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Abstract
We characterize the complexity of minimizing maxi∈[N ] fi(x) for convex, Lipschitz functions
f1, . . . , fN . For non-smooth functions, existing methods require O(Nε−2) queries to a first-order
oracle to compute an ε-suboptimal point and Õ(Nε−1) queries if the fi are O(1/ε)-smooth. We
develop methods with improved complexity bounds of Õ(Nε−2/3 + ε−8/3) in the non-smooth case
and Õ(Nε−2/3 +

√
Nε−1) in theO(1/ε)-smooth case. Our methods consist of a recently proposed

ball optimization oracle acceleration algorithm (which we refine) and a careful implementation of
said oracle for the softmax function. We also prove an oracle complexity lower bound scaling as
Ω(Nε−2/3), showing that our dependence on N is optimal up to polylogarithmic factors.
Keywords: Convex optimization, Min-max problems, Monteiro-Svaiter acceleration, Ball opti-
mization oracle, Stochastic first-order methods.

1. Introduction

Consider the problem of approximately minimizing the maximum of N convex functions: given
f1, . . . , fN such that for every i ∈ [N ] the function fi : Rd → R is convex, Lipschitz and possibly
smooth, and a target accuracy ε,

find a point x such that Fmax(x)− inf
x?∈Rd

Fmax(x?) ≤ ε where Fmax(x) := max
i∈[N ]

fi(x) . (1)

Problems of this form play significant roles in optimization and machine learning. The maxi-
mum of N functions is a canonical example of structured non-smoothness and several works de-
velop methods for exploiting it [31, 30, 36, 9, 12]. The special case where the fi’s are linear
functions is particularly important for machine learning, since it is equivalent to hard-margin SVM
training (with fi representing the negative margin on the ith example) [38, 13, 21]. Going beyond
the linear case, Shalev-Shwartz and Wexler [36] argue that minimizing the maximum classification
loss can have advantageous effects on training speed and generalization in the presence of rare in-
formative examples. Moreover, minimizing the worst-case objective is the basic paradigm of robust
optimization [4, 27]. In particular, since Fmax(x) = maxp∈∆N

∑
i∈[N ] pifi(x) the problem cor-

responds to an extreme case of distributionally robust optimization [5] with an uncertainty set that
encompasses the entire probability simplex ∆N .
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The goal of this paper is to characterize the complexity of this fundamental problem. We are
particularly interested in the regime where the number of data pointsN and the problem dimension d
are large compared to the desired level of accuracy 1/ε, as is common in modern machine learning.
Consequently, we focus on dimension-independent first-order methods (i.e., methods which only
rely on access to fi(x) and a (sub)gradient ∇fi(x) as opposed to higher-order derivatives), and
report complexity in terms of the number of function/gradient evaluations required to solve the
problem.

1.1. Related work

To put our new complexity bounds in context, we first review the prior art in solving the problem (1)
with first-order methods. For simplicity of presentation, throughout the introduction we assume each
fi is 1-Lipschitz and that Fmax has a global minimizer x? with (Euclidean) norm at most 1.

The simplest approach to solving the problem (1) is the subgradient method [33]. This method
finds an ε-accurate solution in O(ε−2) iterations, with each step computing a subgradient of Fmax,
which in turn requires evaluation of all N function values and a single gradient. Consequently,
the complexity of this method is O(Nε−2). We are unaware of prior work obtaining improved
complexity without further assumptions.1

However, even a weak bound on smoothness helps: if each fi has O(1/ε)-Lipschitz gradient,
then it is possible to minimize Fmax to accuracy ε with complexity Õ(Nε−1) [31].2 This result
relies on the so-called “softmax” approximation of the maximum,

Fsmax,ε(x) := ε′ log

∑
i∈[N ]

efi(x)/ε′

, where ε′ =
ε

2 logN
. (2)

It is straightforward to show that |Fsmax,ε(x)− Fmax(x)| ≤ ε
2 for all x ∈ Rd, and that ∇Fsmax,ε is

Õ(1/ε)-Lipschitz if∇fi isO(1/ε)-Lipschitz for every i. Therefore, Nesterov’s accelerated gradient
descent [31] finds a minimizer of Fsmax,ε to accuracy ε

2 in Õ(
√

1/ε/
√
ε) iterations, with each itera-

tion requiring N evaluations of fi and ∇fi to compute ∇Fsmax,ε, yielding the claimed bound. The
assumption that∇fi isO(1/ε)-Lipschitz is fairly weak; see Appendix A.1 for additional discussion.

Given more smoothness, further improvement is possible. Nesterov [33, Section 2.3.1] shows
that it suffices to solveO(

√
Lg/ε) linearized subproblems of the form minx∈Rd maxi∈[N ]

{
fi(yt)+

(∇fi(yt))>(x−yt)+
Lg
2 ‖x−yt‖

2
}

. This yields a query complexity upper bound of O(N
√
Lg/ε),

Though the complexity of solving each subproblem is not immediately clear, in Appendix A.3 we
explain how a first-order method [10] solves the subproblem to sufficient precision. Additional
schemes for solving (1) in the special case of linear functions (i.e., Lg = 0) are discussed in Ap-
pendix A.2.

A powerful technique for solving optimization problems with a large number N of component
functions is sampling components in order to compute cheap unbiased gradient estimates. However,
both Fmax and Fsmax,ε are not given as linear combinations of the fi’s. Consequently, it is not clear
how to efficiently compute unbiased estimators for their gradients. Several works address this by

1. The center of gravity method [24, 35] yields a query complexity O(Nd log(1/ε)) which is an improvement only for
sufficiently small problem dimension d.

2. Throughout the paper, the Õ(·) and Ω̃(·) hide polylogarithmic factors.
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Smoothness Method Upper bound Lower bound

None (Lg =∞)
Subgradient method Nε−2

Nε−2/3 + ε−2

Ours Nε−2/3 + ε−8/3

Weak (Lg ≈ 1/ε)
AGD on softmax Nε−1

Nε−2/3 +
√
Nε−1

Ours Nε−2/3 +
√
Nε−1

Strong (Lg � 1/ε) AGD on linearization* N
√
Lgε−1 NL

1/3
g ε−1/3 +

√
NLgε−1

Table 1: The complexity of solving the problem (1) in terms of number of (i, x) queries for computing
and fi(x) and ∇fi(x). The tables assume each fi is convex, 1-Lipschitz and (optionally) has Lg-Lipschitz
gradient, and that Fmax has a minimizer with norm at most 1. The stated rates omit constant and (in the
upper bounds) polylogarithmic factors. *For this algorithm only, the computational complexity is not simply
d times the query complexity; see Appendix A.3.

considering the saddle point problem

min
x∈Rd

max
p∈∆N

Fpd(x; p) :=
∑
i∈[N ]

pifi(x),

which is equivalent to minimizing to Fmax. One can obtain unbiased estimators for∇Fpd(x; p), and
apply stochastic mirror descent to find its saddle-point [30, 36, 27]. However, all known estimators
for ∇pFpd have complexity-variance product Ω(N). Consequently, the best general guarantees
known for such methods are Õ(Nε−2) iterations and total complexity.3 Shalev-Shwartz and Wexler
[36] analyze a stochastic primal-dual method from an online learning perspective. They show that if
the online method producing the primal updates admits a mistake bound (as is the case for learning
halfspaces), then the complexity of the approach improves to Õ(Nε−1). We show that adopting a
primal-only perspective and iteratively restricting x to a small ball (i.e., “thinking inside the ball”)
allows us to make better use of the scalability of stochastic gradient methods.

1.2. Our contributions

To motivate our developments, note that the general complexity guarantees described above all scale
linearly with the number of functions N . On the one hand, this is to be expected, as even evaluating
the maximum of N numbers requires querying all of them. On the other hand, a linear scaling
in N stands in sharp contrast to guarantees for minimizing the average of N functions, which are
typically sublinear in N . Since good scaling with dataset size is crucial in machine learning, we
wish to precisely characterize the number of dataset passes (that is, the coefficient of N ) in the
complexity of minimizing Fmax.

Towards that end, we prove an oracle complexity lower bound. The bound shows that any algo-
rithm that operates by repeatedly querying i, x and observing fi(x),∇fi(x), must make Ω(Nε−2/3)
queries in order to solve problem (1) for some convex, 1-Lipschitz problem instance f1, . . . , fN with
domain in the unit ball. The same bound continues to hold even when constraining the fi to have
O(1/ε)-Lipschitz gradient, and when using high-order derivative oracles. This result further sharp-
ens the contrast to average risk minimization, as it implies Ω(ε−2/3) dataset passes are required in

3. Exact-gradient primal-dual methods such as mirror-prox [28] and dual-extrapolation [32] have complexity guarantees
scaling as Õ(Nε−1) under the stronger smoothness assumption Lg = O(1) [cf. 8, Section 5.2.4].
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the worst case. However, it also suggests the potential for significant improvement over existing
algorithms and their complexity bounds.

We realize this potential with new algorithms whose leading complexity term in N matches
our lower bound up to polylogarithmic factors. In the non-smooth case, our approach solves (1)
with complexity Õ(Nε−2/3 + ε−8/3), dominating prior guarantees for N = Ω̃(ε−2/3). For O(1/ε)-
Lipschitz gradient functions, we obtain the stronger rate Õ(Nε−2/3 +

√
Nε−1), which dominates

prior guarantees for N = Ω̃(1). At the core of these algorithms is a technique for accelerated
optimization given a ball optimization oracle [12]; we make several improvements to this technique,
which may be of independent interest.

Table 1 summarizes our results and their comparison to prior art. In addition to the results
described above, the table also contains lower bounds on sublinear terms in N (that follow from
standard arguments), as well as a lower bound for the smooth regime where Lg = o(1/ε). In this
regime there exists a gap between the linear terms in the upper and lower bounds.

1.3. Overview of techniques

Our algorithms rely on a new technique introduced by Carmon et al. [12] for acceleration with a
ball optimization oracle (BOO). For any r > 0 and F : Rd → R, a BOO of radius r takes in
a query point x̄ ∈ Rd and returns an (approximate) minimizer of F in a ball of radius r around
x̄. The technique, which is a variant of Monteiro-Svaiter acceleration [26, 17, 7, 9], minimizes F
to ε accuracy using Õ((1/r)2/3) oracle calls (with poly(log(1/ε)) factors hidden). Carmon et al.
[11] apply their technique to the special case of (1) with linear losses (see also Appendix A.2),
showing that the log-sum-exp function is quasi-self-concordant and implementing a BOO of radius
r = Θ̃(ε) using Õ(1) linear system solves. However, this approach does not extend to general fi
because quasi-self-concordance no longer holds for Fsmax,ε, which might not even be differentiable.

The main technical insight of our paper is that it is possible to efficiently implement a BOO of
radius rε = Θ̃(ε) for Fsmax,ε using stochastic first-order methods. More precisely, for any x̄ ∈ Rd
we can minimize Fsmax,ε in a ball of radius rε around x̄ to any poly(ε) accuracy with precisely N
function evaluations and poly(1/ε) (sub-)gradient evaluations. Using BOO acceleration, this imme-
diately implies an Õ(Nε−2/3 + poly(1/ε)) complexity bound exhibiting optimal N dependence.

To implement the BOO for Fsmax,ε, we consider instead the “exponentiated softmax” function

Γε(x) = ε′·exp

(
Fsmax,ε(x)− Fsmax,ε(x̄)

ε′

)
=
∑
i∈[N ]

piε
′·e

fi(x)−fi(x̄)

ε′ where pi =
efi(x̄)/ε′∑

j∈[N ] e
fi(x̄)/ε′

,

and ε′ = ε/(2 logN) as in eq. (2). Note that Γε is a monotonically increasing transformation of
Fsmax,ε, and is therefore convex with the same minimizer as Fsmax,ε. Moreover, it is a (weighted)
finite sum, and consequently amenable to stochastic gradient methods. It remains to verify that the
functions ξi(x) = ε′·e(fi(x)−fi(x̄))/ε′ are well-behaved, which might look difficult since exponentials
are notoriously unstable. However, our choice of r and Lipschitz continuity of fi implies that
e(fi(x)−fi(x̄))/ε = Θ(1) inside the ball, and consequently ξi is indeed well-behaved, with Lipschitz
constant O(1). We thus minimize Γε (and hence Fsmax,ε) with stochastic gradient descent [20],
sampling i from p. Moreover, if ∇fi are Lipschitz, then ∇ξi are also Lipschitz, and we apply an
accelerated variance reduction method [1] for better efficiency.

To complete the analysis of our methods it remains to determine how accurately we need to
solve each ball subproblem. Unfortunately, the analysis of [12] makes fairly stringent accuracy
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requirements, and also requires∇Fsmax,ε to have a finite Lipschitz constant. To obtain tighter guar-
antees, we significantly rework the analysis in [12], modifying the algorithm to make it applicable
without any differentiablility requirements. Our improved analysis takes into account the fact that
the acceleration scheme only requires ball minimization with strong `2 regularization, which further
improves the oracle implementation complexity.

Our lower bound follows from a variation on the classical “chain constructions” in optimization
lower bounds [29, 39, 18, 14], where in order to make a unit of progress on our constructed function,
any algorithm must (with constant probability) make Ω(N) queries in order to discover a single new
link in the chain. We build a chain of length Ω(ε−2/3) for which querying any ε minimizer of Fmax

requires discovering the entire chain, giving the Ω(Nε−2/3) complexity lower bound. To prove this
result for arbitrary randomized algorithms, we randomize both the order of the functions and the
rotation of the domain.

Paper outline. Section 2 provides some additional preliminaries and notation. Section 3 gives
our improved derivation of the BOO acceleration method of [12], and Section 4 develops a BOO
for Fsmax,ε, culminating in our upper complexity bounds for the problem (1), stated in Theorem 6.
Section 5 gives our lower bounds with the main result stated in Theorem 10. Section 6 includes
some comments on our results and potential future work.

2. Preliminaries

General notation. Throughout, ‖·‖ denotes the Euclidean norm. We write Br(z) for the Eu-
clidean ball of radius r centered at z, and Bdr(z) when emphasizing that the ball is d-dimensional.
We use Lf to denote a function Lipschitz constant and Lg to denote a gradient Lipschitz constant;
we say that f is Lg-smooth if it has Lg-Lipschitz gradient. To disambiguate between sequence
and coordinate indices, in Section 5 we denote the former with normal subscript and the latter with
bracketed subscript, i.e., x[i] is the ith coordinate of x and xk is the kth element in the sequence
x1, x2, . . .. We also write v[≤i] to denote a copy of v with coordinate i+ 1, i+ 2, . . . set to zero. We
use a∧ b := min{a, b} to abbreviate binary minimization. We write the binary indicator of event A
as I{A}.

Complexity model. We mainly measure complexity through the number individual function and
gradient evaluations required to solve the problem (1). We write Tf for the cost of evaluating
fi(x) for a single i and x, and similarly write Tg for the cost of evaluating ∇fi(x). Assuming
Tf , Tg = Ω(d), our evaluation complexity upper bounds translate directly to runtime upper bounds.

Proximal operators. For any function f and regularization parameter λ ≥ 0, we define the stan-
dard proximal mapping proxfλ(x̄) := arg minx∈Rd

{
f(x) + λ

2‖x− x̄‖
2
}

. We also define the ball
constrained proximal mapping bproxfλ,r(x̄) := arg minx∈Br(x̄)

{
f(x) + λ

2‖x− x̄‖
2
}

. Finally, we

define the notion of an approximate oracle for bproxfλ,r, which plays a key role in our analysis.

Definition 1 (BROO) We say that a mapping Oλ,δ(·) is a Ball Regularized Optimization Oracle
of radius r (r-BROO) for f , if for every query point x̄, regularization parameter λ and desired
accuracy δ, it return x̃ = Oλ,δ(x̄) satisfying

f(x̃) +
λ

2
‖x̃− x̄‖2 ≤ min

x∈Br(x̄)

{
f(x) +

λ

2
‖x− x̄‖2

}
+
λ

2
δ2. (3)
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Note that when f is convex, the strong convexity of f(x) + λ
2‖x − x̄‖2 and the approximation

requirement (3) guarantee that ‖Oλ,δ(x̄)− bproxfλ,r(x̄)‖ ≤ δ.

3. BROO acceleration

In this section, we describe a variant of the ball optimization acceleration scheme of Carmon et al.
[12], given as Algorithm 1. Both methods follow the template of Monteiro-Svaiter acceleration [26],
but our algorithm improves on [12] in two ways. First, it accesses the objective strictly through the
ball oracle, while [12] also uses gradient computations. Second, our algorithm requires an oracle
that solves regularized ball optimization problems, which are easier to implement.4

As a consequence of these differences, our accelerated algorithm’s guarantee does not require
any smoothness of the objective function. Moreover, our setup allows for far less accurate solutions
to the ball optimization subproblems: Carmon et al. [12] require δ = O( ε

LgR
) while we only require

δ = O( ε
λR). While our requirement becomes stricter as the regularizer λ grows, it also becomes

easier to fulfill since the ball optimization problem becomes more strongly convex and hence easier
to solve. Our relaxed accuracy requirement ultimately translates to an improved ε−1 dependence in
the sublinear-in-N term in our upper bound.

