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Abstract
We characterize the complexity of minimizing max;e[n fi(x) for convex, Lipschitz functions
fi,-., fn. For non-smooth functions, existing methods require O(N¢~2) queries to a first-order

oracle to compute an e-suboptimal point and O(Ne~1) queries if the f; are O(1/¢)-smooth. We
develop methods with improved complexity bounds of 6(1\7 €23 8/ 3) in the non-smooth case
and O(Ne2/3 ++/Ne 1) in the O(1/¢)-smooth case. Our methods consist of a recently proposed
ball optimization oracle acceleration algorithm (which we refine) and a careful implementation of
said oracle for the softmax function. We also prove an oracle complexity lower bound scaling as
Q(Ne2/3), showing that our dependence on NN is optimal up to polylogarithmic factors.
Keywords: Convex optimization, Min-max problems, Monteiro-Svaiter acceleration, Ball opti-
mization oracle, Stochastic first-order methods.

1. Introduction

Consider the problem of approximately minimizing the maximum of N convex functions: given
fi, ..., fn such that for every i € [N] the function f; : R — R is convex, Lipschitz and possibly
smooth, and a target accuracy e,

find a point = such that Fiax(z) — inf Fpax(zs) < € where Fax(z) = max fi(z). (1)
T ER? i€[N]

Problems of this form play significant roles in optimization and machine learning. The maxi-
mum of N functions is a canonical example of structured non-smoothness and several works de-
velop methods for exploiting it [31, 30, 36, 9, 12]. The special case where the f;’s are linear
functions is particularly important for machine learning, since it is equivalent to hard-margin SVM
training (with f; representing the negative margin on the ith example) [38, 13, 21]. Going beyond
the linear case, Shalev-Shwartz and Wexler [36] argue that minimizing the maximum classification
loss can have advantageous effects on training speed and generalization in the presence of rare in-
formative examples. Moreover, minimizing the worst-case objective is the basic paradigm of robust
optimization [4, 27]. In particular, since Fiax(7) = max,can Zie[ N Di fi(x) the problem cor-
responds to an extreme case of distributionally robust optimization [5] with an uncertainty set that
encompasses the entire probability simplex A'V.
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The goal of this paper is to characterize the complexity of this fundamental problem. We are
particularly interested in the regime where the number of data points NV and the problem dimension d
are large compared to the desired level of accuracy 1/e, as is common in modern machine learning.
Consequently, we focus on dimension-independent first-order methods (i.e., methods which only
rely on access to f;(x) and a (sub)gradient V f;(x) as opposed to higher-order derivatives), and
report complexity in terms of the number of function/gradient evaluations required to solve the
problem.

1.1. Related work

To put our new complexity bounds in context, we first review the prior art in solving the problem (1)
with first-order methods. For simplicity of presentation, throughout the introduction we assume each
fi is 1-Lipschitz and that F},,,x has a global minimizer x, with (Euclidean) norm at most 1.

The simplest approach to solving the problem (1) is the subgradient method [33]. This method
finds an e-accurate solution in 0(6*2) iterations, with each step computing a subgradient of Fi .y,
which in turn requires evaluation of all N function values and a single gradient. Consequently,
the complexity of this method is O(Ne2). We are unaware of prior work obtaining improved
complexity without further assumptions.'

However, even a weak bound on smoothness helps: if each f; has O(1/¢)-Lipschitz gradient,
then it is possible to minimize F,.x to accuracy € with complexity 6(N 6_1) [31].% This result
relies on the so-called “softmax” approximation of the maximum,

Fsmax,E(x) = log Z efi(x)/él , where —
1€[N]

2

It is straightforward to show that | Fymax,e(7) — Fax(2)| < § forall z € R?, and that V Fymax,e 18
O(1/€)-Lipschitz if V f; is O(1 /€)-Lipschitz for every i. Therefore, Nesterov’s accelerated gradient
descent [31] finds a minimizer of Fypax e to accuracy % in O(\/m /+/€) iterations, with each itera-
tion requiring N evaluations of f; and V f; to compute V Fyax ¢, yielding the claimed bound. The
assumption that V f; is O(1/¢)-Lipschitz is fairly weak; see Appendix A.1 for additional discussion.

Given more smoothness, further improvement is possible. Nesterov [33, Section 2.3.1] shows
that it suffices to solve O(/Ly /) linearized subproblems of the form min,,cga max;epn { fi(y:) +
(Vi) T (@ —ye) + % |z — y¢||?}. This yields a query complexity upper bound of O(N /Ly /e),
Though the complexity of solving each subproblem is not immediately clear, in Appendix A.3 we
explain how a first-order method [10] solves the subproblem to sufficient precision. Additional
schemes for solving (1) in the special case of linear functions (i.e., L, = 0) are discussed in Ap-
pendix A.2.

