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Abstract
We consider the problem of black-box control: the task of controlling an unknown linear time-
invariant dynamical system from a single trajectory without a stabilizing controller. Under the
assumption that the system is controllable, we give the first efficient algorithm that attains sublinear
regret under the setting of online nonstochastic control. This resolves an open problem since the
work of Abbasi-Yadkori and Szepesvári (2011) on the stochastic black-box LQR problem, and in
a more general setting that allows for adversarial perturbations and adversarially chosen changing
convex loss functions.

We give finite-time regret bounds for our algorithm on the order of 2poly(d) + Õ(poly(d)T 2/3)
for general nonstochastic control, and 2poly(d) + Õ(poly(d)

√
T ) for black-box LQR. To com-

plete the picture, we investigate the complexity of the online black-box control problem and give a
matching regret lower bound of 2Ω(d), showing that the exponential cost is inevitable. This lower
bound holds even in the noiseless setting, and applies to any, randomized or deterministic, black-
box control method.

1. Introduction

A major goal in the field of adaptive control and reinforcement learning is to produce a truly in-
dependent learning agent. Such an agent can start in an unknown environment, and follow one
continuous chain of experiences until it learns to perform as well as the optimal policy.

We consider this problem for the fundamental setting of controlling an unknown, linear time-
invariant (LTI) dynamical system. This problem has received significant attention in the recent ML
literature; however, nearly all existing methods assume some knowledge about the environment,
usually in the form of a stabilizing controller. 1 Such assumptions can be restrictive because stabi-
lizing controllers depend heavily on the unknown system parameters. On the other hand, without a
stabilizing controller, technical challenges arise when the control algorithm needs to stabilize and
optimally control a potentially unstable system. Prior to this work, the only exception is the seminal
paper of Abbasi-Yadkori and Szepesvári (2011), which gives near-optimal regret bounds for certain
variants of this problem using an exponential-time algorithm. 2

In this work, we present a polynomial-time control algorithm that only has black-box access to
an LTI system, under which the algorithm has no access to a stabilizing controller. The algorithm

1. Roughly speaking, a stabilizing controller is a policy that ensures the system will not explode, i.e. that the states stay
bounded, under bounded perturbations. We formally define this concept in later sections.

2. Identification and stabilization of unstable systems have been studied in Faradonbeh et al. (2019) and Sarkar and
Rakhlin (2019) in the stochastic setting, but the guarantees are not stated in terms of control cost. See related works
section for a discussion.
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Algorithm Regret Bound Efficient Disturbances Cost Functions
(Abbasi-Yadkori and Szepesvári, 2011) 2Õ(d)

√
T No Stochastic Quadratic

Algorithm 1 2poly(d) +
√
T Yes Adversarial Quadratic

Algorithm 1 2poly(d) + T 2/3 Yes Adversarial General convex

Table 1: Summary of settings and results

is guaranteed to attain sublinear regret, converging on average to the performance of the best con-
troller in hindsight among a set of reference controllers. Furthermore, the guarantees hold under the
nonstochastic control setting, where both the perturbations and cost functions can be adversarially
chosen. The question of controlling unknown systems under adversarial noise was posed in (Tu,
2019); our results quantify the difficulty of this task and provide a polynomial time solution. As
far as we know, these results are the first finite-time sublinear regret bounds known for black-box,
single-trajectory control in the nonstochastic setting. Table 1 provides a summary of results, and for
clarity we omit polynomial dependence on system parameters and logarithmic dependence on T in
the regret bound.

Our regret bounds are accompanied by a novel lower bound on the cost of black-box control.
We show that this cost is inherently exponential in the natural parameters of the problem for any,
deterministic or randomized, control method. As far as we know, this is the first finite-time lower
bound for the online control problem that is exponential in the system dimension.

1.1. Statement of results

Consider an LTI dynamical system with black-box access. The controller can only interact with the
system by sequentially observing states xt and applying controls ut. The state evolves according to
the dynamics equation

xt+1 = Axt +But + wt,

where xt ∈ Rdx , ut ∈ Rdu . The system dynamics A,B are unknown to the controller, and the
disturbance wt can be adversarially chosen at the start of each time step. An adversarially chosen
convex cost function ct(x, u) is revealed after the controller’s action, and the controller suffers
ct(xt, ut). In this model, a controller A is simply a mapping from all previous states and costs to a
control. The total cost of executing a controller A, whose sequence of controls is denoted as uAt , is
defined as

JT (A) =

T∑
t=1

ct(x
A
t , u

A
t ).

For a randomized control algorithm, we consider the expected cost. Under the special case of
quadratic cost functions, if the disturbances are i.i.d. stochastic, we refer to the setting as online
LQR; if the disturbances are adversarial, we refer to it as nonstochastic online LQR.

In the nonstochastic setting, the optimal controller cannot be determined a priori and depends on
the disturbance realization. Consequently, we consider a comparative performance metric that takes
into account the disturbance realization in hindsight, namely the regret. The goal of the learning
algorithm is to choose a sequence of controls {ut}Tt=1 such that the total cost over T iterations is
competitive with that of the best controller in a reference controller class Π given the disturbances.
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We consider the worst-case regret over all possible disturbance realizations. Thus, the learner with
only black-box access, and in a single trajectory, seeks to minimize regret defined as

RegretT (A) = max
w1:T

{
JT (A)−min

π∈Π
JT (π)

}
. (1)

For the comparator class, we consider the set of Disturbance Action Controllers (DACs, see Defini-
tion 3), whose control is a linear function of past disturbances. This is a general class of controllers
known to approximate any stabilizing linear controllers, in particular the H2 optimal controller
(Agarwal et al., 2019).

Let L denote the upper bound on the system’s natural parameters, and κ∗ be the controllability
parameter of the stabilized system (Section 2.1). Let κ̃ denote an upper bound on the stability
parameters of the recovered controller (Section 4.3). The following statements summarize our main
results in Theorem 6 and Theorem 9:

1. We give an efficient algorithm whose regret with high probability satisfies

RegretT (A) ≤ 2O(L logL) + Õ(poly(L, κ∗)T 2/3).

2. For the nonstochastic online LQR problem, we give an efficient algorithm, whose regret is with
high probability at most

RegretT (A) ≤ 2O(L logL) + Õ(poly(L, κ̃)
√
T ).

3. We show that any control algorithm (randomized or deterministic) must suffer exponential re-
gret in the worst case due to limited information. Formally, we show that for every controller A,
there exists an LTI dynamical system where (with high probability if the algorithm is random-
ized)

RegretT (A) ≥ 2Ω(L).

Interestingly, this lower bound holds even for benign systems where the control-input matrix B
is full rank and no disturbances are present. From existing results by Cassel et al. (2020), in
general the online LQR problem has regret lower bound Ω(

√
T ). Therefore, any algorithm must

incur regret at least 2Ω(L) + Ω(
√
T ).

To the best of our knowledge, we provide the first finite-time regret bounds for control in a
single trajectory with black-box access to the system in the nonstochastic setting. In particular, it is
the first polynomial-time algorithm with optimal regret for nonstochastic black-box online LQR.

The main challenge of designing an efficient algorithm is obtaining a stabilizing controller from
black-box interactions in the presence of adversarial noise. As our lower bound shows, this is a
difficult task even when the system is well-conditioned, noiseless, and the cost functions are time
invariant. Our method consists of three phases. In the first phase, we identify the dynamics matrices
coarsely by injecting large controls into the system. Previous works on system identification under
adversarial noise either require stable dynamics, or the knowledge of a strongly stable controller.
Our approach is not limited by these requirements.

In the second phase, we use an SDP relaxation for the LQR setting by Cohen et al. (2018) to
obtain a strongly stable controller given the system estimates. After we identify a strongly stable
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controller, we use the techniques of Hazan et al. (2020) for regret minimization in the third phase for
general convex costs, and those of Simchowitz (2020) for the nonstochastic online LQR problem.

For the lower bound, our approach is inspired by lower bounds for gradient-based methods from
the optimization literature (Braverman et al., 2020). We give two separate lower bounds: one for
deterministic algorithms, and one for randomized algorithms. The deterministic lower bound is less
general but has better constants. Given a controller, we show system constructions that force the
states, and thus costs, to grow exponentially before enough information about the system is revealed.

1.2. Related work

The focus of our work is adaptive control, where the controller does not have a priori knowledge
of the underlying dynamics and has to learn them in addition to controlling the system. This task,
under the nonstochastic control setting recently put forth in the machine learning literature, differs
substantially from classical control theory that we survey below in the following aspects:

1. The system is unknown to the learner, and no stabilizing controllers are given.

2. The cost functions are unknown to the learner and can be chosen adversarially.

3. The disturbances are not assumed to be stochastic and can be chosen adversarially.

Robust and Optimal Control. When the underlying system and the cost functions are known, the
noise is stochastic, one can compute the optimal controller a priori in some settings. For example, in
the LQR setting, the system has linear dynamics and the cost functions are quadratic in the state and
the control; it follows from the Bellman equations that the infinite horizon optimal policy is linear:
ut = Kxt, where K is the solution to the algebraic Ricatti equation (Stengel, 1994; Zhou et al.,
1996; Bertsekas, 2017). Control that is robust to worst-case noise is studied in the framework of
H∞ control, which computes the best linear controller over worst-case noise given system dynamics
and cost functions, see e.g. the text by Zhou et al. (1996).

Online Control. Recent literature in the machine learning community considers the online LQR
setting (Dean et al., 2018; Mania et al., 2019; Cohen et al., 2018), where the noise remains stochastic
but the performance metric is regret instead of cost. Under this setting, polynomial time algorithms
in (Mania et al., 2019; Cohen et al., 2019, 2018) attain

√
T regret which also depends polynomially

on relevant problem parameters. Regret bounds for partially observed systems are studied in (Lale
et al., 2020a,b,c). However, all the results above assume the learner is given a stabilizing controller
or the system is stable.

Black-box control of an unknown LDS was studied in Abbasi-Yadkori and Szepesvári (2011)
and
√
T regret was obtained, though the algorithm is inefficient in the sense that it may take expo-

nential running time in the worst case. In contrast, our algorithm runs in polynomial time, and our
setting permits adversarial noise sequences and cost functions.