With the key innovations of Algorithm 1 explained, we now formally state its convergence
guarantee; we defer the proof to Appendix B.

Theorem 2 Let f : Rd → R be convex and Lf -Lipschitz, and let z ∈ Rd. For any domain bound
R > 0, ball radius r ∈ (0, R], accuracy level ε > 0, and initial point x0 ∈ Rd, Algorithm 1 returns
a point x ∈ Rd satisfying f(x)−minz∈BR(x0) f(z) ≤ ε using at most

T = O

((
R

r

)2/3

log

(
[f(x0)−minz∈BR(x0) f(z)]R

εr

)
log

(
LfR

2

εr

))

queries to an r-BROO. Moreover, the BROO query parameters (λ(1), δ(1)), . . . , (λ(T ), δ(T )) satisfy

1. Ω( ε
rR) ≤ λ(i) ≤ O(

Lf
r ) and δ(i) ≥ Ω( ε

λ(i)R
) for all i ∈ [T ].

2.
∑

i∈[T ]
1√
λ(i)
≤ O

(
R√
ε

log
LfR

2

εr

)
.

We remark that Theorem 2 requires a bound on the Lipschitz constant of f solely to bound the
complexity of the bisection procedure for finding {λt}.

4. BROO implementation

In this section, we develop efficient BROO implementations for Fsmax,ε, the softmax approximation
of Fmax (2). In Section 4.1 we develop our main analytical tool in the form of an “exponentiated
softmax” function approximating Fsmax,ε and facilitating efficient stochastic gradient estimation.
We then minimize the exponentiated softmax with standard tools from stochastic convex optimiza-
tion. In Section 4.2 we give a BROO implementation for the non-smooth case using restarted

4. We note that λ in our notation corresponds to 1/λ in the notation of [12].
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Algorithm 1: BROO acceleration

Input: Initial x0 ∈ Rd, Lipschitz and distance bounds Lf , R, r, accuracy ε, BROO Oλ,δ(·)
Output: xret such that f(xret)− arg minz∈BR(x0) f(z) ≤ ε

1 Let v0 = x0, A0 = 0

2 for t = 0, 1, 2, . . . do
3 λt+1 = λ-BISECTION(xt, vt, At, λmax =

2Lf
r , λmin = ε

6rR)

. Finds λt+1 such that xt+1 ≈ proxfλt+1
(yt) and either ‖xt+1 − yt‖ ≈ r or xt+1 is ε-optimal

4 at+1 = 1
2λt+1

(1 +
√

1 + 4λt+1At) and At+1 = At + at+1 . At+1 = a2
t+1λt+1

5 yt = At
At+1

xt + at+1

At+1
vt

6 xt+1 = Oλt+1,δt+1(yt), where δt+1 = ε
12λt+1R

7 vt+1 = arg minv∈BR(x0)

{
at+1λt+1 〈yt − xt+1, v〉+ 1

2‖v − vt‖
2
}

8 if At+1 ≥ R2

ε , λt+1 ≤ ε
3rR , ‖xt+1 − vt+1‖ > 2R, or At+1 < exp

(
r2/3

R2/3 (t− 1)
)
A1 then

9 return xret ∈ arg minx∈{x0,x1,...,xt+1} f(x)

10 function λ-BISECTION(x, v,A, λmax, λmin)

11 For all λ′, let yλ′ := α2Aλ′ · x+ (1− α2Aλ′) · v, where ατ := τ
1+τ+

√
1+2τ

12 Define ∆(λ) := ‖Oλ, r
17

(yλ)− yλ‖ . approximation of ∆̂(λ) := ‖bproxfλ,r(yλ)− yλ‖

13 Let λ = λmax

14 while λ ≥ λmin and ∆(λ) ≤ 13r
16 do λ← λ/2 . terminates in O(log λmax

λmin
) steps

15 if λ ≤ λmin then return 2λ . happens only if bproxf2λ,r(y2λ) is O(ε)-optimal for small λmin

16 Let λu = 2λ, λ` = λ and λm =
√
λuλ`

17 if ∆(λ`) ≤ 15r
16 then return λ` . happens only if ∆(λ`) ∈ [ 13r

16
, 15r

16
]

18 while ∆(λm) /∈ [13r
16 ,

15r
16 ] and log2

λu
λ`
≥ r

8(R+Lf/λ`)
do

19 if ∆(λm) < 13r
16 then λu = λm else λ` = λm

20 λm =
√
λuλ`

21 return λm . the while loop terminates in O
(
log
(
R
r

+
Lf

λminr

))
steps

SGD [20]. In Section 4.3 we instead apply an accelerated variance reduction method (Katyusha [1])
that offers improved performance when the fi are even slightly smooth. Finally, in Section 4.4
we combine our BROO implementations with Algorithm 1 and its guarantees to obtain our main
results: new convergence guarantees for minimizing Fmax. We defer proofs to Appendix C.

4.1. Exponentiating a softmax

Recall that ε′ = ε/(2 logN) and that (for nominal accuracy ε) the softmax function Fsmax,ε(x) =

ε′ log
(∑

i∈[N ] e
fi(x)/ε′

)
approximates Fmax to within ε/2 additive error. The key challenge in de-

signing an efficient stochastic method for minimizing Fsmax,ε is a lack of cheap unbiased gradient
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estimators. Specifically, we have∇Fsmax,ε(x) =
∑

i∈[N ] pi(x)∇fi(x), where

pi(x) =
efi(x)/ε′∑

j∈[N ] e
fj(x)/ε′

. (4)

Given access to p(x), we could easily obtain an unbiased estimator for∇Fsmax,ε(x) by sampling i ∼
p(x) and outputting ∇fi(x). However, computing p(x) itself requires evaluating all N functions,
making it basically as costly as computing∇Fsmax,ε exactly.

This difficulty, however, is greatly relieved when we operate in a small ball of radius rε = ε′/Lf
centered at some point x̄. To see why, note that for every i and every x ∈ Brε(x̄), Lipschitz
continuity of fi implies |fi(x)/ε′−fi(x̄)/ε′| ≤ Lfrε/ε′ = 1. Consequently, p(x̄) is a multiplicative
approximation for p(x) throughout the ball, satisfying e−2pi(x̄) ≤ pi(x) ≤ e2p(x̄) for all x ∈
Brε(x̄). Our high-level strategy is thus: perform a full data pass once to compute p(x̄), and then
rely on the stability of p(x) within Brε(x̄) to efficiently estimate gradients by sampling from p(x̄).
However, simply sampling i ∼ p(x̄) and returning ∇fi(x) is not enough, because it leads to a
biased estimator of ∇Fsmax,ε(x). Instead, we define below a surrogate function “exponentiating
the softmax” that closely approximates Fsmax,ε and for which e(fi(x)−fi(x̄))/ε′∇fi(x) is an unbiased
gradient estimator when i ∼ p(x̄).5

To precisely define the surrogate “exponentiated softmax” function, we require some additional
notation. Fixing a ball center x̄ and regularization parameter λ, let

fλi (x) := fi(x)+
λ

2
‖x−x̄‖2 and F λsmax,ε(x) := Fsmax,ε(x)+

λ

2
‖x−x̄‖2 = ε′ log

∑
i∈[N ]

ef
λ
i (x)/ε′


be the regularized counterparts of fi and Fsmax,ε, respectively. Then, we define the exponentiated
softmax as

Γε,λ(x) = ε′ · exp

(
F λsmax,ε(x)− F λsmax,ε(x̄)

ε′

)
=
∑
i∈[N ]

pi(x̄)γi(x) where γi(x) := ε′e
fλi (x)−fλi (x̄)

ε′ .

(5)
Clearly, Γε,λ is a finite sum objective (weighted by p(x̄)), making stochastic first-order methods
applicable. Moreover, as the following lemma shows, when the ball radius r and λ are not too large,
Γε,λ closely approximates F λsmax,ε and is as regular as F λsmax,ε up to a constant.

Lemma 3 Let f1, · · · , fN each be Lf -Lipschitz and Lg-smooth gradients. For any c > 0, r ≤
cε′/Lf , and λ ≤ cLf/r let C = (1 + c + c2)ec+c

2/2. The exponentiated softmax Γε,λ satisfies the
following properties for any x̄ ∈ Rd.

1. F λsmax,ε(x) and Γε,λ have the same minimizer x? in Br(x̄). Moreover, for every x ∈ Br(x̄),

F λsmax,ε(x)− F λsmax,ε(x?) ≤ C(Γε,λ(x)− Γε,λ(x?)).

2. Restricted to Br(x̄), each function γi defined in (5) is CLf -Lipschitz, C−1λ strongly convex,
and C(Lg + λ+ L2

f/ε
′)-smooth.

The proof of Lemma 3 follows from a straightforward calculation, and we defer it to Appendix C.1.

5. We remark that gi(x) = e(fi(x)−fi(x̄))/ε′∇fi(x) is also nearly unbiased for Fsmax,ε in the sense that Egi(x) =
Z(x)∇Fsmax,ε(x) for some Z(x) that is close to 1 when inside Brε(x̄). Estimators of this form suffice for SGD, but
are less amenable to variance reduction.

8
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4.2. The non-smooth case: SGD implementation

To take advantage of the strong convexity of of Γε,λ we use the restarted SGD variant of Hazan and
Kale [20], which finds an ε-suboptimal point of a G-Lipschitz and µ-strongly convex function with
Õ(G2/(µε)) iterations (with high probability). To estimate the stochastic gradients, we sample
i ∼ p(x̄) and output ∇γi(x); this takes O(Tg + Tf ) time per stochastic gradient, plus O(NTf )
preprocessing time to compute p(x̄). We provide pseudocode for the algorithm in Appendix C.2,
where we also prove the following complexity bound.

Corollary 4 Let f1, f2, · · · , fN be Lf Lipschitz, let σ ∈ (0, 1), ε, δ > 0 and rε = ε/(2 logN ·Lf ).
For any x̄ ∈ Rd and λ ≤ O(Lf/rε), with probability at least 1 − σ, Algorithm 2 outputs a valid
rε-BROO response for Fsmax,ε to query x̄ with regularization λ and accuracy δ, and has cost

O

(
TfN + (Tg + Tf )

L2
f

λ2δ2
log

(
log(Lf/λδ)

σ

))
. (6)

4.3. The (slightly) smooth case: accelerated variance reduction implementation

If we further assume smoothness of f1, . . . , fN , we can use stochastic variance reduction to obtain
an improved runtime. With these methods, we estimate the gradient of Γε,λ as∇Γε,λ(x′)+∇γi(x)−
∇γi(x′), where i ∼ p(x̄) and x′ is a reference point which we recompute Õ(1) times. Here, the
O(NTf ) cost of computing p(x̄) is essentially free compared to the cost Õ(NTg) of computing the
exact gradients of Γε,λ at the reference point. We again take advantage of the regularization-induced
λ-strong-convexity a variant of the Katyusha method of Allen-Zhu [1]. This results in the following
complexity guarantee; see Appendix C.3 for a proof.

Corollary 5 Let f1, · · · , fN be Lf -Lipschitz and Lg-smooth, let σ ∈ (0, 1), ε, δ > 0, ε′ =
ε/(2 logN) and rε = ε′/Lf . For any x̄ ∈ Rd and λ ≤ O(Lf/rε), with probability at least 1 − σ,
Katyusha1 [1] outputs a valid rε-BROO response to query x̄ with regularization λ and accuracy δ,
and has computational cost

O

(
(Tf + Tg)

(
N +

√
N
(
Lf +

√
ε′Lg

)
√
λε′

)
log

(
Lfrε
λδ2σ

))
. (7)

4.4. Main result

With our oracle implementations in hand, we are ready to state our main result.

Theorem 6 Let f1, f2, . . . , fN beLf -Lipschitz, let x? be a minimizer ofFmax(x) = maxi∈[N ] fi(x)
and assume ‖x0−x?‖ ≤ R for a given initial point x0 and someR > 0. For any ε > 0, Algorithm 1
with the BROO implementation for Fsmax,ε in Algorithm 2 solves the problem (1) with probability
at least 99

100 and has computational cost

O

((
LfR logN

ε

)2/3
(
TfN +

(
LfR

ε

)2

· (Tf + Tg) logK

)
log2K

)
, (8)

9



CARMON JAMBULAPATI JIN SIDFORD

where K := LfRε
−1 logN . If moreover f1, f2, . . . , fN are each Lg-smooth, then Algorithm 1 with

a BROO implementation for Fsmax,ε using Kayusha1 solves (1) with probability ≥ 99
100 and has cost

O

(
(Tf + Tg)

((
LfR logN

ε

)2/3

N +

(
LfR
√

logN

ε
+

√
LgR2

ε

)
√
N

)
log3K

)
.

The proof of Theorem 6, which we provide in Appendix C.4, follows straightforwardly from Theo-
rem 2 and Corollaries 4 and 5. When applying Corollary 4 with δ = Ω( ε

λR) the dependence of the
complexity on λ cancels, and we get that each oracle call costs Õ(NTf +L2

fR
2ε−2(Tf + Tg)). The

complexity bound then follows from multiplying the per-call cost with the bound Õ((R/rε)
−2/3)

that Theorem 2 provides on the total number of oracle calls. When applying Corollary 5 we obtain
an oracle implementation cost of Õ(N(Tf + Tg) + λ−1/2

√
N
√
L2
f ε
−1 + Lg(Tf + Tg)). The com-

plexity bound again follows by multiplying the per-call cost again with the total number of calls, ex-
cept that to bound the contribution of

√
N term we invoke the the guarantee

∑
i λ
−1/2
(i) ≤ Õ(Rε−1/2)

in Theorem 2 to a tighter bound.

5. Lower bounds

In this section, we prove oracle complexity lower bounds showing that the results of the previous
section are order optimal for sufficiently large N and Lg. While our algorithms are first-order
methods, our lower bounds remain valid even for other algorithms that use high order derivatives,
as is typical for our proof technique.

We begin by providing a formal definition of the oracle-based optimization model we consider
(Section 5.1). In Section 5.2, we define an N -element variant for the zero-chain concept, and prove
that it allows us to control the progress of any (possibly randomized) algorithm. Then, in Section 5.3
we construct a particular N -element zero-chain for which slow progress implies a large optimality
gap. Finally, Section 5.4 ties these results together, giving our lower bound and providing some
discussion.

5.1. Optimization protocol

Consider problem instances of the form (fi)i∈[N ], where fi : D → R for some common domain D
and all i ∈ [N ]. We say that an algorithm operating on (fi)i∈[N ] is anN -element algorithm if it uses
the following iterative protocol. At iteration t, the algorithm produces a query it, xt, with it ∈ [N ]
and xt ∈ D. It then observes the output of a local oracle for fit at the point xt, which we denote by
Oloc
fit

(xt).

Formally, Oloc can be any mapping that satisfies Oloc
f (x) = Oloc

f̃
(x) whenever f(y) = f̃(y)

for all y in some open set containing x (subsequently referred to as a “neighborhood” of x). In
particular, the first-order oracle used for our upper bounds corresponds toOloc

f (x) = (f(x),∇f(x))

and is valid local oracle. The pth order derivative oracleOloc
f (x) = (f(x),∇f(x), . . . ,∇pf) is also

a valid local oracle. The notion of local oracles is classical in the literature on information-based
complexity [29, 18].

The algorithms we consider may be randomized, and we use ζ to denote the algorithm’s ran-
domness. Beyond ζ, the query of the algorithm at iteration t may only depend on the information it

10
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observes from the oracle. That is, for any t ≥ 1, we have

it, xt = Qt

(
ζ,Oloc

fi1
(x1), . . . ,Oloc

fit−1
(xt−1)

)
(9)

for some measurable function Qt.

5.2. Progress control argument

Following well-established methodology [33, 18, 11], instead of directly bounding the sub-optimality
of the queries x1, . . . , xt we first bound a surrogate quantity we call progress. Informally, the
progress is the highest coordinate index that the algorithm managed to “discover” using the oracle
responses. Formally, we define the progress of a point x as

progα(x) := max
{
i ≥ 1

∣∣ |x[i]| > α
}

(where max ∅ := 0). (10)

The parameter α is a significance threshold for declaring a coordinate “discovered;” it allows us to
prevent algorithms from trivially discovering coordinates by querying directions at random.

