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Abstract

We establish conditions under which gradient descent applied to fixed-width deep networks drives
the logistic loss to zero, and prove bounds on the rate of convergence. Our analysis applies for
smoothed approximations to the ReLU, such as Swish and the Huberized ReLU, proposed in pre-
vious applied work. We provide two sufficient conditions for convergence. The first is simply a
bound on the loss at initialization. The second is a data separation condition used in prior analyses.
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deep learning.

1. Introduction

Interest in the properties of interpolating deep learning models trained with first-order optimization
methods is surging (Zhang et al., 2017a; Belkin et al., 2019). One important question is to un-
derstand how gradient descent with appropriate random initialization routinely finds interpolating
(near-zero training loss) solutions to these non-convex optimization problems.

In this paper our focus is to understand when gradient descent drives the logistic loss to zero
when applied to fixed-width deep networks using smooth approximations to the ReLU activation
function. We derive upper bounds on the rate of convergence under two conditions. The first result
only requires that the initial loss is small, but does not require any assumption about the width of
the network. It guarantees that if the initial loss is small then gradient descent drives the logistic loss
down to zero. The second result is under a separation condition on the data. Under this assumption
we demonstrate that the loss decreases adequately in the initial iterations such that the first result
applies.

A few ideas that facilitate our analysis are as follows: under the first set of assumptions, when
the loss is small, we show that the negative gradient aligns with the weights of the network. This
lower bounds the norm of the gradient at the beginning of the gradient step and implies that the
loss decreases quickly at the beginning of the step. We then show that the loss is smooth in the
neighborhood of the beginning of the step. The smoothness of the loss combined with the lower
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bound on the norm of the gradient at the beginning of the step implies that the loss decreases
throughout the gradient step when the step-size is small enough.

The second sufficient condition is when the data is separable by a margin using the features ob-
tained by the gradient of the neural network at initialization (see Assumption 3.2). This assumption
has previously been studied by Chen et al. (2021). Intuitively, it is weaker than an assumption that
the training examples are not too close, as we discuss after its definition. Under this assumption we
use a neural tangent kernel (NTK) analysis to show that the loss decreases sufficiently in the first
stage of optimization such that we can invoke our first result to guarantee that the loss decreases
thereafter in the second stage. To analyze this first stage we borrow ideas from (Allen-Zhu et al.,
2019; Zou et al., 2020), because the formulation of their results was most closely aligned with our
needs. However we note that their results do not directly apply since they study networks with
ReLU activations while we study smooth approximations to the ReLU. In addition to adapting their
proofs to our setting, we also worked out some details in the original proofs.

Our first result could be viewed as a tool to establish convergence under a wide variety of con-
ditions. Our second result is one example of how it may be applied. Other separation assumptions
on the data like the ones studied by Ji and Telgarsky (2019c); Chen et al. (2021); Zou et al. (2020),
could also be used in conjunction with our first result to establish convergence to zero training loss.

Recently Chatterji et al. (2020) showed that gradient descent applied to two-layer neural net-
works drives the logistic loss to zero when the initial loss is small and the activation functions are
Huberized ReLLUs. Our work can be viewed as a generalization of their result to the case of deep
networks.

Previously, Lyu and Li (2020) studied the margin maximization of ReLLU networks for the logis-
tic loss. They also proved that gradient descent applied to deep networks drives the training logistic
loss to zero. However, their result requires the neural network to be both positive homogeneous and
smooth (see, for example, the proof of Lemma E.7 of their paper), so that a substantially different
analysis was needed here. Their assumptions rule out the ReLU and close approximations to it like
Swish (Ramachandran et al., 2018) or the Huberized ReLU (Tatro et al., 2020) that are widely used
in practice. Their results do apply in case that the ReLU is raised to a power strictly greater than
two. As far as we know, the analysis of the alignment between the negative gradient and the weights
originated in their paper: in this paper, we establish such alignment under weaker conditions.

Prior work has shown that gradient descent drives the squared loss of fixed-width deep networks
to zero (Du et al., 2018, 2019; Allen-Zhu et al., 2019; Oymak and Soltanolkotabi, 2020), using the
NTK perspective (Jacot et al., 2018; Chizat et al., 2019). The logistic loss however is qualitatively
different. Driving the logistic loss to zero requires the weights to go to infinity, far from their initial
values. This means that a Taylor approximation around the initial values cannot be applied. While
the NTK framework has also been applied to analyze training with the logistic loss, a typical result
(Li and Liang, 2018; Allen-Zhu et al., 2019; Zou et al., 2020) is that after poly(1/e) updates, a
network of size or width poly(1/e) achieves ¢ loss. Thus to guarantee loss very close to zero, these
analyses require larger and larger networks. The reason for this appears to be that a key part of
these analyses is to show that a wider network can achieve a certain fixed loss by traveling a shorter
distance in parameter space. Since, to drive the logistic loss to zero with a fixed-width network, the
parameters must travel an unbounded distance, it seems that the NTK approach cannot be applied
to obtain the results of this paper.

The remainder of the paper is organized as follows. In Section 2 we introduce notation and
definitions. In Section 3 we present our main theorems. We provide a proof of our first result,
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Theorem 3.1, in Section 4. We conclude with a discussion in Section 5. Appendix A points to other
related work. The proof of our second result, Theorem 3.3, and other technical details, are presented
in the remaining appendices.

2. Preliminaries

This section includes notational conventions and a description of the setting.

2.1. Notation

Given a vector v, let ||v|| denote its Euclidean norm, ||v||, denote its {,-norm for any p > 1,
||v]|o denote the number of non-zero entries, and diag(v) denote a diagonal matrix with v along
the diagonal. We say a vector v is k-sparse if ||v]|o < k. Given a matrix M, let || M|| denote its
Frobenius norm, || M||,, denote its operator norm and || M ||p denote the number of non-zero entries
in the matrix. Given either a matrix or a tensor we let vec(-) be its vectorization. Given a tensor
T, let ||T|| = ||vec(T)|; we will sometimes call this the Frobenius norm of 7". If, for matrices
Ti,...,Tp4+ of different shapes, we refer to them collectively as 7', we define ||T'|| analogously.
Given two tensors A and B let A - B denote the element-wise dot product vec(A) - vec(B). For
any k € N, we denote the set {1,...,k} by [k]. For a number p of inputs, we denote the set of
unit-length vectors in RP by SP~!. We use the standard “big Oh notation” (see, e.g., Cormen et al.,
2009). We will use ¢, c, ¢y, ... to denote constants, which may take different values in different
contexts.

For a function J of a tensor V, we denote the gradient of J at V' by Vy J(V), and define
Lip(Vy J(V)) to be the local Lipschitz constant of Vy,J(V'), as a function of V, with respect to
the Euclidean norm. That is

Lip(VyJ(V)) = limsup Vv (V) = VwJ(W)] _
WV |V —Ww|

2.2. The Setting

We will analyze gradient descent applied to minimize the training loss of a multi-layer network.

We assume that the number of inputs is equal to the number of hidden nodes per layer to simplify
the presentation of our results. Our techniques can easily extend to the case where there are different
numbers of hidden nodes in different layers. Let p denote the number of inputs and the number of
hidden nodes per layer, and let L denote the number of hidden layers.

We will denote the activation function by ¢. Given a vector v let ¢(v) denote a vector with the
activation function applied to each coordinate. We study activation functions that are similar to the
ReLU activation function but are smooth.

Definition 2.1 A activation function ¢ is h-smoothly approximately ReLU if,
* the function ¢ is differentiable;
* 9(0)=0;
o ¢ is %-Lipschitz and |¢'(2)| < 1;

e forall z € R:|¢'(2)z — ¢(2)] < h/2.
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It may aid intuition to note that, for small &, the condition that |¢'(2)z — ¢(z)| < h/2 can be
paraphrased to say that a first-order Taylor approximation of ¢ at z is accurate at the origin. It is
easy to verify the activation functions ¢ are contractive with respect to the Euclidean norm. That is,
for any vy, v2 € RP, ||p(v1) — ¢p(v2)|| < ||[v1 —v2||. See Lemma B.9. Here are a couple of examples
of activation functions that are h-smoothly approximately ReLU.

1. Huberized ReLLU (Tatro et al., 2020):
if z <0,

0
o(z) =1 = if z € [0, ), (1)
z — % otherwise.

2. Scaled Swish (Ramachandran et al., 2018): ¢(z) =
1/1.1 ensures that |¢'(z)| < 1.

1.1(1+ex;(72z/h))' The scaling factor

Fori € {1,...,L}, let V; € RP*P be the weight matrix of the ith layer and let V11 € R*P
be the weight vector corresponding to the outer layer. Let V' = (V1, ..., Vr41) consist of all of the
trainable parameters in the network. Let fi, denote the function computed by the network, which
maps z to

fv(@)=Vio (VL - ¢(Vix)).

Consider a training set (x1,%1),-- -, (Tn,yn) € SP~1 x {~1,1}. For any sample s € [n], define

u}is = :L‘KS := x, and for all ¢ € [L], define

Vo %4 Vo ._ \%
uﬁ s Wmé—l )8 and, més T ¢ (fo—l s) )

that is, Uz refers to the pre-activation features in layer ¢, while x)’ ls corresponds to the features after
applying the activation function in the /th layer. Also for any ¢ € [ ] and s € [n] let

Ef,s = dlag (¢ (UZ,S)) = dlag (<f> (wxé—l,s)) .
Define the training loss (empirical risk with respect to the logistic loss) J by

J(V):= % Z log(1 4 exp (—ysfv(zs))),
s=1

and refer to loss on example s by

J(Vixs,ys) :=log(1 + exp (—ys fv (xs)))-
The gradient of the loss evaluated at V' is

I YV ()
VyJ(V) = n 321 1+ exp (ysfv(xs))’

and the partial gradient of fy, with respect to V; has the form (see, e.g., Zou et al., 2020)

L
Ofv(xs)
S = (w1 (WTs)) | Vikaal . whence (1, Ca)
j=0+1
8fV(5US) VT
9Jvirs) _ . 2b
Wi o
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We analyze the iterates of gradient descent V1), V() . defined by
(SR VACIRRYA vV { I

in terms of the properties of V1),

Definition 2.2 For all iterates t, define J;s := J(V(t); Ts,Ys) and let J; := % Son_y Jis. Addition-

ally for all t, define VJy := Vv J|,_y ).

3. Main Results

In this section we present our theorems and discuss their implications.

3.1. A General Result

Given the initial weight matrix V(l), width p, depth L, and training data {z, ys} se[n]s define hnax,

Qmax and @ below:

L_3
Rmax := min L=""log(1/)1) , 15, (3a)
24,/p||[V || F

L+ Hiy @2
Omax(h) := min 2h , (L)l 2” ,and  (3b)
1024 (L +1)" p i [VW|BE45 " 2L(L + 2)21 log (1/.1)
5t L(L + 3)2aJ; logZ (1/.1;)
Q) =
(L+ 3V

(30

Theorem 3.1 For any L > 1, for all n > 3, for all p > 1, for any initial parameters V) and
dataset (x1,Y1), . .., (Tn,yn) € SP~Ex{—1,1}, for any h-smoothly approximately ReLU activation
Sunction with h < hyax, any positive o < amax(h) and positive QQ < Q(«) the following holds for
all t > 1. If each step-size oy = o, and if Jy < 1/n'*t24L then, for all t > 1,

J1
J<—t
Q- (t-1)+1

We reiterate that this theorem makes no assumption about the width p of the network and makes a
very mild assumption on the number of samples required: n > 3. The only other assumption is that
the initial loss is less than 1/n'*24%. We pick the step-size to be a constant, which leads to a rate
that scales with 1/¢.

Next we provide an example where we show that it is possible to arrive at a small loss solution
using gradient descent starting from randomly initialized weight matrices.

3.2. Small Loss Guarantees Using NTK Techniques

In this subsection assume that the entries of the initial weight matrices for the layers ¢ € {1,..., L}

are drawn independently from A (0,2/p), and the entries of VL(i_)l are drawn independently from

N (0, 1). In this section we also specialize to the case where the activation function is the Huberized
ReLU (see its definition in equation (1)). We make the following assumption on the training data.
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Assumption 3.2 With probability 1 — § over the random initialization, there exists a collection of
matrices W* = (W, ..., W) with |W*|| = 1, such that for all samples s € [n]

ys (Vv (xs) - W*) > \/p7,

for some v > 0.

The scaling factor ,/p on the right hand side is to balance the scale of the norm of the gradient at

initialization which will scale with  /p as well. This is because the entries of the final layer VL(i)l are
drawn independently from N (0, 1). This assumption is inspired by Assumption 4.1 made by Chen
et al. (2021). This assumption can be seen to be implied by stronger conditions that simply require
that the training examples are not too close, as employed in (Allen-Zhu et al., 2019; Zou et al., 2020).
Here is some rough intuition of why. The components of V f;,1) () include values computed at
the last hidden layer when z; is processed using VD (that is, Vv fro(zs) = :UZS)). For wide
networks with Huberized ReLLU activations, if the values of x; in the training examples do not have
duplicates, their embeddings into the last hidden layer of nodes are in general position with high
probability. In fact, the Gaussian Process analysis of infinitely wide deep networks at initialization
(Matthews et al., 2018a,b) suggests that, for wide networks, the embeddings will not even be close
to failing to be in general position (see Agarwal et al., 2021). If the width p > n, results from
(Cover, 1965) show that they will be linearly separable. The anti-concentration conferred by the
Gaussian initialization promotes larger (though not necessarily constant) margins. Assumption 3.2
is more refined than a separation condition, since it captures a sense in which the data is amenable
to treatment with neural networks that enables us to provide stronger guarantees in such cases.
Furthermore, in Appendix C we show that Assumption 3.2 is satisfied with a constant margin y by
two-layer networks with Huberized ReLLUs for data satisfying a clustering condition. Finally, we
note that we could also use other assumptions on the data that have been studied in the literature
(for example by, Ji and Telgarsky, 2019¢c) to guarantee that the loss reduces below 1/n!*24L as
required to invoke Theorem 3.1. However, we provide guarantees only under this assumption in the
interest of simplicity.
Define

p = \/C]E)’Y [ log (%) + log(6n(2+24L)>], “)

where c; > 0 is a large enough absolute constant. Also set the value of

(14+24L)log(n) .

h= hNT =
6(6p) 3" L3

&)

With these choices of p and h we are now ready to state our convergence result under Assump-
tion 3.2. The proof of this theorem is presented in Appendix D.

Theorem 3.3 Consider a network with Huberized ReLU activations. There exists r(n,L,d§) =

poly (L,log (%)) such that for any L > 1, n > 3, § > 0, under Assumption 3.2 with v € (0, 1] if

h = hntandp > T(n,;%‘s) then both of the following hold with probability at least 1 — 46 over the

random initialization:
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1. Forallt € [T, set the step-size oy = anNT = @(}%), where T = [%—‘. Then
in J; < !
min —_ .
te[T] B plt2dr

2. Set VD = V) where s € arg min e 7] J(VE), and for all t > T + 1, set the step-size
a = amax(h). Thenforallt > T + 1,

3L+11 2L+5
tho< L™% (6p) )

nlF2L L (f - T — 1)

We invite the reader to interpret the result of this theorem in two scenarios. The first is where the
depth L is a constant and the margin v > (p“poly (n,log (%)))_1, for some constant w € [0, 1).
In this case the conditions of Theorem 3.3 are satisfied for p = poly (n7 log (%)), and, for such p,
the rate of convergence in the second stage is

Y 731 (6p)2L+5 - poly (n,log (%))
t S nH2AL .t —-T-1) ) ~ ! |

Another scenario is where the margin ~ is at least a constant. Here it suffices for the width p >
3L+11

1
poly (L,log (%)). Thus if the number of samples n > [L 2 (6p)2L+5} "X then the rate of
convergence in this second stage is

3L+11
2

L (6p)2L+5 1
< = —_— .
Jt_0<n1+24L~(t—T—1) e

4. Proof of Theorem 3.1

In this section, we prove Theorem 3.1.

4.1. Technical Tools

In this subsection we assemble several technical tools required to prove Theorem 3.1. Their proofs
(which in turn depend on additional, more basic, lemmas) can be found in Appendix B.

We start with the following lemma, which is a slight variant of a standard inequality, and pro-
vides a bound on the loss after a step of gradient descent when the loss function is locally smooth.

Lemma 4.1 Fora > 0, let VY = V() — o J,. If. for all convex combinations W of V") and
VD we have Lip(Vy J(W)) < M, then if a < <, we have
(L+3)M
aL|[VJ|?
Jip1 < Jp — Li—k%
To apply Lemma 4.1 we need to show that the loss .J is smooth near J;. The following lemma
establishes the smoothness of J, if the weights are large enough. (We will be able to apply it, since
the weights must be fairly large to achieve small loss.)



DEEP INTERPOLATION

Lemma 4.2 [fh < 1, for any weights V such that |V'|| > \/L + 1/2, we have

256(L + 1)/p||[V[2EF2J (V)
. .

Lip(Vy J(V)) <

Next, we show that J changes slowly in general, and especially slowly when it is small.

Lemma 4.3 For any weight matrix V such that |V'|| > /L + 1/2 then

Vv J(V)|| < (L4 Dp|V[[FH min{J(V),1}.

The following lemma applies Lemma 4.1 (along with Lemma 4.2) to show that if the step-size
at step ¢ is small enough then the loss decreases by an amount that is proportional to the squared
norm of the gradient.

Lemmadd Ifh <1, J, < 1+24L,and

h
¢S 2 () ||3L+5°
1024 (L + 1)2 B VO
then | H2
aL||V J;
Ji1 < Jp — Li—i—%

The next lemma establishes a lower bound on the norm of the gradient at any iteration in terms
of the loss J; and the norm of the weight matrix V).

Lemmad.5 Forall L € Nifh < huax Ji < —rar, and |[VO|[F < 1og<1/Jt>lgg1/!l, ; then
(L + 3)Jilog(1/ ;)

VJi|| >
VA= = o

(6)

The lower bound on the gradient is proved by showing that the alignment between the negative
gradient —V.J; and V®) is large when the loss is small. The proof proceeds by showing that when
h is sufficiently small and the norm of V(®) is not too large, then the inner product between —V .J;
and V) can be lower bounded by a function of the loss .J;.

4.2. The Proof

As stated above, the proof goes through for any positive i < hpax, step-size & < aumax(h) and
any Q < Q( ) (recall the definitions of hyax, max and @ in equations (3a)-(3c)). We will use the
following multi-part inductive hypothesis:

J .
D Ji < gty

log(1/Jy) ~ log(1/J1)
12) Tywie 2 o

h
(I3) aJi < 1024(L+1)%p||[V O 3145
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The first part of the inductive hypothesis will be used to ensure that the loss decreases at the pre-
scribed rate, the second part helps establish a lower bound on the norm of the gradient in light of
Lemma 4.5 and the third part will ensure that the step-size is small enough to apply Lemma 4.4 and
also allows us to make several useful approximations in our proofs.

The base case is trivially true for the first and second part of the inductive hypothesis. It is true
for the third part since the step-size @ < apax(h) < 1024(L+1)2p}}1||V(1>||3L+5' Now let us assume
that the inductive hypothesis holds for a step ¢ > 1 and prove that it holds for the next step ¢ + 1.
We start with Part I1.

Lemma 4.6 If the inductive hypothesis holds at step t, then

J1

J;
1S 5] Qt+1°

Proof Since aJ; < T024(L 1) };L)||V<i)||3L+5 and J; < J; < 1+24L , by invoking Lemma 4.4,

Lo

Jiy1 < Jip —
(L+1

IV el

log(1/J) [V D]

Additionally since i < hpay and by Part I2 of the inductive hypothesis ||V ®)||F < og(1/ )

we use the lower bound on the norm of the gradient established in Lemma 4.5 to get

L<L + 3>2an log(1/ )
DIV

(i) (1 - L(L+ 3)2.J; log —2(1/Jt)1ogi(1/Jl)>

Jir1 < Jp —

< J;
- (L+ )V
(i4) (1 _L(L+ 3)2aJt logL(l/J1))

< Ji (N
(L+ )V

where (1 ) follows by Part (I2) of the inductive hypothesis, and (i7) follows since L > 1 and J; <

J1 < 1+24L, therefore log?~ (1/Jt) > 1.

For any z > 0, the quadratic function
LL(L+ 3)2alog%(1/J1)
(L+ )V

is a monotonically increasing function in the interval

(L+ v
"2L(L + 3)2alog (1/.;)

Thus, because J; < 2zl if N1 < (Ltg) [V the RHS of (7) is bounded
’ b= QDT T QEEDAT = o 8y20106F (1/1)

above by its value when J; = m But this is easy to check: by our choice of step-size o we
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have,
L+ 1 12
oo < EEDIVY
2L(L + 3)J log T (1/1)
L+ LYy
Lo DIV
2L(L + 3)2alogZ(1/J;)
L+ Hyyy®2
L h @O
Q=1 +1 7 2L(L 4 3)2alogZ (1/J;)
Bounding the RHS of inequality (7) by using the worst case that J; = W, we get that
Lo Ji L(L+3)%alogi (1))
t+1 <~ | 1 —
TTQU-DH1I QUE-DH1 (L4 VO
A <1+ Q ) L Q  LLt}Pah log™ (1/.J7)
Qt+1 Qt—1)+1 Qit—1)+1 QL+ 3)|VD?2
J1 Q 2 . ~ L(L+3)2a; log T (1/.1)
< Y (. A— < = 4
S Q1 (1 (Q(t 1)+ 1) ) <Smce@ < Q) L+ DIV
< N
T Qt+1
This establishes the desired upper bound on the loss at step ¢ + 1. |

In the next lemma we shall establish that the second part of the inductive hypothesis holds.
Lemma 4.7 Under the setting of Theorem 3.1, if the induction hypothesis holds at step t then,

log (Jz1+1> N log (J%)

[VEDE = v o)L

Proof We know from Lemma 4.4 that

- La||VJt|]2>

Ji < J: |1
= ( (L+3)0

and by the triangle inequality

VD < VOl + af VA,

10
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hence

1

log <Jt+1 Jt(l WHV«MP)
[VEDIE = (v O + o V)" (VO + ol VI "

) log

log( )+1og ( 1 - Jt||2)

1—
(L+ )J

log( —Hwtu)
log(}t) 1-— +3)7

tog(+)

L
IvOE (1+ 5555

Vo]
1 1_|_ LO‘”VJth
@ log () (+5) 2 1ox (57 )
—|[veE ( auwm)L
1+ v

where (i) follows since log(1 — z) < —z for all z € (0, 1) and because

Lo
(L+3)
La
(L+1)

L(L + 1)p||[V®|2(=+D
L+3 ]

IV )2

< [(L + 1)p ||V HQ(L“)} (by Lemma 4.3)

= OéJt

. ([V®]| > 1 by Lemma B.5, and h < 1)

<1 (by Part I3 of the IH).

1024 (L 4 1)? p||V®)||3L+5
<aJt[ (L +1%pV) ]

We want to show that the term in curly brackets in inequality (8) is at least 1, that is, we want

P 221\ 21 . (1 +auwt||>? ©
(L+1)J,log (Jit) N Ve

We will first show that this inequality holds in the case where L > 1. To show this, note that

J,
0|é||§ tH o/ (L + 1)p||[V O (by Lemma 4.3)

1 1024 (L + 1)% p||[VO3E+5
< ——-aly 024(L+1) pl[V] (since |[V®| > 1 by Lemma B.5)
L-1 h
< b (by Part I3 of the [H)
<73 y Part I3 of the TH).

11
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For any positive z < ﬁ we have the inequality that (1 4 2)% < 1+ 1_(’]%72_1)2 therefore to show
that inequality (9) holds it instead suffices to show that

L Ll VAP Lal||V.Jy|
- L-1)a||VJ
(Lt Datog (3) VO (1 - Eperd)
IV N 1
1 1\ — (L—1)a||VJ:||
(L+ ) dilog (4) — IV (1 - E=geliral)
(L+ )08 (%) (L - 1ol va?
o |V >
el Vo]
(L + %)Jt log (%) (L _ 1)04(L + 1) (t)||2L+2 72
PHV H Jt
>
<= ||V > Vo + Vo (by Lemma 4.3)
2 1)p|| V(D |[2E+2 h 1
L+ % + a0 3 X ) Jilog ( +
VAl > ( 102410g(}t> ( t)
= Vo]
(L+ 2)Jylog (-
VI > — ()

V@ ’

where the last implication follows from Part I3 of the IH, the fact that 4 < 1 and because J; < J; <
1/n'*24L and n > 3. Now this last inequality holds again because of Lemma 4.5 that guarantees

(L+3)J; log(1/Jy)
that ||V.J;| > %

without the use of the inequality that was used to upper bound (1 + z)”. Thus we have proved that
the term in the curly brackets in inequality (8) is at least 1 and hence

1 1 1
log (Jt+l> N log (JT) N log <J—1>

[VEDE = v@pe = vope

. A similar argument can also be used in the case where L = 1,

This proves that the ratio is bounded below at step £+ 1 by its initial value and establishes our claim.
|

Finally we ensure that the third part of the inductive hypothesis holds. This allows us to apply
Lemma 4.4 in the next step ¢ + 1.