A powerful technique for solving optimization problems with a large number N of component
functions is sampling components in order to compute cheap unbiased gradient estimates. However,
both Fjax and Finax e are not given as linear combinations of the f;’s. Consequently, it is not clear
how to efficiently compute unbiased estimators for their gradients. Several works address this by

1. The center of gravity method [24, 35] yields a query complexity O(Ndlog(1/¢)) which is an improvement only for
sufficiently small problem dimension d.
2. Throughout the paper, the O(-) and €(+) hide polylogarithmic factors.
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Smoothness Method Upper bound Lower bound
_ Subgradient method Ne 2 _9/3 9
None (Ly =00) [ © N2y ss Ne 34 e
AGD on softmax Ne™! 5
~ —2/3 1
Weak (L~ 1/e) Ne-23 4 Nt NP+ VNe
Strong (L, < 1/€) AGD on linearization* N/Lge~! NLSI,/?’E_U3 + /NLge !

Table 1: The complexity of solving the problem (1) in terms of number of (i,z) queries for computing
and f;(x) and V f;(x). The tables assume each f; is convex, 1-Lipschitz and (optionally) has L4-Lipschitz
gradient, and that Fi,.x has a minimizer with norm at most 1. The stated rates omit constant and (in the
upper bounds) polylogarithmic factors. *For this algorithm only, the computational complexity is not simply
d times the query complexity; see Appendix A.3.

considering the saddle point problem

min max Fyq(z;p) E pifi(x
z€R4 pe AN
1€[N]

which is equivalent to minimizing to Fi,.x. One can obtain unbiased estimators for V F,q (z;p), and
apply stochastic mirror descent to find its saddle-point [30, 36, 27]. However, all known estimators
for V,F,,q have complexity-variance product (2(N). Consequently, the best general guarantees
known for such methods are 5(N €~2) iterations and total complexity.? Shalev-Shwartz and Wexler
[36] analyze a stochastic primal-dual method from an online learning perspective. They show that if
the online method producing the primal updates admits a mistake bound (as is the case for learning
halfspaces), then the complexity of the approach improves to 5(]\7 ¢~ 1). We show that adopting a
primal-only perspective and iteratively restricting x to a small ball (i.e., “thinking inside the ball”)
allows us to make better use of the scalability of stochastic gradient methods.

1.2. Our contributions

To motivate our developments, note that the general complexity guarantees described above all scale
linearly with the number of functions /N. On the one hand, this is to be expected, as even evaluating
the maximum of N numbers requires querying all of them. On the other hand, a linear scaling
in N stands in sharp contrast to guarantees for minimizing the average of N functions, which are
typically sublinear in N. Since good scaling with dataset size is crucial in machine learning, we
wish to precisely characterize the number of dataset passes (that is, the coefficient of V) in the
complexity of minimizing Fi,ax.

Towards that end, we prove an oracle complexity lower bound. The bound shows that any algo-
rithm that operates by repeatedly querying i, z and observing f;(x), V f;(z), must make Q(Ne~2/3)
queries in order to solve problem (1) for some convex, 1-Lipschitz problem instance fi, ..., fxy with
domain in the unit ball. The same bound continues to hold even when constraining the f; to have
O(1/¢)-Lipschitz gradient, and when using high-order derivative oracles. This result further sharp-
ens the contrast to average risk minimization, as it implies 9(6_2/ 3) dataset passes are required in

3. Exact-gradient primal-dual methods such as mirror-prox [28] and dual-extrapolation [32] have complexity guarantees
scaling as O(N¢ ') under the stronger smoothness assumption L, = O(1) [cf. 8, Section 5.2.4].
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the worst case. However, it also suggests the potential for significant improvement over existing
algorithms and their complexity bounds.

We realize this potential with new algorithms whose leading complexity term in N matches
our lower bound up to polylogarithmic factors. In the non-smooth case, our approach solves (1)
with complexity O(Ne~2/3 + ¢~%/3), dominating prior guarantees for N' = Q( =2/3). For O(1/e)-
Lipschitz gradient functions, we obtain the stronger rate O(N €23 4+ \/Ne™ 1), which dominates
prior guarantees for N = Q(l) At the core of these algorithms is a technique for accelerated
optimization given a ball optimization oracle [12]; we make several improvements to this technique,
which may be of independent interest.

Table 1 summarizes our results and their comparison to prior art. In addition to the results
described above, the table also contains lower bounds on sublinear terms in /N (that follow from
standard arguments), as well as a lower bound for the smooth regime where L, = o(1/¢). In this
regime there exists a gap between the linear terms in the upper and lower bounds.

1.3. Overview of techniques

Our algorithms rely on a new technique introduced by Carmon et al. [12] for acceleration with a
ball optimization oracle (BOO). For any > 0 and F : R? — R, a BOO of radius r takes in
a query point Z € R? and returns an (approximate) minimizer of F' in a ball of radius r around
Z. The technique, wkiich is a variant of Monteiro-Svaiter acceleration [26, 17, 7, 9], minimizes F’
to € accuracy using O((1/7)%/3) oracle calls (with poly(log(1/€)) factors hidden). Carmon et al.
[11] apply their technique to the special case of (1) with linear losses (see also Appendix A.2),
showing that the log-sum-exp function is quasi-self-concordant and implementing a BOO of radius
r = O(e) using O(1) linear system solves. However, this approach does not extend to general f;
because quasi-self-concordance no longer holds for Fi,ax ., which might not even be differentiable.
The main technical insight of our paper is that it is possible to efficiently implement a BOO of
radius r, = @( ) for Fymax e using stochastic first-order methods. More precisely, for any Z € R4
we can minimize Fymax e in a ball of radius r around Z to any poly(e) accuracy with precisely N
function evaluations and poly(1/¢) (sub-)gradient evaluations. Using BOO acceleration, this imme-
diately implies an O(Ne~2/3 + poly(1/€)) complexity bound exhibiting optimal N dependence.
To implement the BOO for Fypax, e, We consider instead the “exponentiated softmax” function