We next define a structural property that facilitates controlling the rate with which progα(xt)
increases. For this definition, we recall that v[≤l] denotes the vector whose first l coordinates are
identical to those of v and the remainder are zero. Recall also that BT1 (0) is the unit ball in RT .

Definition 7 A sequence f1, . . . , fN of functions fi : BT1 (0)→ R is called an α-robust N -element
zero-chain if for all x ∈ BT1 (0), all y in a neighborhood of x, and all i ∈ [N ], we have

progα(x) ≤ p =⇒ fi(y) =


fi(y[≤p]) i < p+ 1

fi(y[≤p+1]) i = p+ 1

fN (y[≤p]) i > p+ 1.

(11)

To unpack this definition, consider any first-order algorithm with the following two simplifying
properties: (1) the queries i1, i2, . . . are drawn i.i.d. from Uniform([N ]) and (2) every query xt lies
in the span of previously observed gradients ∇fi1(x1), . . . ,∇fit−1(xt−1) [cf. 33]. The first query
of the algorithm must be x1 = 0, and consequently progα(x1) = 0. Definition 7 then implies that
f2, . . . , fN are all constant in a neighborhood of x1, while f1 depends only on the first coordinate.
Therefore, the span of the gradients (and the next query’s progress) can only increase to 1 after
the algorithm queries i = 1 for the first time. With uniformly random index queries, that takes
Ω(N) queries with constant probability. Repeating this argument, we see that every increase of
the gradient span (and hence query progress) takes Ω(N) queries with constant probability, and
therefore reaching progress T takes Ω̃(NT ) queries with high probability.

To extend this conclusion to general algorithms of the form (9), we perform two types of ran-
domization. First, to handle arbitrary strategies for choosing it (as opposed to uniform sampling),
we apply a random permutation to f1, . . . , fN . Second, to handle arbitrary queries xt (as opposed
to queries in the span of observed gradients), we randomly rotate the coordinate system. This ran-
domization scheme guarantees that no algorithm can materially improve on uniform sampling and
span-preserving, as we formally state in the following.

Proposition 8 Let δ, α ∈ (0, 1) and let N,T ∈ N with T ≤ N/2. Let (fi)i∈[N ] be an α-robust
N -element zero-chain with domain BT1 (0). For d ≥ T + 2

α2 log 4NT 2

δ , draw U uniformly from the

11
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set of d × T orthogonal matrices, and draw Π uniformly from the set of permutations of [N ]. Let
f̃i(x) := fΠ−1(i)(U

>x). Let {(it, xt)}t≥1 be the queries of any N -element algorithm operating on
f̃1, . . . , f̃N . Then with probability at least 1− δ we have

progα(U>xt) < T for all t ≤ 1
16N

(
T − log 2

δ

)
.

See Appendix D.1 for a proof. Our definition of N -element zero-chains and our proof of their
progress control property builds on the notion of (single element) zero-chain functions [11]. It is
also closely related to probability-p zero-chains [3]; Proposition 8 essentially shows thatN -element
algorithms interacting with an N -element zero-chain make progress about as slowly as stochastic
algorithms interacting with with a probability-N−1 zero-chain.

5.3. Hard instance construction

With the progress-control machinery in hand, we proceed to constructing a specificN -element zero-
chain that also guarantees a large optimality gap for points with progress smaller than T . Toward
that end, we first define the “link function” ψα,` : R→ R+ as

ψα,`(t) :=


0 |t| ≤ α
`
2(t− α)2 α ≤ |t| ≤ `−1 + α

|t| − α− 1
2` otherwise.

Clearly, ψα,` is 1-Lipschitz, `-smooth, and is identically zero for all |t| ≤ α. We note that ψα,` is
the composition of the Huber function [22] with max{0, |t| − α}.

Chain constructions of the form
∑

i∈[N ] ψαT ,`(x[i] − x[i−1]) are common in lower bounds for
convex optimization [cf. 33, 39]. For our construction, we instead spread the link components across
the different elements. Formally, for i ∈ [N ], we define the ith function in the our hard instance as

f̂
{T,N,`}
i (x) :=

{
ψαT ,`

(
x[i]−x[i−1]

2

)
i ≤ T

0 otherwise
where αT :=

1

4T 3/2
and x[0] :=

1√
T
. (12)

The following lemma summarizes the properties of our construction. The proof of the lemma is
straightforward and we provide it in Appendix D.2

Lemma 9 For every T,N ∈ N and ` ≥ 0, such that T ≤ N , we have that

1. The hard instance (f̂
{T,N,`}
i )i∈N is an αT -robust N -element zero-chain.

2. The function f̂{T,N,`}i is 1-Lipschitz and `-smooth for every i ∈ [N ].

3. For x ∈ Rd with progαT (x) < T , the objective F̂ {T,N,`}max (x) = maxi∈[N ] f̂
{T,N,`}
i (x) satisfies

F̂ {T,N,`}max (x)− min
x?∈B1(0)

F̂ {T,N,`}max (x?) ≥ ψαT ,`
(

3

8T 3/2

)
≥ min

{
1

8T 3/2
,

`

32T 3

}
.

12
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5.4. Lower bound statement

Finally, we combine the results of the previous sections to state our lower bound. In the statement,
we use a ∧ b := min{a, b} to abbreviate binary minimization.

Theorem 10 Let Lf , Lg, R > 0, ε < LfR∧LgR2, N ∈ N and δ ∈ (0, 1). Then, for any (possibly
randomized) algorithm there exists an Lf -Lipschitz and Lg-smooth functions (fi)i∈[n] with domain

BdR(0) for d = O
([(LfR

ε

)2 ∧ (LgR2

ε

)]
log

N(LfR∧LgR2)
ε

)
such that with probability at least 1

2 over
the randomness of the algorithm, the first

Ω

(
N

[(LfR
ε

)2/3
∧
(LgR2

ε

)1/3
]

+

[(LfR
ε

)2
∧
(NLgR2

ε

)1/2
])

(13)

queries of the algorithm are all ε-suboptimal for Fmax(x) = maxi∈[N ] fi(x).

See Appendix D.3 for a proof of this result. The first (linear-in-N ) term in the lower bound
follows from Proposition 8 and Lemma 9 via a re-scaling argument. The second (sublinear-in-N )
lower bound term is a direct consequence of existing lower bounds [14, 39, 15].

We remark that our lower bound is stated for optimization constrained to a ball of radius R,
while our upper bounds assume unconstrained optimization given a minimizer of norm at most R.
These two settings are essentially equivalent; in Appendix D.4 we sketch a general technique for
transferring lower bounds to the unconstrained setting.

In Table 1 we specify our lower bound in the special casesLg =∞ andLg = Θ(L2
f/ε), showing

that they match our upper bounds (up to polylogarithmic factors) for N = Ω((LfR/ε)
2) in the

former case and for any N in the latter. More broadly, when Lg = Θ(L2+q
f Rq/ε1+q) our lower and

upper bounds match for any N and q ∈ [0, 2/3]. For Lg = o(L2
f/ε) and Lg = ω(L

8/3
f R2/3/ε5/3),

however, there remain gaps between our upper and lower bounds. We discuss these gaps in the
following section.

6. Discussion

To conclude the paper, we provide some commentary on our results and the possibilities of im-
proving them. For simplicity, in this section we revert to the setting Lf = R = 1 used in the
introduction. We also use a� b as a shorthand for a = O(b), and ignore constant and logarithmic
factors throughout.

6.1. Gaps between the upper and lower bounds

Regimes where a gap exists. Comparing our upper bound in Theorem 6 to our lower bound
in Theorem 10, we identify two regimes where our upper and lower bounds disagree by more than
polylogarithmic factors. The first is the smooth regimeLg � ε−1, the lower bound is Ω(NL

1/3
g ε−1/3+√

NLgε−1) while our upper bound is Õ(Nε−2/3+
√
Nε−1), and a different algorithm gives a better

oracle complexity O(N
√
Lgε−1) (see Appendix A.3) which still falls short of the lower bound.

The second regime is the non-smooth regime Lg � ε−1, where both the upper and lower bounds
share the termNε−2/3. Comparing the lower bound to the variance reduced upper bound (6), we see
that they disagree if and only if Nε−2/3 + ε−2 �

√
NLgε−1 which is equivalent to N � Lgε

1/3

13
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and N � ε−3/Lg. Clearly, this is only possible only when Lg � ε−5/3, and so we conclude that
the rate (6) is in fact optimal whenever ε−1 � Lg � ε−5/3. Moreover, the upper bound (8) matches
the lower bound whenever N � ε−2 for any Lg � ε−1. We conclude that gaps in the non-smooth
regime exist only for Lg � ε−5/3 and ε−3/Lg � N � min{ε−2, ε1/3Lg}.

Closing the gap in the non-smooth regime. Improving the bound (8) from Õ(Nε−2/3 + ε−8/3)
to Õ(Nε−2/3 + ε−2) would imply that (13) gives the optimal rate for any Lg � ε−1. The main
barrier for obtaining such improvement is our accuracy requirements δt = O(ε/λt) in Algorithm 1.
Meeting this requirement with SGD means that each oracle implementation costs Õ(N + ε−2)
function/gradient evaluations, and multiplying this cost by the number of rounds Õ(ε−2/3) yields
the exponent 8/3. A variant of Algorithm 1 which can handle less accurate BROO outputs could
close this gap by allowing a more efficient SGD-based implementation.

Closing the gap in the smooth regime. The gap between our upper and lower bounds when
Lg � ε−1 is more fundamental than the one arising for Lg � ε−5/3, because it affects the term
linear in N . The barrier for improving the linear term in our algorithm is the ball radius. Any rε-
BROO implementation with Ω(N) cost will have overall complexity Ω(Nr

−2/3
ε ). The techniques

we develop in Section 4 only allow us to support rε = Õ(ε), because this is the largest radius where
the exponentiated softmax is stable (see Lemma 3).

Conjectures and future work. We conjecture that our lower bound is in fact optimal in both
smoothness regimes. In future work we will attempt to close the remaining complexity gaps de-
scribed above.

6.2. Some necessary algorithmic structures

Several aspects of our method, namely functions value access, individual function queries and ran-
domization are necessary for any method that achieves (or improves on) our complexity bounds.
See Appendix A.4 for detailed discussion.

6.3. Practical considerations

The main purpose of the algorithms we develop in this paper is to clarify the complexity of the
fundamental optimization (1). Nevertheless, since this problem formulation is relevant for a number
of machine learning tasks [13, 21, 36], it is interesting to try and develop a more practical variant of
algorithms. Two aspects of our method which we believe will be particularly useful in practice are
the gradient estimation scheme we use in Algorithm 2 and the momentum scheme in Algorithm 1.

However, a number of aspects of our method seem rather impractical. First, the theory instructs
us to constrain subproblem solutions to a very small ball of radius rε of roughly ε/Lf . Since usually
neither ε or Lf are known in advance, the parameter rε must be tuned. Moreover, choosing rε to
be small in keeping with the theory would likely mean very slow progress in the early stages of the
algorithm. A second impractical aspect is the bisection stage in Algorithm 1: while in theory the
bisection only increases complexity by a logarithmic factor, in practice it entails solving a consid-
erable number of sub-problems without making progress. This bisection overhead is an issue with
Monteiro-Svaiter acceleration more broadly and a topic of active research [37, 34].
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Appendix A. Additional discussion

Here we discuss three important points that exceeded the scope of our introduction. First, Ap-
pendix A.1 explains what makes L2

f/ε a natural smoothness scale and when we can expect the fi
to be at least that smooth. Then, Appendix A.2 discusses the maximally smooth case of linear loss
functions, and compare our results to guarantees of methods specialized to this setting. Finally,
Appendix A.3 considers the computational complexity of implementing the steps in the accelerated
iterative linearization scheme of [33, Section 2.3.1].

A.1. The generality of the smoothness assumption Lg = O(L2
f/ε)

Let f be a convex, Lf Lipschitz function. When f is not continuously differentiable, it is still
possible to uniformly approximate it with a continuously differentiable function, that moreover has
a Lipschitz gradient. More concretely, for every ε > 0, we may consider the infimal convolution of
f with a quadratic regularizer (also known as its Moreau envelope):

f̃(x) = min
y∈Rd

{
f(y) +

L2
f

2ε
‖x− y‖2

}
. (14)

It holds that 0 ≤ f(x)− f̃(x) ≤ ε/2 for all x ∈ Rd and moreover that f̃ is L2
f/ε smooth (i.e., with

L2
f/ε Lipschitz gradient) [see, e.g., 18]. Therefore, if we wish to minimize f to accuracy ε, we may

choose ε = ε and replace f with the O(L2
f/ε)-smooth function f̃ .

The computational cost of such replacement depends on the application. In certain cases,
smoothed versions of the fi’s have closed-form expression, and we may simply define the prob-
lem with them instead. Moreover, in several machine learning applications each function fi is
“simple,” and querying index i really corresponds to obtaining full access to this function, in which
case directly computing (14) might be feasible.

However, when we are truly restricted to accessing fi through a gradient and value black box,
there will be some instances where computing (14) (and indeed any other smoothing) is substantially
more expensive than a single oracle query. To see this, note that the worst-case oracle complexity
of minimizing a single non-smooth convex function scales as Ω(L2

fR
2ε−2), while the complexity

of minimizing an Lg-smooth function scales as O(
√
LgR2ε−1). If Tε is the worst number of oracle

calls required to compute an O(ε)-accurate O(L2
f/ε)-smooth approximation for any Lf -Lipschitz,

we immediately have a general complexity upper bound of O(TεLfRε
−1). Comparing it to the

lower bound Ω(L2
fR

2ε−2) immediately yields that Tε = Ω(LfRε
−1) in the worst case. Therefore,

the fact that our algorithm maintains the same leading order dependence on N even for Lg =∞ is
nontrivial and potentially useful.

A.2. The special case of linear loss functions (Lg = 0)

When the losses are linear (i.e., fi(x) = a>i x+bi) exactlyN function value and gradient evaluations
suffice to completely identify the problem instance, so the optimal oracle complexity should never
be more than N . In this setting, then, it is more relevant to discuss the computational (runtime)
complexity of solving the problem (1). To simplify the following discussion, we return to the setting
in the introduction where each fi is 1-Lipschitz (i.e., ∇fi has norm at most 1) and we assume the
existence of a minimizer of Fmax with Euclidean norm at most 1.
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In the linear setting, an equivalent form of the problem (1) is

minimize
x∈Rd

max
p∈∆N

p>(Ax− b)

where A is a matrix whose ith row contains ∇fi. Stochastic primal-dual methods are able to take
advantage of this matrix structure to obtain cheap unbiased estimates for the gradients of pTAxwith
respect to both x and p, sampling rows and columns of A respectively. Assuming that reading a row
and a column of A takes O(N +d) time, the stochastic primal-dual method has runtime complexity
Õ((N + d)ε−2) which, for sufficiently large ε, is sublinear in the problem size Nd [13]. For
lower values of ε, a variance reduction technique [10] has preferable runtime complexity Õ(Nd +√
Nd(N + d)ε−1).

In comparison, in the linear case our method has runtime complexity Õ(Ndε−2/3 +
√
Ndε−1)

assuming that sampling a row takes O(d) time. This improves on the variance reduction method
in the somewhat narrow parameter regime N = Ω̃(d) and d = Õ(ε−2/3). However, we note that
our method operates under a strictly weaker access assumption, since it only samples rows and not
columns. In scenarios where accessing a column takes ω(N) time, the relative merit of the methods
changes. In the most extreme case where reading a column ofA is as expensive as reading the entire
matrix (e.g., because the rows are scattered across many devices), the stochastic primal-dual meth-
ods become less efficient than exact-gradient counterparts with runtime Õ(Ndε−1) [31, 28, 32],
while the runtime of our method is unchanged and always superior. To the best of our knowledge,
this is the first guarantee for a stochastic gradient method that improves on exact gradient methods
in a first-order oracle model that can only provides rows of A.

The literature also considers high-order methods for solving the linear case of problem (1) to
better accuracy but with potentially worse dependence on problem dimension. Bullins [9] proposes
a fourth-order accelerated regularization method that requires Õ(ε−4/5) solutions of linear systems
of the form A>DA = b for a positive diagonal matrix D. Carmon et al. [12] use ball oracle ac-
celeration to obtain an improved method requiring only Õ(ε−2/3) linear system solutions. They
also propose to solve these systems using an efficient first-order method, resulting in a runtime
guarantee of Õ(Ndε−2/3 + d3/2ε−5/3). We believe more careful reasoning about the condition-
ing of each linear system to be solved (as we do in Section 4.3) would improve this guarantee to
Õ(Ndε−2/3 + d3/2ε−1) under the assumption that individual entries of A take O(1) time to read.
In the linear case, this improves on our result when d < N , albeit with stronger matrix access
assumptions.