Regret lower bounds for online LQR were studied in Cassel et al. (2020) and Simchowitz and
Foster (2020), who show polynomial lower bounds in terms of the parameter T . In comparison, our
exponential lower bound is stated in the system dimension rather than time.

Concurrently and independently, recent work by Lale et al. (2020d) considers the black-box
online LQR setting and obtains Õ(2L + poly(d)

√
T ) regret under the weaker condition of stabiliz-

ability. However, their setting is restricted to stochastic noise and quadratic cost functions.
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Nonstochastic Control: Moving away from stochastic noise, the nonstochastic control problem
for linear dynamical systems was posed in Agarwal et al. (2019) to capture more robust online
control (see survey (Hazan, 2020)). In this setting, the controller has no knowledge of the system
dynamics or the adversarial noise sequence. The controller generates controls ut at each iteration to
minimize regret over sequentially revealed adversarial convex cost functions, against Disturbance
Action Controllers. If a strongly stable controller is known, Hazan et al. (2020) give an algorithm
that achieves Õ(poly(L, κ∗)T 2/3) regret, where L is an upper bound on the system’s natural param-
eters and κ∗ is the controllability parameter of the stabilized system, as formalized in Section 2.1.
This was recently extended in Simchowitz et al. (2020) to partially observed systems, and better
bounds for certain families of loss functions with semi-adversarial noise. In Simchowitz (2020),
Õ(poly(L, κ̃)

√
T ) regret was obtained for the nonstochastic LQR problem, where κ̃ is an upper

bound on the parameters of the strongly stable controller, see Section 4.3. However, all of the
above works assume a stabilizing controller is given to the learner, and are not black-box as per our
definition.

Identification and Stabilization of Linear Systems: If the system is stabilized and has stochas-
tic noise, the least squares method can be used to identify the dynamics in the partially observable
and fully observable settings (Oymak and Ozay, 2019; Simchowitz et al., 2018). The algorithm by
Simchowitz et al. (2019) tolerates adversarial noise and the guarantees only hold for stable systems;
this work also shows that least squares can yield inconsistent estimates if the system is not stable.

However, least squares can still be used to estimate unstable systems if the closed-loop dynamics
satisfy regularity conditions (Faradonbeh et al., 2017; Sarkar and Rakhlin, 2019). Using this method
as a subroutine, for the setting of stochastic noise, recent work by Faradonbeh et al. (2019) and
Shirani Faradonbeh et al. (2019) stabilize general systems in finite time with high probability.

In contrast, our system identification procedure is deterministic and permits adversarial noise.
We further provide explicit finite-time bounds for optimally controlling the system. Our results
do not assume stability of the system (spectral radius bounded by 1), but the weaker condition of
controllability. It remains open to relax this assumption even further, to that of stabilizability in the
nonstochastic black-box model.

2. Setting and Background

To enable the analysis of non-asymptotic regret bounds, we consider regret minimization against the
class of strongly stable linear controllers. The notion of strong stability was formalized in Cohen
et al. (2018) to characterize controllers under which a stochastic system converges to the steady-state
distribution exponentially fast. Throughout the paper ‖ · ‖ denotes the spectral norm for matrices
and the `2 norm for vectors.

Definition 1 (Strong Stability) K is a (κ, γ) strongly stable controller for (A,B) if ‖K‖ ≤ κ, and
there exist matrices H , L such that A+BK = HLH−1, and ‖H‖‖H−1‖ ≤ κ, ‖L‖ ≤ 1− γ.

The regret definition in Section 1.1 is meaningful only when the comparator set Π is non-empty.
As shown in Cohen et al. (2018), a system (A,B) has a strongly stable controller if it is strongly
controllable. This notion is formalized in the next definition.

Definition 2 (Strong Controllability) Given a system (A,B), let Ck denote

Ck = [B AB A2B · · ·Ak−1B] ∈ Rdx×kdu .
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Then (A,B) is (k, κ) strongly controllable if Ck has full row-rank, and ‖(CkC>k )−1‖ ≤ κ.

Assumption 1 The system (A,B) is (k, κ) strongly controllable for κ ≥ 1, and ‖A‖, ‖B‖ ≤ β for
some β ≥ 1.

Assumption 1 implies the existence of a strongly stable controller, and in Section 2.3 we give an
explicit bound on its parameters. As a consequence of the Cayley-Hamilton theorem, a controllable
system’s controllability index k is at most dx. Finally we make the following mild assumptions on
the noise sequence and the cost functions. Similar assumptions appear in the nonstochastic control
literature, see Simchowitz (2020), Hazan et al. (2020), Agarwal et al. (2019), Ghai et al. (2020).

Assumption 2 The noise sequence is bounded such that ‖wt‖ ≤ 1 for all t.

Assumption 3 The cost functions are convex, and for all x, u such that ‖x‖, ‖u‖ ≤ D, ‖∇(x,u)ct(x, u)‖ ≤
GD. Without loss of generality, assume ct(0, 0) = 0.

2.1. Notations

Inspired by the convention from the theory of Linear Programming (Nemirovski, 1994-1995), we
use L to denote an upper bound on the natural parameters, which we interpret as the complexity of
the system, i.e.

L = kdu + dx +G+ β + κ, where

• κ, k are the controllability parameter and controllability index of the true system, respectively.

• dx, du are the dimension of the states xt ∈ Rdx and dimension of the controls ut ∈ Rdu .

• G is an upper bound on the Lipschitz constant of the cost functions ct.

• β is an upper bound on the spectral norm of system dynamics A,B.

Given a (κ̃, γ̃) strongly stable controller K, we denote κ∗ as the upper bound on the controllability
parameter of the stabilized system (A + BK,B), and κ̃. We henceforth prove an upper bound on
κ∗ for the controller we recover, and show in Section 4.3 that κ∗ ≤ poly(κ, βk, dx). We use Õ to
denote bounds that hold with probability at least 1− δ, and omit the log(δ−1) and log(T ) factors.

2.2. Disturbance Action Controllers

In the regret formulation in 1, we take the reference policy class Π to be the class of Disturbance
Action Controllers (DACs) (Agarwal et al., 2019; Hazan et al., 2020; Simchowitz, 2020), defined
below. This class of policies can approximate any strongly stable controller in terms of cost, so we
can compete with strongly stable controllers if we can compete with DACs. Moreover, DACs also
include some classes of Linear Dynamic Controllers (LDCs) (Simchowitz et al., 2020). LDCs are a
generalization of static feedback controllers, and bothH2 andH∞ optimal controllers under partial
observation can be well-approximated by LDCs.

Definition 3 (Disturbance Action Controllers) A Disturbance Action Controller with parameters
(K,M) where M = [M0,M1, . . . ,MH−1] outputs control ut at state xt,

ut = Kxt +

H∑
i=1

M i−1wt−i.
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Definition 4 (Linear Dynamic Controllers) A linear dynamic controller π is a linear dynamical
system (Aπ, Bπ, Cπ, Dπ) with internal state st ∈ Rdπ , input xt ∈ Rdx and output ut ∈ Rdu that
satisfies

st+1 = Aπst +Bπxt, ut = Cπst +Dπxt.

The class of DACs enables the use of online convex optimization techniques in control. In the
canonical parameterization of the nonstochastic control problem, the total cost of a linear controller
J(K) is not convex in K. However, as shown in Agarwal et al. (2019), the total cost of DACs is
convex with respect to their parameters.

2.3. SDP Relaxation for LQ Control

In Linear Quadratic control the cost functions are known ahead of time and are fixed,

ct(x, u) = x>Qx+ u>Ru,

and the disturbances are i.i.d., wt ∼ N(0,W ). Given an instance of the LQ control problem defined
by (A,B,Q,R,W ), the learner can obtain a strongly stable controller by solving the SDP relaxation
for minimizing steady-state cost, proposed in Cohen et al. (2018). For ν > 0, the SDP is given by

minimize J(Σ) =

(
Q 0
0 R

)
• Σ

subject to Σxx =
(
A B

)
Σ
(
A B

)>
+W, Σ =

(
Σxx Σxu

Σ>xu Σuu

)
.

Σ � 0, Tr(Σ) ≤ ν.

Indeed, a strongly stable controller can be extracted from any feasible solution to the SDP, as guar-
anteed by the following lemma.

Lemma 5 (Lemma 4.3 in (Cohen et al., 2018)) Assume that W � σ2I and let κ =
√
ν/σ. Let Σ

be any feasible solution for the SDP, then the controllerK = Σ>xuΣ−1
xx is (κ, 1/2κ2) strongly stable.

Existence of Strongly Stable Controllers Under Assumption 1, the noiseless dynamical system
xt+1 = Axt +But starting from x1 can be driven to the zero state in k steps. Furthermore, Lemma
B.4 in Cohen et al. (2018) gives an upper bound on the reset cost, defined as

∑k
t=1 ‖xt‖2 + ‖ut‖2.

Suppose the reset cost is at most C‖x1‖2, then Thereom B.5 in Cohen et al. (2018) suggests that
the SDP for the noisy system xt+1 = Axt + But + wt with wt ∼ N(0,W ) and ν = C · Tr(W )
is feasible. Taking W = I , the system (A,B) has a (

√
Cdx, 1/(2Cdx)) strongly stable controller.

Lemma B.4 in Cohen et al. (2018) shows that under Assumption 1, C = 3κ2k2β6k.

3. Algorithm and Main Theorem

Now we describe our main algorithm for the black-box control problem, Algorithm 1. Overall we
use the explore-then-commit strategy, and split the algorithm into three phases. In phase 1, we
identify the underlying system dynamics coarsely with large controls. In phase 2, we extract a
strongly stable controller for the estimated system using the SDP in Section 2.3, and show that it
is also strongly stable for the true system. We then alleviate the effects of using large controls by
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Algorithm 1 Nonstochastic Control with Black-box Access
1: Input: horizon T , k, κ such that the system (A,B) is (k, κ) strongly controllable, β ≥ 1 such

that ‖A‖, ‖B‖ ≤ β.
2: Set κ′ =

√
Cdx, γ′ = 1/(2κ′2), where C = 3κ2k2β6k.

