ∩ G− and F− ∩ G+, note that F+ ∩ G−
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The O(d log d log n)-bits Deterministic Learning Protocol for Halfspaces

Let U ⊆ Rd and let n = |U |.
Alice’s input: a sample Sa ⊆ U × {±1}.
Bob’s input: a sample Sb ⊆ U × {±1}.
Assumption: ∃ hyperplane separating the positive and negative examples in Sa ∪ Sb.
Output: a function h : U → {±1} such that h(x) = y for every (x, y) ∈ Sa ∪ Sb.

(1) Apply the protocol from Figure 7 on inputs X−, Y +, where X− = {u : (u,−1) ∈
Sa} and Y + = {u : (u,+1) ∈ Sb}.

(1.1) If the protocol outputted “0” then output “Error”.

(1.2) Else, let g : U → {±1} denote the function outputted by the protocol, such that
g(u) = +1 for every u ∈ Y + and g(u) = −1 for every u ∈ X−.

(2) Apply the protocol from Figure 7 on inputs X+, Y −, where X+ = {u : (u,+1) ∈
Sa} and Y − = {u : (u,−1) ∈ Sb}.

(2.1) If the protocol outputted “0” then output “Error”.

(2.2) Else, let f : U → {±1} denote the negation of the function outputted by the
protocol, such that f(u) = +1 for every u ∈ X+ and f(u) = −1 for every
u ∈ Y −.

(3) Let F+ = f−1(+1), F− = f−1(−1) and G+ = g−1(+1), G− = g−1(−1). (Note
that these 4 sets are known to both Alice and Bob.)

(4) Alice transmits to Bob, using O(d log n) bits, an indicator I+− : U → {±1} of a
halfspace in HS(U) which separates her positive and negative examples in F+ ∩G−;
namely, I+−(u) = b for every u ∈ F+ ∩G− such that (u, b) ∈ Sa.

(5) Bob transmits to Alice, using O(d log n) bits, an indicator I−+ : U → {±1} of a
halfspace in HS(U) which separates his positive and negative examples in F− ∩G+;
namely, I−+(u) = b for every u ∈ F− ∩G+ such that (u, b) ∈ Sb.

(6) Alice and Bob output the function h defined by

h(u) =


+1 u ∈ F+ ∩G+,

−1 u ∈ F− ∩G−,
I+−(u) u ∈ F+ ∩G−,
I−+(u) u ∈ F− ∩G+.

Figure 8: The protocol for two-party distributed learning of halfspaces over U .
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contains only examples in Sa and F− ∩ G+ contains only examples in Sb. Thus, I+− classifies
correctly every example in F+ ∩ G− and I−+ classifies correctly every example in F− ∩ G+. It
therefore follows that h classifies correctly also these regions.

Remark. The above protocol actually learns a more general problem than halfspaces: let S+
a , S

−
a

denote Alice’s positive and negative examples respectively, and let S+
b , S

−
b denote Bob’s positive

and negative examples respectively. The protocol will output a consistent function h for as long
as each of the pairs S+

a and S−a , S+
b and S−b , S+

a and S−b , and S+
b and S−a can be separated by a

hyperplane (possibly a different hyperplane for every pair). However it is not necessary that there
will be a single hyperplane separating all positive examples from all negative examples.

E.2. Learning Lower Bound

We next prove the following lower bound for learning halfspaces, which implies the lower bound in
Theorem 1.

Theorem 31 Let d, n ≥ 2. Then, there exists a domain U ⊆ Rd with n points such that every
(possibly improper and randomized) protocol for the problem of two-party distributed learning of
halfspaces over U must communicate at least Ω(d log(n/d)) bits.

Proof This is a corollary of Theorem 25: let U ⊆ Rd be as in the conclusion of Theorem 25. We
claim that every protocol that learns HS(U) can be used to decide PromiseCSDU . Indeed, let X,Y
be inputs to PromiseCSDU . Alice and Bob apply the learning protocol on the samples X × {+1}
and Y × {−1}. (i) If conv(X) ∩ conv(Y ) = ∅ then X,Y can be separated by a hyperplane and
the protocol will output a function h : U → {±1} such that h(u) = +1 for every u ∈ X and
h(u) = −1 for every u ∈ Y . (ii) In the other case, if X ∩ Y = ∅ then there exists no such function
and therefore the learning protocol must output “Error”. Therefore, by Theorem 25, every such
learning protocol must transmit at least Ω(d log(n/d)) bits.
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