For even higher accuracy, it is possible to express the linear case of problem (1) as a linear
program and solve it using interior point methods. The best existing theoretical runtimes for these
methods are Õ((Nd+(N∧d)2)

√
N ∧ d) [23] or Õ(Nd+d2.5) [6], both depending logarithmically

on the desired accuracy 1/ε. When the problem dimensionsN and d are sufficiently large compared
to 1/ε, first-order methods are preferable.

A.3. The computational complexity of accelerated iterative linearization

This subsection uses our full notation defined in Section 2. We suggest considering this section after
reading Sections 3 and 4 as well.

In [33, Section 2.3.1], Nesterov shows how solving O(
√
LgR2ε−1) subproblems of the form

min
x∈Rd

max
i∈[N ]

{
fi(yt) + (∇fi(yt))>(x− yt) +

Lg
2
‖x− yt‖2

}
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allows solving the problem (1) when the functions are Lg-smooth. We note that each subproblem is
equivalent to

min
x∈Rd

max
p∈∆N

{
p>(Ax− b) +

Lg
2
‖x‖2

}
for a matrixA ∈ RN×d whose rows have norm at most Lf . Consequently we may apply a variance-
reduced bilinear saddle-point method to solve the subproblem to additive error ν in time

Õ

(
Nd+

√
Nd(N + d)

Lf√
Lgν

)
,

see Proposition 6 and the subsequent discussion in the arXiv version of [10].
Applying the same arguments used to prove Theorem 2—but with λt = Lg for all t—we have

that the required subproblem solution accuracy is O( ε2

LgR2 ), and consequently we can solve each
problem in time

Õ

(
Nd+

√
Nd(N + d)

LfR

ε

)
.

Assuming Tf + Tg = Ω(d), the overall cost of the method is

Õ

(
N(Tf + Tg)

√
LgR2

ε
+
√
Nd(N + d)

Lf
√
LgR

2

ε3/2

)
.

A.4. Some necessary algorithmic structures

We now argue that several aspects of our method, namely functions value access, individual func-
tion queries and randomization are necessary in any method that achieves (or improves on) our
complexity bounds.

Function value access. It is possible to minimize a convex function f by iterative (sub)gradient
evaluations, without access to the value of f itself. In contrast, all algorithms for minimizing
Fmax = maxi∈[N ] fi(x) must query the values of the fi’s in addition to their gradients. To see
why this is so, consider the case where fi(x) = Π(i) − xi, where Π is a random permutation
of [N ] and the domain is the unit Euclidean ball. The global minimum of maxi∈[N ] fi(x) is the
Π−1(N)-th standard basis vector. However, gradients provide no information about Π−1(N), since
∇fi(x) = −ei for all x, independent of Π.

Individual-function access. The algorithms from prior work in Table 1 (namely the subgradi-
ent method, AGD on softmax and AGD on linearization) are full-batch methods: they proceed by
querying all N functions f1, . . . , fN at the same point xt and using the result to generate the next
query point xt+1. In contrast, our BROO implementations proceed by sampling an index it, com-
puting ∇fi at xt (and potentially another point), and generating the next query xt+1. Full-batch
methods are more amenable to parallelization, but for our problem have demonstrably worse oracle
complexity. To see this, consider the case where all the fi’s are identical and equal to standard hard
instance for convex optimization. For such input, any full-batch methods will have oracle complex-
ity Ω(N min{ε−2,

√
Lgε−1}) [14], which is worse than our upper bounds for any Lg � ε−1/3 and

sufficiently large N .
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Randomization. Another contrast between the prior algorithms in Table 1 and our algorithm is
that the former are deterministic while ours is randomized. Woodworth and Srebro [39] prove a
lower bound of Ω(N min{ε−2,

√
Lgε−1}) gradient queries for any deterministic method for min-

imizing the average of N functions. Observing that the maximum of the N functions in their
construction has the same minimum value as their average (and that the maximum upper bounds
the average in any other points), we conclude that this lower bound is also valid for any determin-
istic method for solving the problem (1). Therefore, randomization is necessary for obtaining our
improved rates of convergence.

Appendix B. Proof of Theorem 2

In this section we give the analysis of our accelerated algorithm. Our analysis builds off of [12]
and proceeds in several parts. We first prove several standard technical results Appendix B.1. Then,
in Appendix B.2 we give the proof of Theorem 2 assuming the correctness of the λ-BISECTION

subroutine. Finally in Appendix B.3 we prove this correctness.

B.1. Preliminary technical results

First, we observe that Oλ,δ(y) returns a point which is close to bproxfλ,r(y), the true minimizer of
the proximal objective.

Lemma 11 Let f be a convex function and let x = bproxfλ,r(y). Then if Oλ,δ(·) is an r-BROO for
f, the point x̃ = Oλ,δ(y) satisfies ‖x̃− x‖ ≤ δ.

Proof By Definition 1 of the BROO, we have

ν =

[
f(x̃) +

λ

2
‖x̃− y‖2

]
−
[
f(x) +

λ

2
‖x− y‖2

]
≤ λδ2

2
.

Since the function f(x)+λ
2‖x−y‖

2 is λ-strongly convex, we obtain ν ≥ λ
2‖x−x̃‖

2
2, and substituting

ν ≤ λδ2/2 gives the result.

Second, we provide standard facts regarding proximal mappings. Though this follows from
standard facts regarding subgradients we provide a self-contained proof for completeness.

Lemma 12 Let f : Rd → R be a convex function, S ⊆ Rd be a closed convex set, λ ≥ 0, and
xλ, x0 ∈ S satisfy

xλ = arg min
x∈S

{
f(x) +

λ

2
‖x− x0‖2

}
Then gλ := λ(x0 − xλ) is a subgradient of f , i.e.,

f(y) ≥ f(xλ) + 〈gλ, y − xλ〉 for all y ∈ S . (15)

Further, we have

g>λ (xλ − z) =
λ

2
‖z − x0‖2 −

λ

2
‖z − xλ‖2 −

λ

2
‖xλ − x0‖2 for all z ∈ Rd (16)

and
f(xλ) ≤ f(y) +

λ

2
‖y − x0‖2 −

λ

2
‖y − xλ‖2 −

λ

2
‖xλ − x0‖2 for all y ∈ S . (17)
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Proof Let xα := α · y + (1− α) · xλ for all α ∈ (0, 1]. Note that xα ∈ S for all α ∈ (0, 1] since S
is convex and xλ, y ∈ S. Consequently, (15) and convexity of f imply that for all α ∈ [0, 1]

f(xλ) +
λ

2
‖xλ − x0‖2 ≤ f(xα) +

λ

2
‖x0 − xα‖2

≤ αf(y) + (1− α)f(xλ) +
λ

2
‖α (x0 − y) + (1− α)(x0 − xλ)‖2 .

Rearranging yields that for all α > 0 implies

f(xλ)− f(y) ≤ λ

2α

[
α2‖x0 − y‖+ 2α(1− α) 〈x0 − y, x0 − xλ〉+ (1− α)2‖xλ − x0‖2 − ‖xλ − x0‖2

]
Taking the limit as α→ 0 yields that

f(xλ)− f(y) ≤ λ(x0 − y)>(x0 − xλ)− 2λ‖xλ − x0‖2 = λ(xλ − x0)>(x0 − xλ)

The remaining claims (16) and (17) follow from direct algebraic manipulation of this inequality and
the definition gλ = λ(x0 − xλ).

Third, we bound the function error induced by proximal mapping.

Lemma 13 Let f : Rd → R be a convex function, λ ≥ 0, and xλ, x0 ∈ Rd satisfy xλ = proxfλ(x0).
If y ∈ Rd satisfies ‖y − x0‖ ≤ R and ‖xλ − x0‖ ≤ Θ then f(xλ)− f(y) ≤ λΘR.

Proof Bound (15) in Lemma 12 yields

f(xλ)− f(y) ≤ −λ 〈x0 − xλ, y − xλ〉 = −λ 〈x0 − xλ, y − x0〉 − λ‖x0 − xλ‖2

≤ λ 〈xλ − x0, y − x0〉 ≤ λ‖x0 − xλ‖ · ‖y − x0‖ ≤ λΘR .

Fourth, we prove that for any constrained minimizer of f (denoted x?), BROO calls either
decrease the distance to x? or have objective value not much worse than x?.

Lemma 14 Let f be a convex function, ε, R ≥ 0, x0 ∈ Rd, x? ∈ BR(x0), y ∈ BR(x?), and
x′ = Oλ,δ(y) for δ ≤ ε

4λR and λ ≥ ε
3R2 . If f(x′) − f(x?) >

ε
2 and proxfλ(y) = bproxfλ,r(y) then

‖x′ − x?‖ < ‖y − x?‖.

Proof Let xλ = proxfλ(y). Since proxfλ(y) = bproxfλ,r(y), Definition 1 of Oλ,δ(·) implies

f(x′) ≤ f(x′) +
λ

2
‖x′ − y‖2 ≤ f(xλ) +

λ

2
‖xλ − y‖2 +

λδ2

2
.

Further, Equation (17) implies that

f(xλ) ≤ f(x?) +
λ

2
‖x? − y‖2 −

λ

2
‖x? − xλ‖2 −

λ

2
‖xλ − y‖2.
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Combining these inequalities, rearranging, and using f(x′)− f(x?) >
ε
2 yields

λ

2
‖xλ − x?‖2 ≤

λ

2
‖y − x?‖2 −

ε

2
+
λδ2

2
. (18)

Since λδ2 ≤ ε2

12λR2 ≤ ε
6 <

ε
2 , this implies ‖xλ − x?‖ ≤ ‖y − x?‖.

By the triangle inequality, we have ‖x′ − x?‖ ≤ ‖xλ − x?‖+ ‖x′ − xλ‖. Thus,

‖x′ − x?‖2 ≤ ‖xλ − x?‖2 + 2‖xλ − x?‖ · ‖x′ − xλ‖+ ‖x′ − xλ‖2

≤ ‖xλ − x?‖2 + 2δ‖y − x?‖+ δ2 ≤ ‖xλ − x?‖2 + 2δR+ δ2,

where we have used ‖xλ − x?‖ ≤ ‖y − x?‖ (argued above) along with ‖x′ − x̂‖ ≤ δ (Lemma 11)
and the assumption that y ∈ BR(x?). Substituting into (18), we have

λ‖x′ − x?‖2 ≤ λ‖y − x?‖2 − ε+ 2λδR+ 2λδ2.

To conclude the proof we note that −ε+ 2λδR+ 2λδ2 < 0 since λδ ≤ ε/(4R) and λδ2 ≤ ε/6.

Fifth, we bound the movement of the proximal operator by the Lipschitz continuity of the ob-
jective.

Lemma 15 Let f : Rd → R be convex and Lf -Lipschitz. Then for all λ > 0 and y ∈ Rd,

‖proxfλ(y)− y‖ ≤
Lf
λ
.

Proof Let xλ := proxfλ(y)− y. Equation (15) of Lemma 12 implies that

f(y)− f(xλ) ≥ λ 〈x0 − xλ, x0 − xλ〉 = λ‖x0 − xλ‖2.

Further, Lf -Lipschtiz continuity of f implies f(y) ≤ f(xλ) + Lf‖x0 − xλ‖2. Combining and
noting that the claim is trivial when ‖x0 − xλ‖ = 0 yields the claim.

Finally, we mention a standard lemma about the relation between the sequences {At} and {λt}
in accelerated proximal methods.

Lemma 16 ([cf. 12, Lemma 23]) For any iteration t of Algorithm 1, we have At = a2
tλt and√

At ≥
1

2

∑
i∈[t]

1√
λi
.

B.2. Main algorithm analysis

In this section we give the analysis of our accelerated algorithm. Before going into the technical
details, let us provide a brief overview of the algorithm and its analysis. At its core, our algorithm
is an accelerated proximal point method [19, 25, 16]. These methods iteratively compute proxi-
mal points of the form xt+1 ≈ proxfλt+1

(yt) and then use a momentum-like extrapolation scheme
to compute yt+1. Accelerated proximal points methods differ in the methods they employ to (ap-
proximately) compute that proximal points and the choices of {λt}. Our method approximates
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xt+1 ≈ proxfλt+1
(yt) using calls to a BROO, and employs a bisection procedure that finds val-

ues of λt for which such approximation is valid because the ball constraint is inactive, i.e., when
‖xt+1 − yt‖ < r.

The crux of the analysis of our method is showing that the optimization error decreases roughly
as exp

(
−Ω(1)

∑
i∈[t](‖xt+1 − yt‖/R)2/3

)
. By requiring our bisection procedure to find values for

which ‖xt+1− yt‖ ∈ [r/2, r), we obtain the claimed Õ((R/r)2/3) complexity bound. Our analysis
of our method closely follows the previous ball-oracle acceleration proof of [12], which itself draws
from prior analyses of Monteiro-Svaiter-type algorithms [17, 7].

The differences between our algorithm and proof and those in [12] center around handling
non-smoothness and less accurate ball oracle outputs. In particular, in Line 7 of Algorithm 1 we
estimate ∇f(proxfλt+1

(yt)) as λt+1(yt − xt+1), which allows us to avoid smoothness assumptions
but requires a somewhat different proof of the main potential bound. We also remove the assumption
that x0 is within distance R from a global minimizer of f , and instead compare the function value
of our output to the minimizer of f in a ball of radius R. Our bisection subroutine and its analysis
also differ from its counterpart in [12]; we explain these differences in the next subsection.

Our analysis of the Algorithm 1 outer loop relies on the following guarantee for our bisection
subroutine, which we prove in Appendix B.3.

Proposition 17 (Bisection) Let f : Rd → R be Lf -Lipschitz and convex, and let x, v ∈ Rd,
ε, r, R ∈ R>0 satisfy ε ≤ LfR, r ≤ R and ‖x − v‖ ≤ 2R. Given λmax ≥

2Lf
r and λmin ∈

(0, λmax), λ-BISECTION(x, v,A) outputs λ ∈ [λmin, λmax] such that

proxfλ(yλ) = bproxfλ,r(yλ)

(i.e., ‖proxfλ(yλ)−yλ‖ ≤ r). The subroutine usesO(log(λmax
λmin

)+log(
R+Lf/λmin

r )) calls toOλ′, r
17

(·)
with λ′ ∈ [1

2λ, λmax]. Moreover, for α2λA = 2λA
1+2λA+

√
1+4λA

and yλ := α2λAx+ (1− α2λA)v one
of the following outcomes must occur:

(a) λ ∈ [2λmin, λmax] and ‖proxfλ(yλ)− yλ‖ > 3r
4 , or

(b) λ < 2λmin.

When taking λmax =
2Lf
ε , λmin = ε

6rR , the number of calls toOλ′, r
17

(·) is bounded byO(log
LfR

2

rε ).

For the remainder of this section, we fix a parameter R and let

x? ∈ arg min
x∈BR(x0)

f(x)

denote a minimizer of f in a ball of radius R around the initial point x0. (If it is not unique, we
choose one arbitrarily). Based on the iterates {xt, vt, At} generated by Algorithm 1, we define the
following quantities:

Et := f(xt)− f(x?), Êt = Et −
ε

4
, Dt =

1

2
‖vt − x?‖2, and Pt = AtÊt +Dt. (19)

In the following lemma we prove our main potential decrease bound, under the conditions that
the iterates xt, vt are within distance 2R of each other and (implicitly) that a suitably good solution
has yet to be found. We establish these conditions inductively in subsequent lemmas and leverage
this to lower bound the growth of At and prove Theorem 2.
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Lemma 18 Let f be a convex function, x0 ∈ Rd and ε, R > 0. If at iteration t of Algorithm 1 the
following conditions hold,

(a) ‖xt − vt‖ ≤ 2R

(b) λt+1 ≥ ε
3rR

we have

Pt+1 − Pt ≤ −
At+1λt+1r

2

12
.

Proof Let

x̂t+1 := bproxfr,λt+1
(yt) = arg min

x∈Br(yt)

{
f(x) +

λt+1

2
‖x− yt‖2

}
.

Condition (a) and Proposition 17 guarantee that the ball constraint is inactive, i.e.,

x̂t+1 = bproxfr,λt+1
(yt) = proxfλt+1

(yt) = arg min
x∈Rd

{
f(x) +

λt+1

2
‖x− yt‖2

}
.