3: Phase 1: Black-box System Identification
4: Set ε = γ′2

105d2xκ
′8 , λ = 8β.

5: (Â, B̂)← AdvSysId(ε, λ, x1, k, κ) for T1 = du(k + 1) + 1 rounds.
6: Phase 2: Stable Controller Recovery
7: K̂ ← ControllerRecovery(Â, B̂, ε, κ′, γ′), set κ̃ = 2κ′2d

1/2
x

γ′1/2
, γ̃ = γ′

16dxκ′4
.

8: Execute K̂ for T2 = max{ ln(γ̃‖xT1‖)
γ̃ , 0} rounds .

9: Phase 3: Nonstochastic Control
10: Set κ∗ = 4κ̃2k2β2kκ, W = 2κ∗/γ̃.
11: General convex costs: call Algorithm 1 in Hazan et al. (2020) with inputs K̂, κ∗, γ̃, W for

T − T1 − T2 rounds.
12: Quadratic costs: call Algorithm 3 in Simchowitz (2020) for T − T1 − T2 rounds.

decaying the system to a state with constant magnitude. Finally in phase 3, we invoke Algorithm
1 in Hazan et al. (2020) or Algorithm 3 in Simchowitz (2020) to achieve sublinear regret with the
obtained strongly stable controller.

Our main theorem below is stated using asymptotic notation that hides constants independent
of the system parameters, and uses L for an upper bound on the system parameters as defined in
section 2.1. Exact constants appear in the proofs.

Theorem 6 Under Assumptions 1, 2, 3, with high probability the regret of Algorithm 1 satisfies

RegretT (A1) ≤ 2O(L logL) + Õ(poly(L, κ∗)T 2/3).

If the loss functions are in addition α-strongly convex, quadratic, and without loss of generality
assuming κ̃ ≥ γ̃−1, the regret of Algorithm 1 satisfies

RegretT (A1) ≤ 2O(L logL) + Õ(poly(L, κ̃, α−1)
√
T ).

This is composed of

1. Phase 1: after T1 rounds we have ‖xT1‖2 ≤ 2O(L logL). The total cost is at most 2O(L logL).

2. Phase 2: Computing K̂ has zero cost. Decaying the system has total cost at mostO
(
Gκ̃4‖xT1‖3γ̃−3

)
,

where κ̃, γ̃ are as defined in the algorithm. This phase has total cost 2O(L logL).

3. Phase 3: Nonstochastic control with a known strongly stable controller for general convex
costs incurs regret at most Õ(poly(L, κ∗)(T − T1 − T2)2/3) with high probability. If the cost
functions are α-strongly convex and quadratic, with high probability the regret is bounded by

Õ(poly(κ̃,L, α−1)
√
T − T1 − T2).

4. Analysis Outline

We provide an outline of our analysis in this section, and the formal statements are in the appendix.
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4.1. Black-box system identification

In this phase we obtain estimates of the system Â, B̂ without knowing a stabilizing controller.
Recall the definition of Ck = [B,AB, . . . , Ak−1B], and let Y = [AB A2B · · · AkB]. The
procedure AdvSysId (Algorithm 2) consists of two steps. In the first step, we estimate eachAjB for
j = 0 . . . , k (in particular we obtain B̂ close to B), and guarantee that ‖Ck−C0‖F , ‖Y −C1‖F are
small. In the second step, we take Â to be the solution to the system of equations in X: XC0 = C1.

For the first step, the algorithm estimates matrices AjB by using controls that are scaled stan-
dard basis vectors once every k+ 1 iterations, and using zero controls for the iterations in between.
The state evolution satisfies

xt+1 = Atx1 +
t∑
i=1

(At−iBui +At−iwi).

Intuitively, we choose scaling factors ξi such that j iterations after a non-zero control ξi · ei is used,
the state is dominated by ξiAj−1Bei, the scaled i-th column of Aj−1B. In the algorithm M̂j is the
concatenation of estimates for AjBei, and we concatenate the M̂j’s to obtain C0, C1. We show in
Lemma 12 that ‖M̂j − AjB‖F ≤ O(d2

ukλ
2kε0), which implies the closeness of C0, C1 to Ck, Y ,

respectively.
Under the assumption that (A,B) is (k, κ) strongly controllable, A is the unique solution to the

system of equations inX: XCk = Y . By perturbation analysis of linear systems, the solution to the
system of equations XC0 = C1 is close to A, as long as ‖C0 − Ck‖F , ‖C1 − Y ‖F are sufficiently
small. By our choice of ε0, we conclude that ‖Â − A‖ ≤ ε, ‖B̂ − B‖ ≤ ε. Lemma 14 shows that
the total cost of this phase is bounded by 2O(L logL). 3

4.2. Computing a stabilizing controller

The goal of phase 2 is to recover a strongly stable controller from system estimates obtained in phase
1 by solving the SDP presented in Section 2.3. The key to our task is setting the trace upper bound ν
appropriately, so that the SDP is feasible and the recovered controller is strongly stable even for the
original system. We justify our choice of ν in Lemma 18, and show that by our choice of ε, Â, B̂ are
sufficiently accurate and K̂ is (κ̃, γ̃) strongly stable for the true system. We remark that Simchowitz
and Foster (2020) has an alternative procedure for recovering K given system estimates.

4.2.1. DECAYING THE SYSTEM

In phase 1 the algorithm uses large controls to estimated the system, and after T1 iterations the state
can have an exponentially large magnitude. Equipped with a strongly stable controller, we decay
the system so that the state has a constant magnitude before starting phase 3. We show in Lemma 19
that following the policy ut = K̂xt for T2 iterations decays the state to at most 2κ̃/γ̃ in magnitude.

4.3. Nonstochastic control

Given a (κ̃, γ̃) strongly stable controller K̂ for the true system, we use existing algorithms for
nonstochastic control. Both algorithms in phase 3 follow the recipe of system identification and

3. Different from many existing system identification routines, Algorithm 2 is deterministic and our guarantee does not
have a failure probability.
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Algorithm 2 AdvSysId
1: Input: accuracy parameter ε < 1/2, ‖x1‖ ≤ 1. Let λ ≥ 1 be such that ‖A‖, ‖B‖ ≤ 1

4λ − 1,
(k, κ) such that the system (A,B) is (k, κ) strongly controllable.

2: Set ε0 = ε
102d2uk

2λ3kdxκ1/2
.

3: for t = 1, . . . , (k + 1)du do
4: observe xt.
5: if t = 1 (mod k + 1) then
6: Let i = (t− 1)/(k + 1) + 1.
7: control with ut = ξi · ei for ξi = λt−1ε−i0 , where ei is the i-th standard basis vector.
8: else
9: control with ut = 0.

10: end if
11: pay cost ct(xt, ut).
12: end for
13: For 0 ≤ j ≤ k, 1 ≤ i ≤ du, define l(i, j) = (i− 1)(k+ 1) + j + 2. Let xji = xl(i,j). Construct

M̂j = [
xj1
ξ1

xj2
ξ2
· · ·

xjdu
ξdu

] ∈ Rdx×du .

14: Define C0 = [M̂0 M̂1 · · · M̂k−1], C1 = [M̂1 M̂2 · · · M̂k] ∈ Rdx×duk.
15: Output Â = C1C

>
0 (C0C

>
0 )−1, B̂ = M̂0.

Algorithm 3 ControllerRecovery
1: Input: κ′, γ′ such that there exists K that is (κ′, γ′) strongly stable for (A,B); accuracy param-

eter ε, and Â, B̂ such that ‖A− Â‖ ≤ ε, ‖B − B̂‖ ≤ ε.
2: Set ν = 2κ′4dx

γ′−2εκ′2 .
3: Solve the following SDP:

minimize 0

subject to Σxx =
(
Â B̂

)
Σ
(
Â B̂

)>
+ I, where

Σ =

(
Σxx Σxu

Σ>xu Σuu

)
, Σ � 0, Tr(Σ) ≤ ν.

4: Denote a feasible solution as Σ̂ =

(
Σ̂xx Σ̂xu

Σ̂>xu Σ̂uu

)
, return K̂ = Σ̂>xuΣ̂−1

xx .

then policy regret minimization with gradient-based methods. Different from phase 1, the system
can be estimated to arbitrary accuracy without prohibitive cost given a stabilizing controller.

If the costs are general convex functions, we run Algorithm 1 in Hazan et al. (2020) (Algorithm
4 in the appendix) which achieves sublinear regret. By Lemma 21, the system (A + BK̂,B) is
(k, 4κ̃2k2β2kκ) strongly controllable. If we start Algorithm 4 from t = T1 + T2, the setting is
consistent with the nonstochastic control setting where the noise is bounded by ‖xT1+T2‖, and with

10
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total iteration number T −T1−T2. By Theorem 12 in Hazan et al. (2020), setting κ∗ = 4κ̃2k2β2kκ,
W = 2κ∗/γ̃, and noticing that γ̃−1 = poly(κ∗), with high probability, our total regret is at most
Õ(poly(κ∗, k, dx, du, G)T 2/3).

If the cost functions are α-strongly convex and quadratic, we use Algorithm 3 in Simchowitz
(2020). Note that this algorithm does not need controllability assumptions on the system. By
Theorem 3.2 in Simchowitz (2020), and without loss of generality assuming κ̃ ≥ γ̃−1, with high
probability the total regret of this phase is bounded by Õ(poly(κ̃, β, dx, du, G, α

−1)
√
T ).

5. Lower Bound on Black-box Control

In this section we prove that with high probability, any randomized black-box control algorithm
incurs a loss which is exponential in the system dimension, even for noiseless LTI systems. Our
lower bound is partially based on the construction in Braverman et al. (2020) and uses technique
from the optimization literature. In addition, we provide a lower bound for deterministic black-box
control algorithms in Appendix E with improved constants. We first define the relevant concepts.