Fymax,e(T) — Fsmax,e(T (@)= £;@) fi(@)/€¢
( SThax, (1‘) S Sma 76(.'1})) = Z piel.eeil where pi = e—fW7
¢ ic[N] 2 jeln) 7

Te(x) = € -exp

and ¢ = ¢/(2log N) as in eq. (2). Note that I is a monotonically increasing transformation of
Fymax,e, and is therefore convex with the same minimizer as Fyyax .. Moreover, it is a (weighted)
finite sum, and consequently amenable to stochastic gradient methods. It remains to verify that the
functions &;(z) = € @)= fi(@)/€ gre well-behaved, which might look difficult since exponentials
are notoriously unstable. However, our choice of r and Lipschitz continuity of f; implies that
elfil@)—fi(@)/e = ©(1) inside the ball, and consequently &; is indeed well-behaved, with Lipschitz
constant O(1). We thus minimize I'c (and hence Fynax,) With stochastic gradient descent [20],
sampling ¢ from p. Moreover, if V f; are Lipschitz, then V¢; are also Lipschitz, and we apply an
accelerated variance reduction method [1] for better efficiency.

To complete the analysis of our methods it remains to determine how accurately we need to
solve each ball subproblem. Unfortunately, the analysis of [12] makes fairly stringent accuracy
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requirements, and also requires V Fypax ¢ to have a finite Lipschitz constant. To obtain tighter guar-
antees, we significantly rework the analysis in [12], modifying the algorithm to make it applicable
without any differentiablility requirements. Our improved analysis takes into account the fact that
the acceleration scheme only requires ball minimization with strong ¢ regularization, which further
improves the oracle implementation complexity.

Our lower bound follows from a variation on the classical “chain constructions” in optimization
lower bounds [29, 39, 18, 14], where in order to make a unit of progress on our constructed function,
any algorithm must (with constant probability) make {2(N') queries in order to discover a single new
link in the chain. We build a chain of length Q(e‘z/ 3) for which querying any € minimizer of F.y
requires discovering the entire chain, giving the Q (N e 2/ 3) complexity lower bound. To prove this
result for arbitrary randomized algorithms, we randomize both the order of the functions and the
rotation of the domain.

Paper outline. Section 2 provides some additional preliminaries and notation. Section 3 gives
our improved derivation of the BOO acceleration method of [12], and Section 4 develops a BOO
for Fymax,e, culminating in our upper complexity bounds for the problem (1), stated in Theorem 6.
Section 5 gives our lower bounds with the main result stated in Theorem 10. Section 6 includes
some comments on our results and potential future work.

2. Preliminaries

General notation. Throughout, ||-|| denotes the Euclidean norm. We write B, (z) for the Eu-
clidean ball of radius  centered at z, and B%(z) when emphasizing that the ball is d-dimensional.
We use Ly to denote a function Lipschitz constant and L, to denote a gradient Lipschitz constant;
we say that f is Lg-smooth if it has Lg-Lipschitz gradient. To disambiguate between sequence
and coordinate indices, in Section 5 we denote the former with normal subscript and the latter with
bracketed subscript, i.e., x; is the ith coordinate of = and xj, is the kth element in the sequence
x1,T2,. ... We also write vj<,) to denote a copy of v with coordinate ¢ + 1,7+ 2, ... set to zero. We
use a A b := min{a, b} to abbreviate binary minimization. We write the binary indicator of event A

as I{A}.

Complexity model. We mainly measure complexity through the number individual function and
gradient evaluations required to solve the problem (1). We write T for the cost of evaluating
fi(z) for a single ¢ and x, and similarly write 7, for the cost of evaluating V f;(z). Assuming
T, Tg = §2(d), our evaluation complexity upper bounds translate directly to runtime upper bounds.

Proximal operators. For any function f and regularization parameter A > 0, we define the stan-
dard proximal mapping prox) (z) = arg min,cga{ f(z) + 3|z — Z||?}. We also define the ball
constrained proximal mapping bprox{ (T) = argmingcp, (z) {f(z) + 3|lz — Z||?}. Finally, we

define the notion of an approximate oracle for bprox{ ,» which plays a key role in our analysis.

Definition 1 BROO) We say that a mapping Oy s(-) is a Ball Regularized Optimization Oracle
of radius r (r-BROO) for f, if for every query point X, regularization parameter \ and desired
accuracy 9, it return T = O, 5(Z) satisfying

A

f(i?)%—éch—:EHQ < min {f(x)+/2\|a:—a‘:||2}+252. 3)

2 z€B,(Z)
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Note that when f is convex, the strong convexity of f(z) + %|lz — Z||* and the approximation
requirement (3) guarantee that ||O) 5(Z) — bproxA @) <.