(Note that yt is precisely yλ defined in Proposition 17). Consequently, by Lemma 12 we have that
gt+1 := λt+1(yt − x̂t+1) ∈ ∂f(x̂t+1), i.e.,

f(u) ≥ f(x̂t+1) + g>t+1(u− x̂t+1) for all u ∈ Rd. (20)

Further, since vt+1 = arg minv∈BR(x0)

{
at+1 〈yt − xt+1, v〉+ 1

2‖v − vt‖
2
}

and x? ∈ BR(x0) ap-
plying Lemma 12 again (with u = x? ∈ BR(x0)) yields that

at+1λt+1 〈yt − xt+1, vt+1 − x?〉 ≤
1

2
‖vt − x?‖2 −

1

2
‖vt+1 − x?‖2 −

1

2
‖vt+1 − vt‖2

= Dt −Dt+1 −
1

2
‖vt+1 − vt‖2 . (21)

Our proof strategy is to upper and lower bound the inner product 〈gt+1, vt+1 − x?〉. In particu-
lar, we will lower bound this inner product using (20) and upper bound it using (21). Towards this
end, we define the point

ỹt :=
At
At+1

xt +
at+1

At+1
vt+1.

We remark that the use of ỹt is inspired from the acceleration analysis of Allen-Zhu and Orecchia
[2]. From the definition of yt, we obtain

vt =
1

at+1
(At+1yt −Atxt) and vt − vt+1 =

At+1

at+1
(yt − ỹt) . (22)

Recalling that At+1 = At + at+1, we have

vt+1 =
1

at+1
(At+1ỹt −Atxt) = x̂t+1 +

At
at+1

(x̂t+1 − xt)−
At+1

at+1
(x̂t+1 − ỹt) . (23)
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To begin our inner product lower bound, we note that

〈gt+1, vt+1 − x?〉 = 〈gt+1, x̂t+1 − x?〉+
At
at+1

〈gt+1, x̂t+1 − xt〉 −
At+1

at+1
〈gt+1, x̂t+1 − ỹt〉

≥ f (x̂t+1)− f (x?) +
At
at+1

[f (x̂t+1)− f (xt)]−
At+1

at+1
〈gt+1, x̂t+1 − ỹt〉

=
At+1

at+1
[f (x̂t+1)− f (x?)]−

At
at+1

[f (xt)− f (x?)]−
At+1

at+1
〈gt+1, x̂t+1 − ỹt〉 ,

(24)

where the inequality follows from (20). To relate f(x̂t+1) to f(xt+1) in (24), we use the approxi-
mation guarantee (3) defining Oλ,δ(·) to obtain

f(x̂t+1) ≥ f(xt+1) +
λt+1

2
‖xt+1 − yt‖2 −

λt+1

2
‖x̂t+1 − yt‖2 −

λt+1δ
2
t+1

2

≥ f(xt+1) +
λt+1

2
‖xt+1 − yt‖2 + 〈gt+1, x̂t+1 − ỹt〉 −

λt+1

2
‖yt − ỹt‖2 −

λt+1δ
2
t+1

2

where we used 〈gt+1, x̂t+1 − ỹt〉 = λt+1

2 ‖yt − ỹt‖
2 − λt+1

2 ‖x̂t+1 − ỹt‖2 − λt+1

2 ‖x̂t+1 − yt‖2 (as in
Lemma 12) to obtain the second inequality. Substituting into (24) and recalling that Et = f(xt) −
f(x?) yields

〈gt+1, vt+1 − x?〉 ≥
At+1

at+1
Et+1 −

At
at+1

Et +
At+1λt+1

2at+1

[
‖xt+1 − yt‖2 − δ2

t+1 − ‖yt − ỹt‖2
]
.

The lower bound λt+1 ≥ ε
3rR implies that δt+1 = ε

12λt+1R
≤ r

4 . Moreover, by condition (b)
(λt+1 ≥ ε

3rR ) and Proposition 17 we have that ‖x̂t+1 − yt‖ ≥ 3r/4. Applying Lemma 11 we
conclude that

‖xt+1 − yt‖2 − δ2
t+1 ≥ (‖x̂t+1 − yt‖ − δt+1)2 − δ2

t+1 ≥ r2
[
(3

4 −
1
4)2 − (1

4)2
]
≥ r2

6
.

Substituting back, we have

〈gt+1, vt+1 − x?〉 ≥
At+1

at+1
Et+1 +

At
at+1

Et −
At+1λt+1r

2

12at+1
− At+1λt+1

2at+1
‖yt − ỹt‖2. (25)

We now proceed to upper bound 〈gt+1, vt+1 − x?〉. Recalling gt+1 = λt+1(yt−x̂t+1) we obtain

〈gt+1, vt+1 − x?〉 = λt+1 〈yt − xt+1, vt+1 − x?〉+ λt+1 〈xt+1 − x̂t+1, vt+1 − x?〉
≤ λt+1 〈yt − xt+1, vt+1 − x?〉+ λt+1‖xt+1 − x̂t+1‖‖vt+1 − x?‖. (26)

To bound the term λt+1‖xt+1 − x̂t+1‖‖vt+1 − x?‖, note that ‖xt+1 − x̂t+1‖ ≤ δt+1 by Lemma 11,
‖vt+1−x?‖ ≤ 2R since vt+1 and x? are both in BR(x0) by assumption, and λt+1δt+1 ·2R = ε

6 ≤
ε
4 .

To bound the term λt+1 〈yt − xt+1, vt+1 − x?〉 we apply (21). Applying these bounds to (26) yields

〈gt+1, vt+1 − x?〉 ≤
1

at+1

[
Dt −Dt+1 −

1

2
‖vt+1 − vt‖2 +

at+1ε

4

]
=

1

at+1

[
Dt −Dt+1 −

A2
t+1

2a2
t+1

‖yt − ỹt‖2 + (At+1 −At)
ε

4

]
, (27)

26



THINKING INSIDE THE BALL

where the equality is due to (22) and at+1 = At+1 −At.
Combining the lower and upper bound (25) and (27) and rearranging, we have

At+1(Et+1− ε
4)+Dt+1−At(Et+1− ε

4)−Dt ≤ −
At+1λt+1r

2

12
+

(
At+1λt+1 −

A2
t+1

a2
t+1

)
1

2
‖yt−ỹt‖2.

The proof is complete upon noticing that At+1λt+1 −
A2
t+1

a2
t+1

= 0 (since At+1 = a2
t+1λt+1) and that

Pt = AtÊt +Dt = At(Et − ε
4) +Dt.

Lemma 18 shows that the potential Pt decreases significantly whenever λt+1 is not too small
and ‖xt − vt‖ ≤ 2R holds; we now the latter condition inductively.

Lemma 19 Fix t ≥ 1. In Algorithm 1 if f(xi)− f(x?) > ε and λi ≥ ε
3rR for all 0 ≤ i ≤ t then

‖xt − x?‖ ≤ R, ‖vt − x?‖ ≤ R, and Pt − P0 ≤ −
∑

i∈[t−1]

Ai+1λi+1r
2

12
.

Proof We proceed by induction on t. For the base case of t = 0, we note that ‖v0 − x?‖ =
‖x0 − x?‖ ≤ R by assumption, and that P0 − P0 ≤ 0 trivially. Therefore we assume the inductive
hypothesis that the lemma statement holds for iteration t, and show that it also holds for t+ 1. First,
we note that ‖xt−x?‖ ≤ R, ‖vt−x?‖ ≤ R and λt+1 ≥ ε

3rR satisfy the conditions of Lemma 18 and
consequently Pt+1 ≤ Pt − 1

12At+1λt+1r
2; together with the inductive hypothesis this establishes

Pt+1 − P0 ≤ −
t∑
i=0

Ai+1r
2λi+1

12
.

Next, we note that f(xt+1)− f(x?) > ε implies that Êt+1 = f(xt+1)− f(x?)− ε
4 > 0. Recalling

the definition (19) and A0 = 0, this implies

1

2
‖vt − x?‖2 = Dt ≤ AtÊt +Dt = Pt ≤ P0 = D0 =

1

2
‖x0 − x?‖2 ≤

1

2
R2,

and consequently
‖vt+1 − x?‖ ≤ R.

To complete the induction step we need to argue that ‖xt+1 − x?‖ ≤ R. To that end, we invoke
Lemma 14 (recalling that f(xt+1) − f(x?) > ε by assumption) which shows that ‖xt+1 − x?‖ ≤
‖yt − x?‖ or f(xt+1)− f(x?) ≤ ε

2 . The definition yt = At
At+1

xt + at+1

At+1
vt gives

‖xt+1 − x?‖ ≤ ‖yt − x?‖ ≤
At
At+1

‖xt − x?‖+
at+1

At+1
‖vt − x?‖ ≤ R,

where the final bounds holds sinceAt+1 = At+at+1 and ‖xt−x?‖, ‖vt−x?‖ ≤ R by the inductive
assumption.
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Lemma 20 Fix t ≥ 1. In Algorithm 1 if f(xi)− f(x?) > ε and λi ≥ ε
3rR for all 0 ≤ i ≤ t then

At ≥ exp

(
r2/3

R2/3
(t− 1)

)
A1 .

Proof Lemma 19 implies that

Pt − P0 ≤ −
t∑
i=0

Ai+1r
2λi+1

12
.

Further, that f(xi)−f(x?) ≥ ε for all i ≤ t implies Êt ≥ 0 and therefore Pt ≥ 0. Combining these
facts with the facts that A0 = 0 and the Ai increase monotonically yields

t−1∑
i=0

Ai+1λi+1 ≤
12

r2
P0 =

12

r2
D0 ≤

6R2

r2
. (28)

Next, note that the reverse Hölder inequality with p = 2/3 states that for any u, v ∈ Rd>0

〈u, v〉 ≥

∑
i∈[d]

u
2/3
i

3/2

·

∑
i∈[d]

v−2
i

−1/2

.

We therefore have

√
At

(i)

≥ 1

2

∑
i∈[t]

1√
λi

(ii)

≥ 1

2

∑
i∈[t]

(√
Ai

)2/3

3/2

·

∑
i∈[t]

(
1√
Aiλi

)−2
−1/2

(iii)

≥ 1

2

∑
i∈[t]

(√
Ai

)2/3

3/2

· r√
6R

,

where we used (i) Lemma 16, (ii) the reverse Hölder inequality with ui =
√
Ai and vi = 1/

√
Aiλi,

and (iii) the bound (28). Rearranging, we have

A
1/3
t ≥ r2/3

3R2/3

∑
i∈[t]

A
1/3
i

 . (29)

Lemma 28 of [12] shows that for any sequence of At that satisfy (29) for all t ∈ [T ] also satisfies

A
1/3
T ≥ exp

(
r2/3

3R2/3
(T − 1)

)
A

1/3
1

and the result follows.

We are now ready to prove our main theorem.
Proof [Proof of Theorem 2] This proof proceeds in parts. First, we show that whenever the algo-
rithm terminates, i.e. one of the conditions of Line 8 is met, then Algorithm 1 outputs a point xret

with f(xret)−f(x?) ≤ ε on Line 9 . Next, we bound To, the value of t at termination on Line 9, and
show that To = O

((
R
r

)2/3
log
(

[f(x0−f(x?))]·R2

ε·r2

))
. Leveraging these facts we complete the proof.
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Termination due to small λTo+1. Consider the case where the algorithm terminates because
λTo+1 < ε

3rR on Line 8. Further, suppose that f(xi) − f(x?) > ε for all 0 ≤ i ≤ To as oth-
erwise f(xret) − f(x?) ≤ ε as desired. By definition of To, we have λt ≥ ε

3rR for all t ≤ To
(otherwise we would have terminated earlier). Applying Lemma 19, we conclude it must be that
‖xTo − x?‖ ≤ R and ‖vTo − x?‖ ≤ R and therefore ‖yTo − x?‖ ≤ R. By Proposition 17 we have
that x̂To+1 = proxfλ(yTo) = bproxfλ,r(yTo) and thus ‖x̂To+1−yTo‖ < r. Lemma 13 with x0 = yTo ,
xλ = x̂To+1, y = x? and Θ = r then yields

f(x̂To+1)− f(x?) ≤ λt+1rR <
ε

3
.

Moreover, the BROO guarantee (3) gives

f(xTo+1) ≤ f(x̂To+1) +
λTo+1

2

[
‖x̂To+1 − yt‖2 − ‖xTo+1 − yt‖2 + δ2

To+1

]
≤ λTo+1

2
(r2 + δ2

To+1).

Noting that λTo+1 ∈ [ ε
6rR ,

ε
3rR ] and that δTo+1 = ε

12λTo+1R
, we have have λTo+1r

2 ≤ ε · r
3R ≤ ε/3

and λTo+1δ
2
To+1 ≤ ε ·

ε
12R ·

r
2 ≤ ε/24. Substituting back, we have

f(xTo+1)− f(x?) ≤ f(x̂To+1)− f(x?) +
9ε

49
≤ ε

3
+

9ε

49
≤ ε.

Termination due to large ATo+1. Next consider the case where λt+1 ≥ ε
3rR for all t ≤ To but

ATo+1 ≥ R2

ε . In this case, Lemma 19 implies that unless f(xret)− f(x?) ≤ ε

ATo+1

(
f(xTo+1)− f(x?)−

ε

4

)
= ATo+1ÊTo+1 ≤ PTo+1 ≤ P0 = D0 =

1

2
‖x0 − x?‖2 ≤

R2

2
.

Dividing by ATo+1 ≥ R2

ε , we obtain

f(xTo+1)− f(x?) ≤
ε

4
+
ε

2
≤ ε.

Termination due to distant xTo+1, vTo+1. Next consider the case where λt+1 ≥ ε
3rR for all

t ≤ To but ‖xTo+1−vTo+1‖ > 2R. This implies that either ‖xTo+1−x?‖ > R or ‖vTo+1−x?‖ > R.
Consequently, Lemma 19 implies that f(xi)− f(x?) ≤ ε for some 0 ≤ i ≤ To + 1.

Termination due to slow At growth. Next consider the case where λt+1 ≥ ε
3rR for all t ≤ To

but ATo+1 < exp
(
r2/3

R2/3 (To − 1)
)
A1. In this case Lemma 20 implies that f(xi) − f(x?) ≤ ε for

some 0 ≤ i ≤ To + 1 and therefore f(xret)− f(x?) ≤ ε as desired.

We conclude that in each of the four possible causes for the algorithm to terminate, i.e. one of
the conditions in Line 8 to be true, the algorithm xret such that f(xret)− f(x?) ≤ ε as desired.

Iteration Bound. We now show that To = O
(
R2/3

r2/3 log
(

[f(x0)−f(x?)]R
εr

))
. Note that by definition

of To as the iterate index t for which termination on Line 9 occurs, we have

exp

(
r2/3

R2/3
· (To − 1)

)
A1 ≤ ATo ≤

R2

ε
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since otherwise we would have terminated on at t = To − 1. Consequently we have that

To = O

(
R2/3

r2/3
log

(
R2

A1ε

))
, (30)

and it remains to lower bound A1 = a1 = 1
2λ1

(since A0 = 0).
Note that since x0 = v0 it is the case that y0 = x0. Consequently, if To > 0, Line 8 implies that

λ1 ≥ ε
3rR , i.e., item (b) of Proposition 17 does not hold). Consequently, Proposition 17 implies that

‖proxfλ1
(x0)− x0‖ ∈ [3r

4 , r] and therefore

f(x0) ≥ f
(

proxfλ1
(x0)

)
+
λ

2
‖proxfλ1

(x0)− x0‖2 ≥ f
(

proxfλ1
(x0)

)
+

9λr2

32
.

Further, since ‖proxfλ1
(x0)− x0‖ ≤ r ≤ R we know that f(proxfλ1

(x0)) ≥ f(x?). Consequently,

λ1 ≤
32[f(x0)− f(x?)]

9r2
and A1 =

1

λ1
≥ 9r2

32[f(x0)− f(x?)]
.

Substituting back to (30) yields the claimed bound on To.

Remaining guarantees. To complete the proof, we observe that in each of the algorithm’s

O

((
R

r

)2/3

log

(
LfR

2

rε

))

iterations, Proposition 17 guarantees that we perform at most O(log
LfR

2

rε ) queries to Oλ,δ(·). It
also guarantees that the queried λ satisfies λ ∈ [ ε

24rR ,
4Lf
r ], yielding item 1 in Theorem 6. Finally,

for the sequence λ(1), . . . , λ(T ) of λ values queried during the execution of Algorithm 1, we have

∑
i∈[T ]

1√
λ(i)

=
∑

t∈[To+1]

∑
i seen in line search

for iteration t

1√
λ(i)

(i)

≤
∑

i∈[To+1]

O(1)√
λt

log

(
LfR

2

rε

)
(ii)

≤ O

(√
ATo +

1√
λmin

)
log

(
LfR

2

rε

)
,

due to (i) Proposition 17 and (ii) Lemma 16 and λTo+1 ≥ λmin = ε
6rR for all t. Finally, Line 8

guarantees ATo <
R2

ε , and (since r ≤ R)
√
ATo + 1√

λmin
= O( R√

ε
), giving item 2 in Theorem 6.