Lemma 4.8 Under the setting of Theorem 3.1, if the induction hypothesis holds at step t, then

h
1024 (L + 1) p||V t+D)|3L+5

adipg <

( .
Proof We know by Lemma 4.7 that ||V ¢+D || < log(1/ T NIVEN® o 4 instead suffices to prove

log(1/.J1)
that
3L+5
: 1 hl 1/J
aJt+1 10g3LE—5 <J ) S og L2 ( / 1) . (10)
t+1 1024 (L + 1)% p||V(D)||3L+5
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Lemma 4.6 establishes that J;11 < J; < 1/ nlt24L . The function zlog M

over the interval (0, —7+5 ). Recall that n > 3 therefore,
L

e

(1/z) is increasing

1 1
Jt+1 S Jl < 31+24L < 3L+5 °
e L

Thus, the LHS of (10) is maximized at J;

3L+45

aJt+110g3LL,+5 <1> SOéJllogSLLJrE) <1> < hlog 2L (1/J1) ‘
Jt1 Ji 1024 (L + 1)* /p||[V D ||3L+5

where final inequality holds by choice of the step-size «. This completes the proof. |

Combining the results of Lemmas 4.6, 4.7 and 4.8 completes the proof of theorem.

5. Discussion

We have shown that deep networks with smoothed ReLLU activations trained by gradient descent
with logistic loss achieve training loss approaching zero if the loss is initially small enough. We also
established conditions under which this happens that formalize the idea that the NTK features are
useful. Our analysis applies in the case of networks using the increasingly popular Swish activation
function.

While, to simplify our treatment, we concentrated on the case that the number of hidden nodes
in each layer is equal to the number of inputs, our analysis should easily be adapted to the case of
varying numbers of hidden units.

Analysis of architectures such as Residual Networks and Transformers would be a potentially
interesting next step.

Acknowledgments

We thank the anonymous reviewers for alerting us to a mistake in an earlier version of this paper.
We gratefully acknowledge the support of the NSF through grants DMS-2031883 and DMS-
2023505 and the Simons Foundation through award 814639.

References

Naman Agarwal, Pranjal Awasthi, and Satyen Kale. A deep conditioning treatment of neural net-
works. In Algorithmic Learning Theory, pages 249-305, 2021.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pages 242-252, 2019.

Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning polynomials with
neural networks. In International Conference on Machine Learning, pages 1908-1916, 2014.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. In Advances in Neural Information Processing Systems, pages 7413-7424, 2019a.

13



DEEP INTERPOLATION

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pages 322—-332, 2019b.

Peter L Bartlett and Philip M Long. Failures of model-dependent generalization bounds for least-
norm interpolation. arXiv preprint arXiv:2010.08479, 2020.

Peter L Bartlett, Philip M Long, Gabor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. Proceedings of the National Academy of Sciences, 117(48):30063-30070, 2020.

Mikhail Belkin, Daniel J Hsu, and Partha Mitra. Overfitting or perfect fitting? Risk bounds for
classification and regression rules that interpolate. In Advances in Neural Information Processing
Systems, pages 2300-2311, 2018.

Mikhail Belkin, Daniel J Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias—variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849-15854, 2019.

Guy Bresler and Dheeraj Nagaraj. A corrective view of neural networks: Representation, memo-
rization and learning. In Conference on Learning Theory, pages 848-901, 2020.

Alon Brutzkus and Amir Globerson. Why do larger models generalize better? A theoretical perspec-
tive via the XOR problem. In International Conference on Machine Learning, pages 822-830,
2019.

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. SGD learns over-
parameterized networks that provably generalize on linearly separable data. In Infernational
Conference on Learning Representations, 2018.

Sébastien Bubeck. Convex optimization: algorithms and complexity. Foundations and Trends® in
Machine Learning, 8(3-4):231-357, 2015.

Niladri S Chatterji and Philip M Long. Finite-sample analysis of interpolating linear classifiers in
the overparameterized regime. Journal of Machine Learning Research, 22(129):1-30, 2021.

Niladri S Chatterji, Philip M Long, and Peter L. Bartlett. When does gradient descent with logistic
loss find interpolating two-layer networks? arXiv preprint arXiv:2012.02409, 2020.

Zixiang Chen, Yuan Cao, Quanquan Gu, and Tong Zhang. A generalized neural tangent kernel
analysis for two-layer neural networks. In Advances in Neural Information Processing Systems,
2020.

Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. How much over-parameterization is suffi-
cient to learn deep ReLU networks? In International Conference on Learning Representations,
2021.

Lénaic Chizat. Analysis of gradient descent on wide two-layer ReLLU neural networks, 2020. URL
https://www.msri.org/workshops/928/schedules/28397. Talk at MSRIL

14


https://www.msri.org/workshops/928/schedules/28397

DEEP INTERPOLATION

Lénaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Advances in Neural Information Processing
Systems, pages 3036-3046, 2018.

Lénaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural net-
works trained with the logistic loss. In Conference on Learning Theory, 2020.

Lénaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
In Advances in Neural Information Processing Systems, pages 2937-2947, 2019.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT Press, 2009.

Thomas M Cover. Geometrical and statistical properties of systems of linear inequalities with
applications in pattern recognition. IEEE Transactions on Electronic Computers, 14(3):326-334,
1965.

Amit Daniely. Neural networks learning and memorization with (almost) no over-parameterization.
In Advances in Neural Information Processing Systems, pages 9007-9016, 2020.

Amit Daniely and Eran Malach. Learning parities with neural networks. Advances in Neural
Information Processing Systems, 33:20356-20365, 2020.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2018.

Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pages 1675—
1685, 2019.

Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape
design. International Conference on Learning Representations, 2018.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias

in terms of optimization geometry. In International Conference on Machine Learning, pages
1832-1841, 2018a.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nathan Srebro. Implicit bias of gradient descent

on linear convolutional networks. In Advances in Neural Information Processing Systems, pages
9461-9471, 2018b.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560, 2019.

Daniel Hsu, Vidya Muthukumar, and Ji Xu. On the proliferation of support vectors in high dimen-
sions. In International Conference on Artificial Intelligence and Statistics, pages 91-99, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in Neural Information Processing Systems, pages
8571-8580, 2018.

15



DEEP INTERPOLATION

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
Conference on Learning Theory, pages 1772-1798, 2019a.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In
International Conference on Learning Representations, 2019b.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve arbi-
trarily small test error with shallow ReLU networks. In International Conference on Learning
Representations, 2019c.

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. In Advances
in Neural Information Processing Systems, pages 17176-17186, 2020.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient

descent on structured data. In Advances in Neural Information Processing Systems, pages 8157—
8166, 2018.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with ReL.U activa-
tion. In Advances in Neural Information Processing Systems, pages 597-607, 2017.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning The-
ory, pages 247, 2018.

Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel “ridgeless” regression can gener-
alize. The Annals of Statistics, 48(3):1329-1347, 2020.

Tengyuan Liang and Pragya Sur. A precise high-dimensional asymptotic theory for boosting and
min-/1-norm interpolated classifiers. arXiv preprint arXiv:2002.01586, 2020.

Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the multiple descent of minimum-norm
interpolants and restricted lower isometry of kernels. In Conference on Learning Theory, pages
2683-2711, 2020.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
In International Conference on Learning Representations, 2020.

Alexander Matthews, Jiri Hron, Mark Rowland, Richard E Turner, and Zoubin Ghahramani. Gaus-
sian process behaviour in wide deep neural networks. In International Conference on Learning
Representations, 2018a.

Alexander Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahramani. Gaus-
sian process behaviour in wide deep neural networks. arXiv preprint arXiv:1804.11271, 2018b.

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and the double descent curve. Communications on Pure and Applied Mathematics,
2021.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
networks: dimension-free bounds and kernel limit. In Conference on Learning Theory, pages
2388-2464, 2019.

16



DEEP INTERPOLATION

Andrea Montanari, Feng Ruan, Youngtak Sohn, and Jun Yan. The generalization error of max-
margin linear classifiers: High-dimensional asymptotics in the overparametrized regime. arXiv
preprint arXiv:1911.01544, 2019.

Vidya Muthukumar, Adhyyan Narang, Vignesh Subramanian, Mikhail Belkin, Daniel J Hsu, and
Anant Sahai. Classification vs regression in overparameterized regimes: Does the loss function
matter? arXiv preprint arXiv:2005.08054, 2020a.

Vidya Muthukumar, Kailas Vodrahalli, Vignesh Subramanian, and Anant Sahai. Harmless inter-
polation of noisy data in regression. IEEE Journal on Selected Areas in Information Theory,
2020b.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On
the role of implicit regularization in deep learning. In International Conference on Learning
Representations (Workshop), 2015.

Atsushi Nitanda, Geoffrey Chinot, and Taiji Suzuki. Gradient descent can learn less
over-parameterized two-layer neural networks on classification problems. arXiv preprint
arXiv:1905.09870, 2019.

Samet Oymak and Mahdi Soltanolkotabi. Towards moderate overparameterization: global con-
vergence guarantees for training shallow neural networks. [EEE Journal on Selected Areas in
Information Theory, 2020.

Rina Panigrahy, Sushant Sachdeva, and Qiuyi Zhang. Convergence results for neural networks via
electrodynamics. In Innovations in Theoretical Computer Science, 2018.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. In Interna-
tional Conference on Learning Representations (Workshop), 2018.

Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer ReL.U neural net-
works. In International Conference on Machine Learning, pages 4433—4441, 2018.

Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix Chernoff bound.
arXiv preprint arXiv:1906.03593, 2019.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. Journal of Machine Learning Research, 19
(1):2822-2878, 2018.

Norman Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai. Opti-
mizing mode connectivity via neuron alignment. In Advances in Neural Information Processing
Systems, 2020.

Alexander Tsigler and Peter L Bartlett. Benign overfitting in ridge regression. arXiv preprint
arXiv:2009.14286, 2020.

Roman Vershynin. High-dimensional probability: An introduction with applications in data sci-
ence, volume 47. Cambridge University Press, 2018.

17



DEEP INTERPOLATION

Martin Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge University Press, 2019.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. In Advances in Neural Information Processing
Systems, pages 9712-9724, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. In International Conference on Learning
Representations, 2017a.

Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer ReLLU
networks via gradient descent. In International Conference on Artificial Intelligence and Statis-
tics, pages 1524-1534, 2019.

Yuchen Zhang, Jason D Lee, Martin Wainwright, and Michael Jordan. On the learnability of fully-
connected neural networks. In International Conference on Artificial Intelligence and Statistics,
pages 83-91, 2017b.

Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S. Dhillon. Recovery guarantees
for one-hidden-layer neural networks. In International Conference on Machine Learning, pages
4140-4149, 2017.

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. In NeurlPS, pages 2053-2062, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep ReLU networks. Machine Learning, 109(3):467-492, 2020.

18



Contents

1 Introduction

DEEP INTERPOLATION

2 Preliminaries

2.1 Notation . . . . . . . o o e e e e

22 TheSetting . . . . . . . . e
3 Main Results

3.1 AGeneralResult . . . . . . . . . ...

3.2 Small Loss Guarantees Using NTK Techniques . . . . ... ... ... .. ....
4 Proof of Theorem 3.1

4.1 Technical Tools . . . . . . . . . . . . . e

4.2 TheProof . . . . . . . . e

5 Discussion

A Additional Related Work

B Omitted Proofs from Section 4.1
B.1 Additional Definitions . . . . . . . . . . . . ..
B.2 BasicLemmas. . . . . . . . . . . . . . ..
B.3 Proofof Lemmad.1. ... ... . . . . . .. ..
B.4 Proofof Lemmad4.2 . .. .. . . . . . . ...
B.5 Proofof Lemmad4.3 . . . . . . . . . . . . ..
B.6 Proofof Lemmad4.4 . . . .. . . . . . . . ..
B.7 Proofof Lemmad4.5. .. .. . . . . . .. ...

C An Example Where the Margin in Assumption 3.2 is Constant

D Omitted Proofs from Section 3.2
D.1 Additional Definitions and Notation . . . . . . . . . .. . . ... ... ......
D.2 Technical Tools Required for the Neural Tangent Kernel Proofs . . . . . . ... ..
D.3 Proofof Theorem 3.3 . . . . . . . . . . . . . . . . e

E Proof of Lemma D.7

E.1 Properties at Initialization . . . . . . . . ... ... oL
E.1.1 ProofofPart(a) . ... ... . . . . . . .. . .
E.1.2 ProofofPart(b) . . ... ... . . ... ...
E.1.3 ProofofPart(c) . .. ... .. . . . . . . ...
E.14 ProofofPart(d) ... ... ... ... . . ... ...
E.1.5 ProofofPart(e) . .. ... ... . . . . . ... ...
E.1.6 ProofofPart(f) . .. . .. ... .. ... . ... ...
E.1.7 ProofofPart(g) . ... ... . . . . . . .
E.1.8 ProofofPart(h) .. ... ... . ... ... ... ... ...
E.1.9 Other Useful Concentration Lemmas . . . . .. ... ... ........

19

|

13

20

20
21
21
26
26
40
42
44

48

52
53
54
57



DEEP INTERPOLATION

E.2 Useful Properties in a Neighborhood Around the Initialization . . . ... ... .. 82
E.3 TheProof . . . . . . . . . 95
F Probabilistic Tools 100

Appendix A. Additional Related Work

Building on the work of Lyu and Li (2020), Ji and Telgarsky (2020) study finite-width deep ReLU
neural networks and show that starting from a small loss, gradient flow coupled with logistic loss
leads to convergence of the directions of the parameter vectors. They also demonstrate alignment
between the parameter vector directions and the negative gradient. However, they do not prove that
the training loss converges to zero.

Using mean-field techniques Chizat and Bach (2020), building on (Chizat and Bach, 2018; Mei
et al., 2019), show that infinitely wide two-layer squared ReLU networks trained with gradient flow
on the logistic loss leads to a max-margin classifier in a particular non-Hilbertian space of functions.
See also the videos in a talk about this work (Chizat, 2020). Chen et al. (2020) analyzed regularized
training with gradient flow on infinitely wide networks. When training is regularized, the weights
also may travel far from their initial values. Previously Brutzkus et al. (2018) studied finite-width
two-layer leaky ReLLU networks and showed that when the data is linearly separable, these networks
can be trained up to zero-loss using stochastic gradient descent with the hinge loss.

Our study is motivated in part by the line of work that has emerged which emphasizes the need
to understand the behavior of interpolating (zero training loss/error) classifiers and regressors. A
number of recent papers have analyzed the properties of interpolating methods in linear regression
(Hastie et al., 2019; Bartlett et al., 2020; Muthukumar et al., 2020b; Tsigler and Bartlett, 2020;
Bartlett and Long, 2020), linear classification (Montanari et al., 2019; Chatterji and Long, 2021;
Liang and Sur, 2020; Muthukumar et al., 2020a; Hsu et al., 2021), kernel regression (Liang and
Rakhlin, 2020; Mei and Montanari, 2021; Liang et al., 2020) and simplicial nearest neighbor meth-
ods (Belkin et al., 2018).

There are also many related papers that characterize the implicit bias of the solution obtained by
first-order methods (Neyshabur et al., 2015; Soudry et al., 2018; Ji and Telgarsky, 2019a; Gunasekar
etal., 2018a,b; Li et al., 2018; Arora et al., 2019a; Ji and Telgarsky, 2019b).

Finally, we note that a number of other recent papers also theoretically study the optimization of
neural networks including (Andoni et al., 2014; Li and Yuan, 2017; Zhong et al., 2017; Zhang et al.,
2017b; Ge et al., 2018; Panigrahy et al., 2018; Du et al., 2018; Safran and Shamir, 2018; Zhang
et al., 2019; Arora et al., 2019b; Brutzkus and Globerson, 2019; Wei et al., 2019; Ji and Telgarsky,
2019c; Nitanda et al., 2019; Song and Yang, 2019; Zou and Gu, 2019; Bresler and Nagaraj, 2020;
Daniely, 2020; Daniely and Malach, 2020).

Appendix B. Omitted Proofs from Section 4.1

In this section we present the proofs of Lemmas 4.1-4.5.
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B.1. Additional Definitions

Definition B.1 For any weight matrix V, define gs;(V') := m. We will often use g5 as

shorthand for gs(V') when V' can be determined from context. Further, for all t € {0, 1, ...}, define
gts ‘= gs(v(t))-

Informally, gs(V') is the size of the contribution of example s to the gradient.

Definition B.2 For all iterates t, all ¢ € [L + 1] and all s € [n), define a:gtz = m}/:), uét; = qu(t)
and Zét) = E}/:).

S

B.2. Basic Lemmas

To prove Lemmas 4.1-4.5, we will need some more basic lemmas, which we first prove.

Lemma B.3 Forany x € RP and y € {—1, 1} and any weight matrix V' we have the following:

1.

T+ o (v (@) = les +exp(=yfv(@))) = J(Viz,y).

exp (yfv(z))
(1+exp (yfy(z))® ~ 1+exp(yfv(z))

< J(Viz,y).

Proof Part 1 follows since for any z € R, we have the inequality (1 + exp(z))~! < log(1 +

exp(—z)).
Part 2 follows since for any z € RY, we have the inequality

exp(2)/ (1+exp(2))® < (1 +exp(2)) 7" .

The following lemma is useful for establishing a relatively simple lower bound on a sum of
applications of a concave function.

Lemma B4 If¢ : [0, M] — R is a concave function with 1)(0) = 0. Then the minimum of
oy (zi) subject to z1, ...,z > 0and Y"1 |z = M is p(M).

Proof Let 21, . .., 2, be any solution, and let i be the least index such that z; > 0. Then, since v is
concave and non-negative, we have that

Y21+ 2i) +9(0) = Y(21 + 2z) < YP(21) + Y(2).

Thus, replacing 21 with 21 4 z;, and replacing z; with 0, produces a solution with one fewer nonzero
entries that it at least as good. Repeating this for each ¢ > 1 implies that the solution with 21 = M
and zo = ... = z, = 0is optimal. |

The next lemma shows that large weights are needed to achieve small loss.
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Lemma B.5 For any L € N and any weight matrix V if J(V') < W% then,

V2.
Proof Since ¢ is 1-Lipschitz and ¢(0) = 0, for all z,

V> vI+1>

P(2)] < |z

(V5 2s,ys) = log (1 + exp (=ysVi10(Ve - - ¢(Vi))))

, and thus, given any sample s,
L+1

>log | 1+exp | = [TIVjllopllsll
j=1

L+1
>log | 1+exp | = [TIVillop (since [|z ([ = 1)
j=1

L+1
>log [ 1+exp | — []IVil
j=1

By the AM-GM inequality

1
L+1 L+1 L4111/ 112
LIvI? _ 2 Vil vy
i J - L+1 L+1

Therefore

L+1
J(V;xs,ys) > log <1+exp (—(\)%) )) )

Now we know that

2 ! . v\
nl+24L>J(V):n§}J(V,xs,ys)zlog 1+exp| — \/Liﬂ )
Solving for ||V']| leads to the implication
1
\/Li—}—llogﬁl 5 <V
exp () — 1

Since for any z € [0, 1], exp(z) < 1+ 2z and n > 3, hence

n1+24L 31+24L

V|| > VI + 1logT+t < ) > VI 1 1logZ+ ( ) > VL + 1logT+t (3235)

— VI ¥ 1(23L) 7+ logZ+1 (3)
>VL+1>V2.
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Lemma B.6 Forany L € N:

L
L VI > VI, then mayers) T4 Vil < (U0) 7 < v

. L
2. if |V > 1, then maxyerr) TT; 20 Vil < V™.

Proof Let > = ||V||%. Then for any k € [L],

L+1
IT vl
j=k+1

is maximized subject to Z]Liklﬂ |V;1I? < n* when every ||V;||? = n?/(L — k + 1); this follows by

the AM-GM inequality.
Therefore we have

L+1 . Lkt1
Villoy < " .
kme?ﬁn IVl ”—z?é?ﬁ<\/L—k+1>

j=k+1

If V|| > VI +1,

AN
/N
Sl
~——

d
IA
=

n L—k+1
w ()
and if |V'|| > 1 then
max " . <l
ke[L] (m) =T
|

The next lemma bounds the product of the operator norms of matrices in terms of a “collective
Frobenius norm”.

Lemma B.7 For matrices Ay, ..., Ap+1 and My, ... ,Mryq, let A = (Ay,...,Ap+1). For all
i€ [L+1), || Millop < 1. Then, for any nonempty T C [L + 1]

| A=+
Aillonl| Ml op < max A P -
[ T11Aillopl M| {(L+1)L2+1 || Al

1€T

Proof We know that for all i € [L + 1], || As]|op < || As]|, therefore, by the AM-GM inequality
IZ|

YiezllAill?
[T n13,) < [T1a2, < [T1ade < (=4
€T €T ieT

<||A||2>'I'
<
IZ|

All2(L+1)
< maX{Hl)w \|A||2}.
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Taking square roots completes the proof. |

The next lemma bounds bounds how much perturbing the factors changes a product of matrices.

Lemma B.8 Let Al, ce 7AL+1» Bl, ce ,BL+1, Ml, . ,ML+1 and Nl,. . .,NL+1 be matrices,
andlet A = (Ay,..., A1) and B = (By,...,Br41). Assume

* Al = VL+1/2

* foralli € [L+ 1], || M;|lop < 1and ||Ni|lop < 1 and

* foralli € [L+1], ||M; — Nillop < K,
then
L+1 L+1 3
[Tims) - TBN)|| < SUlAl+ 1A~ B[)EH (sl All + (1A = BI)).
i=1 i=1 op
Proof By the triangle inequality
L+1 L+1
[T - T (BN
i=1 i=1 op
L+1 j L+1 j—1 L+1
=D <H AiMi> I] BN | - (H AiMi> 11 B~
j=1 i=1 i=j+1 i=1 i=j op
L+1 j L+1 j—1 L+1
< Z (H AiMi> H BiN; | — (H AiMi> H B;N;
j=1 || \i=1 i=j+1 i=1 i=j op
L+1 j—1 L+1
= Z (Aij — Bij) (H AzMz> H BiNi
j=1 i=1 i=j+1 op
L+1 j—1 L+1
<> |14;M; - BN, (H A,»Mi> II BN : (11)
j=1 i=1 i=j+1 op

For some j, consider 7'(j) := (A1, ..., Aj_1, Bjt1, Br+1). By the triangle inequality,
1T < 1Al + |4 = BJ|.
Thus, Lemma B.7 implies

j—1 L+1 Jj—1 L+1
(H AiMi> IT BN < (HHAz‘Mz‘Hop> LT I1BiNillop
i=1 i=1

i=j+1 op i=j+1

IN

j—1 L+1
(HHAthJp) H HBiHop
i=1

i=j+1

A A — BINL+1
SmaX{(H A= Bl ,||A||+||A—Bu}.

L+1

(L+1)"
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Returning to (11),

L+1 L+1
H A; M; — H B;N;
i=1 i=1 op

A,—% A B L+1
< max {(” LHIA=BD i+ 14 - 5y
(L+1)5

HAM B;Njll,,

LAl + HA Bl

L+1
2

L+1
L+1
A+ 114 = B|| ZHAM — AjN; + A;Nj — B;Nj|

Al + IIA BH)L+1

L+1
e LA+ A = BH} Z 145 (Mj = Nj)llop + 1145 = BjHop>

L+1 L+1

> 11451, 135 = N !!op+ZHA = Bill,,

] 1

AL+ (1A = B

L+1
2

L+1 L+1

F»ZHA ||+Z||A - B

(|| A]| + |A = B|)E*!
ST Lﬂ”) HAH+HA—BH}[¢L+1<HHAH+HA—BH>}

Al + IIA Bl

L+1
2

A+ A= B

{5
S
{ 4]l + ||A B|)++!
45
o 5

L+1
— max { 'A””'A Bl \/L+1(HAH+HA—B\)}<ﬂHAH+HA—BH)
(L+1)

3
< SUAl+ 1A= BI" (sllAll + 114 - BII),
where the last inequality holds since ||A|| > /L + 1/2. This completes the proof. [ |

The next lemma shows that h-smoothly approximately ReL U activations are contractive maps.

Lemma B.9 Given an h-smoothly approximately ReLU activation ¢, for any v1, vy € RP we have
lp(v1) — d(v2)|| < ||vr — vel|. That is, ¢ is a contractive map with respect to the Euclidean norm.

Proof Let (v); denote the jth coordinate of a vector v. For each j € [p], by the mean value theorem
for some 0; € [(v2);, (v1);]

(p(v1) = d(v2)); = ¢ (95)(v1 — v2);.