3. BROO acceleration

In this section, we describe a variant of the ball optimization acceleration scheme of Carmon et al.
[12], given as Algorithm 1. Both methods follow the template of Monteiro-Svaiter acceleration [26],
but our algorithm improves on [12] in two ways. First, it accesses the objective strictly through the
ball oracle, while [12] also uses gradient computations. Second, our algorithm requires an oracle
that solves regularized ball optimization problems, which are easier to implement.*

As a consequence of these differences, our accelerated algorithm’s guarantee does not require
any smoothness of the objective function. Moreover, our setup allows for far less accurate solutions
to the ball optimization subproblems: Carmon et al. [12] require § = O(LG—R) while we only require
§ = O(5%)- While our requirement becomes stricter as the regularizer )\ grows, it also becomes
easier to fulfill since the ball optimization problem becomes more strongly convex and hence easier
to solve. Our relaxed accuracy requirement ultimately translates to an improved ¢ ~! dependence in
the sublinear-in-/V term in our upper bound.

With the key innovations of Algorithm 1 explained, we now formally state its convergence
guarantee; we defer the proof to Appendix B.

Theorem 2 Let f : RY — R be convex and L ¢-Lipschitz, and let z € R?. For any domain bound

R > 0, ball radius r € (0, R], accuracy level € > 0, and initial point x¢ € R4, Algorithm 1 returns
a point x € RY satisfying f(x) — Min, e, (o0) f(2) < € using at most

- O((R> 2/3 1Og([f(aco) — MiN, R (z0) f(z)]R) log<LfR2>)

queries to an r-BROO. Moreover, the BROO query parameters (\(1),0(1)); - - -, (A(r), O()) satisfy

1 Q%) < Aoy < O(E) and 5y > Q5 ) foralli € [T

LfR )

2. ZZG[T]F<O(Rlog

We remark that Theorem 2 requires a bound on the Lipschitz constant of f solely to bound the
complexity of the bisection procedure for finding {\;}.

4. BROO implementation

In this section, we develop efficient BROO implementations for Fyyax,e, the softmax approximation
of Finax (2). In Section 4.1 we develop our main analytical tool in the form of an “exponentiated
softmax” function approximating Fgmax . and facilitating efficient stochastic gradient estimation.
We then minimize the exponentiated softmax with standard tools from stochastic convex optimiza-
tion. In Section 4.2 we give a BROO implementation for the non-smooth case using restarted

4. We note that X in our notation corresponds to 1/ in the notation of [12].
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Algorithm 1: BROO acceleration

Input: Initial xy € R, Lipschitz and distance bounds Ly, R, r, accuracy ¢, BROO O ,\75(-)
Output: z;e such that f(zret) — argmin, g, ) f(2) <€

Let vg = 29, Ag =0
fort=0,1,2,...do

2L
At+1 = A-BISECTION(¢, vt, Aty Amax = Tf, Amin = gof)
> Finds A\;11 such that x4 ~ pmxﬁ/ . (y¢) and either ||z44+1 — y¢|| & 7 or x4+1 is e-optimal
ag4+1 = ﬁ(l + \/ 1+ 4)\t+1At) and At+1 = At + ag4+1 > A4 = (l}“) 1A 41
_ A at41
Yo = At + A Ut

Ti41 = Oy 0001 (U), Where 01 = 1555
Ury1 = argmingep (o) {arr1 A1 (e — o1, 0) + llv —ve]|?}
if Ay q > RTZ, M1 < 5 [|Te01 — vega]] > 2R, or Agq < exp (Tg/s (t— 1)) A; then

R2T3

‘ return Tpe; € argming ey o 4y f(z)

function \-BISECTION(z, v, A, Amax, Amin)

For all X, let yy == cgan -« + (1 — agayn) - v, where o = m

Define A(}\) = HO}M% (y,\) — y)\H > approximation of A()) := [bprox] . (yx) — ya|
Let A = A\jnax

while A > A\;ip and A()) < % do A+ \/2 > terminates in O (log i“‘) steps
if A < Ao then return 2\ > happens only if bprox/, _(y2x) is O(e)-optimal for small Amin
Let A\, = 2\, Ay = Aand A\, = VAN

if A(N\) < % then return )\, > happens only if A(\¢) € [, 2]
while A(\,,) ¢ [%, 11—55] and log, ’;—’Z > m do

if A(\,) < 11—36?" then \, = )\, else \y = \,,
Am = VAu e

return )\, > the while loop terminates in ()(]ng(% + Ly

. )) steps

Amin”

SGD [20]. In Section 4.3 we instead apply an accelerated variance reduction method (Katyusha [1])
that offers improved performance when the f; are even slightly smooth. Finally, in Section 4.4
we combine our BROO implementations with Algorithm 1 and its guarantees to obtain our main
results: new convergence guarantees for minimizing Fi,,.. We defer proofs to Appendix C.