B.3. Bisection analysis

In this section we prove Proposition 17, a guarantee on our bisection subroutine, restated below.

Proposition 17 (Bisection) Let f : Rd → R be Lf -Lipschitz and convex, and let x, v ∈ Rd,
ε, r, R ∈ R>0 satisfy ε ≤ LfR, r ≤ R and ‖x − v‖ ≤ 2R. Given λmax ≥

2Lf
r and λmin ∈

(0, λmax), λ-BISECTION(x, v,A) outputs λ ∈ [λmin, λmax] such that

proxfλ(yλ) = bproxfλ,r(yλ)
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(i.e., ‖proxfλ(yλ)−yλ‖ ≤ r). The subroutine usesO(log(λmax
λmin

)+log(
R+Lf/λmin

r )) calls toOλ′, r
17

(·)
with λ′ ∈ [1

2λ, λmax]. Moreover, for α2λA = 2λA
1+2λA+

√
1+4λA

and yλ := α2λAx+ (1− α2λA)v one
of the following outcomes must occur:

(a) λ ∈ [2λmin, λmax] and ‖proxfλ(yλ)− yλ‖ > 3r
4 , or

(b) λ < 2λmin.

When taking λmax =
2Lf
ε , λmin = ε

6rR , the number of calls toOλ′, r
17

(·) is bounded byO(log
LfR

2

rε ).

B.3.1. PRELIMINARIES AND DISCUSSION

Notation. To analyze the bisection procedure, we use the following functions of λ ≥ 0. Fixing
x, v ∈ Rd and A ≥ 0, we define

yλ := α2Aλ′ · x+ (1− α2Aλ′)·, where ατ :=
τ

1 + τ +
√

1 + 2τ
.

We also define

x̂λ := proxfλ(yλ) = arg min
x∈Rd

{
f(x) +

λ

2
‖x− yλ‖2

}
and

∆̂(λ) := ‖x̂λ − yλ‖. (31)

We approximate x̂λ using the BROO output Oλ,δ(yλ) with δ = r/17, and write

∆(λ) := ‖Oλ,δ(yλ)− yλ‖

for our approximation to ∆̂(λ). Note that, depending on the BROO implementation, ∆(λ) need not
be deterministic. Our bisection procedure implicitly assumes that the BROO is called only once per
input x, v,A and distinct value of λ, and that subsequent references to ∆(λ) use cached values of
Oλ,δ(yλ).

Algorithm overview. The goal of λ-BISECTION is to find a value of λ where ∆̂(λ) < r so that
x̂λ = proxfλ(yλ) = bproxfλ,r(yλ) is well-approximated by the BROO output Oλ,δ(yλ). In addition,
the bisection has to guarantee that either

• ∆̂(λ) ≥ 3r/4, which implies that the outer loop of Algorithm 1 makes sufficient progress
(see Lemma 18), or

• λ < 2λmin, which implies that x̂λ is near-optimal (as we argue in the proof of Theorem 6).

Our procedure (given in Algorithm 1) starts with λ = λmax sufficiently large to guarantee ∆̂(λ) < r.
It then iteratively halves λ until finding λ0 such that ∆(λ0) > 13r

16 or λ0 < λmin. In the latter case
it returns 2λ0 < 2λmin and we note that ∆(2λ0) ≤ 13r

16 implies ∆̂(2λ0) < r. In the former case
we perform a binary search in the interval [λ0, 2λ0] until we find λm such that ∆(λm) ∈ [13r

16 ,
15r
16 ],

which implies ∆̂(λm) ∈ [3r/4, r).
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Comparison to the bisection in [12]. Our bisection procedure essentially attempts to find λ such
that ∆̂(λ) is close to (but smaller than) r. In contrast, Carmon et al. [12] use the implicit relation
yλ − x̂λ = 1

λ∇f(x̂λ) and attempt to find λ such that ‖∇f(x̂λ)‖/λ is close to r. Consequently, the
iteration count bounds on the bisection of [12] depend on the continuity ∇f , whereas our bisection
succeeds even when f is non-smooth and hence ∇f is discontinuous. The key to this improvement
is a careful analysis of the continuity of ∆̂(λ) (see the following subsection). Another novel aspect
of our procedure is the two-stage structure where we first iteratively halve λ and only then perform
a binary search. This structure allows us to guarantee that we never query the BROO with λ′ that
is much smaller than the λ we eventually output. This guarantee is necessary for proving statement
2 in Theorem 6, which in turn is necessary for establishing an optimal complexity bound in the
weakly-smooth regime Lg = Θ(L2

f/ε).

B.3.2. CONTINUITY ANALYSIS OF ∆̂(·)

We begin by proving a bound on the Jacobian of δλ = x̂λ − yλ with respect to λ (Lemma 21)
under the assumption that f is twice differentiable. We subsequently remove this assumption via a
smoothing argument (Corollary 22).

Lemma 21 Let f : Rd → R be convex and twice differentiable, let yλ ∈ Rd be a differentiable
function of λ > 0, x̂λ = proxfλ(yλ), and δλ = x̂λ − yλ. Then for all λ > 0 we have∥∥∥ d

dλ
δλ

∥∥∥ ≤ ∥∥∥ d
dλ
yλ

∥∥∥+
1

λ

∥∥∥δλ∥∥∥ .
Proof Note that∇f(x̂λ) + λ(x̂λ − yλ) = 0. Differentiating yields

∇2f(x̂λ) · d
dλ
x̂λ + (x̂λ − yλ) + λ

(
d

dλ
x̂λ −

d

dλ
yλ

)
= 0 .

Rearranging the terms, we obtain(
∇2f(x̂λ) + λI

)
·
(
d

dλ
x̂λ −

d

dλ
yλ

)
= yλ − x̂λ −∇2f(x̂λ)

d

dλ
yλ .

Since f is convex, ∇2f(x̂λ) is PSD and therefore(
d

dλ
x̂λ −

d

dλ
yλ

)
=
(
∇2f(x̂λ) + λI

)−1 ·
(
yλ − x̂λ −∇2f(x̂λ) · d

dλ
yλ

)
.

Note that
(
∇2f(x̂λ) + λI

)−1∇2f(x̂λ) is a symmetric PSD matrix with all eigenvalues ∈ [0, 1] and(
∇2f(x̂λ) + λI

)−1 is a symmetric PSD matrix with all eigenvalues at most 1/λ. Consequently,
‖
(
∇2f(x̂λ) + λI

)−1∇2f(x)‖ ≤ 1 and ‖
(
∇2f(x̂λ) + λI

)−1‖ ≤ 1
λ yielding the claim.

We now relax the assumption of twice differentiability.

Corollary 22 Let f : Rd → R be Lf -Lipschitz and convex, let yλ ∈ Rd be a differentiable function
of λ > 0, x̂λ = proxfλ(yλ), and δλ = x̂λ − yλ. Then for all λ1, λ2 > 0 we have∥∥∥δλ2 − δλ1

∥∥∥ ≤ ∫ λ2

λ=λ1

∥∥∥ d
dλ
yλ

∥∥∥dλ+

∫ λ2

λ=λ1

1

λ

∥∥∥δλ∥∥∥dλ .
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Proof For σ > 0, let ν = N (0;σ2Id×d) and let fσ(x) = Ef(x + ν). Then fσ is convex, infinitely
differentiable and satisfies 0 ≤ fσ(x)− f(x) ≤ LfE‖ν‖ ≤ Lf

√
dσ for all x ∈ Rd. Thus, applying

Lemma 21 for fσ and δσλ = proxfσλ (yλ)− yλ, we have∥∥∥δσλ2
− δσλ1

∥∥∥ ≤ ∫ λ2

λ=λ1

∥∥∥ d
dλ
yλ

∥∥∥dλ+

∫ λ2

λ=λ1

1

λ

∥∥∥δσλ∥∥∥dλ.
Noting that proxfσλ (yλ) is at most Lf

√
dσ-suboptimal for f(x) + λ

2‖x− yλ‖
2, we have

‖δλ − δσλ‖ = ‖proxfλ(yλ)− proxfσλ (yλ)‖ ≤

√
2Lf
√
dσ

λ

by λ-strong-convexity of x 7→ f(x) + λ
2‖x− yλ‖

2. Substituting back, we find that

∥∥∥δλ2 − δλ1

∥∥∥ ≤ ∫ λ2

λ=λ1

∥∥∥ d
dλ
yλ

∥∥∥dλ+

∫ λ2

λ=λ1

1

λ

∥∥∥δλ∥∥∥dλ+
√
σ ·

5λ2L
1/2
f d1/4

λ
3/2
1

.

For all σ > 0. Taking the limit σ → 0 concludes the proof.

With this, we prove our desired bound on the continuity of ∆̂(λ).

Lemma 23 Let f : Rd → R be convex and Lf -Lipschitz, and for R > 0 let x, v ∈ Rd such that
‖x− v‖ ≤ 2R. For any 0 < λ1 ≤ λ2, the function ∆̂(λ) defined in eq. (31) satisfies

|∆̂(λ1)− ∆̂(λ2)| ≤
(
R+

Lf
λ1

)
log

λ2

λ1
.

Proof Note that for all t > 0

d

dt
αt =

1

1 + t+
√

1 + 2t
− t+ t(1 + 2t)−1/2

(1 + t+
√

1 + 2t)2
=

(1 + t)
√

1 + 2t+ 1 + 2t− t
√

1 + 2t− t
(1 + t+

√
1 + 2t)2

√
1 + 2t

=
1

(1 + t+
√

1 + 2t)
√

1 + 2t
∈
[
0,

1

2t

]
Consequently,

|∆̂(λ1)− ∆̂(λ2)| ≤
∥∥∥ d
dλ
yλ

∥∥∥ =
∥∥∥(v − x)

d

dλ
α2Aλ

∥∥∥ ≤ 2A

4Aλ
‖v − x‖ =

1

2λ
‖v − x‖ ≤ R

λ
.

By Lemma 21 we have∥∥∥δλ2 − δλ1

∥∥∥ ≤ ∫ λ2

λ=λ1

∥∥∥ d
dλ
yλ

∥∥∥dλ+

∫ λ2

λ=λ1

1

λ

∥∥∥δλ∥∥∥dλ.
We also have ‖δλ‖ ≤

Lf
λ from Lemma 15. Substituting back and using λ ≥ λ1, we obtain∥∥∥δλ2 − δλ1

∥∥∥ ≤ (R+
Lf
λ

)

∫ λ2

λ1

dλ

λ
≤
(
R+

Lf
λ1

)
log

λ2

λ1
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as claimed.

Proof [Proof of Proposition 17] We first prove the correctness of our procedure, recalling the nota-
tion x̂λ = proxfλ(yλ), ∆̂(λ) = ‖x̂λ − yλ‖ and ∆(λ) = ‖Oλ,δ(yλ) − yλ‖, where δ = r

17 through-
out. Our analysis will use the following fact: whenever ∆(λ) < r − δ then (by Lemma 11)
we have ‖bproxfλ,r(yλ) − yλ‖ < r and consequently bproxfλ,r(yλ) = proxfλ(yλ) = x̂λ and
|∆̂(λ)−∆(λ)| ≤ δ.

By λmax ≥
2Lf
r and Lemma 15, we have ∆̂(λmax) ≤ r/2 and bproxfλmax,r

(yλ) = proxfλmax
(yλ).

By Lemma 11 we have ‖Oλmax,δ(yλmax) − x̂λmax‖ ≤ δ = r/17, and consequently ∆(λmax) ≤
r/2 + r/16 ≤ 13r/16. Therefore, the first while loop (Line 14) executes at least once.

Suppose the procedure terminates on Line 15. Denoting the return value as λ, by the condition
on Line 14 we have ∆(λ) ≤ 7r

8 , which by Lemma 11 implies ∆̂(λ) < 15r
16 < r. Consequently,

outcome (b) in Proposition 17 occurs.
Next, consider the case where the procedure terminates due to the condition ∆(λ) ∈ [13r

16 ,
15r
16 ]

(either in line 17 or in line 18). Applying Lemma 11, we conclude that ∆̂(λ) ∈ [3r
4 , r). Conse-

quently, outcome (a) in Proposition 17 occurs.
It remains to check the case where the procedure terminates due to the condition log λu

λ`
<

r
8(R+Lf/λ`)

in line 18. Note that the binary search maintains the invariant ∆(λ`) > 15r
16 and

∆(λu) < 13r
16 . By Lemma 11, this implies

∆̂(λ`) >
7r

8
> ∆̂(λu).

By continuity of ∆̂(λ), we therefore always have ∆̂(λ′) = 7r
8 for some λ′ ∈ (λ`, λu). Therefore, if

‖x− v‖ ≤ 2R, Lemma 23 guarantees that∣∣∣∆̂(λm)− 7
8r
∣∣∣ =

∣∣∣∆̂(λm)− ∆̂(λ′)
∣∣∣ ≤ (R+

Lf
min{λ′, λm}

)
log

∣∣∣∣λmλ′
∣∣∣∣ ≤ 1

2

(
R+

Lf
λ`

)
log

λu
λ`

Consequently, when log λu
λ`

< r
8(R+Lf/λ`)

and ‖x − v‖ ≤ 2R, we are guaranteed that ∆̂(λm) ∈
(3r/4, r), and outcome (a) in Proposition 17 occurs, concluding the proof of correctness.

Next, we briefly justify the bounds on the λ′ values with which we query the BROO in the
λ-BISECTION procedure. By construction, we have λ′ ∈ [λmin, λmax]. Let λo and λs be the
procedure’s output and smallest queried λ values, respectively. When terminating on lines 15 or 17,
we clearly have λs = λo. Furthermore, when terminating on line 18 λs equals λ` when entering
line 18 for the first time, and consequently λo ≤ 2λs.

Finally, we bound the total number of BROO queries. The first while loop requires at most
log2

λmax
λmin

queries. In the second while loop, initially we have log2
λu
λ`

= 1 and each query decreases
log2

λu
λ`

by a factor of 2. Therefore, using λ` ≥ λmin, the stopping condition log λu
λ`
< r

8(R+Lf/λ`)

must hold after O
(

log
(
R+Lf/λmin

r

))
queries. Given λmax =

2Lf
r , λmin = ε

6rR the total number of
BROO queries is bounded as

log

(
λmax

λmin

)
+ log

(
R+ Lf/λmin

r

)
= O

(
log

LfR
2

rε
+ log

LfR
2

rε

)
= O

(
log

LfR
2

rε

)
queries, giving the claimed complexity bound.
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Appendix C. BROO implementation

C.1. Proof of Lemma 3

Recall that the “eponentiated softmax” function is defined as follows

Γε,λ(x) = ε′ · exp

(
F λsmax,ε(x)− F λsmax,ε(x̄)

ε′

)
=
∑
i∈[N ]

pi(x̄)γi(x) where γi(x) := ε′e
fλi (x)−fλi (x̄)

ε′ ,

and note that Γε,λ(x̄) = ε′.

Lemma 3 Let f1, · · · , fN each be Lf -Lipschitz and Lg-smooth gradients. For any c > 0, r ≤
cε′/Lf , and λ ≤ cLf/r let C = (1 + c + c2)ec+c

2/2. The exponentiated softmax Γε,λ satisfies the
following properties for any x̄ ∈ Rd.

1. F λsmax,ε(x) and Γε,λ have the same minimizer x? in Br(x̄). Moreover, for every x ∈ Br(x̄),

F λsmax,ε(x)− F λsmax,ε(x?) ≤ C(Γε,λ(x)− Γε,λ(x?)).

2. Restricted to Br(x̄), each function γi defined in (5) is CLf -Lipschitz, C−1λ strongly convex,
and C(Lg + λ+ L2

f/ε
′)-smooth.

Proof For the first statement, we note that Γε,λ is a monotonic increasing transformation of F λsmax,ε

and consequently they have the same minimizer x? in Br(x̄). Further

F λsmax,ε(x)− F λsmax,ε(x?) = ε′ log

(
Γε,λ(x)

Γε,λ(x?)

)
= Γε,λ(x̄) log

(
1 +

Γε,λ(x)− Γε,λ(x?)

Γε,λ(x?)

)
≤

Γε,λ(x̄)

Γε,λ(x?)
(Γε,λ(x)− Γε,λ(x?)),

where the final inequality uses log(1 + x) ≤ x. Next, note that Lipschitz continuity of each fi
implies

fλi (x?) ≥ fi(x?) ≥ fi(x̄)− Lf‖x? − x̄‖ = fλi (x̄)− Lf‖x? − x̄‖.
Substituting ‖x? − x̄‖ ≤ r ≤ cε′/Lf and C ≥ ec, we have that

ef
λ
i (x?)/ε′ ≥ efλi (x̄)/ε′−c ≥ 1

C
ef

λ
i (x̄).