Thus,
(4)
lp(v1) — p(v2)||* = Z (& (57) (01 — v2);)* = Z (¢'(@7))" (01 — v)F < Z (01 — v2)’
J€lp] J€Elp] JEP]
= [l —valf?,

where (i) follows because |¢/(z)| < 1 for all z € R for h-smoothly approximately ReLU activa-
tions. Taking square roots completes the proof. |
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B.3. Proof of Lemma 4.1

Lemma 4.1 For a > 0, let VD) = V) — oV J,. If. for all convex combinations W of V1) and

V(t“), we have Lip(Vy J(W)) < M, then if o < L__ we have
(L+3)M

aL||V.J|?
L+3

N

Jiv1 < Jp —

Proof Along the line segment joining V®) to V(1) the function .J(-) is M-smooth, therefore by
using a standard argument (see, e.g., Bubeck, 2015, Lemma 3.4) we get that

M
Ji1 < Jp + V- (VED v Oy 4 7\|v<t+1> — VO3
a’M

= Ji = ol VI|* + =~V
aM
< Jy— ol VI |12
> Jt L ‘l‘% H tH
This completes the proof. n

B.4. Proof of Lemma 4.2

The proof of Lemma 4.2 is built up in stages, through a series of lemmas.
The first lemma bounds the norm of the difference between the pre-activation (u}{s) and post-

activation features (x}/s) at any layer j, when the weight matrix of a single layer is swapped. It also
provides a bound on the norm of the pre-activation and post-activation features at any layer in terms
of the norm of the weight matrix.

Lemma B.10 Consider V. = (V1,...,Vi41) and W = (Wh,...,Wr41), and ¢ € [L + 1].
Suppose that V; = W forall j # (, and |V ||, [|[W || > \/L 4 1/2. Then, for all examples s and all
layers j,

Ll [l < [V]I=+E
2. lay Il < IVIIF*,
3. Nugy — ujill < Ve = Wellopl|VII*+1; and

4. 2y, — 2kl < Ve = WellopVIIFF.
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Proof Proof of Parts 1 and 2: For any sample s and layer j we have

(i) J
1% 1%
[uf ol = 1Vip(u) s I < Villoplld @)y I < [Villoplluf 1 oIl < TT1Villopllas|
k=1

(i)
< TTIVillop
k=1

(i44)
< viF,

where (i) follows since ¢ is contractive (Lemma B.9), (i7) is because ||xs|| = 1 and (iii) is by
Lemma B.7. This completes the proof of Part 1 of this lemma. Again since ¢ is contractive,
||l';/8 Il = ||¢(u}/s) | < ||[V||**1, which establishes the second part of the lemma.

Proof of Parts 3 and 4: For any j < ¢, u}{s = u;/VS and 37;{5 = x%, since V; = W for all j # £.
For j = ¢ we have

lugs = willl = Vexy_y o = Wea'y | = (Ve = W)z _y ol < [1Ve = Wellopllzy_y |

= Ve = Willopll¢ (Ve—r2/_s,,)

(@)
< Ve = Wellop [ 11 Villop
k<t

< |[Ve = Wellop [ IR
k<t

(41)
L
< Ve = Willop [ VI[FF
where () follows since ¢ is a contractive map (Lemma B.9) and because ||xs|| = 1, and (ii) follows
by applying Lemma B.7. Since ¢ is contractive we also have that
2y s — 205 < Ve — Wellop| V[ P+

When j > £, it is possible to establish our claim by mirroring the argument in the j = ¢ case which
completes the proof of the last two parts.
|

The next lemma upper bounds difference between the E}{S and E%, when the weight matrices differ
in a single layer.

Lemma B.11 Consider V = (Vi,...,Vy) and W = (Wh,...,Wp), and ¢ € [L]. Suppose that
Vi =Wjforall j # ¢, and |V ||, ||W| > /L + 1/2. Then, for all examples s and all layers j,

Ve = Wellopl[ V]I =+
> :

Proof For any j € [L] and any s € [n], E;{S and Ejvz are both diagonal matrices, and hence

155 = Bikllop = 169 (ug ) = ' (30 lloo

||2XS - E}/YSHOP <

Huj - Uj HOO . /. . .
< A (since ¢’ is (1/h)-Lipschitz)
< Ve = Willop[VII=+
— h )
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by Lemma B.10. u

The following lemma bounds the difference between g5(V") and gs(W) for any sample s when
the weight matrices V' and W differ in a single layer.

Lemma B.12 Consider V = (Vy,...,Vi11)and W = (Wq, ..., Wpi1), and £ € [L+1]. Suppose
that V; = Wj for all j # ¢, with |Ve — Wellopl|VIIFT < 1, and |V|, |W| > /L +1/2. Also
suppose that, for all examples s, for all convex combinations W of V and W, we have JS(W) <
2J5(V). Then

195 (V) = g5 (W)] < 2J5(V)[Ve = Wellopl V][ “*.
Proof By Taylor’s theorem applied to the function 1/(1 4 exp(z)) we can bound

’gs<v) - gs(W)’

1 1
11 + exp (ysfv(zs)) 1 + exp (ysfw(afs))|
exp (ysfv (zs))

2 lys fw (zs) — ysfv (2s)]

/

(L4 exp (ysfv(as)))

4 (yst(xs) - yst(fL‘s) 2 max

2 WelV,W]

2€Xp(2ysfw<$8)) _ exp(yst($S)) (12)
(exp(ysfip(2s)) +1)%  (exp(ysfip(s)) +1)* |

-~

HED)

[1]

The first term =1 can be bounded as

= L exp (ys fy (25)) e
L4 exp (Ysfr(ws)) 1+ exp (ys f(2s)) [Ys fw (25) = ys fr ()]

1
“ 1l+exp (ysf\/(ms)

(@) (i7)
= gs(V) Jullirs = ulprs < gsMIVe = Wellop [V II*T < TV [Ve = Wellop V[ FH,

w

) ‘fW('xs) - fV($s)|

where (7) follows by applying Lemma B.10 and (7) follows since g5(V') < Js(V') by Lemma B.3.
The second term =5

(ysfw(ws) —yafv(@s)® | 200Qysfip(es)  explysfip(as)

2 wevw] | (exp(ysfip(zs) +1)7 (exp(ys fp(ws)) +1)?

(@) - ’
(fw (s) . fv(zs)) Wgﬂﬁﬂ log(1 + exp(—ys f57(xs)))

—_
=2

~

IN

(fW(xs) - fV(xs))2 77
5 'VVI?[?/?;V} Js(W)

(#4)
< Js(v) (fW(LUS) - fV(335))2

o (did) (iv)
= Jo(V) (uf 15 —ufhrs)” < Ts(V)IVe = Wel ZIVIPETD < Jo(V) Ve = Welop [V ]2
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where (i) follows since for every z € R

2exp(22) exp(2)
(op(z) + 1P (op(z) + 12| = log(1 + exp(—2)),

(ii) is by our assumption that for any W € [V, W], Js(W) < 2J,(V'), (iii) follows by invoking
Lemma B.10 and finally (iv) is by the assumption that ||[V; — Wy||op[|V[|£F1 < 1. By using our
bounds on =; and =, in conjunction with inequality (12) we obtain the bound

195(V) = 9o (W) < 2J(V)[Ve = Willopl[V[|*+
completing the proof. |

By using Lemmas B.10, B.11 and B.12 we will now bound the norm of the difference of the gradi-
ents of the loss at V' and W, when these weight matrices differ in a single layer.

Lemma B.13 Let h < 1, and consider V- = (V1,...,Vi41) and W = (Wh,...,Wp41), and
¢ € [L + 1). Suppose that V; = W; for all j # {, and

Ve = Wellop < 1

|4
IV =W < iy

VI >+/L+1/2and |W| > /L +1/2;
e for all s and all convex combinations W of V and W, JS(W) < 2J5(V).

Then,

(D0 La(V) — ()| < SV A DRI (WIVIPE2IVe - Wi
S S ~ h .

Proof We can decompose || Vy Js(W) — Vi Js(V)]||? into contributions from different layers as
follows:

L+1
Vv Js(W) = Vi Js(V)IIP = Y[V Js(W) = Vi, (V)| (13)
k=1
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First we seek a bound on ||Vy, Js(V') — Vi, Js(W)||op When k € [L]. (We will handle the output
layer separately.) We have

IV Js(V) = Vi Js (W) [lop

L L
= gS(W) EZ[,/S H (WJTE%) W{+1ka_—£s—gs(‘/) E}c/,s H (‘GTZXS) v[—/rJrlx]‘g/_TLs
Jj=k+1 j=k+1 op
L L L
= oy (=TT (wsi) =t IT (vish) +si IT (Vs | wiaelid,
j=k+1 j=k+1 j=kt1
L
—95(V) EKS H (V}'TEXS) VLT+1~’UX—T1,S
j=k+1 op
L L
T T T T
- gS(W) EZ[,/S H (W] Z%) _E}c/,s (V} 2;{5> WL+1x}<:/[il,s
j=k+1 j=k+1
L
+o.mle TT (Vish) wikaelll,
j=k+1
L
oM (=L, T (V}Tz}fs> ARTI AN
Jj=k+1 op
L L
= lawy (2 TT (wi'sh) -2 TT (v7s) | wikaelth,
Jj=k+1 j=k+1
L
v, T (V750) Wia @i, - ol T, + 2l
j=k+1
L
—gs(V) EX,S H (V}TZXS) VI—/r—i—lx}c/j—l,s
j=k+1 op
L L
= gs(W) EE/S H (W]TE%)_EkV,s (V]TZXS) WE—l—le/——Ls
j=k+1 j=k+1

L
+ QS(W)ZICV,S H (V}TZ;/,S) WL—L_I(QZ‘Z[—;’S - xl‘c/jl,s)

Jj=k+1
L
+oswyst, TT (V) wihaal ',
Jj=k+1
L
—gs(V) E‘k/,s H (V]'TZXS> VLT+1951¥—T1,3
j=k+1 op
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Applying the triangle inequality

IVvids(V) = Vi Js (W)l op
L

< gS(W) Zkv,s H (V;TE;/,S) Wl—ll——l—l(kaf—{,s_xle,Q
j=k+1 op
—5,
L L
+lgs) | 2 11 (VjTEjV,s) Wilaal s —9s(V) | =0, 11 (VjTZjV,s) Viamh
j=k+1 j=k+1 op
ey
L L
+ o) [ = T (WJszVﬁ)_EXS I1 (VjTEjYS) Wl T (14)
j=k+1 j=k+1 op

We will control each of these three terms separately in lemmas below. First in Lemma B.14 we
establish that

E1 < 4T (V)[[Ve = Wellop [V,
then in Lemma B.15 we prove that
E2 S AL W)V IPEDNVE = Wellop,

and in Lemma B.16 we establish that

=, < 56T (V)[V[PE+2 ] Ve — We|
25 < - .

These three bound combined with the decomposition in (14) tells us that for any k € [L]

[V s(V) = Vi Js(W) lop < 4T5(W)[Ve = Wellop|VIPHH 4+ 4T (V) [V IPEED Ve = Wl
56J5(V)IIV[[*+2[ Ve — W
* h
o SLLWIVIPH|Ve — Wi
— h )

where the previous inequality follows since . < 1 and ||V|| > 1. Since V}, and W}, are a p x p-
dimensional matrices, we find that

IV, Js(V) = Vi Js(W)IF < VIV Js(V) = Vi, Js (W) lop
_ S4B (MIIVIPH2 Ve — W
— h .

15)
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For the final layer we know that

HVVLJrl JS(V) - VWL+1JS(W)H = HQS(V)st - gS(W):L'KSH
= [1(gs(V) = gs(W) + gs(W))z}, s — gs(W)a ) ||
< gs(V) = gsW)[llzf ol + gs(W) [y, s — 21|

(4)
< 205(V) Ve = Wellop| |V IPEFD 4 g (W)|[Ve — Welop || V|12

i)

< 2T,(V)[IVe = Wallop [V IPEFY 4 205(V) [V = Wellopl[V |
(i)

< AT (V)IVe = Wellop [V [P+, (16)
where (i) follows by invoking Lemma B.12 and Lemma B.10, (i7) follows since gs(W) < Js(W)

by Lemma B.3 and because by assumption J5(W) < 2J4(V), and (éi7) follows since ||[V|| > 1.
This previous inequality along with (15) and (13) yield

IVy Jo(W) = Vi Jo(V)|?

64y (V) VIV = Wil (b))
< ; + (4. IVe = Wellopl V)
2
64,/pJs(V) |V [|3E45| Ve — W,
§@+U< VBLVIIVIPE w)_

Taking square roots completes the proof.
As promised in the proof of Lemma B.13 we now bound =;.

Lemma B.14 Borrowing the setting and notation of Lemma B.13, if 21 is as defined in (14), we
have

=1 < 4Js(V)IIVe = Wellop | VP,
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Proof Unpacking using the definition of =,

L
El = gS(W) Ekv,s H (V;TE;/,S> Wl—ll——}—l(x?/—gs xXTl s)
j=k+1 op
L
= gS(W) Zkv,s H (V;TEXS) (WIT—&—I - VI:r—i-l + V[—/r—l—l)(l‘}?/—{ s x‘k/—rl s)
j=k+1 op
L
< gs(W) Hzg,sHop HVTH [po4 Hop HWL+1 Vi1 + VL+1H ka s = Th-1s

j=k

L
< 4.(10) HVT

“rk l,s xk 1s

T T T
HWL—H Vi + Vi

Jj=k+
< gs(W) H HVJT <HWLT+1—VLT+1 Op+ VLT+1H )ka 1,s xk 15
j:
(i)
2 s - wilvie | 11 7). (ke = v, + via],)
op op
j=k+1
L L+1
= g W) IVe = WellopIVIE [ Iwe = vall,, TT |7 + T V"
- op .~ op
j=k+1 j=k+1

(i)

< g (W)IVe = WellaplVIEH (IWe = Vall, IV I + V154

(iv)

< 20, (V)IIVe = Wellop IV I (I1We = Vall,, +1)

(v)
< 4J,(V) Ve = Wel|op|| V|]2EHD,

where (7) follows since ||E}€/S llop < 1, (it) follows from invoking Lemma B. 10, (#4¢) is by Lemma B.7,
(iv) follows since gs(W') < Js(W) by Lemma B.3 and because by assumption J5(W) < 2J4(V).
Finally (v) follows since we have assumed that ||Vy — Wy||op < 1. [ |

We continue and now bound =9 which as defined in the proof of Lemma B.13.

Lemma B.15 Borrowing the setting and notation of Lemma B.13, if =5 is as defined in (14) then

s < 4T(V)IVIPED Ve = Wellop.
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Proof Unpacking the term =g

—_
=2

L

= ||gs(W) ZV VTZV WL+1xk 1,s —gs(V) Zkv,s H (VJ‘TZXS) VLT+1$ij1,s

j= k+1 Jj=k+1 op
= |lgs(W) [ =X, VTEV (Wit = Vil + Vie)ag

j= k+1

_QS(V) Ek,s H (Vj—rz;{s) VL+1ij1,s
j=k+1 op
L

< |lgs(W) [ =1, H (VjTE;{s) (Wi = Vil

Jj=k+1 op

L L
o |k TT (v7sh) | viloel T - o) (S TT (V7S | Vst
j=k+1 Jj=k+1
op
L

= [|gs(W) Ekv,s H (VJTE;{s) (WLT+1_VLT+1)w}c/TIs

j=k+1 op

.
L
(o) =g =he TT (V26 | Vel D (17)
j=k+1 op
=¥
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The first term
L
»; = gS(W) Zkv,s H (‘/j—rz;{s> (Wl—/r—i-l_VI:r—l-l)x‘k/jl,s
j=k+1 o
< o) 5L (| TL IV Il =l | 121 — Vil

j=k+1
@) = T T T VT
< g [ TT Vi llop | Wit = Vi llopllz
j=k+1
(i) L1y T
< gs(MIVIFIWr iy —
< gs(W )||V|\L+1\|W—We||op||$k lsH

(i)
< gs(MIIVIFFHIVE = Welop [V [+

= gs(W)|[VI[PETDV = Wollop

(iv)
< 2J,(V)IVIPED Ve — Welop

where (i) follows since || X} _||op < 1, (i4) is by invoking Lemma B.7, (iii) follows due to Lemma B.10,
and (iv) is because gs(W) < Js(W) by Lemma B.3 and by the assumption Js(W) < 2J4(V).
Moving on to %o,

L

> = |l(g. ) =g [ S TT (v'=%) | Vilaat s

j=k+1 op

< 19s(W) = gs(V)IIZK slop H 1V lopl=5 sllop | 1V ga lopllei 'y sl

j=k+1
L+1
<1gs(W) = gsW)I [ TT 1Vi"llow | k1l
j=k+1

(7)
< |gs (W) — gs MV IE )Tl
(i)

< gs (W) — gs (V)] || V|| 2EAD)

(#44)

< 21, (V) IVe = Wlopl| V2D,

where (i) follows by Lemma B.7, (i7) is by Lemma B.10 and (#i7) is by invoking Lemma B.12.
Combining the bounds on #2 and ¥, along with (17) we find that

Es < 2J(V)|[VIPETD Ve = Wl|op + 2J5(V) [V [PETD Ve — We|op

< AT, (V)|[VIPEFD Ve — W lop,s
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where the previous inequality follows since ||[V|| > 1. [ |
Finally we bound =3 which as defined in the proof of Lemma B.13.
Lemma B.16 Borrowing the setting and notation of Lemma B. 13, if =3 is as defined in (14) then

< 6L (V) IVIPE2NIVE — Wl
—_— h .

Proof Since g,(W) < Js(W) and J,(W) < 2J5(V') (by assumption) we have that

L L
== om0 TT (wys) — st TT (w7 ) wiaal's,
j=k+1 j=k+1 op
L L
< | (s TT (wrs) st T (s) | wieelt,
j=k+1 j=k+1 op
L L
<2 IW Lol T |28 TT (ms) - st T1 (v'sh)
j=k+1 j=k+1 op
L L
= 27, (V)W Ll 5l [ 21 T (w772 — ok - s+ s TT (v7s))
j=k+1 j=k+1 op
L L
<2 VIl T S8 [ T (w72) — T1 (v'=Y)
j=k+1 j=k+1 op
=:M3
L
+ 2L WIWE ol 30| -2 TT (=) (s)
j=k+1 .
iy
=:d3

Before we bound #3 and s, let us establish a few useful bounds. First note that for any layer
7 by Lemma B.11

Ve = Wellop V"1

1Y — Ellop < - (19)
Also we know that
el Ll < Ny ol + ey o — 2 0l S IVIE - IVIFTIVE = Wllop
< VIFFE L+ (Ve = Wellop)
<2V |*H (20)
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Finally,

HWL-HHOP < HVL-HHOP + HVL-H - WL+1H0P < HVH + ”Vf - WEHOP
<2[|V], 21

where the last inequality follows by our assumptions that ||V, — W||,, < 1and ||V|| > 1.
With these bounds in place we are ready to bound és:

02l L st 1T (wi=) - 11 (v'=)
j=k+1 Jj=k+1 op
L L
< 20 IVl S| TT (W =) =TT (vi's))
j=k+1 j=k+1 op
) Lol £ oW L v
<siviee | I (wrsy) - I1 (v's)
j=k+1 j=k+1 op
(i) Ve = Wellop | V]I*F!
< @i v+ v - wiyt (=2 g gy - wy)
_ R2J,()|VPES|V - W] (1 v W||>L+1 (||w — Wellop h )
h (4l [V —=wi — VE+2
(@0 24 (V) [V P2V — W] <1 |V - WII)H1
- h VIl
@) 24T, (V)[[VPEH2 |V — W] ( 2(L+1)HV—WH>
< 14+
h 4l
() 4 § 3L+5 _
2 SLOIVETY - W] o

where (i) follows by using the bounds in (20) and (21), (¢7) follows by invoking Lemma B.8 and
using (19), (7i7) follows since h < 1 and ||V'|| > 1 by assumption, and therefore

Vo= Wil ,
V=

<2,
[V[E+z =

inequality (iv) follows since for any 0 < 2z < 1, (1 + 2)5*! < 1+ 2(L + 1)z and because

by assumption |V — W/| < [|[V||/(2(L + 1)), and finally (v) is again because ||V — W| <
IVII/(2(L +1)).
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Let’s turn our attention to des.

L

&5 = 21,V ol L0 | 2 —5F0) TT (v7=)
j=k+1
op
@) 2| s sy TH TyV
<sLMIVIF | o, -5k T (v'sh)
j=k+1

op
L
<8LWIVIF2Z = =l TT 1V lopll =Y llop
j=k+1
(i)
< 8LMIVIP* |2 — =L,

(i) 8 (VIIIVIPEH (Ve — Wl
= h ?

(23)

where (7) follows from the bounds in (20) and (21), (i¢) follows by invoking Lemma B.7 and (i7)
is by inequality (19).
By combining the bounds in (22) and (23) we have a bound on =3.

= LWV 8I(V)IVIPEH Ve = Wl

—3

- h h
2 6L (MVIPERIV — W
- h
_ 56, (V) [[VIPE2) Ve — W
h )
which completes the proof. |

Lemma B.13 provides a bound on the norm of the difference between V', J5(V') and Vy Jg (W),
when the weight matrices V and WV differ only at a single layer. We next invoke Lemma B.13 (L+1)
times to bound the norm of the difference between the gradients of the loss at V and W when they
potentially differ in all of the layers.

Lemma B.17 Let h < 1, and consider V- = (V1,...,Vi41) and W = (W1, ..., Wr41), such that
the following are satisfied for all j € [L + 1]:

|4
IV =W < gfishs:

VI >+/L+1/2and |W| > +/L+1/2

For every j € {0,...,L + 1} define T(j) := (W1, Wa,...,W;,Vjq1,...,Vii1). Suppose that
forall j € [L + 1], for all examples s, and for all convex combinations W of T(j) and T(j + 1),
Js(W) < 2J4(T(5)) < 4J5(V). Then

SL45|1
19y (V) - G w)| < ZOEEDVRIOIVIEZAV = WL
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Proof We may transform V' into W by swapping one layer at a time. For any s € [n] Lemma B.13
bounds the norm of difference in each swap, thus,

HVVJS(V) - VWJS(W>H

L
> (T (T 0)) ~ Vg 1Tk + 1)) H
k=0

L
Z |V 70 Js(T () = Vg Js(T(k + 1))

k=0
"2164\/ (L + DpJo (TR T () |[PEH5 | Vi, — W]
h
L+1
64\/ L+
ZJ INIT ()L Vi — Wi

128\/ L+ DpJs( LZHHT

B)PER IV — Well,  (24)

where the final inequality follows from the assumption that J5(7'(k)) < 2J5(V'). Forany k € [L+1]

(TR PH5 = [V (IIT( >||>3“5 _ s (I!T(k) v+ V||)3L+5
IV V]
|7 (k) = V][
< VP (1 LTt — Vi)
VI
”W . VH 3L+5
S e
VI
D o (1 L BL+s)|W -V
- IV

where (i) follows since for any non-negative z < 3%% (14 2)35*5 < 1 + (6L + 10)z and
because by assumption W —-wi/IV| < ﬁ, and (i¢) again follows by our assumption that
|V —W]/|IV] < 6L+10 Using this bound in inequality (24)

256+/(L + 1) J V)|V|3E5 KR
V0 T (V) = Ty du(W) | < 220V VIVi >0 Wil

=1
256+/(L + 1) J ||V |[PEHS
< VIVI (VE+TIv - w])

256(L + 1)st( IVIPE IV — W
; :
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Thus,

Vv J (V) = VwJ (W)

I

|
<
<
o
S

|
<
S
o
S

_ 1§ 256(L + Dy (V)IVIPS [V = W
- h

s€[n]
256(L + 1)/pJ (V) VIPEH |V — W]
h
completing the proof. |

Lemma 4.2 If h < 1, for any weights V such that ||V || > \/L + 1/2, we have

_ 256(L + 1) yp|[V[PEI (V)

Lip(VyJ(V)) N

Proof Since the function J(+) is continuous, for all close enough W the assumptions of Lemma B.17
are satisfied. |

B.5. Proof of Lemma 4.3
Lemma 4.3 For any weight matrix V such that |V'|| > \/L + 1/2 then

Vv I (V) < V(L + Dpl|V| 7 min{J (V), 1}

Proof For any ¢ € [L] the formula for the gradient of the loss with respect to V; is given by (see
equation (2a))

L

OJ(V; s, ys)

#:gs(v) EZS H (V;TZ}/,S> Vl—/r—&-l;v}/j;,sa

¢ =1
therefore its operator norm
OJ(V;xs,ys) L
|20 gy |38 T (v7s8) | Wlaal
¢ op J=t+1

op

L
%4 T %4 T VT
< gsWII=llop | TT 1V loplZ5sllop | 1V 1 llopllt ol

J=t+1
L+1
<g(V) | IT IVillop | Il ol (25
J=l+1
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where the last step follows since HE}{SHOP < max, |¢/(z)| < 1. By its definition

(2)
a1l = 16 (Vi1 (- d(Viz )| < Vi1 (- ¢(Vias)) |

<[V 1Hop 16 (- (Vi)
- () 41
(1w, ) 1= @ (Tl )
j=1 j=1
where (i) follows since ¢ is contractive (Lemma B.9) and (i7) is because ||zs|| = 1. Along with

inequality (25) this implies

< gs(V) [ TIVillop < gs(V) TTIVIII < gs (VI FH,

H 8J(V, Ts, ys)
°op J#L J#L

Ve

where the last inequality follows from Lemma B.7. Therefore we have

|1 OJ(V;xs,ys) 1
T | Sh

op s€[n] op s€[n]

aJ(V§ Ts, ys)

<
SV

oJ(V)
vy

n
op s€[n]

We know that g5(V') < J4(V') by Lemma B.3 and also that g5(V') < 1. Therefore,

Vet L+l
< " min ZJS(V),TL < |Vl min {J(V),1}.

aJ(V)
Vy

op
Given that Vy is a p X p matrix we infer

o

S| < v | 25| < e i .1y 2o

op

When?¢=L+1

0J(Vixs,ys)

— Js V xv;
Vi 9( ) L

by using the same chain of logic as in the case of £ < L + 1 we can obtain the bound

oJ(V .
VWD < v+ min (V). 1}.
Ve
Summing up over all layers

L+1

VTP =>"

(=1

aJ(V)|?