Definition 7 (Black-box Control Algorithm) A randomized black-box control algorithm A has
a random string σt and outputs a control ut at each iteration t, where ut is a function of past
information and the random string, i.e. ut = A(x1, ..., xt, c1, . . . , ct, u1, . . . , ut−1, σt).

Definition 8 (Control Problem Instance) An instance of a control problem is defined by a noise-
less system (A,B), an initial state x1, and a sequence of oblivious convex cost functions {ct}.

Theorem 9 Let A be a randomized control algorithm as per Definition 7. Then there exists a
control problem instance with system dimension dx, where the system is stabilizable and (1, 1)-
strongly controllable, such that with T = dx/8, with probability at least 1− exp(− dx

100), we have

RegretT (A) ≥ 2Ω(L).

Proof We first consider deterministic black-box control algorithms. We show that there exists a
distribution over control problem instances, such that with high probability, the total cost of any
deterministic control algorithm is exponential in the system dimension. Then we treat a randomized
algorithm as a distribution over deterministic algorithms, and use a probabilistic argument to show
that there exists a hard control problem for every randomized algorithm.

The construction of the hard distribution below follows from the intuition that a matrix with
i.i.d. random Gaussian entries is rotation invariant, and therefore for such a matrix of dimension
d, a deterministic control algorithm needs to observe at least O(d) matrix-vector products to gain
enough information.

The construction. Fix x1 = e1 and ct(x, u) = ‖x‖2 + ‖u‖2 for all t. Let N(m,n, σ) denote
a distribution over matrices of dimension m × n, where each coordinate is Gaussian with mean 0
and variance σ. Consider the distribution of control problems specified by {(A, I), x1, {ct}}, where
A ∼ N(dx, dx,

γ
dx

) for some γ > 0. For a realization of A, the system is xt+1 = Axt + ut. Note
that for any A, this system is (1, 1)-strongly controllable, and −A is a stabilizing controller that
gives constant regret. Moreover, with high probability, the system has bounded size: by Corollary
35 in (Vershynin, 2011), with probability at least 1 − 2 exp(−dx

2 ), ‖A‖ ≤ 3
√
γ. Let L(A) denote

the system upper bound of the control problem instance defined by our choice of x1, {ct}, and A.

11
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Under this event, we have L(A) ≤ 2dx + 4 + 1 + 3
√
γ ≤ 4dx for γ = 40 and dx large.

To show that the above distribution is hard for deterministic control algorithms, we first frame
the control task under an information model with queries and observations, similar to the setting in
Braverman et al. (2020). This framing facilitates our analysis by making the information a controller
receives in each time step explicit.

Information model. At every iteration the controller observes xt, then computes ut as a deter-
ministic function of x1, x2, . . . , xt, u1, u2, . . . ut−1, and then observes xt+1 = Axt + ut. Without
loss of generality, we can assume that the controller also observes Au1, . . . , Aut−1 before comput-
ing ut, but does not act on this information. Then in the following information model, the controller
can be seen as a player making adaptive queries to an unknown matrix A, and receives observations
in the form of matrix-vector products: the controller makes deterministic queries defined by vectors
x1, u1, x2, u2, . . . , xt−1, ut−1, xt, ut and observes Ax1, Au1, . . . , Axt−1, Aut−1, Axt, Aut. Each
pair of queries xt, ut are deterministic functions of previous queries and observations: x1, . . . , xt−1,
u1, . . . , ut−1, Ax1, . . . , Axt−1.Au1, . . . , Aut−1. Note that even though ut can depend on xt, we
have xt = Axt−1 + ut−1, so without loss of generality we can assume ut only depends on previous
queries and observations. However, ut cannot depend on Axt since this is a future observation.

Under this information model, for every xt, there exists a subspace (V ⊥t−1)> such that (V ⊥t−1)>xt
has a random component. Importantly, the subspace only depends on the queries and observations
so far and not on any future information. Further, we show that with high probability, the magnitude
of the random component grows exponentially with time.

Lemma 10 Let T = dx/8. There exists a sequence of orthonormal matrices V1, . . . , VT , such that
for t ∈ [T ], Vt only depends on x1, . . . , xt, u1, . . . , ut and they satisfy the following condition:
Let rt denote the rank of span(x1, . . . , xt, u1, . . . , ut), and let V ‖t denote the first rt columns of
Vt, and let V ⊥t denote the last d − rt columns of Vt. Let ht = (V ⊥t−1)>xt, then for all t ∈ [T ],
conditioned on x1, x2, . . . , xt, u1, u2, . . . , ut, Au1, . . . , Aut−1, we have (V ⊥t )>xt+1 = ct + zt,
where the coordinates of zt are i.i.d. normally distributed, i.e. zt(i) ∼ N(0, γ‖ht‖

2

d ).

Lemma 11 Let V1, . . . , VT be as in Lemma 10, and T = dx/8. Let ht = (V ⊥t−1)>xt, with prob-
ability at least 1 − exp(−dx

25 ), conditioned on x1, x2, . . . , xt, u1, u2, . . . , ut, Au1, . . . , Aut−1, we

have ‖(V ⊥t )>xt+1‖2 ≥ γ‖ht‖2
20 .

Consider the construction of matrices V1, V2, . . . , VT as in Lemma 10. Then conditioned on
x1, u1, we have h1 = (V ⊥0 )>x1 = x1, and ‖h1‖ = 1. Here u1 can depend on x1 because x1 is in-
dependent of A. By Lemma 11, for t ≤ T , conditioned on x1, . . . , xt, u1, . . . , ut, Au1, . . . , Aut−1,
with probability at least 1−exp(−dx

25 ), we have ‖ht+1‖2 ≥ 2‖ht‖2 with our choice of γ. Therefore,
with probability at least (1 − exp(−dx

25 ))T−1, ‖hT ‖2 ≥ 2T−1. Note that ‖xT ‖2 = ‖VT−1xT ‖2 ≥
‖V ⊥T−1xT ‖2 = ‖hT ‖2 ≥ 2dx/8−1. Since for small ε, we have (1 − ε)t ≥ 1 − 2tε, we have

(1 − exp(−dx
25 ))

dx
8
−1 ≥ 1 − dx

4 exp(−dx
25 ) ≥ 1 − exp(−dx

50 ) for dx large. Therefore with high
probability, the total cost of any deterministic black-box control algorithm A over T iterations is
at least 2dx/8−1 by our choice of cost functions. Note that this result holds with any realization of

12



BLACK-BOX CONTROL FOR LINEAR DYNAMICAL SYSTEMS

Au1, Au2, . . . , AuT . Since there exists a stabilizing controller that incurs constant cost, we con-
clude that RegretT (A) ≥ 2Ω(dx) with probability at least 1− exp(−dx

50 ), for any deterministic A.

Now we consider randomized control algorithms. For any randomized algorithm Arand, its
randomness is independent of the distribution over the system, and can be considered as a random
string whose value is chosen before the start of the algorithm. Let σT denote the randomness of
Arand over T iterations, and for any value bT of σT , let Arand(bT ) denote the algorithm which is
Arand with σT fixed to bT . Then Arand(bT ) is a deterministic algorithm. Let RegretT (Arand(bt), A)
denote the regret of Arand(bT ) on the system A. We can write

PA,σT [RegretT (Arand, A) ≥ 2Ω(dx)] =
∑
bT

P[σT = bT ]PA[RegretT (Arand(bT ), A) ≥ 2Ω(dx)]

≥ min
Adet

PA[RegretT (Adet, A) ≥ 2Ω(dx)] ≥ 1− exp(−dx
50

).

In addition to having regret exponential in the system dimension, we also need the size of the system
to be bounded. Let D denote the distribution of A conditioned on the event E : L(A) ≤ O(dx).
Since the event Ec happens with probability at most 2 exp(−dx

2 ), we have

PArand,A∼D[RegretT (Arand, A) ≥ 2Ω(dx)] ≥ PArand,A[RegretT (Arand, A) ≥ 2Ω(dx)]− P[Ec]

≥ 1− 2 exp(−dx
50

)

≥ 1− exp(− dx
100

).

It follows that there exist a systemA? with L(A?) ≤ O(dx), such that over the randomness ofArand,
with probability at least 1− exp(− dx

100), RegretT (Arand, A
?) ≥ 2Ω(L(A?)).

6. Conclusion

We present the first end-to-end, efficient black-box control algorithm for unknown linear dynami-
cal systems in the nonstochastic control setting. This improves upon previous work in black-box
control (Abbasi-Yadkori and Szepesvári, 2011) in several dimensions: computational efficiency
(previous methods were exponential time), robustness (tolerating adversarial noise), and generality
(our algorithm permits a broader set of cost functions than quadratic functions).

The startup cost of our algorithm is exponential in the system dimension. However we show that
this cost is nearly optimal by giving a novel lower bound for any randomized or deterministic black-
box control algorithm. Combined with previous results, our algorithm applied to the nonstochastic
online LQR setting achieves near optimal regret.

One intriguing open problem in our setting is whether or not it is possible to achieve our regret
upper bound with control signals that are not exponential in the system parameters. Large magnitude
controls are often impossible to implement, and a more practical algorithm is desirable. As far as
we know, our lower bound does not prohibit such a method and this possibility remains open.
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Appendix A. Proofs for Section 4.1

In this section we present proofs for phase 1 of Algorithm 1. We show that the estimates Â, B̂
satisfy ‖Â − A‖ ≤ ε, ‖B̂ − B‖ ≤ ε, and bound the total cost of this phase. We first bound the
magnitude of states in each iteration to guide our choice of scaling factors ξi. In Algorithm 2,
for all t = 2, . . . , (k + 1)du, let j = t − 2 (mod k + 1), i = (t − 2 − j)/(k + 1) + 1, we have
‖xt‖ ≤ λt−1ε−i0 .
Proof This can be seen by induction. For our base case, consider x2, where i = 1, j = 0. ‖x2‖ ≤
‖A‖ + ‖B‖‖u1‖ + 1 ≤ 1

4λ(1 + ε−1
0 ) + 1 ≤ λε−1

0 . Assume ‖xt‖ ≤ λt−1ε−i0 for t = (i − 1)(k +

1) + j + 2. If j = k, then t = i(k + 1) + 1, ‖ut‖ = λt−1ε−i−1
0 , and t+ 1 = i(k + 1) + 2.