Consequently, we have
Γε,λ(x̄)

Γε,λ(x?)
=

∑
i∈[N ] e

fλi (x̄)/ε′∑
i∈[N ] e

fλi (x?)/ε′
≤ C

which proves the first statement.
For the second statement, we first compute the gradient and Hessian of the function γi(x) as

∇γi(x) = exp

(
λ

2ε′
‖x− x̄‖2

)
exp

(
fi(x)− fi(x̄)

ε′

)
[∇fi(x) + λ(x− x̄)] , and

∇2γi(x) = exp

(
fi(x)− fi(x̄)

ε′

)
Hi, where

Hi = ∇2fi(x) + λI +
1

ε′
∇fi(x)∇fi(x)> +

λ2

ε′
(x− x̄)(x− x̄)>.
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(Note that the expression for ∇2γi assumes that fi is twice differentiable almost everywhere; we
only rely on it for Section 4.3 where this holds.)

Now we note that for any i ∈ [N ]

‖∇γi(x)‖ ≤ exp(λr2/2ε′ + Lfr/ε
′)(λr + Lf ),

and
λe−λr

2/2ε′−Lf r/ε′I � ∇2γi(x) � eλr2/2ε′+Lf r/ε
′ (
Lg + λ+ L2

f/ε
′ + λ2r2/ε′

)
I,

where for the inequality we use the fact that fi is Lf -Lipschitz, Lg-smooth, and that x ∈ Br(x̄).
Now by plugging in the assumption that r ≤ cε′/Lf and λ ≤ cLf/r we have λr ≤ cLf ,

λ2r2/ε′ ≤ c2λ, and exp(λr2/2ε′ + Lfr/ε
′) ≤ exp(c + c2/2). Thus we can further simplify the

bounds on the gradient and Hessian of γi(x) by definition of C as

‖∇γi(x)‖ ≤ CLf and C−1λI � ∇2γi(x) � C
(
Lg + λ+ L2

f/ε
′) I,

which completes the proof.

C.2. SGD implementation

We first cite the following stochastic gradient method with restarts that obtains an Õ(1/µT ) bound
for µ-strongly convex function.

Lemma 24 (Theorem 11 in Hazan and Kale [20]) Given a µ-strongly-convex objective function
f : X → R with minimizer x? with an unbiased stochastic estimator with norm at most G in the
convex compact setX , Epoch-SGD-Proj algrotihm finds an approximate minimizer x̃ satisfying with
probability 1− σ

f(x̃)− f(x?) ≤ O
(
G2 log(log(T )/σ)

µT

)
,

using T stochastic gradient queries.

Applying the lemma immediately gives the following guarantee for minimizing Γε,λ inside a
ball of radius rε and hence implementing an rε-BROO for Fsmax,ε.

Corollary 4 Let f1, f2, · · · , fN be Lf Lipschitz, let σ ∈ (0, 1), ε, δ > 0 and rε = ε/(2 logN ·Lf ).
For any x̄ ∈ Rd and λ ≤ O(Lf/rε), with probability at least 1 − σ, Algorithm 2 outputs a valid
rε-BROO response for Fsmax,ε to query x̄ with regularization λ and accuracy δ, and has cost

O

(
TfN + (Tg + Tf )

L2
f

λ2δ2
log

(
log(Lf/λδ)

σ

))
. (6)

Proof We first note that by choice of rε and bounds on λ, Γε,λ is Ω(λ)-strongly convex according to
Lemma 3. At each iteration, we sample i ∈ [N ] with probability pi and compute stochastic gradient

∇γi(x) = γi(x)

(
λ

ε′
(x− x̄) +∇fi(x)/ε′

)
bounded by G = O(Lf )
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Algorithm 2: Epoch-SGD-Proj on the exponentiated softmax
Input: Functions f1, . . . , fN , ball center x̄, ball radius rε, regularization strength λ, smoothing

parameter ε′, failure probability σ
Parameters: Step size η1 = 1/(3λ), domain size D1 = Θ(G

√
log(log(T )/δ)/λ), T1 = 450

and total iteration budget T
Output: Approximate minimizer of Γε,λ (and hence F λsmax,ε) in Brε(x̄))

1 Precompute sampling probabilities pi = efi(x̄)/ε′/
∑

i∈[N ] e
fi(x̄)/ε′ for all i ∈ [N ]

2 Initialize x1
1 ∈ Brε(x̄) arbitrarily, set k = 1

3 while
∑

i∈[k] Ti ≤ T do
4 for t = 1, . . . , Tk do
5 Sample i ∈ [N ] with probability pi
6 Query stochastic gradient ĝt = e(fλi (x)−fλi (x̄))/ε′∇fλi (x)

7 Update xkt+1 ← ΠBrε (x̄)∩BDk (xk1)(x
k
t − ηkĝt)

8 Let xk+1
1 ← 1

Tk

∑
t∈[Tk] x

k
t

9 Update parameters Tk+1 ← 2Tk, ηk+1 ← ηk/2, Dk+1 ← Dk/
√

2, k ← k + 1

10 return xk1

following from the second statement of Lemma 3. Thus by directly applying Lemma 24 with T =
Θ(L2

fλ
−2δ−2 log(log(Lf/λδ)/σ)) the algorithm outputs an approximate minimizer x̃ satisfying

Γε,λ(x̃)− min
x∈Brε (x̄)

Γε,λ(x) ≤ O

(
L2
f

λT
log(log(T )/σ)

)
≤ λδ2

6e2
.

By the first property of Lemma 3, bound above implies that for x? = bprox
Fsmax,ε

λ,r

F λsmax,ε(x)− F λsmax,ε(x?) ≤ 3e2(Γε,λ(x)− Γε,λ(x?)) ≤
λδ2

2
,

i.e., algorithm outputs a valid rε-BROO response for Fsmax,ε.
The bound on the total computational cost follows from noticing that the initialization cost is

dominated by N function value queries, and that the cost of each step in the stochastic gradient
descent is dominated by a function and a gradient query at the current iteration.

C.3. Accelerated variance reduction implementation

We first cite the following accelerated variance reduction guarantee.

Lemma 25 (Theorem 5.4 in Allen-Zhu [1]) Let f1, . . . , fN be L-smooth and µ-strongly-convex,
let F (x) =

∑
i∈[n]wifi(x) with wi ≥ 0 and

∑
i∈[N ]wi = 1, and let x? ∈ arg minF (x). For

any s ∈ N, Katyusha1 with batch size b = 1 and initial point x̄ finds an approximate solution x̃s
satisfying

E[F (x̃s)− F (x?)] ≤
1

2s
[F (x̄)− F (x?)]
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using

O

(
s ·

(
N +

√
N · L
µ

))
evaluations of ∇fi(x).

An immediate corollary of Lemma 25 provides a high-probability guarantee.

Corollary 26 Under the same assumptions as Lemma 25, for any ε > 0 and σ ∈ (0, 1) Katyusha1
with batch size b = 1 and initial point x̄ finds an approximate solution x̃ satisfying

F (x̃)− F (x?) ≤ ε with probability at least 1− σ

using

O

((
N +

√
N · L
µ

)
log

(
F (x̄)− F (x?)

εσ

))
evaluations of ∇fi(x).

Proof Since F (x̃s)− F (x?) ≥ 0, Markov’s inequality and Lemma 25 imply that for any ε > 0,

P(F (x̃s)− F (x?) ≥ ε) ≤
E [F (x̃s)− F (x?)]

ε
≤ (1/2)s (f(x̄)− f(x?))

ε
,

and thus the high-probability bound follows .

Specializing Corollary 26 for Γε,λ(x) =
∑

i∈[N ] pi(x̄)γi(x), we obtain the following guarantee.

Corollary 5 Let f1, · · · , fN be Lf -Lipschitz and Lg-smooth, let σ ∈ (0, 1), ε, δ > 0, ε′ =
ε/(2 logN) and rε = ε′/Lf . For any x̄ ∈ Rd and λ ≤ O(Lf/rε), with probability at least 1 − σ,
Katyusha1 [1] outputs a valid rε-BROO response to query x̄ with regularization λ and accuracy δ,
and has computational cost

O

(
(Tf + Tg)

(
N +

√
N
(
Lf +

√
ε′Lg

)
√
λε′

)
log

(
Lfrε
λδ2σ

))
. (7)

Proof
By the choice of rε and the bound λ = O(L2

f/ε
′), Lemma 3 guarantees that the γi have strong

convexity µ = Ω(λ), and smoothness L = O(Lg + λ + L2
f/ε
′ + λ2r2

ε/ε
′) = O(Lg + L2

f/ε
′). In

addition, for x? := arg minx∈Brε (x̄) Γε,λ(x) one has

Γε,λ(x̄)− Γε,λ(x?) ≤ 〈∇xΓε,λ(x?), x̄− x?〉
≤ ‖∇xΓε,λ(x?)‖‖x̄− x?‖ = O(Lfrε),

where we use the second property for bounding ∇xΓε,λ(x̄) from Lemma 3. Plugging these into the
complexity of Lemma 25 and noticing that each evaluation of∇γi requires evaluation of fi and∇fi
(assuming fi(x̄) is pre-stored) gives the stated complexity bound.
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C.4. Proof of Theorem 6

With Corollaries 4 and 5 established, we prove Theorem 6.

Theorem 6 Let f1, f2, . . . , fN beLf -Lipschitz, let x? be a minimizer of Fmax(x) = maxi∈[N ] fi(x)
and assume ‖x0−x?‖ ≤ R for a given initial point x0 and someR > 0. For any ε > 0, Algorithm 1
with the BROO implementation for Fsmax,ε in Algorithm 2 solves the problem (1) with probability
at least 99

100 and has computational cost

O

((
LfR logN

ε

)2/3
(
TfN +

(
LfR

ε

)2

· (Tf + Tg) logK

)
log2K

)
, (8)

where K := LfRε
−1 logN . If moreover f1, f2, . . . , fN are each Lg-smooth, then Algorithm 1 with

a BROO implementation for Fsmax,ε using Kayusha1 solves (1) with probability ≥ 99
100 and has cost

O

(
(Tf + Tg)

((
LfR logN

ε

)2/3

N +

(
LfR
√

logN

ε
+

√
LgR2

ε

)
√
N

)
log3K

)
.

Proof We use guarantees of Theorem 2 and Corollaries 4 and 5 on the problem minx Fsmax,ε(x), ‖x−
x0‖ ≤ O(R) to prove the correctness and bound the complexity of the algorithm.

Correctness. We first note that Theorem 2 guarantees that we only make BROO calls with λ ≤
O(Lf/rε), making Corollaries 4 and 5 applicable. Let

T = O

((
R

rε

)2/3

log2

(
LfR

2

rεε

))
(32)

be the upper bound on the total number of oracle calls guaranteed in Theorem 2. Taking σ =
1

100T in Corollaries 4 and 5 and applying a union bound, we see that with probability at least
99/100, the outputs of the corresponding BROO implementations are valid throughout the exe-
cution of Algorithm 1. Consequently by Theorem 2 we have that Algorithm 1 with accuracy ε/2
outputs xo such that Fsmax,ε(xo) − minx:‖x−x0‖≤R Fsmax,ε(x) ≤ ε/2. Using the fact that 0 ≤
Fsmax,ε(x)−Fmax(x) ≤ ε/2 for all x ∈ Rd [see, e.g., 12, Lemma 45], we conclude that Fmax(xo)−
minx Fmax(x) = Fmax(xo)−min{x:‖x−x0‖≤R} Fmax(x) ≤ Fsmax,ε(xo)−minx:‖x−x0‖≤R Fsmax,ε(x)+
ε/2 ≤ ε, establishing correctness.

Complexity. Substituting rε = ε/(2Lf logN) into (32), we see that the total number of oracle
calls is

T = O

((
LfR logN

rε

)2/3

log2

(
LfR logN

ε

))
.

To bound to complexity of the SGD implementation, we simply multiply T by the per-call complex-
ity bound (6) where we substitute δ = Ω(ε/(λR)) as guaranteed by Theorem 2 and σ = 1/(100T ).

To bound the complexity of the accelerated variance reduction implementation, we similarly
substitute δ = Ω(ε/(λR)), λ = O(Lf/rε) and σ = 1/(100T ) into (7). Summing the result over all
oracle calls yields the complexity bound

O

(Tf + Tg) log

(
LfR logN

ε

)NT +
√
N

(√
Lg + Lf

√
logN

ε

)∑
i∈[T ]

1√
λ(i)

,
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where {λ(i)} is the sequence of λ values with which Algorithm 1 calls the BROO implementation.

Theorem 2 guarantees that
∑

i∈[T ]
1√
λ(i)
≤ O

(
R√
ε

log
LfR

2

rε

)
= O

(
R√
ε

log
LfR logN

ε

)
, completing

the proof.

Appendix D. Lower bound proofs

D.1. Proof of Proposition 8

In this section, we make frequent use of the indication notation I{·}, where I{A} = 1 if event A
holds and I{A} = 0 otherwise.

Proposition 8 Let δ, α ∈ (0, 1) and let N,T ∈ N with T ≤ N/2. Let (fi)i∈[N ] be an α-robust
N -element zero-chain with domain BT1 (0). For d ≥ T + 2

α2 log 4NT 2

δ , draw U uniformly from the
set of d × T orthogonal matrices, and draw Π uniformly from the set of permutations of [N ]. Let
f̃i(x) := fΠ−1(i)(U

>x). Let {(it, xt)}t≥1 be the queries of any N -element algorithm operating on
f̃1, . . . , f̃N . Then with probability at least 1− δ we have

progα(U>xt) < T for all t ≤ 1
16N

(
T − log 2

δ

)
.

Proof Let us define several quantities that are important for our proof. First, we track the maximum
progress attained by the algorithm queries.

pt := progα(U>xt) and p̄t := max
s≤t

ps.

Next, we recursively define a sequence that tracks the algorithm’s progress in “unlocking” the rele-
vant elements of the finite sum,

Bt := I{Π−1(it) = Ct + 1} where Ct := min

{∑
s<t

Bs, T

}
.

To understand these definitions, note that Ct is the largest number k such that 1, 2, . . . , k is a sub-
sequence of Π−1(i1),Π−1(i2), . . . ,Π−1(it). Therefore, a “zero-respecting” algorithm (satisfying
pt ≤ maxs<t

{
progα(∇fΠ−1(i)(U

>xs))
}

) can only query points with progress at most Ct. We
define the event that the general algorithm under consideration behaves as though it was zero-
respecting for the first t iterations as

ZRt := {p̄s ≤ Cs for all s ≤ t}.

We also define the stopping time

Θk := min{t | Ct = k}

and the difference sequence
∆k := Θk −Θk−1.

Let

τ :=
1

16
N

(
T − log

2

δ

)
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so that our goal is to prove that P
(
p̄bτc < T

)
> 1 − δ. Note that the intersection of the events

Cbτc < T and ZRNT ⊂ ZRbτc imply the desired event p̄bτc < T . Moreover, Cbτc < T is
equivalent to ΘT > τ . Consequently, we can upper bound P

(
p̄bτc ≥ T

)
by the probability that

ZRNT does not occur plus the probability that both ΘT ≤ τ and ZRNT occur, i.e.,

P
(
p̄bτc ≥ T

)
≤ P(ZRc

NT ) + P(ΘT ≤ τ,ZRNT ).

Our strategy is to bound each of P(ZRc
NT ) and P(ΘT ≤ τ,ZRNT ) by δ/2.

As one final piece of of notation, we writeU≤k for the first k columns ofU , and Π|k as shorthand
for Π(1), . . . ,Π(k).

Lemma 27 For any t ≥ 1 and k ≤ T , if the events ZRt−1 and Ct ≤ k hold, the oracle responses
to queries (is, xs)s<t, as well as the queries (is, xs)s≤t, are deterministic (measurable) functions of
ζ, Π|k and U≤k. Moreover,

(a) The random variable ΘkI{ZRΘk} is measurable w.r.t ζ,Π|k and U .

(b) When ZRt−1 holds, I{Ct = k} is measurable w.r.t. ζ,Π and U≤k.

Proof Consider the query is, xs for s < t; we first show that under ZRt−1 and Ct ≤ k we can
compute the oracle response to this query using only Π|k and U≤k. Since ZRt−1 holds, we have
that progα(U>xs) = ps ≤ Cs. Invoking Definition 7 of the N -element zero chain, there exists a
neighborhood of xs such that for all y in that neighborhood we have

f̃is(y) = fΠ−1(is)(U
>y) =


fΠ−1(is)(U

>
≤Csy) Π−1(is) < Cs + 1

fΠ−1(is)(U
>
≤Cs+1y) Π−1(is) = Cs + 1

fN (U>≤Csy) Π−1(is) > Cs + 1.