< (L A+ DplVIPEHD (min {J(V), 1})?,
Ve

hence, taking squaring roots completes the proof. |
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B.6. Proof of Lemma 4.4
Lemmadd Ifh <1, J; < 1+24L,and

h
aly < 2 (1) ||3L+5
1024 (L + 1% B[V O
then I H2
al VJt
Jip1 < Jp — Li—l—%

Proof Since, by assumption, J; < W%, Lemma B.5 implies |[V®)|| > /L + 1. We would
like to apply Lemmas 4.2 and 4.3. To apply these lemmas, we first bound the norm of all convex
combinations of V(¥ and V*+1) from above and below. Consider W = nV®) + (1 — n)V 41 =
V) — (1 —n)aV.J; forany € [0,1]. An upper bound on the norm raised to the 3L 4 5th power is

3L+5
V" — (1 —n)aVh|
WP = VO — (1= a4 = me“”< ol
L+5
< HV |3L+5 HV H +O‘||v<]t”
B [V ®
aHVJtH 3L+5
— HV |3L+5 (1 +
[V ®
3L+5
(t)13L+5 a(y/(L+ DpJ|[ VO -1
<O (14 Vo

L+5

:Hv P (14 oL+ Dpl VO - )

2y opres (1 + (6L + 10)(\/MaJtIIV“)IIL)
< 2||V H3L+5 (27)

where (i) follows by invoking Lemma 4.3 and (i) follows since for any 0 < z < 1/(3L + 5),
(14 2)3L%5 <1+ (6L + 10) 2 and because the step-size « is chosen such that

o m— h e
L + 1 JtHV H (t)||3L+5 : (L + 1)th||V(t)||L

= 1024(L+ 172 N2AG
B h _ 1
- 1024(L 4 1)3/2||VO|2L+5 ~ 6L 4 10°
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Thus, we have shown that the norm of W € [V®), V(1] raised to the 3L + 5th power is bounded
. Next we lower bound the norm of W,

ao||VJ
(W[ =|[V® -1 —naV] = VY <1 _ |||L/ 71H>

()
> VO (1 —ay/(L+ 1)th”V(t)HL)
(i)
> VI (1- ay/(T+ Dp VO )
(4t3) 1
L N
> \/T< 6L+10>
>/ L+1/2,

where (i) follows by again invoking Lemma 4.3, (77) is by Lemma B.5 that guarantees that |V (®)|| >
VL + 1since J; < Wﬁ and (7i7) is by the logic above that guarantees that

o (VEFT0IIVOI) < g5

Thus we have also shown that || || > /L + 1/2 forany W € [V®) V(+1)],
In order to apply Lemma 4.1 (that shows that the loss decreases along a gradient step when the
loss is smooth along the path), we would like to bound Lip(VyJ (1)) for all convex combinations

@) L+1)| v 1) _y (@)
W of VI and V+D, For N = [2/EDRVOI VD v

, (similarly to the proof of
Lemma E.8 of (Lyu and Li, 2020)) we will prove the following by induction
For all s € {0,...,N}, for all n(t>€3L[9’ss/N]’ for W = pV) 4 (1 — )V ®),
Lip(V J(W)) < 1024(L+1)\/Z;lJt||V I .

The base case, where s = 0, follows directly from Lemma 4.2. Now, assume that the inductive
hypothesis holds from some s, and, for i € (s/N, (s+1)/N], consider W = nV ¢+ (1 )V ),
Let W = (s/N)VHD 4 (1—s/N)V . Since the step-size o is small enough, applying Lemma 4.1
along with the inductive hypothesis yields J (W) < Ji. Applying Lemma 4.3 (which provides a
bound on the Lipschitz constant of .J)

JW) < JW)+ (VL +1p max_|[W|*H|w — W]
We[W,W]
+ V(L + Dp) VO W — W
2/ L+ )p)|[VO I+ v ) @)
N

(i)

<J (W> +
= J(W) + J;
S 2Jt7
where (i) follows since maxyy, i, [W[E+E < 2||V® L+ by using the same logic used to arrive
at inequality (27). Applying Lemmas B.5 and 4.2, this implies that for any W € [V (#) y/(t+1)]

256(L + 1) /pJ W)W [P _ 1024(L + 1) /p [V O)PH+2
h = h ’

Lip(Vw J(W)) <
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completing the proof of the inductive step.
So, now we know that, for all convex combinations W of V() and V (+1), Lip(Vw J(W)) <

1024(L+1)/pJe |V ||3L+5 . . h
( )‘/it” I . By our choice of step size o < Li% ' 1032 b T [VOTFETS so by
applying Lemma 4.1, we have that
L
Jt 1§Jt—704vjt2
1 =l VI
which is the desired result. n

B.7. Proof of Lemma 4.5
Lemma 4.5 Forall L € Nifh < hpax, Ji < W%’ and |[VO|F < log(l/Jt)l‘(‘)‘g/((f;(H]f) then

(L + 2)J;log(1/Jy)

Proof We have

197 Vi) > (i) [

t = Sup t -Qa = t . [

allaf=1 VO

1 ()
= vy 2o e (4. @
Le[L+1]
Note that by definition,
1

Vidi (V) = - 32 Vi (1) (29)

s€[n]
Consider two cases.

Case 1: (When ¢ = L + 1) In this case, for any s € [n] by the formula for the gradient in (2b) we
have

VVL+1 Jts - <*VL(21> = gtsysVL(izlx(Lt?s = gtsysfv(t> (-Ts)

and therefore

1
Ve (Vi) = = 3 geapedvo @s). (30)

s€[n]

Case 2: (When / € [L]) Below we will prove the claim (in Lemma B.18) that for any ¢ € [L]

VPhIVOLF

1 31)

1
Vvl(t’ Ji - <_‘/g(t)> > Z Gts [ysfv(t) ()

s€[n]
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By combining this with the results of inequalities (28) and (30)

Ly [
VI = 9tsYs fr o ( — =D _
HV”H %; v 2LF V)| ngl%]
@ L+1 _ Lyph|V HL
> gtsysf (t) L 1.
VO % v 2L 51|V |y
n L+1 L RV log(1/J,
- nHV(t)H Z 9esys fyro (@ VBRIV los(/ t)J (32)

2log(1/J) Lz [V )|

where (i) follows because g;s < .J;s by Lemma B.3 and (i) follows by our assumption on ||V ®].
For every sample s, Jis = log (1 + exp (—ys fy o) (zs))) which implies

1 1
s Tg) =log | ———— and s = =1—exp(—Jss).
eyl =g (o) = e b= )
Plugging this into inequality (32) we derive,
L+1 1 L/ph|| V|| L
IVl > Z 1 —exp( Jtsmog( ) R L IL]
n|V| & exp(Jis) =1/ 2log(1/Jy) L3V

Observe that the function (1 — exp(—2z)) log (ﬁ) is continuous and concave (when the in-
puts lie between 0 and 1) with

lim (1~ exp(—2)) log (exp(zl)—1> = 0.

Also recall that ) | sJts = Jynand that J;s < Jyn < 1 / n?4L < 1. Therefore applying Lemma B.4
to the function ¢ with ¢(0) = 0 and ¢/(z) = (1 — exp(—=2)) log (m) for z > 0, we get that

L+1 [1—exp(—Jin) 1
> 1
19402 iy |0 (=

Ly/ph|[VD |-
2log(1/J,) Lz VO

Jylog(1/.Jy). (33)

We know that for any z € [0, 1]

exp(z) <142z and exp(—z) <1-—2z+ 22
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Since J; < W% and n > 3, these bounds on the exponential function combined with inequal-
ity (33) yields

|V J]|
L+1 1 L/ph||[VD|E

> + [( an)log( )] - VPhIV| Jilog(1/J)
V@ 2Jin 2log(1/J,)L7 |V ®)|

_ (L+1)Jlog(1/4y) [1 oy, Jos(2n) VPh|VD | ]

V@] og(1/72)  2log(1/J)L5 2

L+ 3/4)J;1og(1/J, 1 log(2 RV )|
U T ROV PO S PP 1 M. Ll Gl e
V@] AL+ og(1/71)  2log(1/J1)L52
By the choice of h < hyax We have
VBHVOLE
2log(1/J1) L322 ~ 48L
Next, since J; < Wﬁ andn > 3
log(2n) < log(2) + log(n) < 1
log(1/J;) = (1+24L)log(n) — 12L
and
1 1
Therefore, using these three bounds in conjunction with inequality (34) yields the bound
L+3/4)J;log(1/J 1 1 L+ 3)J;log(1/J,
(Vo > L3 Ilos /)y (1 [1—] > L+ ) Loall/ )
v AL+ 1) 8L eyl
which establishes the desired bound. |

As promised above we now lower bound the inner product between the gradient of the loss with

(t)

respect to V" and the weight matrix for any ¢ € [L].

Lemma B.18 Under the conditions of Lemma 4.5 and borrowing all notation from its proof, for all
(e [L]

VPRIVOE

Vvidi- (V) = = Z It [ysfv(“(%) L7

86 [n]

Proof To ease notation, let us drop the (¢) in the superscript and refer to V(®) as V. Recall that for
any matrices A and B, A - B = vec(A) - vec(B) = Tr(ATB). Also recall the formula for the
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gradient of the loss in (2a), therefore, for any s € [n]

vVeJts . (_W)
= —Tr ‘/g VthS

= gtsYs 1T VeT 2[5 H VTE]S VL+1‘T€ 1,s
j=0+1
L

T
= GtsYs Iy V ] s VL—&-ICCE 1,s
JZZ

= gtsysTr T 8 H (V]T Js s) VL+1

=L
L
= gtsyslelys H (V;‘sz,s> VlT—‘,—l
=t
) L-1 L
(g) gtsysxz,svl—;»l + 9tsYs Z (xg_stkTEk,s - xz,s) H (‘/j—rzj75> V[—Lrl
k=¢ J=k+1
gt (T VTS — L) Vi
L—1 L
(Zﬁ) GtsYs fr@ (ws) + gtsYs Z <x;—1,svk—rzk,s - xl—lc—,s> H (V}TZJ',S) VII&-l
k=t j=k+1

T T T T
+ 9tsYs (wal,sVL YLs— 1’L,s> VL+17

where (i) follows by the cyclic property of the trace, and (iz) follows since the second term and
third term in the equation form a telescoping sum, and (4i¢) is because fi ) (zs) = Vi412L 5 by
definition. By the property of h-smoothly approximately ReL U activations, for any z € R we know
that |¢/(z)z — ¢(z)| < . Therefore for any k € [L], SU;CT_LSV;;ZIC,S — a:g’SHoo < 2 and hence

lzf Vi Shs — 2l I < @. Continuing from the previous displayed equation, by applying the
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Cauchy-Schwarz inequality we find

vVeJts ) (_VZ)

> gusys fy o () gtSanklsvk ks —alall 11 HVTH 15,5l
]_

i

— gesller 1. Vi Srs — 2p | HVL+1H
L L+1

hgts
> guaedyo () — YIS T 1Vl 15541,
k=( j=k+1
Q Phots o~ T
> gl @) — ST TT i,
k={ j=k+1
L+1
\/ﬁthts
> gusysfro(@s) = S max H 1Villop
j=k+1
(i0) /BLhgys s,
> sYs s) V
= gtsyY. fv(t)(f/U ) B ?é?u IEH V3]
(9) PRIV I gis
> gtsysfv(t)(xs)_% (35)
2L>2

where (i) follows since ¢’ < 1 and therefore ||3; s|lop < 1, (i) follows since for any matrix M,
|M|lop < ||M]| and inequality (zii) follows by invoking Lemma B.6 since we know that ||V'|| >

v L + 1 by Lemma B.5. The previous display along with the decomposition in equation (29) yields

1 ph|V||F
Vth : (—VZ) > — Z Gts ysfv(t) (xS) - Lu
n Jors 2L

which completes our proof of this claim. |

Now that we have proved all the lemmas stated in Section 4.1, the reader can next jump to
Section 4.2.

Appendix C. An Example Where the Margin in Assumption 3.2 is Constant

In this section we provide an example where the margin «y in Assumption 3.2 is constant. Consider
a two-layer Huberized ReLLU network. In this section we always let ¢ denote the Huberized ReLLU
activation (see its definition in equation (1)). Since here we are only concerned with the properties
of the network at initialization, let V(1) be denoted simply by V. The first layer V; € RP*P has

its entries drawn independently from A/ (0, %) and V5 € R'*P has its entries drawn independently
from NV (0, 1).

Let V7 ; denote the ith row of Vi and let V5 ; denote the ith coordinate of V5. The network
computed by these weights is fy () = Vagp(Viz).
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Consider data in which examples of each class are clustered. There is a unit vector u € SP~!
such that, for all s with ys = 1, ||zs — || < r, and, for all s with ys = —1, ||zs — (—p)|| < r. Let
us say that such data is r-clustered. (Recall that ||zs|| = 1 for all s.)

Proposition C.1 For any § > 0, suppose that h < \2/—5, r < min {116’ ;fp(hsp)}, and p >
' \/log( =E*

logc/ (n/d) for a large enough constant ¢ > 0. If the data r-clustered then, with probability 1 — ¢
there exists W* = (W}, W3) with ||W*|| = 1 such that

Jorall sen],  ys(Vvfv(zs) W") =cyp

where c is a positive absolute constant.

Proof Define a set

DN |

S = {ie p] : = < [Vayl <2},

and also define
S ={ieS:Vi;-p>4h} and S_:={ieS:—-Vi; - pu>4h}.
Consider an event Emargin such that all of the following simultaneously occur:
@ p(3—0p(1) <S4 <p (5 +0p(1));
®) p (3 —0p(1) <[S-|<p(5+0p(1)):
(c) forall s € [n]and i € [p], V1 - (x5 — ysp)| < 2h.

Using simple concentration arguments in Lemma C.2 below we will show that P [£,, a,gin} >1-4.
Let us assume that the event Emargin holds for the remainder of the proof.
The gradient of f with respect to V7 ; is

vVl,ifV(‘T) =z (VQ,iQS/(Vl,i : w)) .

Consider a sample with index s with y; = 1. Forany i € S

Sign(VZ,i) (,U, : VVLz‘fV(xs)) =K Ts (|‘/é,z|¢/(‘/i,z : xs))
= (IVa,ild' (Vi - 24)) 4+ - (25 — ) (Vauld' (Vi - z))

1
> §¢>’(V1,z' A Vi (@5 — p) = 2p - (zs — p) @' (Vi - )

(@) 1 1
> §¢,(V1,i Vi (s —p)) — 3
(@) ¢(2h) 1anl 1 _3

= 2 8 2 8 8 (36)

—~
V=
=

where (i) follows since 3 < |V5;| < 2 when i € S,. Inequality (ii) follows since ¢’ is bounded
by 1 and because ||xs — ysp|| < r < 1/16. Inequality (i77) follows since ¢ € S, and therefore
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(Vi) - i > 4h, under event Emargin, (V1) - (rs — ) > —2h, and since ¢’ is a monotonically
increasing function. Equation (iv) follows since ¢'(2h) = 1. On the other hand, for any i € S_:

Sign(VQ,i):u ’ vVl,ifV(:BS) =K Ts (|V2,z|¢,(vl,z : $5))
= [Voild' (Vi - @s) + p- (s — p) (|Vould' (Vi - @)

i (@) 1
> =2p- (s = )@’ (Vi 2s) = —3 37

—~
=

where () follows since |V ;| < 2 when ¢ € S_ and ¢’ is always non-negative. Inequality (i7) again
follows since ¢’ is bounded by 1 and because ||z — ysp| < r < 1/16.

Similarly we can also show that for a sample s with y; = —1, forany i € S_
: -3
Slgn(VQ,i)N : vV1,7;fV($S) S ? (38)
and for any i € S
. 1
Slgn(‘/Z,i),Uf : vvl,ifV(:ljS) < g (39)

With these calculations in place let us construct W* = (W5, W5) where, W} € RP*P, W3 € R1xP
and |[W*|| = 1. Set W3 = 0. Foralli € S, US_ set

1
sign (Vo) p—e——
VIS +15-]

and forall i ¢ S US_, set Wy, = 0. We can easily check that ||[W*|| = 1 (since ||u|| = 1). Thus,
for any sample s with y; =1

*
Wl,i =

Ys (vaV(xs) ’ W*)
= Vvlfv(l‘s) : Wl*

= Z vVus(xS) : Wl*,z + Z VVMfV(J}s) : Wl*,z

€Sy ieS_
1 . .
=——— | sign(Vau)pu - Vi, fr(ms) + Y sign(Vaa)i - Vg, fr ()
VISt + 18- i€Sy ieS—
® 1 [3|S+\ - rs_q
T VIS IS L8 8
1
= 3|8y — |S_]

8IS+ + 15|
Q) 1

2 m 3 (5 -0) -p(5+am)] 2 e

where (i) follows by using inequalities (36) and (37) and (i) follows by Parts (a) and (b) of the
event Emargin. The final inequality follows since we assume that p is greater than a constant. This
shows that it is possible to achieve a margin of ¢,/p on the positive examples. By mirroring the logic
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above and using inequalities (38) and (39) we can show that a margin of c,/p can also be attained
on the negative examples. This completes our proof. |

As promised we now show that the event Enargin defined above occurs with probability at least 1 — 4.
Lemma C.2 For the event Emargin be defined in the proof of Proposition C.1 above,
P [gmargin] 2 1-46.

Proof We shall show that each of the three sub-events in the definition of the event Emargin OCcur
with probability at least 1 — §/3. Then a union bound establishes the statement of the lemma.
Proof of Part (a): Recall the definition of the set S

1
S = {ZE [p]§§ ‘VQ’” SQ},
and also the definition of the set S
S+ :{’LESVLZ}LZZUL}

We will first derive a high probability bound the size of the set S, and then use this bound to control
the size of Sy. A trivial upper bound is |S| < p. Let us derive a lower bound on its size. Define
the random variable ¢; = I [1 < |V5;| < 2]. Itis easy to check that |S| = > _icfp) Gi- The expected
value of this random variable

Bl61=1-F Ve < 5| ~PIVad 22 2 1- 22 EVD g2 o

ous
(g)l— 1 exp(-2) >1
V2T V2r 2

where (4) follows since V2 ; ~ N (0, 1) so its density is upper bounded bounded by 1/+/27, and (%)
follows by a Mill’s ratio bound to upper bound P [|V5 ;| > 2] < 2 x e’(p\(/%#. A Hoeffding bound

(see Theorem F.5) implies that for any 7 > 0

P [!3\ > pE[G] — %} >1—exp (—an’p).

1/4

Setting n = 1/p*/* we get

1 1
P[‘S| ZP(Q—W)] > 1—exp(—c1yp). (40)

We now will bound |S | conditioned on the event in the previous display: p (% — ﬁ) <|S| <p.

For each 7 € S, the random variable Vy ; - p1 ~ N (0, %) since each entry of V4 ; is drawn inde-
pendently from A <0, %) and because ||p¢|| = 1. Define a random variable &; := 1 [V} ; - u > 4h].
It is easy to check that |S, | = >, s & The expected value of ;

1 1 1
‘E[&]—Ql = ’P[‘/l,i'/i24h]—2‘ = ‘P[Vl,i'uzo}—P[Vl,i-Me [074}1)]—2’

O 4hyp G) 1
=P[Vi;-pe(0,4h)] < \/2—\65 < 7

51



DEEP INTERPOLATION

1

where (i) follows since the density of this Gaussian is upper bounded by ‘ﬁim and (i7) is by

a\s

the assumption that A < ‘2/—5. Thus we have shown that % — % <E[g) < 3+ %. Again a

Hoeffding bound (see Theorem F.5) implies that for any n > 0

1 1
[Se-lsmlel| < o (3-) sl <o
1€

1/4

>1—2exp (—0277219) .

By setting n = 1/p*/* we get that

P |[1s:1 - st | < 5

1 1
p<2_ 1/4) <|5,<p] >1-2exp(—e2yp).  (@41)

By a union bound over the events in (40) and (41) we get that
1 1
Plo (- o) <15 <0 (54 0) | 21— expcervh) - 2exp (-cav.
By assumption p > log® (n/8) for a large enough constant ¢, thus

Plo (- o) <15l <p (54 o) 21-073

which completes our proof of the first part.
Proof of Part (b): The proof of this second part follows by exactly the same logic as Part (a).

Proof of Part (c): Fix any ¢ € [p] and s € [n]. Recall that V; ; ~ N <0, %I ) and by assumption

|lzs — yspe|| < r. Thus the random variable V7 ; - (s — ysp) is a zero-mean Gaussian random

2
t2r

variable with variance at mos - A standard Gaussian concentration bound implies that

h2
P[[Vii - (xs — ysp)| < 2h] > 1 2exp (—CQZ ) - 42)

By a union bound over all 7 € [p] and all s € [n] we get

. caph? 1)
PRieplsen « |(Vig) (25 —ysp)| <20 21 = 2mpexp | —— 5~ | 217

w

where the last inequality follows since 72 ph? j and because p > logc/(n /0) for a large

R L. E—
— ()2 1og(3’%
enough constant ¢’ > 0. This completes our proof. |

Appendix D. Omitted Proofs from Section 3.2

In this section we prove Theorem 3.3. We largely follow the high-level analysis strategy presented
in (Chen et al., 2021) to prove that, with high probability, if the the width of the network is large
enough then gradient descent drives down the loss to at most W% under Assumption 3.2. After
that we use our general result, Theorem 3.1, to prove that gradient descent continues to reduce the
loss beyond this point. We begin by introducing some definitions that are useful in our proofs in this
section. All the results in this section are specialized to the case of the Huberized ReL.U activation
function (see its definition in equation (1)).
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D.1. Additional Definitions and Notation

Following Chen et al. (2021), we define the Neural Tangent random features (henceforth NT) func-
tion class. These definitions depend on the initial weights V(1) and radii 7, p > 0. We shall choose
the value of these radii in terms of problem parameters in the sequel. Define a ball around the initial
parameters.

Definition D.1 For any VY and p > 0 define a ball around this weight matrix as

BV, ::{V: Vi— v < }
( p) e?ﬁ?fu” =V, <p

We then define the neural tangent kernel function class.

Definition D.2 Given initial weights V), define the function

Fyo v () = fym (@) + (Vo (@) - (V = VD),

then the NT function class with radius p > 0 is as follows
FVO,p) = {Fyo () : vV e BYD, )}

We continue to define the minimal error achievable by any function in this NT function class.

Definition D.3 For any V) and any p > 0 define

1 n
€ V(l), = min  — log(1 + exp(—vysF; zs))),
NT ( p) VeB( () 5y n sz:; g( p(—vy V(1>,v( )

that is, it is the minimal training loss achievable by functions in the NT function class centered at
V. Also let V*(VO) p) € B(VO), p) be an arbitrary minimizer:

1 n
V*e argmin — g log(1 + exp(—ys Fyya) y(25)))-
veB(vW,p) 3

We will be concerned with the maximum approximation error of this tangent kernel around a ball
of the initial weight matrix.

Definition D.4 For any VY and any 7 > 0 define

(V) = sup sup e~ fpled) — Vip(en) - (V- V)]
s€ln] V. veB(v),r)

Finally we define the maximum norm of the gradient with respect to the weights of any layer.