4.1. Exponentiating a softmax

Recall that € = ¢/(2log N) and that (for nominal accuracy €) the softmax function Fypax () =
€' log (Zz‘e[ N efi@)/ 6/) approximates Fi,,x to within €/2 additive error. The key challenge in de-
signing an efficient stochastic method for minimizing Fimax i a lack of cheap unbiased gradient
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estimators. Specifically, we have V Fypnax () = Zie[ N] pi(z)V fi(x), where
efi(@)/e
> ey €7@

Given access to p(z), we could easily obtain an unbiased estimator for V Fypax () by sampling i ~
p(z) and outputting V f;(x). However, computing p(x) itself requires evaluating all N functions,
making it basically as costly as computing V Fypax . €xactly.

This difficulty, however, is greatly relieved when we operate in a small ball of radius r. = €'/Ly
centered at some point Z. To see why, note that for every ¢ and every x € B, _(Z), Lipschitz
continuity of f; implies | f;(x)/€' — fi(Z)/€'| < Lyre/€’ = 1. Consequently, p(Z) is a multiplicative
approximation for p(z) throughout the ball, satisfying e 2p;(z) < pi(z) < e?p(Z) for all x €
B, (z). Our high-level strategy is thus: perform a full data pass once to compute p(Z), and then
rely on the stability of p(x) within B, (Z) to efficiently estimate gradients by sampling from p(Z).
However, simply sampling i ~ p(Z) and returning V f;(x) is not enough, because it leads to a
biased estimator of V Fymax (). Instead, we define below a surrogate function “exponentiating
the softmax” that closely approximates Fgmayx  and for which elfil@)=fi(2)) /€7 fi(x) is an unbiased
gradient estimator when i ~ p(Z).

To precisely define the surrogate “exponentiated softmax” function, we require some additional
notation. Fixing a ball center & and regularization parameter A, let

pi(z) = “)

A _ A _ N,
fMx) = fi(x)+5 o=z and Finax, (%) = Famaso(2)+5 o —7[|* = 'log > el
1€[N]
be the regularized counterparts of f; and Fypax e, respectively. Then, we define the exponentiated
softmax as

_ , S2@-1@
= Z pi(Z)7vi(z) where y;(z) = ee” .
1€[N]

Fea(z) = € - exp

(Fs)l\nax,e(x) - Fs)r\nax,s('i.)>

®)
Clearly, I  is a finite sum objective (weighted by p(Z)), making stochastic first-order methods
applicable. Moreover, as the following lemma shows, when the ball radius r and A are not too large,
I'c  closely approximates F) and is as regular as ) up to a constant.

smax,e smax,e

Lemma3 Let fi,---, fy each be Ly-Lipschitz and Lg-smooth gradients. For any ¢ > 0, r <
c€' /Ly, and X < cLy/rletC = (14 c+ )e“t* /2. The exponentiated softmax [ x satisfies the
following properties for any T € R%.

1. Foxc(z) and T, 5 have the same minimizer x in B,.(Z). Moreover, for every x € B,.(%),

) (z) — ) (24) S C(Tep(x) —Ten(ay)).

smax,e smax,e

2. Restricted to B,.(T), each function ~y; defined in (5) is C L¢-Lipschitz, C ~1)\ strongly convex,
and C(Lg + X + L?/e’)-smooth.

The proof of Lemma 3 follows from a straightforward calculation, and we defer it to Appendix C.1.

5. We remark that g;(z) = e(fi(”)_fi(i))/EIVfi(m) is also nearly unbiased for Fymax,c in the sense that Eg;(z) =
Z(x)V Fymax, () for some Z(x) that is close to 1 when inside B,._ (Z). Estimators of this form suffice for SGD, but
are less amenable to variance reduction.
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4.2. The non-smooth case: SGD implementation

To take advantage of the strong convexity of of I'c y we use the restarted SGD variant of Hazan and
Kale [20], which finds an e-suboptimal point of a G-Lipschitz and p-strongly convex function with
O(G?/(ue)) iterations (with high probability). To estimate the stochastic gradients, we sample
i ~ p(z) and output V~;(x); this takes O(7, + Ty) time per stochastic gradient, plus O(N7Ty)
preprocessing time to compute p(Z). We provide pseudocode for the algorithm in Appendix C.2,
where we also prove the following complexity bound.

Corollary 4 Let fi, fo,--- , fn be Ly Lipschitz, leto € (0,1), €,0 > 0andr. = €/(2log N - Ly).
Forany T € R and \ < O(Ly/re), with probability at least 1 — o, Algorithm 2 outputs a valid
7¢-BROO response for Fymax ¢ to query T with regularization X and accuracy 9, and has cost

L3 log(L /A6
@) <7}N + (Tg + 7}))\2—(];2 log <0g(;/)>> : (6)

4.3. The (slightly) smooth case: accelerated variance reduction implementation

If we further assume smoothness of fi,..., fi, we can use stochastic variance reduction to obtain
an improved runtime. With these methods, we estimate the gradient of ', y as VI \(2)+V~;(x) —
V7i(x'), where i ~ p(Z) and 2’ is a reference point which we recompute O(1) times. Here, the
O(NTy) cost of computing p(Z) is essentially free compared to the cost O(N7,) of computing the
exact gradients of I'¢ ) at the reference point. We again take advantage of the regularization-induced
A-strong-convexity a variant of the Katyusha method of Allen-Zhu [1]. This results in the following
complexity guarantee; see Appendix C.3 for a proof.