‖xt+1‖ ≤ ‖A‖‖xt‖+ ‖B‖‖ut‖+ ‖wt‖ ≤
1

4
λ(λt−1ε−i0 + λt−1ε−i−1

0 ) + 1 ≤ λtε−i−1
0 .

Otherwise, we have 0 ≤ j ≤ k − 1, and ut = 0. Moreover, t+ 1 ∈ {(i− 1)(k + 1) + 3, . . . , (i−
1)(k + 1) + 2 + k}. Therefore

‖xt+1‖ ≤ ‖A‖‖xt‖+ ‖B‖‖ut‖+ ‖wt‖ ≤
1

4
λtε−i0 + 1 ≤ λtε−i0 .

With appropriate choice of ξi, we ensure that M̂j and AjB are close in the Frobenius norm.

Lemma 12 For j = 0, . . . , k, M̂j satisfies

‖M̂j −AjB‖F ≤ 3d2
ukλ

2kε0.

In particular, ‖M̂0 −B‖ ≤ 3d2
ukλ

2kε0 ≤ ε.

Proof Observe that by definition,

xt+1 = Atx1 +
t∑

s=1

At−sBus +At−sws.

We have ‖Atx1 +
∑t

s=1A
t−sws‖ ≤ λt +

∑t
s=1 λ

t−s ≤ (t+ 1)λt. Note that the magnitude of this
term should be small once we normalize by ξi. Let j = t−2 (mod k+1), i = (t−2−j)/(k+1)+1,
then t = (i− 1)(k + 1) + j + 2. We proceed to bound ‖xt/ξi − (AjB)i‖, where (AjB)i is the ith
column of AjB. The largest sum in xt can be analyzed as follows,

t−1∑
s=1

At−1−sBus =

(i−1)(k+1)+j+1∑
s=1

A(i−1)(k+1)+j+1−sBus

=

i−1∑
r=0

A(i−1−r)(k+1)+jBur(k+1)+1

=

i−1∑
r=0

A(i−1−r)(k+1)+jBξr+1er+1
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=
i∑

r=1

ε−r0 λ(r−1)(k+1)A(i−r)(k+1)+jBer.

Normalizing by the scaling factor,

1

ξi

t−1∑
s=1

At−1−sBus = εi0λ
(1−i)(k+1)

i∑
r=1

ε−r0 λ(r−1)(k+1)A(i−r)(k+1)+jBer

=
i∑

r=1

εi−r0 λ(r−i)(k+1)A(i−r)(k+1)+jBer

= AjBei +
i−1∑
r=1

εi−r0 λ(r−i)(k+1)A(i−r)(k+1)+jBer.

The second term can be bounded as

‖
i−1∑
r=1

εi−r0 λ(r−i)(k+1)A(i−r)(k+1)+jBer‖ ≤
i−1∑
r=1

εi−r0 λ(r−i)(k+1)‖A(i−r)(k+1)+jB‖

≤ λj+1
i−1∑
r=1

εi−r0 ≤ (du − 1)λ2kε0.

Let (M̂j)i denote the i-th column of M̂j , then we have

‖(M̂j)i − (AjB)i‖ = ‖
xji
ξi
− (AjB)i‖

≤ 1

ξi
‖At−1x1 +

t−1∑
s=1

At−1−sws‖+ ‖ 1

ξi

t−1∑
s=1

At−1−sBus − (AjB)i‖

≤ 1

ξi
tλt−1 + (du − 1)λ2kε0

≤ tεi0λ2k + (du − 1)λ2kε0 ≤ 3dukλ
2kε0.

Thus we can bound the Frobenius norm of M̂j −AjB by

‖M̂j −AjB‖2F =

du∑
i=1

‖(M̂j)i − (AjB)i‖2 ≤ 9d3
uk

2λ4kε2
0.

We show that by our choice of ε0, ‖C0 −Ck‖F , ‖C1 − Y ‖F are sufficiently small to guarantee
Â and A are close.

Lemma 13 Algorithm 2 outputs Â such that ‖Â−A‖ ≤ ε.
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Proof By Lemma 12, for all j, ‖M̂j −AjB‖F ≤ 3d2
ukλ

2kε0. Let Ck = [B AB A2B · · ·Ak−1B],
and Y = [AB A2B · · ·AkB]. We have

‖C0 − Ck‖2F =
k−1∑
j=0

‖M̂j −AjB‖2F ≤ 9d4
uk

3λ4kε2
0.

Similarly, ‖C1 − Y ‖2F ≤ 9d4
uk

3λ4kε2
0.

Recall that A is the unique solution to the system of equations in X: XCk = Y . Let Ai denote
the i-th row of A, and let Âi denote the i-th row of Â. By Lemma 22 in (Hazan et al., 2020), as long
as ‖C0 − Ck‖F ≤ σmin(Ck),

‖Ai − Âi‖ ≤
‖C1 − Y ‖F + ‖C0 − Ck‖F ‖Ai‖

σmin(Ck)− ‖C0 − Ck‖F

By our assumption, ‖(CkC>k )−1‖ ≤ κ, so σmin(Ck) ≥ κ−1/2. We have

‖C0 − Ck‖F ≤ 3d2
uk

2λ2kε0 ≤
ε

2λkdx
√
κ
≤ κ−1/2/2 ≤ σmin(Ck).

Further notice that ‖A‖ ≤ λ implies ‖Ai‖ ≤ ‖A‖F ≤ λ
√
dx,

‖Ai − Âi‖ ≤
3d2

uk
2λ2kε0(1 + λ

√
dx)

κ−1/2 − 3d2
uk

2λ2kε0
≤ ε√

dx
.

Finally, we have

‖A− Â‖ ≤ ‖A− Â‖F =

√√√√ dx∑
i=1

‖Ai − Âi‖2 ≤ ε.

Lemma 14 The total cost of estimating A, B starting from ‖x1‖ ≤ 1 is bounded by

G(105λ10kε−2κd2
xk

5d5
u)du .

Proof The magnitude of the state and control is bounded by

‖xt‖2 + ‖ut‖2 ≤ 2λ2t−2ε−2du
0 ≤ 2λ4dukε−2du

0 = 2(λ4kε−2
0 )du = 2(104ε−2d4

uk
4λ10kd2

xκ)du

By Assumption 3, taking D2 = 2(104ε−2d4
uk

4λ10kd2
xκ)du ,

ct(xt, ut) ≤ ‖∇(x,u)ct(xt, ut)‖‖(xt, ut)‖ ≤ 2GD2.

Summing over (k + 1)du ≤ 2kdu iterations, the total cost is upper bounded by

8Gkdu(104ε−2d4
uk

4λ10kd2
xκ)du ≤ G(105λ10kε−2κd2

xk
5d5
u)du .
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Using our choice of ε and λ, the total cost is bounded by

G(105λ10kε−2κd2
xk

5d5
u)du ≤ G(1025kβ10kγ′−4κd6

xk
5d5
uκ
′16)du

≤ G(1030kβ10kκd6
xk

5d5
uκ
′24)du

≤ G(1030kβ10kκd18
x k

5d5
uC

12)du

≤ G(1040kβ82kd18
x k

30d5
uκ

25)du

= 2O(L logL).

Appendix B. Proofs for Section 4.2

In this section we prove that a (κ̃, γ̃) strongly stable controller can be obtained by solving the SDP in
Algorithm 3. We first argue that for two systems close in spectral norm, a strongly stable controller
for one system is also strongly stable for ther other system.

Lemma 15 If K is (κ, γ) strongly stable for a system (A,B) with κ ≥ 1, and if Â, B̂ satisfy
‖A− Â‖ ≤ ε, ‖B − B̂‖ ≤ ε, then K is (κ, γ − 2εκ2) strongly stable for (Â, B̂).

Proof By definition, we have

Â+ B̂K = A+BK −A−BK + Â+ B̂K

= HLH−1 + (Â−A) + (B̂ −B)K

= H(L+H−1(Â−A+ (B̂ −B)K)H)H−1

The lemma follows by observing that

‖L+H−1(Â−A+ (B̂ −B)K)H‖ ≤ 1− γ + κε(1 + κ) ≤ 1− γ + 2εκ2.

Now, we use Lemma 15 twice to show that the recovered controller K̂ is strongly stable for the
original system (A,B). The following lemma computes κ̃, γ̃ in terms of ε.

Lemma 16 Algorithm 3 returns K̂ that is (κ̃, γ̃) strongly stable for A and B, where

κ̃ =
( κ′42dx
γ′ − 2εκ′2

)1/2
, γ̃ =

γ′ − 2εκ′2

4dxκ′4
− 2εκ̃2.

Proof We show in Section 2.3 that a (κ′, γ′) strongly stable controller exists for (A,B). Let K
be a (κ′, γ′) strongly stable controller. By Lemma 12, 13, and 15, K is (κ̄, γ̄) strongly stable for
Â, B̂, where κ̄ = κ′, γ̄ = γ′ − 2εκ′2. With knowledge of κ̄, γ̄, we can set the trace upper bound
appropriately to extract a strongly stable controller from a feasible solution of the SDP. Specifically,
we set

ν =
2κ̄4dx
γ̄

as in Lemma 18, and the SDP is feasible. We obtain K̂ that is (κ̂, γ̂) strongly stable for the system
Â, B̂, where κ̂ = κ̄2

√
2dx√
γ̄

=
(
κ′42dx
γ′−2εκ′2

)1/2, γ̂ = γ̄
4dxκ̄4

= γ′−2εκ′2

4dxκ′4
. We apply Lemma 15 again and

conclude that K̂ is (κ̂, γ̂ − 2εκ̂2) strongly stable for A,B.

With our choice of ε, we compute the final values of κ̃, γ̃.
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Lemma 17 Setting ε = γ′2

105d2xκ
′8 , K̂ returned by Algorithm 3 is (2κ′2d

1/2
x

γ′1/2
, γ′

16dxκ′4
) strongly stable

for (A,B).