Definition D.5 For any initial weights VY and any 7 > 0 define

F(V(l),T) ;= sup sup sup ||V, fv(zs)].
sen] Le[L+1] vVeB(VD),T)
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D.2. Technical Tools Required for the Neural Tangent Kernel Proofs

We borrow (Chen et al., 2021, Lemma 5.1) that bounds the average empirical risk in the first T’
iterations when the iterates remain in a ball around the initial weight matrix. We have translated the
lemma into our notation.

Lemma D.6 Ser the step-size oy = o = O (W) forallt € [T]. Suppose that given

an initialization VY and radius p > 0 we pick 7 > 0 such that V* € BV, 1) and VIV €
B(VW, 1) forall t € [T), and that e,,,(VY, 1) < 3/8. Then

ETZ VO VA2 V) - VR 4 T aenr (V) )
=1 Ta (% — deapp(V), T)) .

Technically the setting studied by Chen et al. (2021) differs from the setting that we study in our pa-
per. They deal with neural networks with ReLU activations instead of Huberized ReLLU activations
that we consider here. However, it is easy to scan through the proof of their lemma to verify that it
does not rely on any specific properties of ReLUs.

The next lemma bounds the approximation error of the neural tangent kernel in a neighbour-
hood around the initial weight matrix and provides a bound on the maximum norm of the gradient.
The proof of this lemma below relies on several different lemmas that are collected and proved in
Appendix E.

log2( L
Lemma D.7 For any § > 0, suppose that T = Q) <0g3(‘;)> and, for a sufficiently small positive
p?L

constant ¢, we have 1 < —<5— h < and p = poly (L log ( )) for some sufficiently large
L2 log2 ®)’ \f

polynomial. Then, with probability at least 1 — § over the random initialization VY, we have
(a) capp(VV,7) < O(y/plog(p)L°T/3), and
(b) T(V,7) < O(y/pL?).

Having provided a bound on the approximation error, let us continue and show that gradient
descent reaches a weight matrix whose error is comparable to eyT.

LemmaD.8 Forany L € N, § > 0,

1 nL
T:Q<0g3(6)> and TS ¢ 15 7
p2L? (plog(p))s L4

where c is a small enough positive constant, p = 57, h < \;13, and p > poly (L, log (%)) fora

[ee][9)

. . . . 1
large enough polynomial, if we run gradient descent with a constant step-size oy = o = © (m),

2
forT = {%—‘ iterations, with probability 1 — § over the random initialization

min J(V®) < 6ent(VD, p).
te[T]
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Our proof closely follows the proof of (Chen et al., 2021, Theorem 3.3).
Proof Recall the definition of

V* € argmin Zlog + exp(— yst<1 ( s)))-
VveB(v M, ) s=1

We would like to apply Lemma D.6 to show that the average loss of the iterates of gradient descent
decreases. To do so we must first ensure that all iterates V(! and V* remain in a ball of radius 7
around initialization.

We have assumed that 7 < <

—<¢ - and that p > poly (L log ( )) for a large enough
(plog(p))8 LT
polynomial. Therefore if this polynomial is large enough we have that 7 <

C1
L2 log? (p)
arbitrarily small positive constant c;. This means we can invoke Lemma D.7 which guarantees that
with probability at least 1 — d, the approximation error a5, (V" 7) < O(+/plog(p) Lo/ 3) and
the maximum norm of the gradient I'(V(), 1) < O(,/pL?). Agaln recall that 7 <

, for an

) . (p log(p))gL7f
where c is a small enough positive constant. Thus for a small enough value of c the approximation

error £5pp(V ), 7) < L. Let us assume that this is the case going forward.

Since p = 57 < 7, V*isclearly in B(V®M, 7). We will now show that the iterates {V(t)}tem
also lie in this ball by induction. The base case when ¢ = 1 is trivially true. So now assume that
Vv, VED Qie in this ball and we will proceed to show that V® also lies in this ball. Since
capp (VM. 7) < 1/8, by Lemma D.6 we infer that

Z IV ||V CVHR - VO — V2 4 2(f — Daent(VD, p)
t—1

= (t—1a

which in turn implies that

STV —VER= VO — VAR < VO - V2 4 2a(t — Dent(VY, p) — az JV )
Le[L+1] t'=1
< [VD —V*|% + 2a(t — Dent(VW, p)
' (L +1)p? < 3(L+1)p?
2 - 2

(@)
< (L+1)p*+ < 3Lp?

where (i) follows since V* € B(V(), p)andt < T = [Zmiﬁj(i%-‘ - Taking square roots implies

that for each ¢ € [L + 1], Z( ) _ V|| < v 3Lp. By the triangle inequality for any ¢ € [L + 1]

VO = v <V = vl + Ve =Vl < VBLp+ p < 8Lp=1.
This shows that Vg(t) e B(V(), 7) and completes the induction.

Now that we have established that V* and V) are all in a ball of radius 7 around V) we can
again invoke Lemma D.6 (recall from above that eapp(V(),7) < L and (VY 7) < O(,/pL?))
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to infer that

i ®) <« =
ol JVP) < 7

(1) _ *2 _ [T+ _ 2 (1)
1 ZJ(V(t)) < 1V [ |14 V** + 2T aent (V'Y p)

Ta
t=1

_ VD — V|12 + 2Taent(VD, p)
- Ta

[V — V|2
+ Ta

=2ent(V, p) < 6ent(VW, p),

where the last inequality follows since V* € B(V (1, p), therefore |V — V*||2 < (L + 1)p? and

because T' = {%W . This completes our proof. |

Finally we shall show that under Assumption 3.2 the error 5NT(V(1), p) is bounded with high
probability. Recall the assumption on the data.

Assumption 3.2 With probability 1 — § over the random initialization, there exists a collection of
matrices W* = (W, ..., W) with |W*|| = 1, such that for all samples s € [n]

Ys (Vo (xs) - W*) > /pv,
Sfor some v > 0.
Lemma D.9 Under the Assumption 3.2, for any €,d > 0, if the radius
log(n/d) + log (ﬁ)}
VDY

for some large enough positive absolute constant c then, with probability 1—26 over the randomness
in the initialization

a
p>

1 n
17480 - i - E _
en( )= Veén(‘gll),p) a3 tog(1+exp( ysFV(l)yv(xS))) Se

Proof Recall that, by definition,

Fv(l),v(x) = fv(l)(x) + (va(l)(x)) : (V - V(l))-

By Assumption 3.2 we know that, with probability 1 — ¢, there exists W* with |[W*|| = 1, such
that for all s € [n]

yi (Vv (zs) - W) > /py. (43)

By Lemma E.11 proved below with know that

P ([ fyo(zs)| < a1 log(n/é)] >1-—34. (44)
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For the remainder of the proof let’s assume that both events in (43) and (44) occur. This happens
with probability at least 1 — 24. Thus, for any positive A

Yi [fvw (zs) + AV fya () - W > Ay/py — e1/log(n/0).
cly/log(n/6)+10g<$>
VY

we infer that

Setting A =

N 1
Set V = V(1) 4 \W*. The neural tangent kernel function at this weight vector is

Fyo y(z) = fP(@) + Vv fyo (@) - (V= VD) = [D(@) + AV fro) (2) - W™

Thus by using (45)
—1 E 1 (1—|— (— F ( )>><—1 E 1 1+e —1 71
O €ex 1 X (0] X O
n e g p Yi v yits =N e g p g ( ) 1

<e.

e1+/log(n/0)+1og (it )
Py

We can conclude that if we choose the radius p > A||[W*|| = A\ = (since
||W*|| = 1 by assumption) then there exists a function in the NT function class with training error
at most €. This completes our proof. |

D.3. Proof of Theorem 3.3

Theorem 3.3 Consider a network with Huberized ReLU activations. There exists r(n,L,0) =
poly (L,log (%)) such that for any L > 1, n > 3, § > 0, under Assumption 3.2 with v € (0, 1] if
h=hntandp > 77(”457‘” then both of the following hold with probability at least 1 — 46 over the
random initialization:

1. Forallt € [T), set the step-size c, = anT = @(ﬁ), where T = [W-‘ Then

2anT

1
min Jy < ———+.
telT] nl+24L

2. Set V(I+1) — V(S), where s € arg minsem J(V(S)), and for allt > T + 1, set the step-size
ot = amax(h). Then forallt > T + 1,

3L+11
L 2L+5
5L<0 ( > (6p) ) '

ntt24l (¢t —T —1)
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Proof Proof of Part 1: Define two events

‘ 1 1 . . t 1
Eq = {5NT(V( ),p) < gozizin ( ad &= min JVW) < 6ent(VE,p) ¢

We will show that the & := &, N &, occurs with probability at least 1 — 3§. That is,

— ; t 1
P [51 = {tlél[IJI}] JVO) < ] 2136, (46)

The value of p is set to be (this was done in equation (4))

p=—2 { log (%) + log (6n(2+24L)>]

1
log (%) + log . (since e* < 1+ 2z when z € [0, 1]).
exXp <6n(2+24L)) -1

With this choice of p, since c; is a large enough absolute constant, Lemma D.9 guarantees that
P[&] > 125, @7

where the probability is over the randomness in the initialization. Continue by setting

T=3Lp = ?:;;f; [ log (g) + log <6n(2+24L)>} .

Since p > poly (L, log (%)) /~* for a large enough polynomial it is guaranteed that

log? (%
pzL? (plog(p))s Lt

where c3 is the positive absolute constant from the statement of Lemma D.8. Also recall the value
of h = hyt from equation (5)

(1+24L)log(n) @) 3a1L [\/W + log (6n(2+24L))} .

h = hNT = < =
6(6p) 3" L3 Py NG

where (i) follows since 7 € (0, 1] by assumption and because p is large enough. Under these

choices of 7 and h along with the choice of the step-size oy = © ( 1 and number of steps 7',

pL® )
Lemma D.8 guarantees that

P[&)] > 1—6. (48)

A union bound over the events (47) and (48) proves the Claim (46), which completes the proof of
this first part.

Proof of Part 2: To prove this part of the lemma, we will invoke Theorem 3.1 to guarantee
that the loss decreases in the steps t € {T'+ 1,...}. We defined V{71 = V() where s €
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arg min, ¢y J(V®), thus we are guaranteed to have J(V{T+1) < n2+124L < n1+124L’ if event &;

defined above occurs. Define another event
& = {HV(I)H <\/5 L}.

Lemma E.12 guarantees that P [£2] > 1 — §. Define the “good event” £ := & N ;. A simple union
bound shows that

P[] > 1 — 46.

Assume that this event £ occurs for the remainder of this proof. This also establishes that the success
probability of gradient descent is at least 1 — 44 as mentioned in the theorem statement.

To invoke Theorem 3.1 we need to ensure that h < hpax. Recall that, in equation (3a), we
defined

L_3
huo = min L= 10%(1/JT+1)71 .
24,/pl[VTH|E

Forall £ € [L + 1), |7

triangle inequality

— V)| < 7 (this fact is implicit in the proof of Lemma D.8). By the

VT < VO 4+ VD = v < V/BpL+ VI 17 < VopL

by the choice of 7 above and since p > M for a large enough polynomial. This means
that
(1+24L)log(n) _ L% ~3(1+ 24L)log(n)

h = hNT - L+3 L+l < L < hmax'
Thus, our choice of A is valid. In this second stage the step-size is chosen to be

: h (L+ )|V

Omax(h) = min 5 (T11)|3045° 3\2 2/L
1024 (L + 1) pJT-i-lHV ” 2L(L + Z> Jr41log (I/JT_H)
h

where the first term of the minima wins out above by our choice of / and because ||V (T +D)|| <
v/ 6pL. Thus Theorem 3.1 guarantees that

Ty < _ J(V(T+1)
B Q(amax(h>) ' (t -T - 1) + 1,
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where Q(-) was defined in equation (3¢). Thus,

~ L(L + 2)20max(h) Jr41 log? (1/ Jr41)

Q(amax(h)) = (L + %)‘|V(T+1)H2
LI+ $)*Jrgalog¥ (1) Jr 1) « h
(L+ DVa |2 1024 (L + 1)° pJp [V THD 3145
hL(L+ 3)?

B 1024(L + 1)%(L + %)puv(Tﬂ)H:&LH
(L + 3)*log(n)

>
BOL(L +1)2(L + 1)(6p) 2" (6pL) "2
log(n)
I (L + 1)2(6p)2L+5
1

3L47

> .
50L7 2 (L + 1)2(6p)2L+5
Thus, forallt > T + 1

J(V(T+1))
)y <
TV s g a—T=1)+1
1 1
n1+24LQ-(t—T—1)+1

3L+47

1 50L72 (L +1)%(6p)2L+5

S L 1) 45005 (L + 1)2(6p)2 4

50L*5 (L + 1)2(6p)2L+5
nl+24L(t — T —1)

:0< L3 (6p)*+ )

nit24l . (¢t —T —1)

IN

this completes the proof. |

Appendix E. Proof of Lemma D.7

In this section we prove Lemma D.7 that controls the approximation error 5app(V(1) , 7) and estab-
lishes a bound on the maximum norm of the gradient T'(V (1), 7) . The proof of this lemma requires
analogs of several lemmas from (Allen-Zhu et al., 2019; Zou et al., 2020) adapted to our setting. In
Appendix E.1 we prove that several useful properties hold at initialization with high probability. In
Appendix E.2 we show that some of these properties extend to weight matrices close to initialization
and in Appendix E.3 we prove Lemma D.7.

Throughout this section we analyze the initialization scheme described in Section 3.2. This
scheme is as follows: for all £ € [L] the entries of Vz(l) are drawn independently from N\ (0,2/p)

and the entries of VL(i)l are drawn independently from N (0, 1). Again, the results of this appendix

apply only to the Huberized ReLU (see definition in (1)).
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E.1. Properties at Initialization

In the next lemma we show that several useful properties hold with high probability at initialization.

Lemma E.1 For any § > 0, suppose that h < ﬁ, p > poly (L, log (%)) for a large enough
log” (&)

polynomial and T = € (
p3L3

>. Then with probability at least 1 — & over the randomness in
VW e have the following:

(a) Forall s € [n]and all { € [L]:
v 9 11
EAEER

(b) Forall all ¢ € [L], [V, ]|op < O(1), and [V, || < O(/P).

(c) Forall s € [nlandall1 < 01 <ty <L,

v =i sEDvY|| <o),
and forany1 < /¢ <L
st s < oten
(d) Foralls € [nlandall1 <ty </l <L,
[varsrt sVl < 3jal

forallvectors a with ||allp < k = where c is a small enough positive absolute constant.

cp
log(p) L%’

(e) Forall s € [nJandalll <t} </ly <L,

TyOsr® v )
Ha ‘/ZQ ngfl,s' le‘/él

| < O(lall

forallvectors awith ||a|lp < k = ﬁ, where c is a small enough positive absolute constant.

(f) Forall s € [n]andall1 < {1 <ty <L,

VP

where c is a small enough positive absolute

v v klog(p)
TV sEl v P <0 <|| bl -—=—

for all vectors a, b with ||al|o, ||bllo < k =
constant.

cp
log(p) L%’

(g) Foralls € [njandall1 < (< L,

v \74¢Y)
VLY sk V8l < 0 (JlallvkIogD))

forallvectors a with ||allp < k = %, where c is a small enough positive absolute constant.

log(
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(h) For 3 =0 (LQ\;;B) and

. (1)
Sus(8) = {i €l IVt < 8}
where VZ(;) refers to the jth row ofvg(l),for all ¢ € [L] and all s € [n]:
Ses(B)] < O*25) = O(L* %),

We will prove this lemma part by part and show that each of the eight properties holds with proba-
bility at least 1 — /8 and take a union bound at the end. We show that each of the parts hold with
this probability in the eight lemmas (Lemmas E.2-E.9) that follow.

E.1.1. PROOF OF PART (A)

Lemma E.2 Forany§ > 0, suppose that h < W andp > poly (L, log (%))fora large enough

polynomial, then with probability at least 1 — § /8 over the randomness in V) we have that forall
s€[n]andalll € [L]:
(1) 9 11
I € 3535

10710
Proof Fix any layer ¢ € [L] and any sample s € [n]. We will prove the result for this layer and

sample, and apply a union bound at the end. To ease notation we drop V(1) from the superscript of
v (1) .
xy o and refer to V" as simply V.

By definition
zes = ¢ (Vewe-1s) -

2
Conditioned on xy_1 g, each coordinate of Vyxy_1 ¢ is distributed as N <0, M), since each
entry of V; is drawn independently from A/ (0, %) Let ¢(z) = max{0, z} denote the ReLU activa-
tion function. Then we know that ¢(2) — % < ¢(2) < @(z) for any z € R. Let (z,5); denote the
1th coordinate of z, and let Vy ; denote the ith row of V;. Therefore, conditioned on xy_1 s,

E [(xﬁ,s)ﬂxé—l,s] =E [9252 (VZ,ixé—l,s) |x€—1,s]
2

_ - h
> E [¢* (Veiwo-1,s) |we-1,5] — hE [¢ (Viize—1,s) |we-1,s] + —

4

@1 hE [[Veime—1s| |Te-1,s) | W

= §E [(W,ﬂe—1,s)2 \iﬁe—l,s] — Ve 5 ol d +
_ wersl? - hllzeasll B
D 2pm 4’

where () follows since ¢(z) = 0 if z < 0 and the distribution of Viie—1,s is symmetric about the
origin. Therefore summing up over all i € [p] we find

Phllze—1sll  h2p
E [Jeral? 1] = 3B [(e00)? [ee1s] > lrpor o2 — YEIZ Ll o
9 i ) 7 ) — ) 4
i€fp] V2m
h\/p 2
z@mm—g>- (49)
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Similarly we can also demonstrate an upper bound of E [||z¢s||? | ze—1,s] < [lwe—1,4]|* since
@(z) < ¢(z) for any z as stated previously.

Let ||-||,4, denote the sub-Gaussian norm of a random variable (see Definition F.1) and let ||-||,,
denote the sub-exponential norm (see Definition F.2). Since the function ¢ is 1-Lipschitz, condi-
tioned on zy_1 s,

[(ze,s)illps = [l&(Veie—1,5)llys
< ||¢(Vé,ix£—1,s) —E [Cb(w,ixﬁ—l,s”xﬁ—l,s] sz =+ HE [¢(W,ixé—l,5)|xé—l,5]||'¢’2

@ el @ Jlwell

< BV + |E[o(Veize—1,8)|ze-1,5]lly. < /b (50)
where (i) follows by invoking Lemma F.4, and (i7) follows since we showed above that
To_1,
B [@(Veizes)leerslle, = [E[o(Veizes)|ze,s]| < \/E [62(Veiwe,s)we1,s) < ”\/%SH-

2
Therefore ||(x¢s)? ||y, < H(:Ug,s)iHiQ < % by Lemma F.3. Since the random variables

(m05)%, ..., (z0, 3)120 are conditionally independent given x¢_; 4, applying Bernstein’s inequality (see
Theorem F.6) we get that for any 7 € (0, 1]

P (|leesl? = E [lloesl? lze-1] | < nllaeol? [ees)
2 4 2
. 0 l|ze—1,sll nllze—1s
>1—2exp | —cmin : ’
< {p X (c3llwe—1,5)1*/p?) " callze—1sl?/p
> 1 —2exp (—csmin {n’p, np})
>1—2exp (—03p772) .

We established above that the expected value satisfies the following bounds:

ho/p\ 2
leerall = YP) " < E[lleeal? 2] < ool
2

Thus

hyp\ 2
P (er,su? : [(umu,su =AY sl el P14 )

aj@l,s)

>1—2exp (—03p172) .

Taking a union bound over all samples and all hidden layers we find that

h\/p 2
=) sl o P )

)

P <Vs € [n], ¢ € [L], Hx&3|]2 € [(”1‘@1’8

>1—2nLexp (703;07]2) .
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This implies that

P <vs € Inl, £ € [L, [zl = llzen,d

2 2 h2p
< nllze-rsl” + h/pllzesl + =~
>1—2nLexp (—03p772) .

Setting n = 50% and because by assumption h/p < 50% = 1 we get that

2
P (v € nl. £ € 12, [fonall = oe-sall| < nllocral? + lle-s.l + 7 )

C4p
> 1—2nLexp (—ﬁ) . (51)
Let us assume that the event of (51) holds for the rest of this proof. Starting with ¢ = 1 we know
that ||zos|| = |lzs]| = 1, thus if the event in the previous display holds then by the choice of
n = 1/(50L) we have that

[z1,6]1* € [1 = 3n,1+ 3n).

For any z € [0, 1] we have that (1 + 2)'/2 <1+ zand (1 — 2)!/2 > 1 — 2. Thus, by taking square
roots

[z1sll € [1 = 39,1+ 3n].

We will now prove that ||z || € [1 — 3¢n, 1 + 3¢n] using an inductive argument over ¢ =1, ..., L.
The base case when ¢ = 1 of course holds by the display above. Now let us prove it for a layer
£ > 1 assuming it holds at layer ¢ — 1.
Let us first prove the upper bound on ||z ||, the lower bound will follow by the same logic. If
the event in (51) holds then we know that
n?
lzesll® = lze-1s1* < mllzesl® + nllwesll + 7
which implies that

2

lzesll® < llze—1,sll* (1 + ) + nllwe1sl + nZ
2
= ||lzr—1.4]? (1 +n+ Hﬂ?enl,sH + 4“336771,SHZ>
(%) (7 <1 +n+ 12# + 22;]2)
= oamrl? (14 252+ B Ll (14 51)

where (i) follows since by the inductive hypothesis [|¢_14|| > 1 —3(¢ —1)n and because n = =57,

3(0—-1 .. .
therefore ||zy_1 || > 1 — I(OOL) > % > 2, and (i7) again follows because ) = =37 and L > 1.
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Taking square roots we find that

20
el < le-sally/1 4+ 22
2
< (1—1—3(6—1)77)\/14—% (by the TH)
(i) 20
< (143(¢—-1)n) <1 + 977>

20 60(¢ — 1)n? (@)
:1+3(€_1)77+9n+(9)77 < 1+ 3én,

where (i) follows since /T + z < 1+ z and (i7) follows since ) = =3+ and L > 1. This establishes
the desired upper bound on |z, s||. As mentioned above, the lower bound (1 — 3¢n) < ||z ||
follows by mirroring the logic. This completes our induction and proves that for all s and all ¢ with
probability at least 1 — 6/8

2,5l € [1 —3€n, 1+ 3] .
Our choice of n = 50% establishes that

9 11] 52)

lotall € |57

forall s € [n] and ¢ € [L] with probability at least 1 — 2nL exp (—5%) > 1 — §/8, which follows
since p > poly (L,log (%)) for a large enough polynomial. This wraps up our proof. [ |

E.1.2. PROOF OF PART (B)

Lemma E.3 For any § > 0 suppose that p > poly (L, log (%)) for a large enough polynomial,
then with probability at least 1 — § /8 over the randomness in 14OR

forai 0 € (L], [VVlop <O1), and ||V, < O(/p).

Proof For any fixed ¢ € [L] recall that each entry of Ve(l) is drawn independently from N (O, %)
Thus, by invoking (Vershynin, 2018, Theorem 4.4.5) we know that
1V o < O(1)

with probability at least 1 — exp(—£2(p)). The entries of VL(i)l are drawn from N (0, 1), therefore
by Theorem F.7 we find that
1
VAP < 2p

with probability 1 — exp(—£(p)). By a union bound over the L + 1 layers and noting that p >
poly (L,log (%)) yields that

forall £ € [L], [[V/V]op <0O(1) and [Vl < O(vp)
with probability at least 1 — /8 as claimed. |
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E.1.3. PROOF OF PART (C)

Lemma E.4 For any § > 0 suppose that p > poly (L, log (%)) for a large enough polynomial,
then with probability at least 1 — § /8 over the randomness in V) we have that for all s € [n] and

all1 <t <y < I,
<O(L),

515

(1) 5V yV Wy, (1)
H‘/fg 262*175' ‘/él

op

andalll < /{1 <L

1 (1) (1)
HVL(-‘:-)IEZ,S ’ V V€(1)

Els

_ < O(/L).

Proof We begin by analyzing the case where ¢/, < L + 1. A similar analysis works to prove the
claim when /o = L + 1. This is because the variance of each entry of VL(El is 1, whereas when
f9 < L + 1 the variance of each entry of Vg(l)
a factor of \/2p in the case when {5 = L + 1.

Fix the layers 1 < ¢; < ¢ < L and fix the sample index s. At the end of the proof we shall
take a union bound over all pairs of layers and all samples. Now to ease notation let us denote Vg(l)
by simply V; and let ZX;D be denoted by Xy .