Corollary 5 Let fi, ---, fy be Ly-Lipschitz and Lg-smooth, let o € (0,1), €,6 > 0, € =
¢/(2log N) and rc = €' /Ly. Forany & € R and A < O(Ly/r), with probability at least 1 — o,
Katyushal [1] outputs a valid r.-BROO response to query T with regularization \ and accuracy 9,
and has computational cost

\/N(Lf‘i‘ \/E/Lg) Lf're
0] ((7} +74) <N+ NV log ()\520> . 7

4.4. Main result

With our oracle implementations in hand, we are ready to state our main result.

Theorem 6 Let f1, fa, ..., fx be Ly-Lipschitz, let v, be a minimizer of Finax(z) = max;e[n) fi(x)
and assume ||zo — x4 || < R for a given initial point xo and some R > 0. For any ¢ > 0, Algorithm 1

with the BROO implementation for Fgyax e in Algorithm 2 solves the problem (1) with probability
at least % and has computational cost

L;Rlog N'\*/* LR\
O<<fR€0g> (TfN+<fR> '(7}4‘7-9)10%—’()10%2}{)7 ®

€
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where K == LyRe 1 log N. If moreover fi, fa, ..., fx are each Ly-smooth, then Algorithm I with
a BROO implementation for Fsyax . using Kayushal solves (1) with probability > % and has cost

L:Rlog N\?/3 LRIog N L, R2
O((ﬁ+7;><<fReog ) J\er(fReog +\/96R>\/ﬁ>log3K>.

The proof of Theorem 6, which we provide in Appendix C.4, follows straightforwardly from Theo-
rem 2 and Corollaries 4 and 5. When applying Corollary 4 with § = (1% ) the dependence of the

complexity on A cancels, and we get that each oracle call costs O(N Tr+ L?R2672(7} +74)). The

complexity bound then follows from multiplying the per-call cost with the bound O((R/r.)~2/3)
that Theorem 2 provides on the total number of oracle calls. When applying Corollary 5 we obtain

an oracle implementation cost of O(N (T} + T;) + A~/2V/N [Lie=t + Ly(Tj + Ty)). The com-
plexity bound again follows by multiplying the per-call cost again with the total number of calls, ex-

cept that to bound the contribution of v/ N term we invoke the the guarantee )\6)1 /2 < O(Re1/2)
in Theorem 2 to a tighter bound.

5. Lower bounds

In this section, we prove oracle complexity lower bounds showing that the results of the previous
section are order optimal for sufficiently large N and L,. While our algorithms are first-order
methods, our lower bounds remain valid even for other algorithms that use high order derivatives,
as is typical for our proof technique.

We begin by providing a formal definition of the oracle-based optimization model we consider
(Section 5.1). In Section 5.2, we define an /N-element variant for the zero-chain concept, and prove
that it allows us to control the progress of any (possibly randomized) algorithm. Then, in Section 5.3
we construct a particular /N-element zero-chain for which slow progress implies a large optimality
gap. Finally, Section 5.4 ties these results together, giving our lower bound and providing some
discussion.

5.1. Optimization protocol

Consider problem instances of the form (f;);c[n}, where f; : D — R for some common domain D
and all i € [IN]. We say that an algorithm operating on ( fi)ie[ ~] is an N-element algorithm if it uses
the following iterative protocol. At iteration ¢, the algorithm produces a query i, x;, with i; € [N]
and z; € D. It then observes the output of a local oracle for f;, at the point x;, which we denote by
O (@)

Formally, ©'°° can be any mapping that satisfies (’)}Oc(x) = (’);?C(a:) whenever f(y) = f (y)
for all ¥ in some open set containing = (subsequently referred to as a “neighborhood” of z). In
particular, the first-order oracle used for our upper bounds corresponds to (’)}OC () = (f(z),Vf(x))
and is valid local oracle. The pth order derivative oracle Oi?c(m) = (f(x),Vf(z),...,VPf)isalso
a valid local oracle. The notion of local oracles is classical in the literature on information-based
complexity [29, 18].

The algorithms we consider may be randomized, and we use ( to denote the algorithm’s ran-
domness. Beyond (, the query of the algorithm at iteration ¢ may only depend on the information it

10
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observes from the oracle. That is, for any ¢ > 1, we have

it 2 = Qi (¢ OF (@), OFF (1) ©)

for some measurable function Q);.

5.2. Progress control argument

Following well-established methodology [33, 18, 11], instead of directly bounding the sub-optimality
of the queries x1,...,z; we first bound a surrogate quantity we call progress. Informally, the
progress is the highest coordinate index that the algorithm managed to “discover” using the oracle
responses. Formally, we define the progress of a point x as

prog, () == max{i > 1 ‘ |lzp| > o} (where max () := 0). (10)

The parameter « is a significance threshold for declaring a coordinate “discovered;” it allows us to
prevent algorithms from trivially discovering coordinates by querying directions at random.