(33)

Recall that Bs = I{Π−1(is) = Cs + 1} and that Cs+1 = min{Cs +Bs, T} ≤ Ct ≤ k and let

Π−1|k(j) =

{
Π−1(j) j ∈ Π([k])

N otherwise.

The relationship (33) implies that

f̃is(y) = fΠ−1|k(is)(U
>
≤ky)

for all y in the neighborhood of xs.
The above discussion shows that (under ZRt−1) the oracle response to (is, xs) is measurable

with respect to is, xs,Π|k and U≤k, for every s < t. Moreover, (i1, x1) is measurable with respect
to ζ, and consequently the first oracle response and the second query (i2, x2) are measurable with
respect to ζ,Π|k and U≤k. Repeating this argument inductively shows that (under ZRt−1 and Ct ≤
k) we can generate the entire query sequence (is, xs)s≤t, as well as the oracle responses to all but
the last query, from ζ,Π|k and U≤k, as claimed.

To show part (a) of the lemma, note that with access to the entire matrix U , after generating
queries x1, . . . , xs we can test whether ZRs holds. Moreover, the knowledge of Π|k suffices to test
(for any query sequence i1, i2, . . .) whether Ct ≥ k for every t. Therefore, using ζ,Π|k and U≤k
we can iteratively compute (is, xs)s≤t until arriving at an iterate t where either (a) Ct < k but ZRt
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does not hold (which implies that ZRΘk fails as well), or (b) Ct = k (in which case we have found
Θk). In either case, we know the value of ΘkI{ZRΘk}.

Finally, to show part (b) of the lemma, note that with full knowledge of Π we can track the
values of C1, . . . , Ct for any sequence of queries i1, . . . , it−1. Therefore, given ZRt−1, we may use
ζ,Π|k and U≤k to iteratively generate queries until either (a) we arrive at an iteration s < t where
Cs > k, in which case I{Ct = k} = 0, or (b) we successfully generate iteration t− 1 in which case
we can compute Ct. In either case, we know the value of I{Ct = k}.

Lemma 28 For every k ≤ T , and j ≥ 0, we have

P(∆k ≤ j,ZRΘk | ζ,Π|k−1, U) ≤ j

N − k + 1
.

Proof Suppose the algorithm could access the random permutation Π via an alternative oracle that,
when queried at index i ∈ [N ] returns the number Π−1(i). We say that the algorithm succeeds if
one of the first j queries is Π(k) (so that the oracle returns k). Given Π|k−1, the random variable
Π(k) is uniformly distributed over I = [N ] \Π([k − 1]). Therefore, for any set J of j queries, we
have

P(Π(k) ∈ J | Π|k−1) =
E|J ∩ I|
|I|

≤ E|J |
|I|

=
j

N − k + 1

and so for every algorithm the probability of success is at most j/(N − k + 1).
Now return to the original problem and the original oracle, and note that for ∆k ≤ j to hold,

we must have Π−1(it) = k for some t in {Θk−1, . . . ,Θk−1 + j − 1}, corresponding to “success”
in the problem described above. Moreover, when the event ZRΘk holds, Lemma 27 guarantees
that the oracle responses to the queries at iteration 1, . . . ,Θk−1 − 1 are deterministic functions of
ζ, U and Π|k−1 (since CΘk−1

= k − 1 by definition). Consequently, when ZRΘk−1
holds, the

true optimization algorithm operates with no more information that the alternative oracle setting
described above, giving the claimed probability bound.

Lemma 29 We have
P
(
ΘT ≤ 1

16N(T − log 2
δ ),ZRNT

)
≤ δ

2
.

Proof Let T±δ := 1
2

(
T ± log 2

δ

)
. We begin with a sequence of straightforward inequalities:

P(ΘT ≤ 1
8NT−δ,ZRNT ) ≤ P(ΘT ≤ 1

8NT−δ,ZRΘT )

≤ P

∑
k∈[T ]

I{∆k >
1
8N} ≤ T−δ,ZRΘT


= P

∑
k∈[T ]

I{∆k ≤ 1
8N} > T+δ,ZRΘT


≤ P

∑
k∈[T ]

I{∆k ≤ 1
8N,ZRΘk} > T+δ


≤ e−2T+δE

[
e2

∑
k∈[T ] I{∆k≤ 1

8
N,ZRΘk

}
]
, (34)
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where the last transition is an application of the Chernoff bound (with parameter λ = 2).
By Lemma 27, the random variable I{∆k ≤ 1

8N,ZRΘk} is measurable with respect to ζ,Π|k
and U since it is a function of ΘkI{ZRΘk} and Θk−1I{ZRΘk−1

}. Therefore,

E
[
e2

∑
k∈[T ] I{∆k≤ 1

8
N,ZRΘk

}
]

= E
[(

1 + (e2 − 1)P
(
∆T ≤ 1

8 ,ZRΘT

∣∣ ζ,Π|T−1, U
))
e2

∑
k∈[T−1] I{∆k≤ 1

8
N,ZRΘk

}
]

≤
(

1 +
1

4
(e2 − 1)

)
E
[
e2

∑
k∈[T−1] I{∆k≤ 1

8
N,ZRΘk

}
]
,

where the inequality follows from Lemma 28 with j = N/4 and k = T ≤ N/2. Noting that
1 + 1

4(e2 − 1) ≤ e and iterating this argument, we conclude that

E
[
e2

∑
k∈[T ] I{∆k≤ 1

8
N,ZRΘk

}
]
≤ eT .

Substituting this bound into eq. (34) and recalling that e−2T+δ = δ
2e
−T concludes the proof.

Lemma 30 We have
P(ZRc

NT ) ≤ δ

2
.

Proof By definition, we have

P(ZRc
NT ) =

∑
t∈[NT ]

P(pt > Ct,ZRt−1). (35)

We fix t ≤ NT and argue that P(pt > Ct,ZRt−1) ≤ δ
2NT . Let k ≤ T ; by Lemma 27 events ZRt−1

and Ct = k hold, we have xt = h(ζ,Π, U≤k) for some measurable functions h. Therefore, we have

P(pt > Ct,ZRt−1 | Ct = k, ζ,Π, U≤k)
(i)
= P(pt > k,ZRt−1 | ζ,Π, U≤k)

=P
(

progα(U>xt) > k,ZRt−1

∣∣∣ ζ,Π, U≤k)
=P
(

progα(U>h(ζ,Π, U≤k)) > k,ZRt−1

∣∣∣ ζ,Π, U≤k)
≤P
(

progα(U>h(ζ,Π, U≤k)) > k
∣∣∣ ζ,Π, U≤k) (ii)

≤
T∑

j=k+1

P
(∣∣u>j h(ζ,Π, U≤k)

∣∣ > α
∣∣∣ ζ,Π, U≤k),

where (i) follows from part (b) of Lemma 27, and (ii) follows from the definition of progα and a
union bound, where we write uj for the jth column of U .

Conditionally on ζ,Π, U≤k, uj is uniform over the unit ball in the subspace of Rd orthogonal
to U≤k. Moreover, the magnitude of the projection of h(ζ,Π, U≤k) to that subspace can be at most
1, since xt is a unit vector. Therefore, the probability that

∣∣u>j h(ζ,Π, U≤k)
∣∣ > α holds is at most

the probability that a coordinate of a uniform unit vector in Rd−k has magnitude greater than α. By
standard concentration of measure arguments, this probability is at most 2 exp(−d−k+1

2α2 ). By our
choice of d (and recalling k ≤ T ), we have that

P(pt > Ct,ZRt−1 | Ct = k, ζ,Π, U≤k) ≤ (T − k) · δ

2NT 2
≤ δ

2NT
,
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and substituting back into eq. (35) concludes the proof.

D.2. Proof of Lemma 9

Lemma 9 For every T,N ∈ N and ` ≥ 0, such that T ≤ N , we have that

1. The hard instance (f̂
{T,N,`}
i )i∈N is an αT -robust N -element zero-chain.

2. The function f̂{T,N,`}i is 1-Lipschitz and `-smooth for every i ∈ [N ].

3. For x ∈ Rd with progαT (x) < T , the objective F̂ {T,N,`}max (x) = maxi∈[N ] f̂
{T,N,`}
i (x) satisfies

F̂ {T,N,`}max (x)− min
x?∈B1(0)

F̂ {T,N,`}max (x?) ≥ ψαT ,`
(

3

8T 3/2

)
≥ min

{
1

8T 3/2
,

`

32T 3

}
.

Proof To see why part 1 holds, fix x ∈ RT and let p = progαT (x). First, we have f̂{T,N,`}i (x) =

f̂
{T,N,`}
i (x[≤i]) for every i and x, which immediately gives the first two cases of eq. (11). Second,

when i > p+ 1, we have |x[i] − x[i−1]| < 2αT and therefore f̂{T,N,`}i (x) = ψαT ,`(t)I{i ≤ N} for

some |t| < α. Consequently f̂{T,N,`}i is identically zero in a neighborhood of x, giving the third
and final case in eq. (11).

Part 2 is immediate because f̂{T,N,`}i is a composition of a 1-Lipschitz and `-smooth function
with the linear transformation (x[i] − x[i−1])/2 which has operator norm smaller than 1.

Finally, to see part 3, first note that the global minimum of F̂ {T,N,`}max satisfies F̂ {T,N,`}max (x?) = 0
and (x?)[i] = 1√

T
for every i ≤ T (and therefore has unit norm). Consider any x for which

progαT (x) < T , so that x[T ] ≤ αT ≤ 1√
T

. We have

max
i≤T

∣∣x[i−1] − x[i]

∣∣ ≥ 1

T

∑
i∈[T ]

∣∣x[i−1] − x[i]

∣∣ ≥ 1

T

∣∣x[0] − x[T ]

∣∣ ≥ 1

T

(
1√
T
− αT

)
≥ 3

4T 3/2
.

Since ψαT ,`(t) is non-decreasing in |t|, we have F̂ {T,N,`}max (x) = ψαT ,`
(

1
2 maxi≤T

∣∣x[i−1] − x[i]

∣∣),
and consequently F̂ {T,N,`}max (x) ≥ ψαT ,`

(
3

8T 3/2

)
. To obtain the final bound, we observe thatψα,`(t) ≥

min
{

1
2(t− α), `2(t− α)2

}
for any t ≥ α.

D.3. Proof of Theorem 10

Theorem 10 Let Lf , Lg, R > 0, ε < LfR ∧ LgR2, N ∈ N and δ ∈ (0, 1). Then, for any (possibly
randomized) algorithm there exists an Lf -Lipschitz and Lg-smooth functions (fi)i∈[n] with domain

BdR(0) for d = O
([(LfR

ε

)2 ∧ (LgR2

ε

)]
log

N(LfR∧LgR2)
ε

)
such that with probability at least 1

2 over
the randomness of the algorithm, the first

Ω

(
N

[(LfR
ε

)2/3
∧
(LgR2

ε

)1/3
]

+

[(LfR
ε

)2
∧
(NLgR2

ε

)1/2
])

(13)

queries of the algorithm are all ε-suboptimal for Fmax(x) = maxi∈[N ] fi(x).
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Proof We first show that an Ω
(
N
[
(
LfR
ε )2/3 ∧ (

LgR2

ε )1/3
])

lower bound follows from our construc-
tion in the previous section. Fix any T > 1 and ` ≥ 0 and let d =

⌈
T + 4α−2

T log 4NT
⌉

with
αT = 1/(4T 3/2). Let Π be random permutation of [N ] and let U be drawn uniformly from the set
of d× T orthogonal matrices. For i ∈ [N ], let

f̃i(x) = f̂
{T,N,`}
Π−1(i)

(U>x).

Then, by Proposition 8 and Lemma 9.1, any optimization algorithm interacting with (f̃i)i≤N satis-
fies with probability as least 1/2 that progαT (U>xi) < T for every i ≤ 1

64NT .
Set

T =

⌊
1

5

[(LfR
ε

)2/3
∧
(LgR2

ε

)1/3
]⌋

and ` =
LgR

Lf
.

We may assume T ≤ N/2 without loss of generality, since otherwise the second term in the lower
bound dominates. Let

fi(x) = LfRf̃i(x/R).

With these settings, we have that fi is bothLf -Lipschitz andLg-smooth for every i due to Lemma 9.2,
the choice of `, and the fact that U is orthogonal. Moreover, if x1, x2, . . . are the iterates of an al-
gorithm interacting with a finite sum oracle for (fi)i∈[N ] then x1/R, x2/R, . . . are the iterates of an
algorithm interacting with (f̃i)i≤[N ]. Therefore, by the above discussion, with probability at least
1/2 the firstp

1

64
NT = Ω

(
N

[(LfR
ε

)2/3
∧
(LgR2

ε

)1/3
])

iterates of the algorithm satisfy progαT (U>x) < T , and consequently, by Lemma 9.3, they are

LfRmin

{
1

8T 3/2
,

`

32T 3

}
= min

{
LfR

8T 3/2
,
LgR

2

32T 3

}
> ε

suboptimal for maxi∈[N ] fi. To conclude the linear in N lower bound, we note that since the sub-
optimality bound holds with probability at least 1/2 over Π, U and the algorithm randomness, for
every algorithm there must exist fixed Π and U for which the bound holds with probability 1/2 over
the randomness of the algorithm alone.

To show the remaining Ω
([(LfR

ε

)2 ∧ (NLgR2

ε

)1/2]) term in the lower bound, we recall the
following classical result. For every R′ > 0 there exists a distribution over functions F : Rd →
R with d′ = O

([(LfR′
ε

)2 ∧ (LgR′2ε

)1/2]
log

NLfR
′

ε

)
that are Lg-Lipschitz, Lf -smooth and has

a global minimizer with norm at most R, such that for any algorithm interacting with F , with
probability at least 1− 1

2N , the first

TR′ = Ω

([(LfR′
ε

)2
∧
(LgR′2

ε

)1/2
])

iterations are ε suboptimal for F . This result follows from smoothing Nemirovski’s function; see Di-
akonikolas and Guzmán [14, Theorem 14 with p = 2 and κ = 0, 1]. To strengthen the smooth term
in the lower bound, we consider N copies of this construction with R′ = R/

√
N that operate on

distinct coordinates, i.e., we let fi(x) = F (x[1+(i−1)d′], . . . , x[id′]), so that the global minimizer of
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maxi fi(x), which consists ofN copies of the global minimizer of F , has norm at mostR′
√
N = R,

and consequently we may constrain the domain to Bd′NN without decreasing the optimality gap of
any point in the ball. For any algorithm interacting with (fi)i∈[N ], the first

NTR/
√
N = Ω

([(LfR
ε

)2
∧
(NLgR2

ε

)1/2
])

queries of the algorithm must select one of the N components at most TR/
√
N times and therefore

(with probability at least 1
2 ) be ε suboptimal for at least one component, and hence for their max-

imum. This gives the sublinear in N term of the lower bound. We remark that the “hard instance
duplication” argument is at the core of existing lower bounds for finite sum optimization [39, 15];
our argument for proving the linear in N lower bound is inherently different.

D.4. Extension to unconstrained setting

While we state and prove our lower bound for optimization problems whose domain is a ball of
radius R, it also extends to the case of unconstrained setting of our upper bounds. That is, when the
domain is Rd and we are guaranteed a local minimizer exists in a radius of R from the initial point.
One way to show this extension is the technique of [14] where we replace f̂{T,N,`}i with

f̄
{N,T,`}
i (x) := min

y∈Rd

{
max

{
f̂
{T,N,`}
i (y), ‖y‖ − 1− `−1

}
+
`

2
‖y − x‖2

}
. (36)

The definition above consists of two modification: pairwise maximum with ‖·‖ − 1 and infimal
convolution with `

2‖·‖
2. The pairwise maximum guarantees that large norm queries cannot break

the zero-chain progress control mechanism: responses to query points with norm Ω(1) will not
depend on the random transformation U at all, while for responses with norm O(1) we can control
the progress using the zero-chain structure of f̂{T,N,`} as before. The infimal convolution guarantees
the function remains ` smooth (and also does not increase the Lipschitz constant).

Finally, it remains to check that the new construction still satisfies property 3 of Lemma 9
up to a constant. To see that it does, first note that the global minimizer of F̄ {N,T,`}max (x) :=

maxi∈[N ] f̄
{N,T,`}
i (x) still satisfies x?[i] = 1/

√
T for all i ≤ T , and that F̄ {N,T,`}max (x?) = 0. More-

over, we clearly have

f̄
{N,T,`}
i (x) ≥ min

y∈Rd

{
ψαT ,`(y/2) +

`

2

∥∥∥y − x[i] − x[i−1]

2

∥∥∥2
}

:= ψ̃

(
x[i] − x[i−1]

2

)
,

and it is not hard to verify that ψ̃(t) ≥ ψαT ,`(ct) for some constant c > 0 (in fact, ψ̃(t) = ψαT ,c`(t)).
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