To bound the operator norm

is 2/p. Therefore the bound is simply multiplied by

s

l1,s

1)av® v (1)
= sup HVZ(Q )242_175- DY A V( )CLH (53)
P ailal=1
we will first consider a supremum over vectors that are non-zero only on an arbitrary fixed subset

S C [p] with cardinality |S| < Lclp J where c; is small enough absolute constant. That is, we shall
bound

- ._ v (1)
== sup HVE2 g, 178---2

M1
ARATA )aH .
a:||al|=1,supp(a)CS

l1,s
Using this we will then bound the operator norm in (53) by decomposing any unit vector a into
ﬁ vectors that are non-zero only on subsets of size at most | 24|

L2

Let us begin by first bounding =. Part (b) of Lemma E.10, which is proved below, establishes
that, for any fixed unit vector z € SP~!

Ve Zpp—1,6 -+ Xy s Vir 2| < 2
. . 3y.-2(%&)
with probability at least 1 — O(nL>)e ~\L?/.
We take a 1/4-net (see the definition of an e-net in Definition F.8) of unit vectors {a;}/; whose

coordinates are non-zero only on this particular subset .S, with respect to the Euclidean norm. There
. . 2 .
exists such a 1/4-net of size m = ge1p/L (see Lemma F.9). By a union bound,

Vi€ [m], [[Vi,Be,-1,s - By s Ve ail| <2 (54)

— P — P
with probability at least 1 — O(nL3 - 9¢17/L%)¢ (%) _ l1—e (%) since p > poly (L,log (%))
for a large enough polynomial, and because c; is a small enough constant. We will now proceed
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to show that if the “good event” (54) regarding the 1/4-net holds then we can use it to establish
guarantees for all unit vectors a that are only non-zero on this subset S. To see this, if ((a) maps

each unit vector a with support contained in S to its nearest neighbor in {a1, ..., an}, then if the
event in (54) holds then
E= sup ||‘/€QZ€2—1,5 T Zzl,sVZIGH
a:|lall=1,supp(a)CS
- sup HW2252*1,5 T 251781/@1 (a - C(a) + C(a))H
a:||a]|=1,supp(a)CS
< sup HV&ZZz—LS e Eéﬁ,szlajH + sup ||V£2262—1,s e Efl,svh (a - C(a))”
J€[m] a:||al]|=1,supp(a)CS
(4) 1 ¢(a)
S sup ||‘/€22€2—1,5 e z:fl,s‘/g1a‘j|| + Z sup WQEZQ—].,S ' Eél, W1
jE€[m] a:lla]|=1,supp(a)CS H a H
(i) =
< 24—
+3 4

where and (7) follows since ||a — ((a)|| < 1/4, inequality (i7) follows since we assumed the event
(54) to hold and by the definition of =. By rearranging terms we find that, with the same probability

. -2 . .
that is at least 1 — e <L2 ) for any unit vector ¢ that is only non-zero on subset S, we have that

1
Hw225271,s T 251,3w1a” < 1_ X 2 < 3. (55)

1
1
As mentioned above we will now consider a partition of [p] = S; U ... U Sq, such that for all
_ | L2 ;
€ la], PPJ = {Ew Given
L2
an arbitrary unit vector b € SP—1, we can decompose it as b = w1 + ... + ug, Where each u; is
non-zero only on the set S;. Invoking the triangle inequality

Lclp |, and the number of sets (¢) in the partition satisfies ¢ <

q
Ve Sey—1,s - BeViubll < Vi By—1,s -+ By s Ve wi

Z .

By applying the result of (55) to each term in the sum above along with a union bound over the g sets

. . . -0(%&) 2y, (%)
S1,...,Sq we find the following: with probability at least 1 — ge r?) =1—-0(L?)e L2/,
for all unit vectors b € SP~1

Us
WQEZQ—LS T Efl,SW1 m
(2

q g 1/2
Ve Bes1s - Sey s Verbll <3 Jluill < 3v/g (ZH%’!F) =3vq=0(L).
i=1 i=1

The definition of the operator norm of a matrix [|A||op = sup,,|y|=1/|Av|| along with the previous
display establishes the claim for this particular pair of layers ¢; and /> and sample s. A union bound

over pairs of layers and all samples to establish that, with probability at least 1 — O(nL4)e_Q(ﬁ),
for all pairs 1 < ¢; < ¢9 < L and all s € [n]

||V22262—1 T Efv@l HOP < O(L)' (56)
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— P
As claimed above, a similar analysis shows that, with probability at least 1 — O(nL*)e Q<L2 ) for

all s € [n] and all ¢; € [L], we have

HVL+12L te Eﬂvh Hop < O(\/ﬁL) (57)

Since p > poly (L,log (%)) we can ensure that both events in (56) and (57) occur simultancously
with probability at least 1 — §/8. [ |

E.1.4. PROOF OF PART (D)

Lemma E.5 For any 6 > 0, suppose that p > poly (L, log (%)) for a large enough polynomial,
then with probability at least 1 — § /8 over the randomness in V1) we have that for all s € [n] and
alll1 <t; <l <L,

1 (1) M1
|va e .=k va| < slal

01,8

for all vectors a with ||allo < k = where c is a small enough positive absolute constant.

cp
log(p) L%’

Proof We fix the layers 1 < ¢; < /5 < L and fix the sample index s. At the end of the proof
we shall take a union bound over all pairs of layers and all samples. Again, to ease notation, let us

denote Vg(l) by simply V; and let ZZS(I) be denoted by Xy ;.
For a fixed unit vector z € SP~! by Part (b) of Lemma E.10 that is proved below we have

HV€2EZ2—LS"'EZLSV€1ZH <2 (58)

_ P
with probability at least 1 — O(nL?)e Q<L2 ) . Consider a 1/4-net of k-sparse unit vectors {a; }" ;,
where m = (i) 9% (such a net exists, see Lemma F.10).

. . . . . koorsy (%)
Using (58) and taking a union bound, with probability at least 1 — O ((£)9% - nL?) e \1?/,
for all vectors {a;}!",
Hvﬁzzﬁz—lﬁ T 24178‘/51611'” <2.
Now by mirroring the logic that lead from inequality (54) to inequality (55) in the proof of
the previous lemma, we can establish that, again with probability that is at least 1 — (i) 9k .

3 79(%) .
O(nL?®)e ~"\1?/ for any vector a that is k-sparse

A union bound over all pairs of layers and all samples we find that, with probability at least 1 —

O ((£)9% - n?LP) efﬂ(%), forall 1 < ¢; < fy < L, forall s € [n] and for all vectors a that are
k-sparse

a
‘/EQEKQ—I,S T Efl,swlnayH S 3.

a
Wszzfl,s e Efl,swl”a’H S 3.
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Moreover,

1-0 ((Z>9k ) n2L5> efﬂ(ﬁ) >1-0 ((ep)kgk _ n2L5> 679<%) (since (Z) < (%)k)

—1-0 (nng,) e—Q(%—klog(er))
>1-6/8

where the last inequality follows since k¥ < —=2— where c is a small enough absolute constant
log(p)L

and p > poly (L,log (%)) for a large enough polynomial. This completes the proof. [ |

E.1.5. PROOF OF PART (E)

Lemma E.6 For any § > 0, suppose that p > poly (L, log (%)) for a large enough polynomial,
then with probability at least 1 — 6 /8 over the randomness in V") we have that for all s € [n] and
alll§€1 §€2§L,

Ty WV ® vy,(1)
Ha ‘/Zg ZZ2—1,S U Z51,8 ‘/Zl

| < O(al)
Sfor all vectors a with ||a|lp < k = ﬁ, where c is a small enough positive absolute constant.

Proof We fix the layers 1 < ¢; < f5 < L and fix the sample index s. At the end of the proof we
shall take a union bound over all pairs of layers and all samples. In the proof let us denote Vﬁ(l) by
simply V; and let EZS(I) be denoted by ¥ ;.

For any fixed vector z we know from Part (a) of Lemma E.10 that with probability at least

3y, ~%(&) .
1 —0(nL?)e \t?*/ over the randomness in (Vp,_1,..., V1)
||2£2—1,3V42—1 T Etfl,sVElZ'H < 2[|=|. (59)

Recall that the entries of V, are drawn independently from A/ (0, %). Thus, conditioned on this

event above, for any fixed vector w the random variable wTVg2 (Xpy—1,5 - 2¢, Vi, 2) is a mean-

8[lwl® |12l

zero Gaussian with variance at most . Thus over the randomness in V7,

P <(wTw22@_1,8 T Vi

4 _aof(=
< phollelfVer, i) 21 @) o
By union bound over the events in (59) and (60) we have

P
2

< 4||w||||z||) >1-omre B e

P (\wTv@EeZ_LS T Ve < 7
Similar to the proof of Lemma E.4 our strategy will be to first bound

T
sup sup o Vi Sy 100 By o Vi
a:|lal|=1,]|a]lo <k b:||b]|=1,supp(b)eCS

69



DEEP INTERPOLATION

where S is a fixed subset of [p] with |S| < F£, where ¢ is a small enough absolute constant. Let

{#};_, be a 1/4-net of unit vectors with respect to the Euclidean norm whose coordinates are non-
zero only on this subset S. There exists such a 1/4-net of size r = geip/L? (see Lemma F.9). Let
{w;}™, be a 1/4-net of k-sparse unit vectors in Euclidean norm of size m = (£)9* (Lemma F.10
guarantees the existence of such a net). Therefore by using (61) and taking a union bound we get
that

< (62)

) 4
Vie [ ] J E ‘w WQEb 1,5° 221 swlzz Z

with probability at least 1 — mrO(nL?)e () = 1 _ o(gar/? (p)anL?’)e_Q(ﬁ) —1-

_of->2 .
e (L2 ) , since k = o ( ) el IZ where both ¢ and c; are small enough absolute constants and because

p > poly (L, log ( )) for a large enough polynomial.

We will now demonstrate that if the “good event” in (62) holds then we can use this to establish
a similar guarantee for all k-sparse unit vectors a and all unit vectors b that are only non-zero on
the subset S. To see this, as before, suppose ¢ maps any unit-length vector with support in .S to
its nearest neighbor in {z1, ..., 2.} and A maps any k-sparse unit vector to its nearest neighbor in
{w1,...,wn}. Then if the event in (62) holds, we have

== sup sup )aTVgQEZZ_LS gy Vi b
azllal|=L,||allo<k b:||b]|=1,supp(b)CS
= s Sup_ (@ Ma) + M@) Vi By e S Vi (b C(0) + C(0)

a:llal|=1,[|allo<k b:|b]|=1,supp(b) =5

T
S sup w; WQZZQ—LS e Efl,SW1 Zj‘
i€[m],j€[r]

+ sup
a:llall=1,|lallo<k,j€[r]

+ sup )w Vi Xtg—1,5 -+ 2y,sVe, (b — C(b ))‘
i€[m],b:||b]|=1,supp(b)CS

+ - osup sup (a = Aa)) Ve Zey1,5 - Bty sV, (b= (D)
a:llal|=1[allo <k i€[m].b:[jb]|=1.5upp(b)CS

Z4”””49

< 245 =<z 63
_L+4+ +6_L+16 (63)

(0= (@) VieBaa 1,6+ Sen Va2

—~
=

where (i) follows by the definition of = along with Lemma F.10, because we assume that the event
in (62) holds, and also because ||a — A(a)|| < 1/4 and ||b — ((b)|| < 1/4.
By rearranging terms in the previous display we can infer that

<10
L

[1]
Il

(64)

4
.
sup sup ‘a WQEZQ—I,S U EZ1,SW1b < 793
a:llall=1, lallo<k b||b]| =1 supp(5)CS (1-15)

with probability at least 1 —e ~\L?/.
Finally, when b is an arbitrary unit vector we can partition [p] = Sl U...US,,, such that for all
i€ [ml,

< | £#] and the number of the sets in the partition ¢ < E L ]

L2

= H—f-‘ Thus, given an
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arbitrary unit vector b € SP~!, we can decompose itas b = uq +. ..+ ug, where each u; is non-zero
only on the set S;. By invoking the triangle inequality

q
0T Ve Sy 1,5+ SeVe, bl <) laT Vi By o1 -+ By 5 Vi wil-
=1

By applying the result of (64) to each term in the sum above we find that: for all k-sparse unit
vectors a and all unit vectors b € SP~!

1/2
10 & 10./q
@ Ve, 20,1, Zay s Viy bl SIZHUZH < L (ZH AP) :—E[:ou)

) . 42(%) 9 —Q(%)
with probability at least 1 — ge 2) =1-0(L%)e In other words for all k-sparse unit
vectors a

HaTV&Z&*l,S T 251,8‘/@1 H = ilhp ’a—rvbz&*l,s T Efl,svflb’ < O(l)
b:||b]|=1
with the same probability that is at least 1 — O(L2)e_Q <%> . By a union bound over the pairs of lay-

ers /1 and /2 and all samples s € [n]| we establish that, with probability at least 1 —O(nLﬂeiQ(ﬁ) ,
for all pairs 1 < ¢; < {9 < L, all s € [n] and all k-sparse vectors a

T
lall

Since, p > poly (L, log (%)) we can ensure that this happens with probability at least 1 — /8 which
completes the proof. |

<0(1).

wzzfg 1,8 EE1,8W1

E.1.6. PROOF OF PART (F)

Lemma E.7 Forany é > 0, if p > poly (L, log (%)) for a large enough polynomial, then with

probability at least 1 — §/8 over the randomness in V1) we have that for all s € [n] and all
1<b <6 <L

@15

v ® m klog(p
VPR B Vgﬂb|<0<u 15 p“)

for all vectors a,b with ||al|o, |bllo < k =
constant.

W’ where c is a small enough positive absolute

Proof Fix the layers 1 < ¢; < {5 < L and the sample index s. At the end of the proof we shall take
a union bound over all pairs of layers and all samples. In the proof, let us denote Vg(l) by Vp and
2y by S
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For any fixed vector z we know from Part (a) of Lemma E.10 that with probability at least

3 42(%) .
1 —0(nL?)e "\t?/ over the randomness in (Vp,_1,..., V1)
ISt 1 Vi1 - Sy o Va2l < 2112 (65)

Recall that the entries of Vj, are drawn independently from A/ (0, %) Thus, conditioned on this

event above, for any fixed vector w the random variable wTng (Xpy—1,5 - 2¢, Vy, 2) is a mean-

8lwl|?]l=]1?

zero Gaussian with variance at most . Therefore over the randomness in Vp,

_ klog(p)

k1
£ o v, v) S S

(‘w WQEfz 1,s " ° Efl S‘/fl

27
C2

where co is a small enough positive absolute constant that will be chosen only as a function of the
constant c. A union bound over the events in (65) and (66) yields

k1 _of_p _ klog(p)
£ H) Ozt (E) _

_ klog(p)
) —e 128¢3 (67)

P ()w%;@_m T V| <

=1 6_Q<%

where the last equality holds since p > poly (L log (”)) for a large enough polynomial.
Let {w;}™ | be a 1/4-net of k-sparse unit vectors in Euclidean norm of size m = (¥)9” (such a
net exists, see Lemma F.10). Therefore by using (67) and taking a union bound we find that

klog( )

Vi€ ml [l VaSu s Sa Svgle) <\ (68)
with probability at least
1—m? <eQ(p/L2) te ’“f;:i?) =1-0 <<<Z> 9k)2> (G_Q(ﬁ) + ei%gig))
10 ((9?>2k> (o g
- (N(z)wmog(gep) -2 +2klog<9ep>>
@, (6—9(;;) N e_sz(klog(p))) @), (&)
where (i) follows since (1) < (%)k, (i7) follows since p > poly (L,log (%)), k = ﬁ and

because ¢z is a small enough absolute constant (which can be chosen given the constant c), and (i)
again follows since k = logf%.

We will now demonstrate that if the “good event” in (68) holds then we can use this to establish
a similar guarantee for all k-sparse unit vectors a and b. Suppose, for each k-sparse unit vector w,
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that ¢(w) is its nearest neighbor in {w1, ..., wy,}. Then, if the event in (68) holds,

== sup sup ‘aTVgZZgZ_LS X Vi b
atllall=1,||lallo<k b:][b]|=1,[|bllo<k
= swp sup (@ ¢(a) (@) Vi, Sy 1+ Sey Vi (0= C(0) + €(8)

a:||al|=1,||allo <k b:[b]|=1,[b]o <k

T
< sup (wy VX150 Zfl,svéle‘

i,j€[m]
+ sup ’(a - C(a))TVEQZ&—l,S T Zfl,swle}
allall=1,l|lallo<k,j€[m]
+ sSup ’w;rvfzzbfl,s to 251,5‘/@1 (b - C(b))‘
i€ lml b bl =1, bl <k
+ sup sup ’(a - C(a))TVgQEgQ,LS T 251,8‘/@1 (b - G(b))

a:llal|=1,[lallo<k b:|[b]|=1,[|blo<k

(Z<) kloglp) = E E 1 [klog(p) N 9
) P 4 4 16 e p 16

where (i) follows by the definition of = along with Lemma F.10, because we assume that the event
in (68) holds, and also since ||a — ((a)|| < 1/4 and ||b — {(b)|| < 1/4.

By rearranging terms in the previous display we can infer that
1 klog(p)

(1- 196) €2 p

:0( M%@»
p

— P
with probability at least 1 — e Q<L2 ) Taking a union bound over all pairs of layers and all sample

we find that, with probability at least 1 — O(nLQ)e_Q(%), forall 1 < ¢; < /9 < L, forall s € [n]
and all k-sparse vectors a and b

klo
Vi, X1, 2y s Vo o Il ’ ( g(p)) . (69)

= T
== s sup o Ve S0 By o Vigh| <
a:||al|=1,l|allo <k b:[b[|=1,|b]}o<k

T
lall

Since p > poly (L, log (%)) for a large enough polynomial we can ensure that this probability is at
least 1 — ¢/8 which completes our proof. |

p

E.1.7. PROOF OF PART (G)

Lemma E.8 Forany d > 0, if p > poly (L log ( )) for a large enough polynomial, then, with
probability at least 1 — §/8 over the randomness in V), forall s € [n] and all 1 < ¢ < L,

VS sV al < 0 (lallvklog))

for all vectors a with ||a|lo < k = ﬁ, where c is a small enough positive absolute constant.
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Proof Fix the layer 1 < ¢ < L and the sample index s. At the end of the proof we shall take a union
bound over all layers and all samples. Let us denote Vg(l) by V; and ZZS(I) by g .
For any fixed vector z we know from Part (a) of Lemma E.10 that with probability at least

3y~ %) .
1 —0(nL?)e "\r£?J over the randomness in (Vz,..., V1)
X0,V ... EesVez| < 2|z (70)

Recall that the entries of V41 are drawn independently from A/ (0, 1). Thus, conditioned on this
event above, for any fixed vector w the random variable wTVLH (X5 - X¢Vyz) is a mean-zero
Gaussian with variance at most 4|z||2. Therefore over the randomness in V7, 1

klo P _ klog(p)
P <|VL+12L,S---EE,SWZ| > ch()uzu]vb...,vl) <=

where ¢y is a small enough positive absolute constant that will be chosen only as a function of the
constant c. A union bound over the events in (70) and (71) yields

L1 of p _ klog(p)
P (vaHEL,S S Viz| < Ve log(p) \zu> >1 - 0(nL?e 2(#) _
Co
_ klog(p)
o (BE) e (72)

where the last equality holds since p > poly (L, log (%)) for a large enough polynomial.
Let {z;}I", be a 1/4-net of k-sparse unit vectors in Euclidean norm of size m = (Z) 9% (such a
net exists, see Lemma F.10). Therefore by using (72) and taking a union bound we find that

klog(p)

Vie[m], |VipZrs- - 2esVizi| < (73)

with probability at least

_ klog(p) » _ klog(p)
1—m (eﬂ(p/LQ) +e 128g°§ > =1-0 <<p> 9k> (€_Q<ﬁ> +e 32gc§17 )

k

i k _ klog(p)
2103w B

- (e—Q(LpQ>+klog(96p) n e’“?)‘;gc%”)%log(%p))

(), (eﬂ(g’z) +€—Q<klog(p>>> @y _ ()
where (i) folows since () < ()" (i) follows since p > poly (L. 10g (3)). k = %7z and

because c9 is a small enough absolute constant (which can be chosen given the constant c), and (i)

o T
follows again since k = g 2"
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We will now demonstrate that if the “good event” (73) holds then we can use this to establish
a similar guarantee for all k-sparse unit vectors a. To see this, as before, suppose ¢ maps any unit-
length k-sparse vector to its nearest neighbor in {z1, ..., z.}. Suppose that the event in (73) holds
then

== sup Vi1 Zrns - 2sVeal
a:l|al|=1,lallo<k

= sup Vi1XL,s - YesVela — ¢(a) + ((a))]

a:llal|=1,]|allo<k
< sup |Vi412rs - XesVezi| + sup Vi1Xrs- e sVela —C((a))l

i€[m] a:llal=1,lallo<k
(@) /k1 1 — (i) \/k1 =
< VHlog(p) + - sup VisiXps - 2esVe @~ ¢(a) < o&(p) + —
ca 4 a:llall=1,|allo<k la—¢(a)ll C2 4

where (7) holds because we assume that the event in (73) holds and since ||a — {(a)|| < 1/4, and
(i) follows by the definition of = along with Lemma F.10.
By rearranging terms in the previous display we infer that

_ 1 klo
E= s Vi Spe Vel < o VOB o (o)
a:llall=1,allo<k (1-3)

—_ P
with probability at least 1 — e Q(L2 ) . Taking a union bound over all layers and all sample we find
that, forall 1 < ¢ < L, for all s € [n] and all k-sparse vectors a

a
Vit1XLns Yo sVir—

— 0 (Vklog(n)) (74)

[[all
. . -0(&) o n
with probability at least 1 — O(nL)e ~ \L%/. Since p > poly (L,log (%)) for a large enough

polynomial we can ensure that this probability is at least 1 — §/8 which completes our proof. W

E.1.8. PROOF OF PART (H)

Lemma E.9 For any § > 0, suppose that h < ﬁ, p > poly (L, log (%)) for a large enough

. o log?(ZL) B 1272/3Y .
polynomial and T = 2 <3‘;> For 3 =0 ( N ), if

(1)

Sus(8) = {3 € b+ VYl < 8}
where Vé(;) refers to the jth row of Vé(l), then with probability at least 1 — 6 /8 over the randomness
in V) we have that for all ¢ € [L] and all s € [n]:

Se.5(8)| < O(*28) = O(pL*7/3).

Proof To ease notation let us refer to Vg(l) as V and x}/él) as x¢ . For a fixed £ € [L] and sample
s € [n] define
Z(0,j,s) =1[|Vijzes

< A

75



DEEP INTERPOLATION

so that |S s(5)| = ?:1 Z(j,¢, s). Define £ to be the event that ||zy_; s|| > % By inequality (52)
in the proof of Lemma E.2 above
p
P[] >1—0O(nL)exp (—Q (ﬁ)) . (75)

Conditioned on x,_1 4 since each entry of V} ; is drawn independently from N(0, ) we know that

P
determined by the random weights before layer £, we have that

E[Z(j,t,s) | €] =P [j € Ses(B) | €] = 47T\|x“s|y2/ eXp( >dx
: \/;/5€XP< Az 15||2>dx<25\f

On applying Hoeffding’s inequality (see Theorem F.5) we find that

the distribution of V jxp_1 4 ~ N (0 ( ,M). Thus, conditioned on the event £, which is

p
1Se.s(B)| <E ZZ(j,& s) ’ El + 9328 <p (25\/§> 4823 < 35523 ‘ ¢
j=1

> 1 —exp(—Q(p*/2B)). (76)

Taking a union bound over the events in (75) and (76) we find that

P [[S05(8)] < 3p/28] > 1 - exp(~(p"?8)) — O(nL) exp (-2 (15 ) -

Applying a union bound over all samples and all layers we find that, with probability at least 1 —
O(nL) exp(—Q(p*/?B)) — O(n*L?) exp (= (£)).forall £ € [L] and all 5 € [n],
[Se.s(8)] < 3p°/%8 = O(pL* 7).

We shall now demonstrate that this probability of success is at least 1 — §/8. On substituting the

value of 8 = O( LS/\;Q/?)) we find that this probability is at least

L OnL) exp(~0p*"28)) — 012 exp (~2 (%))

=1— O(nL)exp(—Q(pL>7%/?)) — O(n*L?) exp (_Q (%))

L2
W1 _omL) Q (103 ("L (-2(%))
=1—0(nL)exp | — o —exp (—Q (=
>1-6/8,
where (i) follows since p > poly (L,log (%)) for a large enough polynomial and (i) follows by
nL
assumption that 7 = (2 log(L3)> . This completes our proof. |
p2
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E.1.9. OTHER USEFUL CONCENTRATION LEMMAS

The following lemma is useful in the proofs of Lemmas E.4-E.8. It bounds the norm of an arbitrary
unit vector z that is multiplied by alternating weight matrices Vg(l) and corresponding ZXS(I).