We next define a structural property that facilitates controlling the rate with which prog,, (z;)
increases. For this definition, we recall that v<; denotes the vector whose first I coordinates are
identical to those of v and the remainder are zero. Recall also that BY (0) is the unit ball in R

Definition 7 A sequence fi, ..., fx of functions f; : BT (0) — R is called an a-robust N-clement
zero-chain if for all = € BT (0), all y in a neighborhood of x, and all i € [N], we have

fily<y) i<p+1
prog,(z) <p = fi(y) = filyi<pyy) i=p+1 an
IN(<p) i>p+1

To unpack this definition, consider any first-order algorithm with the following two simplifying
properties: (1) the queries i1, io, . . . are drawn i.i.d. from Uniform([N]) and (2) every query x; lies
in the span of previously observed gradients V f;, (z1), ...,V fi, , (z¢—1) [cf. 33]. The first query
of the algorithm must be 1 = 0, and consequently prog, (1) = 0. Definition 7 then implies that
fo, ..., fn are all constant in a neighborhood of x1, while f; depends only on the first coordinate.
Therefore, the span of the gradients (and the next query’s progress) can only increase to 1 after
the algorithm queries ¢ = 1 for the first time. With uniformly random index queries, that takes
Q(N) queries with constant probability. Repeating this argument, we see that every increase of
the gradient span (and hence query progress) takes (2(/V) queries with constant probability, and
therefore reaching progress 7" takes Q2(/N'T") queries with high probability.

To extend this conclusion to general algorithms of the form (9), we perform two types of ran-
domization. First, to handle arbitrary strategies for choosing i; (as opposed to uniform sampling),
we apply a random permutation to fq, ..., fy. Second, to handle arbitrary queries x; (as opposed
to queries in the span of observed gradients), we randomly rotate the coordinate system. This ran-
domization scheme guarantees that no algorithm can materially improve on uniform sampling and
span-preserving, as we formally state in the following.

Proposition 8 Let 6, € (0,1) and let N,T € Nwith T < N/2. Let (f;)ic|n) be an a-robust
N-element zero-chain with domain BT (0). Ford > T + % log 4]\gT2’ draw U uniformly from the

11
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set of d X T orthogonal matrices, and draw 11 uniformly from the set of permutations of [N]. Let
fi(z) = fuq) (UTx). Let {(is, 21) }1>1 be the queries of any N-element algorithm operating on
fl, e ,fN. Then with probability at least 1 — § we have

prog, (U z;) < T forall t < LN(T —log2).

See Appendix D.1 for a proof. Our definition of N-element zero-chains and our proof of their
progress control property builds on the notion of (single element) zero-chain functions [11]. It is
also closely related to probability-p zero-chains [3]; Proposition 8 essentially shows that N-element
algorithms interacting with an /V-element zero-chain make progress about as slowly as stochastic
algorithms interacting with with a probability-N ! zero-chain.

5.3. Hard instance construction

With the progress-control machinery in hand, we proceed to constructing a specific [V-element zero-
chain that also guarantees a large optimality gap for points with progress smaller than 7. Toward
that end, we first define the “link function” ¥, ¢ : R — R as

0 It < «
Yap(t) =4 §t—a)?  a<[t|<li+a
t| —a — 5, otherwise.

Clearly, 1, ¢ is 1-Lipschitz, £-smooth, and is identically zero for all |t| < . We note that v, 4 is
the composition of the Huber function [22] with max{0, |[t| — a}.

Chain constructions of the form Zie[ N] waTx(.%‘[i] — T[;_1)) are common in lower bounds for
convex optimization [cf. 33, 39]. For our construction, we instead spread the link components across
the different elements. Formally, for i € [N], we define the ith function in the our hard instance as

and .’I}[O] = i (12)

L) 1] :
MT,N ¢ ) Ya ,e( ) i <T ‘
fi{ }(35) = { g 2 where a7 = =

0 otherwise 4T3/2

The following lemma summarizes the properties of our construction. The proof of the lemma is
straightforward and we provide it in Appendix D.2

Lemma9 ForeveryT, N € Nand ¢ > 0, such that T' < N, we have that
. HT,N,t} . .
1. The hard instance ( fi )ien is an cp-robust N-element zero-chain.

2. The function fi{T’N’é} is 1-Lipschitz and (-smooth for every i € [N].

3. Forz € R withprog,, (z) < T, the objective FIENG (z) = max;e (] fi{T’N’e} (x) satisfies

) ) 3 1
{T7N7é} J— ] {T,N,K} —_— i oA e~
Frad V(@) = min | By (@) 2 v <8T3/2> = mm{ 8T5/2" 327 }

12
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5.4. Lower bound statement
Finally, we combine the results of the previous sections to state our lower bound. In the statement,

we use a A b := min{a, b} to abbreviate binary minimization.

Theorem 10 Let Ly, Ly, R >0, ¢ < LyRAL,R?* N € Nand § € (0,1). Then, for any (possibly
randomized) algorithm there exists an L ¢-Lipschitz and Lg-smooth functions ( fi)z’e[n] with domain

B%(0) ford = O ( [(@)2 A (LQGR2 )} log N(LfRE/\LgRQ)> such that with probability at least 1 over
the randomness of the algorithm, the first

([ (E22 0 (B2)7] [0 (SEY)

queries of the algorithm are all e-suboptimal for Fiax(v) = maxe|n fi(7).

See Appendix D.3 for a proof of this result. The first (linear-in-/V) term in the lower bound
follows from Proposition 8 and Lemma 9 via a re-scaling argument. The second (sublinear-in-N)
lower bound term is a direct consequence of existing lower bounds [14, 39, 15].