Proof With this choice of ε, we have 2εκ′2 = 2γ′2

105d2xκ
′6 ≤ γ′

2 . It follows that

κ̃ =
( κ′42dx
γ′ − 2εκ′2

)1/2 ≤ 2κ′2
√
dx√

γ′
.

Therefore we have 2εκ̃2 ≤ γ′

102dxκ′4
. We obtain a lower bound on γ̃ as follows

γ̃ =
γ′ − 2εκ′2

4dxκ′4
− 2εκ̃2 ≥ γ′ − 2εκ′2

4dxκ′4
− γ′

102dxκ′4
≥ γ′

8dxκ′4
− γ′

102dxκ′4
≥ γ′

16dxκ′4
.

The following lemma details how we set the trace upper bound ν in the SDP, and our application
of results from Cohen et al. (2018) to extract K̂.

Lemma 18 For any system A,B with a (κ, γ) strongly stable controller, the SDP in Algorithm 3
defined by (A,B) with trace constraint ν = 2κ4dx

γ is feasible. Moreover, a policy K such that K is

(κ
2
√

2dx√
γ , γ

4dxκ4
) strongly stable for A,B can be extracted from any feasible solution of the SDP.

Proof We first show that the SDP is feasible. Let K be the (κ, γ) strongly stable controller for
(A,B), and consider the system with Gaussian noise xt+1 = Axt +But +wt, wt ∼ N(0, I). This
system will converge to a steady state where the state covariance X = E[xx>] satisfies

X = (A+BK)X(A+BK)> + I.

Let KXK> be the steady-state covariance of u when following K. By Lemma 3.3 in (Cohen
et al., 2018), Tr(X) ≤ κ2dx

γ , Tr(KXK>) ≤ κ4dx
γ .

Consider the matrix

Σ =

(
X XK>

KX KXK>

)
.

By Lemma 4.1 in (Cohen et al., 2018), Σ is feasible for the SDP if ν ≥ Tr(X) + Tr(KXK>);
since ν = 2κ4dx

γ , Σ is feasible for the SDP. Now let Σ̂ be any feasible solution of the SDP, and write

Σ̂ =

(
Σ̂xx Σ̂xu

Σ̂>xu Σ̂uu

)
.

Consider K̂ = Σ̂>xuΣ̂−1
xx , which is well-defined because Σ̂xx � I by the steady-state constraint. As

shown in Lemma 4.3 in (Cohen et al., 2018), K̂ is (
√
ν, 1/(2ν)) strongly stable for A,B. Under

our choice of ν, K̂ is (κ
2
√

2dx√
γ , γ

4dxκ4
) strongly stable for A,B.
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B.1. Decaying the System

Lemma 19 Let K be a (κ̃, γ̃) strongly stable controller for the system. and x1 be any starting
state. Suppose κ̃ ≥ 1. After following K for T2 = max{ ln(γ̃‖x1‖)

γ̃ , 0} iterations , the final state
xT2+1 satisfies ‖xT2+1‖ ≤ 2κ̃/γ̃, and the total cost is bounded by

O
(
Gκ̃4‖x1‖3γ̃−3

)
.

Proof Under the controller K, the state evolution satisfies

xt+1 = (A+BK)tx1 +

t∑
i=1

(A+BK)t−iwi.

By definition of strong stability, ‖(A+BK)t‖ ≤ ‖H‖‖H−1‖‖L‖t ≤ κ̃(1− γ̃)t. It follows that

‖xt+1‖ ≤ κ̃(1− γ̃)t‖x1‖+ κ̃
t∑
i=1

(1− γ̃)t−i ≤ κ̃(1− γ̃)t‖x1‖+
κ̃

γ̃
.

Let T2 = max{ ln(γ̃‖x1‖)
γ̃ , 0}. If ln(γ̃‖x1‖) ≥ 0, we have T2 ≥ − ln(γ̃‖x1‖)

ln(1−γ̃) , hence (1 − γ̃)T2 ≤
1/(γ̃‖x1‖) and ‖xT2+1‖ ≤ 2κ̃/γ̃. Otherwise T2 = 0 and ‖x1‖ ≤ 1/γ̃ < 2κ̃/γ̃. Notice that
‖xt‖ ≤ κ̃‖x1‖ + κ̃/γ̃, ‖ut‖ ≤ κ̃2‖x1‖ + κ̃2/γ̃ for all t ∈ [T2 + 1]. Taking D = κ̃2‖x1‖ + κ̃2/γ̃
and assuming ln(γ̃‖x1‖) ≥ 0, the total cost of decaying the system is bounded by

2(T2 + 1)GD2 = 2G(
ln(γ̃‖x1‖)

γ̃
+ 1)(κ̃2‖x1‖+ κ̃2/γ̃)2

≤ 4G(
ln(γ̃‖x1‖)

γ̃
+ 1)κ̃4(‖x1‖2 +

1

γ̃2
)

≤ 8G(
ln(‖x1‖)

γ̃
+ 1)κ̃4‖x1‖2γ̃−2

≤ 8G(ln(‖x1‖) + 1)κ̃4‖x1‖2γ̃−3

≤ 16Gκ̃4‖x1‖3γ̃−3.

The same upper bound holds for T2 = 0.

Appendix C. Proofs for Section 4.3

In this section we give an upper bound on quantities related to the controllability of the stabilized
system (A + BK̂,B), and include the main results in Hazan et al. (2020) for completeness. The
following lemma is an equivalent characterization of strong controllability.

Lemma 20 A system defined by xt+1 = Axt +But is (k, κ)-strongly controllable if and only if it
can drive x1 = 0 to any state xf where ‖xf‖ = 1 in k steps with control cost at most κ. I.e., there
exists u1, . . . , uk, x2, . . . , xk+1 such that xk+1 = xf , xt+1 = Axt +But, and

k∑
t=1

‖ut‖2 ≤ κ.
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Proof Consider the quadratic program:

min
(ut)kt=1

k∑
t=1

‖ut‖2

s.t. xt+1 = Axt +But

xk+1 = xf , x1 = 0

(2)

Recall Ck = [B AB · · · Ak−1B], and let (v1, v2, . . . , vk) ∈ Rkn denote the concatenation of k
n-dimensional vectors. Then this is equivalent to

min
(ut)kt=1

k∑
t=1

‖ut‖2

s.t. Ck(uk, uk−1, . . . , u1) = xf

(3)

Suppose the system is (k, κ) strongly controllable, then Ck has full row-rank, and CkC>k is invert-
ible with ‖(CkC>k )−1‖ ≤ κ. Therefore (3) is feasible for all unit vectors xf . By Lemma B.6 in
Cohen et al. (2018), an optimal solution to (3) is given by C>k (CkC

>
k )−1xf , and its value is at most

k∑
t=1

‖ut‖2 = ‖C>k (CkC
>
k )−1xf‖2 = x>f (CkC

>
k )−1xf ≤ ‖(CkC>k )−1‖ = κ.

Now suppose for any unit vector xf , there exists u1, . . . , uk, x2, . . . , xk+1 such that xk+1 = xf ,
xt+1 = Axt +But, and

∑k
t=1 ‖ut‖2 ≤ κ. Then (3) is feasible for any unit vector xf , implying that

Ck has full row-rank and (CkC
>
k ) is invertible. Moreover, the optimal value is at most κ. Let xf be

the eigenvector corresponding to the largest eigenvalue of (CkC
>
k )−1. Then an optimal solution to

(3) is C>k (CkC
>
k )−1xf , and the value satisfies ‖C>k (CkC

>
k )−1xf‖2 = x>f (CkC

>
k )−1xf ≤ κ. We

conclude that ‖(CkC>k )−1‖ ≤ κ, and the system is (k, κ) strongly controllable.

Using our characterization, we show an upper bound on the controllability parameter of (A +
BK,B) where K is any linear controller with a bounded spectral norm.

Lemma 21 Suppose (A,B) is (k, κ) strongly controllable and ‖A‖, ‖B‖ ≤ β. Let K be a linear
controller with ‖K‖ ≤ κ′, then the system (A + BK,B) is (k, κ0) strongly controllable, with
κ0 = 4κ′2k2β2kκ.

Proof Let Ck = [B AB · · · Ak−1B]. By the definition of strong controllability, Ck has full row-
rank, and under the noiseless system xt+1 = Axt + But, any state is reachable by time k + 1
starting from x1 = 0. We will show that any state is reachable at time t + 1 for the system (A +
BK,B) as well. Let v ∈ Rm be an arbitrary state, and the sequence of controls (u1, u2, . . . , uk) =
C>k (CkC

>
k )−1v can be used to reach v from initial state x1 = 0, i.e.

xk+1 =
k∑
i=1

Ak−iBui = Ck(u1, u2, . . . , uk) = v.

Let {xt} denote the state trajectory under controls {ut}, where xk+1 = v. Consider the system
yt+1 = (A+BK)yt +Bzt = Ayt +B(zt +Kyt), where yt’s are states and zt’s are controls. We
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claim that the sequence of controls zt = ut − Kyt can be used to drive the system to v in k + 1
steps from initial state y1 = 0. Let {yt} denote the system’s trajectory under controls {zt}. For our
base case, we have y2 = B(z1 +Ky1) = Bu1 = x2, since y1 = x1 = 0, z1 = u1 −Ky1. Assume
xt = yt for some t ≤ k. For t+1, yt+1 = Ayt+B(zt+Kyt) = Ayt+But = Axt+But = xt+1.
We conclude that the trajectories {xt} and {yt} are the same and v = yk+1. Since we can write
yk+1 =

∑k
i=1(A+BK)k−iBzi, yk+1 is in the range of the matrix C ′k = [B (A+BK)B · · · (A+

BK)k−1B]; therefore C ′k has full row-rank.
Now we show the controls {zt} satisfy

∑k
t=1 ‖zt‖2 ≤ 4κ′2k2β2kκ‖v‖2. By our choice of zt,

we have zt = ut −Kyt = ut −Kxt; therefore
∑k

t=1 ‖zt‖2 ≤ 2
∑k

t=1(‖ut‖2 + ‖K‖2‖xt‖2). By
our choice of ut, we have

k∑
t=1

‖ut‖2 = ‖C>k (CkC
>
k )−1v‖2 = v>(CkC

>
k )−1v ≤ κ‖v‖2.