Lemma E.10 [fp > poly(L,log(n)) for a large enough polynomial, then given an arbitrary unit
vector z € SP~L, with probability at least 1 — O(nL?) exp (—Q (%)) over the randomness in V1),
forall1 <ty < {3 < Landforall s € [n],

(1) (1) 1
(a) HEX;LS e EZ; Ve(1 )zH < 2,and

1wy ® 1)1 ,(1)
) ||V s v <2
(1) v (1) v (1)
Proof We denote V" by V;, X " by ¥y i, and /by x4 4.
Proof of Part (a): For any layer £ € {{1,...,¢y — 1} define
2,5 = Ez,szqu,s te Efl,swlz

with the convention that zp, _1 , := 2.

Conditioned on z,_1 4 the distribution of Vyzp_q s ~ N (O,

2||zo—1,s |21 .
w» since each entry of Vj

is drawn independently from A/ (0, 1%) We begin by evaluating the expected value of its squared
norm conditioned on the randomness in Vy_1,..., V1. Let V; ; denote the jth row of V; and let
(X¢,5);; denote the jth element on the diagonal of ¥, ,, then

E [llz0, Vi1, Vi] = E [| S VezeorPIVi1, .. VA]
P
=E | ((Se)iiVijze—is) |Viers- -, Vi
j=1
By the definition of the Huberized ReL.U observe that each entry
(Bes)ij = & (Vejzes) <T[Vijaze_1s > 0]

and therefore
P
E [|lzes)* Vi1, ... . Vi] SE | IVejae1s > 0] (Viejze—,s) |Veer, - VAl . (T7)
j=1

Let us decompose V; ; into its component in the x,_;  direction, and its a component that is per-
pendicular to x,_1 ;. That is, define

xéfl,s xf*l,s 1 !
V”.:=<W-- ) and Vi = Vo, — VI
o T Nwem1sll ) e sl g J Vi

Since Vy ; is Gaussian, Vz‘,l ; and Vf] are conditionally independent given the previous layers.
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Thus, continuing from inequality (77), we have

E [“ZK,SHQH/%fl; R V1:|

) _
(1) ]

<E S0 {Vigel L, 2 0] (V) + Vis)ae 18) Vi1, Vi
=1 :
—Zp A v o o] (ol 2 —

=E I ‘/g’j.%'}/,LS >0 ((‘/ZJ + ‘/[j‘)z@fl,s> ‘Vé—la R ‘/1
=1 ) i
-Zp T v o ]l 2

=K I ‘/g]:l:é/ls >0 (WJZZ—I,S) |V£—17---,V1
=1 '

p
v 2
+E|Y I [V” ay ), >o] (‘/2325_1’5) Vi,

7j=1
p

+2E ZH [V)' > } (‘QH L7 13) (Vﬁjz@—m) Vict,.... W

j=1
_E ZH[V@J@V?S_ ](v” . 13) Vit,.. Vi

j=1
p 2

+E |30 [Vegal 'y, 2 0] (Vizes) [Verso VAl (78)
j=1

since, after conditioning on Vy_1, ..., V}, we have that VZ‘J ; and Vf] independent and Vﬁ] 201,518
Zero mean.
Now, decompose the vector z;_1 s into its component in the xy_1 ¢ direction, which we refer

to as z,_; ,, and a component that is perpendicular to zy_1 5, which we refer to as zg 15 . That is,
define

Z” . <Z€ Te—1,s ) Ty—1,s and ; — ZH
e = e L o
e ’ Hxé*l:SH fofl,SH —1,s —1,s 0—1,s

[ l 1 1 . : N
Since Vg 2015 Vf,jze-1,s and VMZg_LS = VMZ#LS, inequality (78) implies

E|

W]

Zp: [VKJ‘TX(I)5>O] (ijzg 15) }Vé -y V1

p
(1) 2
+E Zﬂ[w]xﬁvlszo] (Vg,jzﬁ_m) Viit,- Vil (79)
=1
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We begin by evaluating the term involving the parallel components. For any j, conditioned on

2
Ve1,..., V1, recalling that Vy ; is the jth row of Vp, the random variable Vy jz,_1 5 ~ N (O, w),

and therefore
2
E [H Vejze—1,s > 0] (Vé,jZﬂ_Ls) Vi1, ..., Vl]

2
Tp—1,s
= (ZZ—I,s : <’w_115”2>> E []1 Vijae—1s > 0] (Vojze—1,)” [Vit, .- -7‘/1}

2
Tp—1,s 1 5
= (e (i) ) 2 % B[ Vismeso? Ve V]
<[ " <’$Z—1,s”2>> 2 (z’j £ 17) ‘ /-1 1
2 2 I 2
—1,s 1 2 s Z) 1,
:<Mﬂ{<:wL)>x [y 2 o

H$€—17s||2 2 p p

For the perpendicular component, notice that, conditioned on (V;_1, ..., V1), we have that V ; zj_l s =

VE}Zg_LS and [ [V jxp_1s>0] =1 [VJL!E(—LS > 0} are independent, and hence

2
E [H Vegoe s 2 0] (Vegetns) [Ver, oo, Vl]

) Ly N

= 3E {(Ve,m_l,s) \Ve_l,...,vl] =g x e = e (81)
By combining the results of (79)-(81) we find that

o1l + 2, el?

E [z, [Ve-1, ..., V1] <p = 5 e =N (82)
By symmetry among the p coordinates we can also infer that E [(2¢,s)7|Vi—1, ..., Vi] < |lze—1,5/1*/p
for each 7 € [p]. Thus, by the same argument as we used in Lemma E.2 to arrive at (50) we can
show that conditioned on V;_1, ..., V1 the sub-Gaussian norm || (z¢,); ||, is at most c1 || ze—1 4| //P

and hence the sub-exponential norm ||(2¢,5)2 |y, < ||(,2£75)Z-H12p2 < ¢al|ze-15]/?/p (by Lemma E.3).
Therefore by Bernstein’s inequality (see Theorem F.6) for any n € (0, 1]

P [l2esl” < 121,121 +0) [Vier, -, Vi] 21— exp (—espn?) -

Setting n = 50% and taking a union bound we infer that

P[Vse ()l e{t—1,..t}, Nzl < llze1sllV/T+ )
p
>1 - O(nL)exp (—Q (ﬁ)) . (83)
We will now show by an inductive argument for the layers that if the “good event” in (83) holds
then [|zps|| < 1+3( — 41+ 1)n, forall £ € {¢; —1,...,¢, — 1} and all s € [n]. The base case
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holds at ¢; — 1 since by definition ||z¢, _1 5| = ||2]| = 1. Now assume that the inductive argument
holds at any layers ¢y, ..., ¢ — 1. Then if the event in (83) holds we have

< fze-1sllv1+n

<(14+3(—14)n)(1+n) (by the TH and because /1 +n < 1+1n)
1
:1+3<€—£1+3>7]+3(€—€1)n2

<1+43(6—401+1)n (sincenzﬁandLZl).

||Z€,s

This completes the induction. Hence we have shown that for all

3(52 — 0+ 1)

P _ <1
s €l gl < 1+ 222

] >1—0(nL)exp (—Q (%)) . (84

Recall that zp, 1 5 := Xp,—1- - Xy, sVi, 2, therefore taking union bound over all pairs of layers we

get that, with probability at least 1 — O(nL?) exp (— (#)), forall 1 < ¢; < ¢, < L+ 1 and all
s € [n],

3(ly — L1 +1)
R P

This completes the proof of the first part of the lemma.
Proof of Part (b): For a fixed s € [n] we condition on zy,_; s and consider the random variable
as = Vi, 20,—1,5. Since o € [L] each entry of V} is drawn independently from A/ (0, %)

C .. . 2||ze, — 152
The distribution of each entry of a, conditioned on zp,_1 5 is N (0, %%”) Therefore by

the Gaussian-Lipschitz concentration inequality (see Theorem F.7) for any n > 0
P [flasll € V22t 161 +7) | 2601] = 1= exp (—eapn’?).

Setting ' = 50% and taking a union bound over all samples we get that

1 c
| (1 + 50L) !z&LS] >1—nexp <_ﬁ> . (85)

By a union bound over the events in (84) and (85) we find that

P [Vs € [n], Jlas| < V2 (1 + W) (1 + 501]:>] >1 - O(nL)exp (—Q (%)) .

P [vS € Il llasll < Vg1

The definition of a5 = Vp,2p,—1 = Vi, 2,15 - - 24, sVe, s and the previous display above yields
that

3L 1
P [VS = [n]7 Hvﬁzzﬁz—l = V£22£2_1,5 e Zél,svﬁhsn < \/5 (1 + 50L> <1 + 50L> < 2:|
p
>1—0(nL)exp (—Q (ﬁ)) :
Finally a union bound over all pairs of 1 < ¢; < ¢ < L completes the proof of the second part. W

The next lemma bounds the magnitude of the initial function values with high probability.
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n

Lemma E.11 For any § > 0, suppose that p > poly (L, log (5 )) for a large enough polynomial,
then with probability at least 1 — & over the randomness in v forall s € |n],

[fya (2s)] < ev/log(2n/9).

Proof By Lemma E.2, with probability at least 1 — §/8

lz¥) <2 (86)
for all s € [n]. Fix a sample with index s € [n]. Conditioned on azzv(sl), the random variable
VL( +)1 L(Sl) N(0, ||z L(l) |?) since each entry of VL(i)l is drawn independently from N(0, 1).

Therefore for any > 0
(1) (1)
Py (@)l < mllzfy I [2f | 21— 2exp (—en?)
A union bound over all samples implies

P[Vs el fyom) < nlaly 2] 2] 21— 2nexp (~ern?) .

Setting n = co4/log(n/d) where ¢, is a large enough absolute constant we get that

76
P [vs e [nl, fy (@s)] < cav/log(n/o)|z¥ Y 1% | V<”] >1- 2. 87)

Taking union bound over the events in (86) and (87) we find that

P[Vs el [fyms)l < cyioan/d)] =15
which completes the proof. -

Lastly we prove a lemma that bounds the norm of the initial weight matrix with high probability.

n

Lemma E.12 For any § > 0, suppose that p > poly (L, log (5 )) for a large enough polynomial,
)

then with probability at least 1 — & over the randomness in V1

VW) < \/5pL.

Proof By definition

VO =3 v

Le[L+1]

When ¢ € [L], the matrix Vg( ) has its entries drawn from A/(0 (0, ) Therefore by applying Theo-
rem F.7 we find that for any fixed ¢ € [L],

[\]

P[VV)? <p? x = x

23 =2 <o (-0,
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While when ¢ = L + 1, the p-dimensional vector VL(i)l has its entries drawn from (0, 1). Hence,
again applying Theorem F.7 we get

5 op
[V <1 = 2] <o (-00).

Taking a union bound over all L + 1 layers we find that

Plveeizs sy < 2] < @ veo o <19

where the last inequality follows since p > poly (L, log (%)) Therefore,

VO < (2 +1) x 2 <s5pr

with probability at least 1 — §. Taking square roots establishes the claim. |

E.2. Useful Properties in a Neighborhood Around the Initialization

In the next two lemmas we shall assume that the “good event” described in Lemma E.1 holds. We
shall show that when the initial weight matrices satisfy those properties, we can also extend some
of these properties to matrices in a neighborhood around the initial parameters.

Lemma E.13 Let the event in Lemma E.I hold and suppose that the conditions on h, p and T
described in that lemma hold. Let V be weights such that ||V; — Vz(l)Hop < T foralll € [L].
Forall ¢ € [L] and s € [n], let ig,s be diagonal matrices such that Higys — ZXS(U lo < k, and
(i&s)jj € [-3,3] for all j € [p]. There is an absolute constant C' such that, for all small enough
c>0ift < MOTé(p)Sﬁthen,foralllgﬁl <Vly <L,

12
715 172
[Ivi's| <cr
Jj=b op
Proof Fix an arbitrary sample index s. To ease notation let us refer to V1) as V/, EZ;D as Xy, and
i& . as ¥. Note that for any j € [L]

VIS =i 4 v (8- 5) + (- V)T (88)
—_——
——— —
=T, =:4;

Let us refer to I'; and A; as “flip matrices”. Then, if we define the set A; = {VjTZj, I, Ajl,
expanding the product into a sum of terms yields

12 12 153
TS5 = TL (VS + Ty + 85 = 3 IT 4. (89)
Jj=bt Jj=b Apy €Ay 5 Ary €A, j=01
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Each term in the sum on the RHS of (89) is a product of /5 — ¢1 4 1 matrices (A4;), some of
which are flip matrices. We will bound the operator norm of the sum by bounding the operator
norms of each of the terms, and applying the triangle inequality. To bound the operator norms of
the terms, we will decompose the terms into products of subsequences of matrices, and bound the
operator norms of the subsequences. The subsequences will have at most two flip matrices, and will
be determined by the positions of those flip matrices. One term in the sum has no flip matrices—it
will have a single subsequence that is the entire term. Some terms have exactly one flip matrix.
Those terms will be broken into two subsequences, one that ends at the flip matrix, and the other
consisting of the rest of the term. The other terms in the sum have at least two flips. Each such term
can be broken down as follows:

* one or more subsequences with at exactly two flip matrices ending in a flip matrix,
* possibly a subsequence with one flip matrix, ending with the flip matrix, and
* a (possibly empty) subsequence with no flip matrices.

In the calculations that follow the indices q1, g2 and g3 satisfy: 1 < /1 < g1 < ¢ < g3 < ¥l <
L. Let C > 1 be alarge enough positive constant such that all the upper bounds in Lemma E.1 hold
with this constant.

Subsequences with no flip matrices: First, subsequences for which which A4; = VjT >, forall j
can be bounded by Part (c) of Lemma E.1:

q2 q1
[Hvi's|| =|1[=v| <cL (90)
J=q op Jj=q op

Subsequences with one flip matrix: There will be two types of sub-sequences with just one flip
matrix. First, let us consider the following type of subsequence:

g2—1 q1 a1

Ty — T /. T /.
Tvs ) an| =an( 11 =w)| <|az], | 1T =
J=q1 op Jj=q2—1 op Jj=q2—1 op

(gi)CLHA;g

=CL Hifh(%z — Vo)

op

(i7)
< CL||Vi ~ Vi

op
(424) (2v) cC
< CrL < 720 o1
where (i) follows by again invoking Part (c) of Lemma E.1, (i) follows since by assumption the
diagonal matrix Zq2 has its entries bounded between [—3, 3], (7ii) follows since by assumption

Ve = Ve

< 7 and (iv) follows since by assumption 7 = ¢/L3.
op
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Next, let us consider the second type of subsequence with just one flip matrix:

q2—1 q2—1 _
H Vj—rzj FQ2 = H VjTZ]' V;]—lg— (Z‘IQ - qu)
J=q op J=q1 op
g2—1
= sup || TT v ) Vel (B = S ) @
aflall=1] \ j=¢,

q1
= Sup a’ (EQQ - Etp) Va H 25V

a:l|a||=1 j=ga—1

For each a let’s define b = (iqz - ZqQ) a. Since Hiqz — Y, llo < k, therefore b is k-sparse. Also

since the diagonal matrix iqz has entries in [—3, 3] and 34, has entries in [0, 1], therefore the entries
of ¥4, — X, lie in [—4, 4]. This implies that ||b|| < 4||a|| < 4. Applying Part (e) of Lemma E.1,
we have

[TVi's | Te| <clpl=4c. 92)

q2—1
J=q1

op

Subsequences with two flip matrices: Now we continue to subsequences with two flip matrices.
There shall be four types of such subsequences. We begin by consider subsequences of the type

g2—1 g3—1
H VjTEj Aq2 H VjTZj A%
J=q J=q2+1 op
el Gl (i) @) ¢
< I vi'si ) A, II vi'si | Al < (crL)? < 75 C7L, (93)
J=qi+1 op Il \7=a2+1 op
where (i) follows by (91) and (ii) follows since 7 < ¢/L3.
Next, we bound the operator norm of a subsequence of the type
g2—1 q3—1
H VT Agy H VjTEj Ly
J=q J=q2+1 op
g2—1 g3—1
< H V}sz AQ2 H VT i) Ty
J=q1 op Jj=q2+1 op
(4)
<4C-C7L
= 4C*7L, (94)

where (i) follows by invoking inequalities (91) and (92).
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We continue to bound the operator norm of subsequences

g2—1 gz—1 g2—1 gz—1
H VjTZj Ly, H VJ‘TEJ' Ags < H V]‘sz Ly, H VjTEj Ags
J=q1 J=q2+1 op J=q op Il \I=42 op
@
<4C*TL 95)

where (i) follows again invoking inequalities (91) and (92).
Finally we bound the operator norm of subsequences of the type

g2—1 gz—1
[Mvi's ) e | 1] V'E ) Ta
J=q J=q2+1 op
q2—1 _ qs—1 _
< H Vszj qu <2q2 - qu) H VjTEj qu (qu - qua)
J=q op J=q2+1 op
@) T (% s T T(S
<cr sw |V (S -%) | T v | Vi (S =S @
allall=1 a1
—cr s sup PV (S - 2) | TT V7S | Vi (S — B @
a:lal|=1 b: }bl|=1 Pt
» g2+1 _
=CL suwp swp o' (S =T ) Ves | T =3V | (S = Taa) Vaab
a:lla||=1 b:||b]|=1 j—gz—1
_ g2+1 _ Vb
=CL s sw | (S =T ) Vio | [T =V | (B = Zan) 250 1Vabl
a:llall=1b:[l| =1 Pl V. bl
(i1 klo klo (i) klo
< 4C2Ly |28 qup Vbl = 4C2Ly 2222 Vil < ACPL [ 222 (96)
P obp)=1 p p

where (i) follows by invoking Part (c) of Lemma E.1. Inequality (i:) follows since the vectors
a’ (in — X4, ) and fql — qu) ngilz\\ are k-sparse and both have norm less than or equal to 4,
1

thus we can apply Part (f) of Lemma E.1, and (7i7) follows by applying Part (b) of Lemma E.1.

As stated above we can decompose each product in (89) that has at least two flips into subse-
quences that end in a flip and have exactly two flips, and subsequences that have at most one flip.
The subsequences that have at most one flip have operator norm at most 4C'L (by inequalities (90)-
92)).

The above logic (93)-(95) implies that subsequences with exactly two flips that have at least one

A flip have operator norm at most 4C*7L < 4C3 ]‘“‘;#L (since 7 < kl;# by assumption

and C' > 1). Subsequences with two I" flips have operator norm at most 4C3 kl‘;#L. Define
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= 4C3 kl‘;#L. So, if a sequence has 7 flip matrices then its operator norm is bounded by

IR Tl

So, putting it together, by recalling the decomposition in (89) we have

lo o {2

[vs| = 2 II 4

jzél op Af.l €A£17---7A£2 EAZQ ]:Zl op
(i) -
< (1+2L) x 4CL + > IT 4

Ag €Ay, . Agy €A, > 2 flips [[7=01 op
(ii) Lo/p
< 12007+ ) ( >27‘ S ACLylr/2)
T

r=2

L
L
< 12CL2 L 4op)Lr/2]
< 120L* +8C Z(r>(¢)

r=2

<1200 +8CL| Y <<f) + ( k >) (V&)

| 7€{2,...,L},r even

— 1201 + 8CL 3 L) <1 + (“£1)> (V4"

| 7€{2,...,L},r even

< 12CL* +16CL? > <f> (\/4)"

re{2,...,L},r even

L
<12CL* +16CL* ) (L)(\/@)’"
r=0

r

(iid)

< 120L% +16C L2 (1 + \/4¢)L

. 1/4\ L
® 19012 + 16012 (1 4032 <’“°g(p)) )
D

) N LN AN
< 120L% +16CL |1+ — < 30CL>

where (i) follows since the number of terms with at most one flip matrix is (1 + 2L) and the
operator norm of each such term is upper bounded by 4C'L by inequalities (90)-(92). Inequality (i7)
is because the number of terms with r flip matrices is (f) 2", (4i1) is by the Binomial theorem, (iv)

is by our definition of v. Inequality (v) follows since by assumption MOT‘%@) < 13, and (vi)
follows since ¢ is small enough and because there exists positive constants ¢; and c2(c1) such that,
forany 0 <z < 3, (1 + 2) < 1+ coLz. This completes our proof. [ ]
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The following lemma bounds the difference between post-activation features at the ¢th layer
when the weight matrix is perturbed from its initial value.

Lemma E.14 Let the event in Lemma E.I hold and suppose that the conditions on h, p and T

described in that lemma hold with the additional assumptions that T < ﬁg(), where ¢ is
0g2(p

a small enough constant, and h < %. Let VY be the initial weights and V, V be such that

Ve = VO ops 1Ve = VDo < 7 for all £ € [L]. Then

L |[2F, = 3o < O(pLP*/?);

2. Jlafl, o}l < O(L7);
forall ¢ € [L] and all s € [n].

. . . 1 Ve ¥ 1 Ve ¥
Proof Fix the sample s In this proof, we will refer to ZZS( ),EZS, EXS, st( ),xXS and JZXS as Xy,

i)g, S, T, Ty and &y respectively. N

Before the first layer (at layer 0) define %y = X9 = ¥ = [ and recall that by definition for any
sample s € [n], x&;” =y, =z), = Ts.

For constants ¢y, ¢z to be determined later, we will prove using induction that, for all ¢ € [L],

L IS¢ = Zello, 1Ze = ello < e1pL27?/3,

2. Hie — ig”() < 261pL27'2/3, and

3. llwe = Zell, llwe — e, 1Be — 2ol < 2L

The base case, where £ = 0, is trivially true since o = Z¢o = T and ¥y = io = f]o.
Now let us assume that the inductive hypothesis holds for all layers » = 1,...,¢ — 1. We shall
prove that the inductive hypothesis holds at layer ¢ in two steps.

Step 1: By the triangle inequality
1= = Zello < 11Ze = Zello + 12 = Zello- o7

Note that showing that |2y — 3|0 and || S, — 3|0 are at most ¢;pL272/3 also proves the claim
that ||Sy — 3¢|jo < 2¢1pL272/3,

We begin by bounding ||$; — ¢/lo. Recall that by definition the diagonal matrix () jj =
(¢'(Voxg—1));. So to bound the difference between X, — 3, we characterize the difference between

Vw1 — Vi, = (Ve — ‘72)56@4 + ‘7@(9%71 — Zy_1).

We know that, by assumption, ||V, — Villop < 7, and that ||z,—;|| < 2 by Part (a) of Lemma E.1,
and ||Zy_1 — x¢_1|| < coL37 by the inductive hypothesis. Therefore,

IVee—1 — Vo1l < [|(Ve = Vo)aoa || + |Ve@o—1 — o—1) ||
<V = Villopllze—1ll + I Vellopl|Ze—1 — zo—1]|
< 27 4 o L37 || Vil op

<27+ CngT (HT/Z - Vﬁ”op + ||V€HOP>

(4) (i1)
<2+ elir(t+e) < 7T (CQC4L3 + 2) )
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where (7) follows since ||V;||op < c3 by Part (b) of Lemma E.1 and (i7) follows since 7 is smaller
than a constant by assumption.
2

Let 5 = 056}; 2 > 92h > 0. The reason for this particular choice of the value of 3 shall become

clear shortly, and h < §/2 since h < % by assumption. Define the set
Se(B) :==A{j € lpl : [Vejze—| < B}

where V} ; refers to the jth row of V. Also define

sV(8) = | € SuB) : (Bo)ys # S0y} and
s2(8) = |15 € Si(8) : (B0)ys # Coiah|
Clearly we must have that
1Ze = Zello = 5,7 (8) + 5,7 (8).

To bound sél)(ﬂ) we note that sél)(ﬂ) < |Su(B)| < c6p®?B by Part (h) of Lemma E.1. We focus

on sf) (B). Fora j € Sj(3) by the definition of the Huberized ReLU if (¥,);; # (ig)jj then we
must have that

‘%4@—1 — Vé,sz—l} >B—h.

This further implies that
~ 2 ~
(B - h)QSEQ) (B) < Z ’Ve,jfeq — VZ,]méfl‘ < |Vewp—1 — VT |
FESE(B):(0)557(Z0) 5

<72 (0264L3 + 2)2 .

Therefore, we find that

IS0 = Sello = s (8) + 582(8)
T2 (CQC4L3 + 2)2

S Goap t
3 \2

if co > 1/cy, since h < (/2. Balancing both of these terms on the RHS leads to the choice

8= %. This choice of 8 shows that

120 — Sello < 2¢6p>%B = 2¢6e5pL> 723 = c1pL?72/3.
Similarly we can also show that |2, — 3|jo < e1pL?7%/3. These two bounds along with (97)

proves the first part of the inductive hypothesis. This combined with inequality (97) also proves the
second part of the inductive hypothesis.
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Step 2:  Now, for the third part we want to show that ||z, s — Z¢ 5| remains bounded. We can also
show that ||z, s — Z¢ || and ||z s — Ty, s|| remain bounded by mirroring the logic that follows. Define
a diagonal matrix Xy, whose diagonal entries are

(E0)jj = (B¢ — Bo)j5

VijTo—1

VijZe—1 — VijTe

] : forall, j € [p].