We remark that our lower bound is stated for optimization constrained to a ball of radius R,
while our upper bounds assume unconstrained optimization given a minimizer of norm at most R.
These two settings are essentially equivalent; in Appendix D.4 we sketch a general technique for
transferring lower bounds to the unconstrained setting.

In Table 1 we specify our lower bound in the special cases Ly = oo and L, = @(L?E /€), showing
that they match our upper bounds (up to polylogarithmic factors) for N = Q((LsR/ €)?) in the
former case and for any NV in the latter. More broadly, when L, = @(L?Jquq /el *4) our lower and

upper bounds match for any N and g € [0,2/3]. For Ly, = o(L%/¢) and Ly = w(L§/3R2/3/e5/3),
however, there remain gaps between our upper and lower bounds. We discuss these gaps in the
following section.

6. Discussion

To conclude the paper, we provide some commentary on our results and the possibilities of im-
proving them. For simplicity, in this section we revert to the setting Ly = R = 1 used in the
introduction. We also use a < b as a shorthand for a = O(b), and ignore constant and logarithmic
factors throughout.

6.1. Gaps between the upper and lower bounds

Regimes where a gap exists. Comparing our upper bound in Theorem 6 to our lower bound
in Theorem 10, we identify two regimes where our upper and lower bounds disagree by more than

polylogarithmic factors. The first is the smooth regime L, < ¢~ 1, the lower bound is (N L};/ Se-1/3 4

/N Lgye~1) while our upper bound is 6(]\7 e 23 4/N ¢~1), and a different algorithm gives a better
oracle complexity O(N/Lge~1) (see Appendix A.3) which still falls short of the lower bound.
The second regime is the non-smooth regime Ly >> ¢~ 1, where both the upper and lower bounds
share the term Ne~2/3. Comparing the lower bound to the variance reduced upper bound (6), we see
that they disagree if and only if Ne=2/3 + ¢ 2 <« N Lge~! which is equivalent to N < Lgel/3

13
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and N > ¢ 3/ L. Clearly, this is only possible only when L, > ¢ °/3, and so we conclude that
the rate (6) is in fact optimal whenever e ! < L, < ¢~5/3. Moreover, the upper bound (8) matches
the lower bound whenever N > ¢ 2 for any L, > ¢ !. We conclude that gaps in the non-smooth
regime exist only for L, > ¢ /3 and ¢ 3 /L, < N < min{e 2, ¢'/3L,}.

Closing the gap in the non-smooth regime. Improving the bound (8) from O(Ne~2/3 + ¢=8/3)
to O(Ne 2/3 4 ¢=2) would imply that (13) gives the optimal rate for any L, > ¢~!. The main
barrier for obtaining such improvement is our accuracy requirements 6; = O(e/\;) in Algorithm 1.
Meeting this requirement with SGD means that each oracle implementation costs 5(]\7 + €72)
function/gradient evaluations, and multiplying this cost by the number of rounds 5(6_2/ 3) yields
the exponent 8/3. A variant of Algorithm 1 which can handle less accurate BROO outputs could
close this gap by allowing a more efficient SGD-based implementation.

Closing the gap in the smooth regime. The gap between our upper and lower bounds when
L, < ¢! is more fundamental than the one arising for Ly > €%/, because it affects the term
linear in N. The barrier for improving the linear term in our algorithm is the ball radius. Any 7.-
BROO implementation with (N') cost will have overall complexity Q(Nr. 2/ 3). The techniques
we develop in Section 4 only allow us to support r. = 6(6) because this is the largest radius where

the exponentiated softmax is stable (see Lemma 3).

Conjectures and future work. We conjecture that our lower bound is in fact optimal in both
smoothness regimes. In future work we will attempt to close the remaining complexity gaps de-
scribed above.

6.2. Some necessary algorithmic structures

Several aspects of our method, namely functions value access, individual function queries and ran-
domization are necessary for any method that achieves (or improves on) our complexity bounds.
See Appendix A.4 for detailed discussion.

6.3. Practical considerations

The main purpose of the algorithms we develop in this paper is to clarify the complexity of the
fundamental optimization (1). Nevertheless, since this problem formulation is relevant for a number
of machine learning tasks [13, 21, 36], it is interesting to try and develop a more practical variant of
algorithms. Two aspects of our method which we believe will be particularly useful in practice are
the gradient estimation scheme we use in Algorithm 2 and the momentum scheme in Algorithm 1.
However, a number of aspects of our method seem rather impractical. First, the theory instructs
us to constrain subproblem solutions to a very small ball of radius r. of roughly €/L ;. Since usually
neither € or Ly are known in advance, the parameter 7. must be tuned. Moreover, choosing 7. to
be small in keeping with the theory would likely mean very slow progress in the early stages of the
algorithm. A second impractical aspect is the bisection stage in Algorithm 1: while in theory the
bisection only increases complexity by a logarithmic factor, in practice it entails solving a consid-
erable number of sub-problems without making progress. This bisection overhead is an issue with
Monteiro-Svaiter acceleration more broadly and a topic of active research [37, 34].
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