Further, the trajectory {xt}kt=1 satisfies

‖xt‖2 = ‖
t−1∑
i=1

At−1−iBui‖2 ≤ k
t−1∑
i=1

‖At−1−iB‖2‖ui‖2 ≤ kβ2kκ‖v‖2

Hence we have
k∑
t=1

‖zt‖2 ≤ 2κ‖v‖2 + 2κ′2k2β2kκ‖v‖2 ≤ 4κ′2k2β2kκ‖v‖2.

By Lemma 20, (A+BK,B) is (k, 4κ′2k2β2kκ) strongly controllable.

Algorithm 4 is the main algorithm (Algorithm 1) in Hazan et al. (2020), where T0, η,H are
internal parameters that can be set by the learner. In line 10, let ΠM denote projection onto the set
M, and let ft denote the surrogate cost at time t as in Definition 11 of Hazan et al. (2020). Theorem
22 gives the regret bound for the algorithm when the internal parameters are set appropriately.

Theorem 22 [Theorem 12 in Hazan et al. (2020)] Suppose K̂ is (κ̃, γ̃) strongly stable for (A,B),
and the system (A + BK̂,B) is (k, κ∗) strongly controllable. In addition, assume that the noise
sequence wt satisfies ‖wt‖ ≤ W for all t. Then Algorithm 4 with H = Θ(γ̃−1 log((κ∗)2T )), η =
Θ(GW

√
T )−1, T0 = Θ(T 2/3 log(1/δ)), incurs regret upper bounded by

Regret = O(poly(κ∗, γ̃−1, k, dx, du, G,W )T 2/3 log(1/δ)).

with probability at least 1− δ for controlling an unknown LDS.

Appendix D. Proofs for Lower Bound for Randomized Black-box Control
Algorithms

Lemma 23 Let T = dx/8. There exists a sequence of orthonormal matrices V1, . . . , VT , such that
for t ∈ [T ], Vt only depends on x1, . . . , xt, u1, . . . , ut and they satisfy the following condition:
Let rt denote the rank of span(x1, . . . , xt, u1, . . . , ut), and denote the first rt columns of Vt as
V
‖
t , and the last d − rt columns of Vt as V ⊥t . Let ht = (V ⊥t−1)>xt, then for all t ∈ [T ], condi-

tioned on x1, x2, . . . , xt, u1, u2, . . . , ut, Au1, . . . , Aut−1, we have (V ⊥t )>xt+1 = ct+zt, where the
coordinates of zt are iid normally distributed, i.e. zt(i) ∼ N(0, γ‖ht‖

2

d ).
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Algorithm 4 Adversarial Control via System Identification

1: Input: Number of iterations T , γ̃, K̂ such that K̂ is (κ̃, γ̃) strongly stable, κ∗, k such that
(A+BK̂,B) is (k, κ∗) strongly controllable, and κ∗ ≥ κ̃.

2: Phase 1: System Identification.
3: Call Algorithm 2 in (Hazan et al., 2020) with a budget of T0 rounds to obtain system estimates
Ã, B̃.

4: Phase 2: Robust Control.
Define the constraint setM = {M = {M0 . . .MH−1} : ‖M i−1‖ ≤ κ4(1− γ)i}.

5: Initialize ŵT0 = xT0+1 and ŵt = 0 for t < T0.
6: for t = T0 + 1, . . . , T do
7: Choose the action:

ut = K̂xt +
H∑
i=1

M i−1
t ŵt−i.

8: Observe the new state xt+1 and cost ct(xt, ut).
9: Record estimate ŵt = xt+1 − Ãxt − B̃ut.

10: Update:
Mt+1 = ΠM(Mt − η∇ft(Mt|Ã, B̃, {ŵ}))

11: end for

Proof Fix t ≤ T , and condition on x1, . . . , xt, u1, . . . , ut−1, Au1, . . . , Aut. Let V1, . . . , Vt−1 be
constructed as in Corollary 26. By construction, the first rt−1 columns of Vt−1, denoted as V ‖t−1,
form a basis for span(x1, . . . , xt−1, u1, . . . , ut−1). Recall the last d − rt−1 columns of Vt−1 is
denoted as V ⊥t−1. We have

(V ⊥t )>xt+1 = (V ⊥t )>Axt + (V ⊥t )>ut

= (V ⊥t )>AVt−1V
>
t−1xt ((V ⊥t )>ut = 0)

= (V ⊥t )>
[
AV

‖
t−1 AV ⊥t−1

]
V >t−1xt

=
[

(V ⊥t )>AV
‖
t−1 (V ⊥t )>AV ⊥t−1

]
V >t−1xt

=
[

(V ⊥t )>AV
‖
t−1 (V ⊥t )>AV ⊥t−1

] [
(V
‖
t−1)>

(V ⊥t−1)>

]
xt

= (V ⊥t )>AV
‖
t−1(V

‖
t−1)>xt + (V ⊥t )>AV ⊥t−1(V ⊥t−1)>xt

Denote (V ⊥t )>AV
‖
t−1(V

‖
t−1)>xt as ct ∈ Rd−rt , and recall ht = (V ⊥t−1)>xt. We have

(V ⊥t )>xt+1 = ct +Gtht,

whereGt = (V ⊥t )>AV ⊥t−1. By Corollary 26, conditioned on x1, . . . , xt, u1, . . . , ut,Au1, . . . , Aut−1,
Gt ∼ N(d−rt, d−rt−1,

γ
dx

), and therefore the coordinates of zt = Gtht are iid normally distributed

with zero mean and γ‖ht‖2
dx

variance.
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Lemma 24 Let V1, . . . , VT be as in Lemma 10, and T ≤ dx/8. Let ht = (V ⊥t−1)>xt, with prob-
ability at least 1 − exp(−dx

25 ), conditioned on x1, x2, . . . , xt, u1, u2, . . . , ut, Au1, . . . , Aut−1, we

have ‖(V ⊥t )>xt+1‖2 ≥ γ‖ht‖2
20 .

Proof By Lemma 10, conditioned on x1, . . . , xt, u1, . . . , ut,Au1, . . . , Aut, we have ht+1 = (V ⊥t )>xt+1 ∼
N(ct,

γ‖ht‖2
dx

I). There exists a rotation R of ht+1, such that Rht+1 ∼ N(‖ct‖e1,
γ‖ht‖2
dx

I). Let
Rht+1(i) denote the i-th coordinate of the vector Rht+1, then we have

∑dx−rt
i=2 Rht+1(i)2 ∼

γ‖ht‖2
dx

χdx−rt−1 follows a chi-square distribution. By Lemma 1 in Laurent and Massart (2000),
for a random variable Y ∼ χk, P[Y ≤ k − 2

√
kx] ≤ exp(−x). Therefore for t ≤ T < dx

8 ,
rt ≤ 2t ≤ dx

4 , we have

P[

dx−rt∑
i=2

Rht+1(i)2 ≤ γ‖ht‖2

20
] = P[

dx
γ‖ht‖2

dx−rt∑
i=2

Rht+1(i)2 ≤ dx
20

]

≤ P[
dx

γ‖ht‖2
dx−rt∑
i=2

Rht+1(i)2 ≤ dx − rt − 1− 2
√

(dx − rt − 1)dx/25]

≤ exp(−dx
25

)

We conclude that

P[‖(V ⊥t )>xt+1‖2 ≥
γ‖ht‖2

20
] = P[‖Rht+1‖2 ≥

γ‖ht‖2

20
] ≥ P[

dx−rt∑
i=2

Rht+1(i)2 ≥ γ‖ht‖2

20
]

≥ 1− exp(−dx
25

).

Lemma 25 Consider the observation model, where A ∼ N(d, d, γ), and a player can make
queries defined by vectors q1, q2, . . . , qT , T ≤ d. In turn, the player observes w1 = Aq1, w2 =
Aq2, . . . , wT = AqT . For any t ≤ T , the player is allowed to choose qt as a deterministic function
of the previous queries and observations. Let rt denote the rank of span(q1, . . . , qt). Then for all
t ≤ T , there exists an orthonormal matrix Vt that can be constructed only as a function of q1, . . . , qt,
such that with V ⊥t denoting the last d− rt columns of Vt, the following hold:

1. Conditioned on q1, q2, . . . , qt, w1, . . . , wt−1, (V ⊥t )>AV ⊥t−1 ∼ N(d− rt, d− rt−1, γ).

2. Conditioned on q1, q2, . . . , qt, w1, . . . , wt, AV ⊥t ∼ N(d, d− rt, γ).

Proof We first construct V1, . . . , VT . For t ≤ T , let rt be the rank of span(q1, q2, . . . , qt), rt ≤ t,
and denote the normalized component of qt that lies outside of span(q1, q2, . . . , qt−1) as q̃t. Let
W1, . . . ,WT be orthonormal matrices, such that if q̃t = 0, Wt = I; otherwise, the first rt−1 columns
of Wt are standard basis vectors e1, . . . , ert−1 , and the rt-th column of Wt, denoted as zt, is such
that W1W2 · · ·Wt−1zt = q̃t. Such a Wt exists because the product W1 · · ·Wt−1 is an orthonormal
matrix and thus is full rank. Moreover, zt is orthogonal to e1, . . . ert−1 by the construction of q̃t.
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Let Vt = W1W2 · · ·Wt. Then by definition, Vt is orthonormal, and the first rt columns of Vt form a
basis for span(q1, q2, . . . , qt). Moreover, Vt only depends on q1, . . . , qt. Denote the first rt columns
of Vt by V ‖t , and recall that the last d − rt columns of Vt is denoted by V ⊥t . Now we prove the
lemma by induction.
Base case. Define V0 = 0. Since q1 is chosen without any observations, it is independent of
A, and hence V1 is independent of A. Therefore conditioned on q1, AV ‖1 is independent of AV ⊥1 ,
and (V ⊥1 )>AV ⊥0 = (V ⊥1 )>AI ∼ N(d − r1, d, γ), AV ⊥1 ∼ N(d, d − r1, γ). Since w1 only
depends on AV ‖1 , it is independent of AV ⊥1 . We conclude that conditioned on q1 and w1, AV ⊥1 ∼
N(d, d− r1, γ).
Inductive step. Suppose for all s < t, the two conditions in the lemma hold. By definition, qt is
a deterministic function of q1, . . . , qt−1, w1, . . . , wt−1, so by the inductive hypothesis, conditioned
on q1, . . . , qt−1, qt, w1, . . . , wt−1, AV ⊥t−1 ∼ N(d, d− rt−1, γ), and we can obtain Wt and Vt. Since
Vt is only a function of q1, . . . , qt, we have (V ⊥t )>AV ⊥t−1 ∼ N(d− rt, d− rt−1, γ). Denote the last
d− rt columns of Wt as Zt. Now observe