In the definition above we use the convention that 0/0 = 0. We will show that for any j € [p]

<1

(30— 20)j

(Z0)j5] =

~

VijTo—1
Vijte—1 — Vo T

Firstly observe that the matrices ¥ ¢ and by ¢ have entries between [0, 1], therefore f)g — >y has entries
between —1 and 1. Also recall that by the definition of the Huberized ReLU,

1 if Vo jdg_1 > h,
(Be)j5 =  Lealt=t £ V5804 € [0, 1),
0 if Vg jdg1 < 0.

Now we will analyze a few cases and show that the absolute values of the entries of X, are
smaller than 1 in each case.
If the signs of V; jz4_1 and V} ;2,_; are opposite then we must have that

(é') Ve jZe—1]

+ | VegFeoa|

ST VijTe—1 Vi, jTe—1
(Xe —X0)ji=— =— =
Vijte—1 — VijTe

Vijtoo1 — ViZoo1|  [Vigde
where (i) follows since |(£y — ) jjl < 1. If they have the same sign and are both negative then
(X¢ — X¢);j; = 0 in this case. The same is true when they are both positive and are bigger than h.
Therefore, we are only left with the case when both are positive and one of them is smaller than h.
If V; jZo—1 > hand V; ;&1 € [0, h] we have that

~ Ve j&e—1 o~ vV, 4
. ~ Vi i%o_1 (7h — 1) Vo jTe—1 YeiTe-1 4
(3 — X0)jj J = = |2 <1
¢ £)iie = . =~ T oa <
ViejTe—1 — Voo VijZo—1— VT i1 g
Vi, jTe—1

where the last inequality follows since ‘72,]'5@71 > h. And finally in the case where Vg,j:i'g,l > h
and V; ;74— € [0, h] we have that

ViiFo1 (h — Ve,jfb‘e—l) Voo

(Xe — Ze)jj=— =
Ve jTe—1 — Vo Te—1

(- VijTe—1 VijTe—1
h Vijte—1 — Vi T

To show that this term of the RHS above is smaller than 1 it is sufficient to show that

h (W,j@z—l - %,j@—l)

(h — ‘72,]'54—1)‘74,3'@—1 < h(Vyjdoq — ‘72,3'5@—1),
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in our case where 0 < ‘72,]'97@4 < h< %Jig,l. Consider the change of variables a = %,j@,l
and b =V ;y_1, then it suffices to show that

(h —a)a < h(b—a) < 0 < a* — 2ah + hb.

The derivative of a® — 2ah + hb with respect to a is 2(a — h), which is non-positive when a < h.

Therefore the minimum of the quadratic when @ € [0,h] is at @ = h and the minimum value is

h? — 2h% + hb = hb — h? = h(b — h) > 0. This proves that |(2);;| < 1 in this final case as well.
With this established we note that

er =20 — T = ¢(Vido_1) — d(ViZiy—1)
= S Vido 1 — SeVidig1 + d(Vede1) — SeViedg_1 — d(ViTie—1) + ZeVidig1

=X

= (ie + 2[) (Vzi’e—l - %@—1) + xe
(ie + 2@) Vi (#0-1 — Fo_1) + (22 + 2@) (‘74 — Ve) T+ Xxe
—_—
%/_/ —.
=:A, Tt =:by

= Ageg,1 + bg (98)

—~
=

where (i) follows because by the definition of the matrix 3, for each coordinate j we have

(ie + ie)jj (W,jfé—l - ‘74,3'5@—1> = <ie)jj (Wj@—l - %,ﬁea) + (iz)jj (Ve,jie—l — %,j@—l)
= (ie>jj (Wj@z-l - ‘7&;@—1) + (2 — ie)jj%,ﬁe—1
= (80); Ve — (3053 VeiTe1-

In equation (98) above we have expressed the difference between the post-activation features at

layer £ in terms of the difference at layer ¢/ — 1 plus some error terms. Repeating this £ — 1 more
times yields

1 f—1 | r+1
ep = Ageg—1 + by = Ag(Ap_1€0—2 +bp—1) + by = HAje() + Z H Aj b | + be.
=t r=1 | j=¢

Since ey = ||Zg — To|| = 0, by re-substituting the values of A, and b, we find that

{—1 | r+1
wo—7e =3 |TT (55 +55) Vi | G+ S0 = V) + (Se+50) (Vo= W) T
r=1 | j=¢
-1 | r+1 . 3 .
Y T + )V | X + xes (99)
r=1 | j=¢
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and therefore by the triangle inequality

|2 — ||
l— r+1 . . . _ ) _ .
2 TL (55 +5) | B0+ S0 = e | + || (Se 4+ 2e) (V2 - V) Fe |
r=1 | j=¢
{—1 | r+1 .
+ID 0TI + 20V | x| + lxell
r=1 | j=¢
-1 [|r+1 . _ .
33 H(z +5) 0[5+ 5 | NFeall ([Se+ S| || - Ve geal
op op op op
- o
-1 ||r+1 .
+ Y ITTE +S)vil el + lixell-
r=1 ||j=¢

op

Recall that the diagonal matrices (¢ — 33— ) are 3¢, pL272/3 sparse by the inductive hypothesis.
Also the matrices (Eg — Y¢ — Xy) have entries in [—3, 3]. Therefore by applying Lemma E.13 (note

that since 7 < r() therefore Lemma E.13 applies at this level of sparsity) we find that for a
0g2(p
constant cg (that does not depend on c;), we have

¢ ¢
> Ve = Vellopll@ra || + Z”Xr”]

||i‘g — fg” < 08L2

r=1 r=1
O ol & sy e
< esL? | S0V = Villopl@oa | + h/p
r=1
€ ~ ~
<esL? 1D IVi = Vellop (1Zr-1 = @ra |l + [l ]) +€h\/f?]
r=1
(i) 9
< gL ZHV Villop (1 L7 +2) + thy/p
r=1
(@2) 2 oo 3 3
< ¢yl ZHVT—VTHOP—i—LT < 2c9L°T = coL°T,
r=1

where inequality (i) follows since by definition of the Huberized ReLU for any z € R we have that
d(z) < ¢'(2)z < ¢(z) + h/2, therefore

oy -~ h
X lloo = [[6(Viwems) = SeViwes = $(Viie-1) + EeVien|_<2-5=h (100

which implies that || x| < h,/p. Next (ii) follows by bound on ||z, _; — x,_1|| due to the inductive
hypothesis and because ||z,—1]|2 < 2 by Part (a) of Lemma E.1. Finally (i77) follows by assumption
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7 <O(/L% and h < ﬁ. This establishes a bound on ||Z; — Zy||. We can also mirror the logic to
bound ||xy — Z¢|| and ||z — Z¢||. This completes the induction and the proof of the lemma. [ |

Lemma E.15 Let the event in Lemma E.1 hold and suppose that the conditions on h, p and T
described in that lemma hold with the additional assumptions that, for a sufficient small constant

c>07< —%5— and h < Let V) be the initial weight matrix and V, V be weight
11210g (p)’ v

matrices such that ||Vy — Vg ) Hop, IV, — Vg HOp < 7forall £ € [L). Also let 5y be O(pL>7%/3)-
sparse diagonal matrices with entries in [—1,1] for all ¢ € [L] and s € [n]. Then

<0 ( plog(p)L471/3) :

J4 ~ _ . l .
Vi TT (S0 # 50) ¥ = Vi [T =000
r=L r=L

op
foralll € [L] and all s € [n].
Proof We want to bound the operator norm of
N ¢ B N ¢
Vi TT (B4 S0s) ¥ = Vi H =V
r=L
¢ T 1) 1)
= = 1) 1)
= Vin [T (35 + S0e) Ve = Vi H =V v v, H VIV Vg H AT
= r=L
=:X1 =X2

(101)

We shall instead bound the operator norm of x; and x». Let us proceed to bound the operator norm

of x1 (the bound on 2 will hold using exactly the same logic). Now to ease notation let us fix a

sample index s € [n] and drop it from all subscripts. Also to simplify notation let us refer to E}ZS as
ir, EZS as f]r, E_JT,S as ¥, and EX;U as X. We shall also refer to V(D ag simply V.

By assumption the diagonal matrix £, is O(pL*T 2/3)-sparse with entries in [— 1,1]. Also the

matrix 3, — %, is O(pL272/3)-sparse by Lemma E.14. Therefore the matrix 3, := 3, + 5, — .
is also O (pL?72/3)-sparse and has entries in [—2, 2]. Thus,

¢ ¢
X1 = Vi H (ir + iT«) Vi — Vi H X Ve
r=L r=L
¢ ¢
= Vi1 H (S + ) Ve = Vi H % Ve
r=L r=L
¢
= (Vig1 — Vig) H (= +3)V,

r=L
=:M
4 _ 4
+ Vi <H (= +3) Ve - [1 &w) : (102)
r=L r=L

=:&
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The operator norm of # is easy to bound by invoking Lemma E.13

14

ITE+2)v

r=L

[#¥]lop < Vi1 — Vitillop < O(rL?). (103)

op

To bound the operator norm of & we will decompose the difference of the products of matrices
terms into a sum. Each term in this sum corresponds to either a flip from V,. to V,. or from X, to
>r + 2. That is,

{4 {4
&= (VLH [[=Vi—ve ] (5 + %) %)
r=L r=L

=Wiq =iW2,q

l q+1 ¢
= - Z VL+1 (H (ZTV;‘)> (iq) ‘7q H (Er + i:'r) ‘7;'
q=L

r=L

=iW3,q =W4,q

0 qg+1 J4
S Vi <H (zm)) S (Vq - 17(1) 1 & +2)7 (104)
q=L

r=L r=q—1

=¥,

where in the previous equality above, the indices in the products “count down”, so that cases in
which ¢ = L include “empty products”, and we adopt the convention that, in such cases,

Wi,q = W3 q = I,
and when g = /¢

woq = waq = 1.
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We begin by bounding the operator norm of 4, (for a ¢ that is not £ or L, the exact same bound
follows in these boundary cases):

q—1 l
H’q”t)p: VL-‘rl H (ZTV:I‘) (Zq) Vq H (Er"i_zr,s)vtr
r=L r=q+1
op
0 q—1 ¢ B
= Ve [T &V 2850V [ (S 430 V2
r=L r=q+1
op
qg—1 _ l ~
< \Ver [T GV SV 18gllep |29Ve T (20 +20) Vi
r=L op r=qg+1 op
(i4) a1 ¢ L
< 2|V [ v 0 (29 I (& +50) Ve
r=L op r=q+1 op
(iid) _ 4 L~
< 0( pL272/310g(p)) )22/1 Vi [ &+
op r=q+1 op
(iv)
< 0( pL2r2/3 log(p)> x O(L?) :0( plog(p)L3T1/3> (105)

where in () we define 22/1 to be a diagonal matrix with (22/1)jj =1 [(iq,S)jJ’ # 0}. Note that

since ¥, is O(pL272/3) sparse, therefore ©/! is also O(pL?72/3) sparse. Inequality (i) follows
since the entries of 3, s lie between [—2,2], (ii7) follows by applying Part (g) of Lemma E.1.
Finally, (iv) by applying Lemma E.13 since the matrix ¥, is O(pL?7%/3)-sparse and has entries in
[—2,2].

To control the operator norm of ¥, (again for a ¢ # ¢ or L, the exact same bound follows in
these boundary cases):

q—1 ¢
1®gllop = [[Ver [T (5V2) % (Vq - Vq> II &+
r=L r=q+1
op
q—1 _ Vi o
<Ven [T V| 18l ||[Va-Ve| || TT S+
r=L op ? |r=a+1 op
q—1 L B
<27 ||V [ (5:V2) I E+2)W,
r=L op r=q+1
op
(i) 5 ! (i) ;
<O(L?) Vo [ (V0| < O(/prL?)
r=L op

where (i) follows by applying Lemma E.13 and (i7) follows by Part (¢) of Lemma E.1.
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With these bounds on 4, and ¥, along with the decomposition in (104) we find that

ol < 2. (0 (VEIRIL ) 4 0y 1) < O (gL' 7).

Thus by using this bound on ||&||,, along with (102) and (103) we get that

Ixtllop < O(TL?) + O (ML471/3> _0 (Wﬁ#/i”) ‘

As mentioned above we can also bound || x2||,p using the exact same logic to get that

HXQHop <0 ( plog(p)L4T1/3> .

Thus, the decomposition in (101) along with an application of the triangle inequality proves the
claim of the lemma. |

E.3. The Proof

With these various lemmas in place we are now finally ready to prove Lemma D.7

log? (2L
Lemma D.7 For any § > 0, suppose that T = €} <Og3(5)> and, for a sufficiently small positive

p2L

constant ¢, we have 1 < —<5— h < and p = poly (L log ( )) for some sufficiently large
L2 10g2 ) \f

polynomial. Then, with probability at least 1 — § over the random initialization VY, we have

(a) 5app(v(l)vT) < O( plOg(p)L5T4/3), and
() T(VW, 1) < O(/pL?).

. o 10g (nT) T 1
Proof Note that since 7 = 2 <m and 7 < m h < 7 < 5050 and because p >

poly (L, log (%)) for a large enough polynomial all the conditions required to invoke Lemma E.1
are satisfied. Let us assume that the event in Lemma E.1 which occurs with probability at least 1 — 9
holds in the rest of this proof.

Proof of Part (a): Recall the definition of the approximation error

capp(V, ) i= sup  sup | fyla) = Sl = Vip(a) - (V- V) ‘ .
s€[n] V. veB(v(),r)

FixaV,V € B(V(),7) and a sample s € [n]. To ease notation denote EXS by 3, 2}78 by 3, xZS
by Iy, xXS by 7, and :EXS) by z,s. We know that f5(z5) = ‘7L+1§L and fo (xs) = VLH?UL. Also
since VVLHfV(xS) = %7, we have
fo(as) = fi(ws) = Viplws) - (V= V)
L

= Vindr — Vi@ — (Vog = Vin) 30— Y Vi fp(s) - (Vi = Vo)
=1

=Vi1(d — 71) ZV S (2s) ~ V). (106)
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By equation (99) from the proof of Lemma E.14 above we can decompose the difference as
follows,

L—1 | /+1
ar—dr =3 |TT(S5+%5) V5| (Set S (Ve — Vo)
(=1 |j=L
A . _ L—1 | /{41 . )
+ (Sr2n) (Ve - Vi) @+ 30 | TIC + 50V [ xe+xu, (107)
(=1 | j=L

where the diagonal matrix 3. 5 is O(pL*7%/3)-sparse and has entries in [—1, 1], and the p-dimensional
vectors y, have infinity norm at most h (see inequality (100)). Now when ¢ € [L], the for-
mula for the gradient given in (2a), using this formula and because given two matrices A and B,
A-B =Tr(ATB) we get

Vi, fo(@s) - (Vg - ‘74) =Tr :Vf/zfr/(%)T (Ve - %)}

- T
=Tr % ﬁ ‘7;5]' ‘7LT+152—1 <V€ - ‘76)
j=l+1

041
=Tr [T¢1 Vi1 H XVi | X (Vf - Vf)
=L

l+1
=V | 1 zj,svj) Ve (Ve = V2) T (108)
j=L
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Using (106)-(108), and noting that, here HfilL Ajdenotes Ap Ar,_1 ... Ayqq,ie. theindices “count
down”, we find

) = filas) = Vig(as) - (V= V)

f (-Ts
() L A /+1 A _ . _
2 Ve | TT (%5 +%5) V3| (B 20V — V)
=1 j=L
_ l+1 o » _ L /+1
Ve | [IEV | = (Ve - Ve) Fo1 |+ Vin (X5 +25)Vi| xe
j=L —1 J=L
e 041 1 041 _ _
= Z Vi1 (E +3 ) Vil (Se+%0) = Vit H Vil Ze | (Vo= V)@
=1 j=L | j=L
L 41 i
+) Vi (35 +25)Vj | xe
=1 j=L |
L . /+1 R . " /+1 o . _
= Z Vit (E] + 23') Vil = Vs H Vil | 2e(Ve = Vi)Ze—
=1 j=L j
vy
L [ 0+1 B N
+ Z Vi1 (Ej + Ej) Vj (Zz + X — Eé) (Ve = Vo)Tg—
(=1 j=L
=:dy
041
> Vo | TTC + )V | xe (109)
_ j=L

where in (i), we adopt the convention that when ¢ = L, the “empty products” HZJrl (i + 3, ) V
and HZH i Vj are interpreted as I. Let us bound the norm of # in the case where ¢ # L (the
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bound in the boundary case when ¢ = L follows by exactly the same logic):

el =

<

Vi1

{41

H(Z +E)

j=L

I+1

— Vi

1157

+
Vin |11 <Ej + 23‘) Vil =Ver [ [T =3V
j=L

=L

(i) - N
< O(/plog@)L*7%) S| 11V — Vil

(i) N
< O(v/plog(p) LAm*3) (| Te—1 — w1 || + [lze—1]])

(i)

< O(v/plog(p)L*m*/?) (2 + O(L?7))

So(Ve = Vi) Zea

Hie(vz —Vi)&1

op

< O(v/plog(p) Lir/3)

(110)

where (7) follows by invoking Lemma E.15, (i7) is because the entries of 5 lie between 0 and 1
WH < 27 since both V and V are in BV
|Z¢—1 — 2¢_1]| < O(L37) by Lemma E.14 and |lz,_1|| < 2 by Part (a) of Lemma E.1.

Moving on to &, (again consider the case where ¢ = L, the bound in the boundary case when
¢ = L follows by exactly the same logic),

and because ||V, —

([l =

IN

—~

i)
<

where (7) follows by invoking Lemma E.13, since the diagonal matrix S+ 3 —

Vi1

Vi1

O(y/pL?) x 7 x (24 O(L*r))

[ 641

=L

11 (i)j -+ $j> Vj
j=L

(iz —+ 24 S
Hie + 3 — iz
op

= O(y/prL?)

EK) (Vo — Vi) Zos

T
op

[Ze-1]]

, 7). Inequality (7i7) is because

(111)

Eg have entries

between —3 and 3 and by bounding ||Zy_1|| as we did above. Finally, we bound the norm of ¥,
(again in the case where £ # L, the bound when ¢ = L follows by exactly the same logic)

19l =

IN

l+1

l+1

Vi H

(i7)
< O(WPL?)Ixell < O(PL)Vpllxelloo <

VL+1H (%5 + %)

| lxell

OB Vih & O(/rT?)

(112)

where () is by invoking Lemma E.13, (i7) is due to a bound on the ||x/||coc < h derived in inequal-

ity 100 and (i7¢) is by the assumption that h <

%.
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along with the decomposition in (109) reveals that for any s € [n], V,V € B(V(V, 7):

fo(@s) = fi(ws) = Vfplws) - (V= V)| < L (O(/plog) L7 + O(ypr L))

< O(\/plog(p)L°7*/?).

This completes the proof of the first part.

Proof of Part (b): Recall the definition of T'(V(1), )

F(V(l),T) = sup sup sup ||VngV(xs)”'
s€[n] Le[L+1] VeB(V (D) 1)

Fix a sample s € [n]. First let us bound the Frobenius norm of the gradient when ¢ € [L]. By the
formula in (2a) we have

L

IVviv )l = || [ 55 TT (=) | Vitaetl,
j=0+1

L

4 TyV T VT
<|=h I1 (vish) | via| el
j=t+1

op

L
<=l 1| IT Vir=ie)| IVisallleensl
Jj=t+1

op
L
< IT ViS5l IVenlllze-ssll  (since Y Jlop < 1)
Jj=t+1 op
L (1) (1)
1 1
<| T v=te| (Al +vi = vieal) (lellial + oty — 2550
j=t+1 op
@) L TV 3
< II v’V O(p) +7) (2+0Lr))
j=t+1 op
(i) L S (i3) )
<ot || [T v'=l < o(vpr?) (113)

j=t+1 op
where (i) follows since HV]E}F)IH < O(4/p) by Part (b) of Lemma E.1I, ||VL(£F)1 — Vil < 7,
||x}/_(11)8\| < 2 by Part (a) of Lemma E.1 and Hx}/_LS - x}/_(?sﬂ < O(L37) by Lemma E.14. Next
(i) follows since 7 = O(1/L?). Finally, (iii) follows since the matrix ¥}’ — EXS(U is O(pL72/3)
sparse by Lemma E.14, therefore we can apply Lemma E.13 to bound the operator norm of the

13> , that Lemma applies that this level of sparsity).

product of the matrices (since 7 = O
L'?log2 (p)
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If ¢ = L + 1, then the gradient at V' is xg,s, therefore

sup  sup [V, fo(zs)ll = sup  sup o]l
s€n] veB(VW 1) s€n] veB(VW,r)

\74¢0) \74¢Y) %
<sup sup  ([lal) )+ [laY — oY)
s€n] veB(VD) 1)

<sup sup (2+O0(L%r) <O(1),
s€n] veB(VD 7)
where above we used the fact that ||:c¥<51 : || < 2 by Part (a) of Lemma E.1 and ||:1:Z<51) - xg Sl <

O(L37) by Lemma E.14 along with the fact that 7 < O(1/L?). Combining the conclusions in the
two cases when ¢ € [L] and ¢ € [L + 1] establishes our second claim. [

Now that we have proved Lemma D.7, the reader can next jump to Appendix D.2.

Appendix F. Probabilistic Tools

For an excellent reference of sub-Gaussian and sub-exponential concentration inequalities we refer
the reader to Vershynin (2018). We begin by defining sub-Gaussian and sub-exponential random
variables.

Definition F.1 A random variable 0 is sub-Gaussian if
10|, := inf {t > 0 : E[exp(6?/*)] < 2}
is bounded. Further, ||0]|y, is defined to be its sub-Gaussian norm.
Definition F.2 A random variable 0 is said to be sub-exponential if
1601, :=1inf {t > 0 : E[exp(]0]|/t) < 2]}
is bounded. Further, ||0||,, is defined to be its sub-exponential norm.

Next we state a few well-known facts about sub-Gaussian random variables.
Lemma F.3 (Vershynin, 2018, Lemma 2.7.6) If a random variable 0 is sub-Gaussian then 0 is
sub-exponential with ||0?|,, = HQH?Z}2

Lemma F.4 (Vershynin, 2018, Theorem 5.2.2) If a random variable  ~ N (0,1) and g is a 1-
Lipschitz function then ||g(0) — E[g(0)]||y, < ¢ for some absolute positive constant c.

Let us state Hoeffding’s inequality (see, e.g., Vershynin, 2018, Theorem 2.6.2), a concentration
inequality for a sum of independent sub-Gaussian random variables.

Theorem F.5 For independent mean-zero sub-Gaussian random variables 01, . . ., 0,,, for every

n > 0, we have
P ‘ 0if 2n| <2exp | ~=m 79 |

where c is a positive absolute constant.

100



DEEP INTERPOLATION

We shall also use Bernstein’s inequality (see, e.g., Vershynin, 2018, Theorem 2.8.1) a concentration
inequality for a sum of independent sub-exponential random variables.

Theorem F.6 For independent mean-zero sub-exponential random variables 0+, . . . , 0., for every

n > 0, we have
n? U
>n| <2exp | —cmin , 7
Do 10:l7, T max; (|0,

P[‘i@i

where c is a positive absolute constant.

Next is the Gaussian-Lipschitz contraction inequality applied to control the squared norm of a
Gaussian random vector (see, e.g., Wainwright, 2019, Example 2.28).

Theorem E.7 Let 01,...,0,, be drawn i.i.d. from N'(0, 0?) then, for every n > 0, we have

P [Z 62 > o*m(1 +n)?| <exp (fcmn2) )

=1

where c is a positive absolute constant.
Let us continue by defining an e-net with respect to the Euclidean distance.

Definition F.8 Letr S C RP. A subset K is called an e-net of S if every point in S is within a
distance ¢ (in Euclidean distance) of some point in K.

The following lemma bounds the size of a 1/4-net of unit vectors in RP.
Lemma F.9 Let S be the set of all unit vectors in RP. Then there exists a 1/4-net of S of size 9P.

Proof Follows immediately by invoking (Vershynin, 2018, Corollary 4.2.13) with e = 1/4. |

Here is a bound on the size of a 1/4-net of k-sparse unit vectors, along with a somewhat stronger
property of the net.

Lemma F.10 Let S be the set of all k-sparse unit vectors in RP. Then there exists a 1 /4-net N of S
of size (§})9¥, and a mapping  from S to N such that, for all s € S, in addition to ||s—((s)|| < 1/4,
we have ||s — ((s)]lo < k.

Proof We construct a 1/4-net as follows. The number of distinct k-sparse subsets of [p| are (7,;)

Over each of these distinct subsets build a 1/4-net of unit vectors of size 9%, this is guaranteed by
the preceding lemma. Thus by building a 1/4-net for each of these subset and taking union of these
nets we have built a 1/4-net of k-sparse unit vectors of size (Z) 9% as claimed. |
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