V ⊥t = Vt−1Wt

[
0rt×rt
Id−rt

]
=
[
V
‖
t−1 V ⊥t−1

]
Zt

By construction the columns of Zt are orthogonal to e1, . . . , ert−1 , therefore their first rt−1 coordi-

nates are all zero, and we can write Zt =

[
0(rt−1)×(d−rt)

Z̃t

]
, where Z̃t ∈ R(d−rt−1)×(d−rt) have

orthonormal columns. Therefore we have

V ⊥t = V ⊥t−1Z̃t

Since Z̃t is independent of AV ⊥t−1, we have AV ⊥t = AV ⊥t−1Z̃t ∼ N(d, d− rt, γ). Now we need to
show that this distribution doesn’t change conditioned on wt. If qt ∈ span(q1, . . . , qt−1), then wt =
Aqt can be determined by w1, . . . , wt−1, so the distribution of AV ⊥t remains the same conditioned
on wt. Now assume qt /∈ span(q1, . . . , qt−1), and rt = rt−1 + 1. Since wt is determined by
AV

‖
t , it suffices to show that AV ‖t is independent of AV ⊥t conditioned on q1, . . . , qt, w1, . . . , wt−1.

Consider the following decomposition

AV
‖
t = A

[
V
‖
t−1 Vtert

]
=
[
AV

‖
t−1 AVtert

]
.

By the construction of V ‖t−1,AV ‖t−1 can be determined byw1, . . . , wt−1. Therefore, by the inductive

hypothesis, AV ‖t−1 is independent of AV ⊥t−1Z̃t = AV ⊥t . Now we expand Vtert = Vt−1Wtert , and
as before, let zt = Wtert . Since zt is orthogonal to e1, . . . , ert−1 , the first rt−1 coordinates of zt are
zero. Let the last d − rt−1 coordinates of zt be yt, then we have Vtert = Vt−1zt = V ⊥t−1yt, and yt
is orthogonal to the columns of Z̃t. By the inductive hypothesis, AV ⊥t−1 ∼ N(d, d − rt−1, γ), so

AV ⊥t−1yt is independent of AV ⊥t−1Z̃t. We conclude that AVtert is independent of AV ⊥t , so AV ‖t is
independent of AV ⊥t and conditioned on wt, AV ⊥t ∼ N(d, d− rt, γ).

Corollary 26 Consider an alternative observation model, where A ∼ N(d, d, γ), and a player
can make two queries at a time: p1, q1, p2, q2, . . . , pT , qT , T < d/2. The player observes vt =
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Apt, wt = Aqt for t ∈ [T ], and the player can choose pt, qt as deterministic functions of {ps}t−1
s=1,

{qs}t−1
s=1, {vs}

t−1
s=1, {ws}

t−1
s=1. Let rt denote the rank of span({ps}ts=1, {qs}ts=1). Then for all t ≤ T ,

there exists an orthonormal matrix Vt that can be constructed only as a function of {ps}ts=1, {qs}ts=1,
such that with V ⊥t denoting the last d− rt columns of Vt, the following hold:

1. Conditioned on {ps}ts=1, {qs}ts=1, {vs}
t−1
s=1, {ws}

t−1
s=1, (V ⊥t )>AV ⊥t−1 ∼ N(d−rt, d−rt−1, γ).

2. Conditioned on {ps}ts=1, {qs}ts=1, {vs}ts=1, {ws}ts=1, AV ⊥t ∼ N(d, d− rt, γ).

Proof The proof is very similar to the proof of Lemma 25.

Appendix E. Lower Bound for Deterministic Black-box Control Algorithms

Theorem 27 LetA be a deterministic black-box control algorithm. Then there exists a stabilizable
system that is also (1, 1)-strongly controllable, and a sequence of oblivious perturbations and costs,
such that with x1 = e1, and T = dx, we have

RegretT (A) = 2Ω(L).

Let ct(x, u) = ‖x‖2 + ‖u‖2 for all t. Consider the noiseless system xt+1 = Q>V xt + ut for some
Q and orthogonal V . Under this systemwt = 0 for all t, and a stabilizing controller isK = −Q>V .
Observe that J(K) is constant. The system is also (1, 1) strongly controllable because B = I . Let
Vi, Qi ∈ R1×dx denote the rows of V and Q, respectively. Fix a deterministic algorithm A, and let
ut = A(x1, x2, . . . , xt, c1, . . . , ct) be the control produced by A at time t. There exists Q,V such
that under this system, A outputs controls such that ‖xdx‖ ≥ 2dx−1.

The construction. Set x1 = e1. We construct Q and V as follows: let y0 = e1, set V1 = y>0 = e>1 ;
for i = 1, . . . , dx − 1, define

zi =

{
ui if ui /∈ span(V >1 , . . . , V >i )

v s.t. v ∈ span(V >1 , . . . , V >i )⊥, ‖v‖ = 1 otherwise

Let yi be the component of zi that is independent of V >1 , . . . , V >i ,

yi =
zi −

∑i
j=1 ΠV >j

(zi)V
>
j

‖zi −
∑i

j=1 ΠV >j
(zi)V >j ‖

,

where Πv(z) denotes the projection of z onto vector v. Set Qi = diy
>
i for some di 6= 0 to be

specified later, and set Vi+1 = y>i .
The next lemma justifies this iterative construction of V by showing that the trajectory x1, . . . , xt

is not affected by the choice of Vi, Qi for i ≥ t. As a result, without loss of generality we can set Vt
after obtaining xt, and set Qt after receiving ut.

Lemma 28 As long as V is orthogonal, the states satisfy xt =
∑t−1

i=1 c
t
iV
>
i + cttyt−1 for some

constants cti that only depend on A and {Qi}t−1
i=1.
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Proof We prove the lemma by induction. For our base case, x1 is trivially c1
1e1 and it is fixed for

all choices of Q,V . Set V1 = e>1 . Assume the lemma is true for xt, and we have specified Vi
for i ≤ t, Qi for i < t. The specified rows of V are orthonormal by construction. Note that by
our construction, xt is obtained first, and then we set Vt = y>t−1. Since ut only depends on the
current trajectory up to xt, it is well-defined, and we can obtain zt. By definition of yt, we can write
ut =

∑t
i=1 a

t
iV
>
i +att+1yt for some coefficients ati. Set Qt = dty

>
t as in the lemma. The next state

is then

xt+1 = Q>V xt + ut = Q>V
t∑
i=1

ctiV
>
i +

t∑
i=1

atiV
>
i + att+1yt Vt = y>t−1

=
t∑
i=1

ctiQ
>ei +

t∑
i=1

atiV
>
i + att+1yt V is orthogonal

=

t∑
i=1

ctiQ
>
i +

t∑
i=1

atiV
>
i + att+1yt

=
t−1∑
i=1

ctidiV
>
i+1 + cttdtyt +

t∑
i=1

atiV
>
i + att+1yt Qi = diy

>
i = diVi+1

=
t∑
i=1

ct+1
i V >i + cttdtyt + att+1yt (4)

We have shown in the inductive step that xt+1 does not depend on the choice of Vt+1 as long as V
is orthogonal, hence we can set Vt+1 = y>t . Moreover, xt+1 is not affected by Qi for i ≥ t + 1 by
inspection.

The magnitude of the state. In this section we specify the constants di in the construction to
ensure that the state has an exponentially increasing magnitude. Let ui =

∑i
j=1 a

i
jV
>
j + aii+1yi,

xi =
∑i−1

j=1 c
i
jV
>
j + ciiyi−1. Set di = sign(cii) sign(aii+1) · 2. The quantities cii and aii+1 are well-

defined when we set Qi after obtaining xi and ui. Intuitively, Q>V applied to xi aligns yi−1 to yi,
and we grow the magnitude of the yi component in xt+1 multiplicatively.

Lemma 29 The states satisfy xt =
∑t

i=1 c
t
iV
>
i , and |ctt| ≥ 2|ct−1

t−1|.

Proof By equation 4 in Lemma 28, we can express xt+1 =
∑t

i=1 c
t+1
i V >i + cttdtyt + att+1yt. As

we claimed before, since xt+1 does not depend on the choice of Vt+1, we set Vt+1 = yt, and write
xt+1 =

∑t+1
i=1 c

t+1
i V >i . By our choice of dt, we have

ct+1
t+1 = cttdt + att+1 = sign(ctt) sign(att+1) · 2ctt + att+1 = sign(att+1)(2|ctt|+ |att+1|).

We conclude that |ct+1
t+1| = 2|ctt|+ |att+1| ≥ 2|ctt|.

Observe that x1 = c1
1e1 where |c1

1| = 1; therefore we have ‖xdx‖ ≥ |c
dx
dx
| ≥ 2dx−1.
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Size of the system. Our construction only requires Q1, . . . , Qdx−1 to be specified, and with-
out loss of generality we take Qdx = ddxV1 = 2V1. By inspection, Q can be written as Q =
DPV , where D = Diag(d1, d2, . . . , ddx) and P is a permutation matrix that satisfies (PV )i =
Vi+1 (mod dx). Therefore the spectral norm of Q>V is at most ‖Q‖‖V ‖ ≤ 2. We conclude that for
this system, L = du + dx + 7, and the total cost is at least 2Ω(L).
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