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Abstract
We study the stochastic shortest path problem with adversarial costs and known transition, and
show that the minimax regret is Õ(

√
DT?K) and Õ(

√
DT?SAK) for the full-information setting

and the bandit feedback setting respectively, where D is the diameter, T? is the expected hitting
time of the optimal policy, S is the number of states, A is the number of actions, and K is the
number of episodes. Our results significantly improve upon the recent work of (Rosenberg and
Mansour, 2020) which only considers the full-information setting and achieves suboptimal regret.
Our work is also the first to consider bandit feedback with adversarial costs.

Our algorithms are built on top of the Online Mirror Descent framework with a variety of
new techniques that might be of independent interest, including an improved multi-scale expert
algorithm, a reduction from general stochastic shortest path to a special loop-free case, a skewed
occupancy measure space, and a novel correction term added to the cost estimators. Interestingly,
the last two elements reduce the variance of the learner via positive bias and the variance of the op-
timal policy via negative bias respectively, and having them simultaneously is critical for obtaining
the optimal high-probability bound in the bandit feedback setting.

1. Introduction

We study the stochastic shortest path (SSP) problem, where a learner tries to reach a goal state in a
Markov Decision Process (MDP) with minimum total cost. The problem proceeds in K episodes.
In each episode, the learner starts from a fixed state, sequentially selects an available action, incurs a
cost, and transits to the next state sampled from a fixed transition function. The episode ends when
the learner reaches a fixed goal state. The performance of the learner is measured by her regret,
which is the difference between her total cost over the K episodes and that of the best fixed policy.

The special case of SSP where the learner is guaranteed to reach the goal state within a fixed
number of steps is extensively studied in recent years. It is often known as episodic finite-horizon
reinforcement learning or equivalently loop-free SSP. The general case, however, is much less un-
derstood. Recently, Tarbouriech et al. (2020) and Cohen et al. (2020) study the case where the costs
are fixed or generated stochastically and develop algorithms with sub-linear regret. Another recent
work by Rosenberg and Mansour (2020) considers adversarial costs that are chosen arbitrarily but
revealed at the end of each episode (the so-called full-information setting). When the transition
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Table 1: Summary of our minimax optimal results and comparisons with prior work. Here, D,S,A
are the diameter, number of states, and number of actions of the MDP, cmin is the minimum
cost, T? ≤ D/cmin is the expected hitting time of the optimal policy, and K is the number
of episodes. Logarithmic terms are omitted. All algorithms can be implemented efficiently.
Algorithm 2 is completely parameter-free, while others require the knowledge of T?.

Minimax Regret (this work) (Rosenberg and Mansour, 2020)

Full information

Θ(
√
DT?K)

Õ
(

D
cmin

√
K
)

or Õ
(√

DT?K
3
4

)Algorithm 2 (expected bound)
Algorithm 3 (high probability bound)
Theorem 3 (lower bound)

Bandit feedback

Θ(
√
DT?SAK)

N/A
Algorithm 4 (expected bound)
Algorithm 5 (high probability bound)
Theorem 10 (lower bound)

function is known, their algorithm achieves Õ( D
cmin

√
K) regret where D is the diameter of the

MDP and cmin ∈ (0, 1] is a global lower bound of the cost for any state-action pair. When cmin = 0,
they provide a different algorithm with regret Õ(

√
DT?K

3/4) where T? is the expected time for the
optimal policy to reach the goal state. They also further study the case with unknown transition.

In this work, we significantly improve the state-of-the-art for the general SSP problem with
adversarial costs and known transition, by developing matching upper and lower bounds for both
the full-information setting and the bandit feedback setting. More specifically, our results are (see
also Table 1 for a summary):

• In the full-information setting, we show that the minimax regret is of order Θ(
√
DT?K)

(ignoring logarithmic terms), with no dependence on 1/cmin (it can be shown that T? ≤
D/cmin). We develop two algorithms, one with optimal expected regret (Algorithm 2) and an-
other with optimal high probability regret (Algorithm 3). Note that, as pointed out by Rosen-
berg and Mansour (2020), achieving high probability bounds for SSP is significantly more
challenging even in the full-information setting, since the learner is often not guaranteed to
reach the goal within a fixed number of steps with high probability. We complement our
algorithms and upper bounds with a matching lower bound in Theorem 3.

• Next, we further consider the more challenging bandit feedback setting where the learner
only observes the cost for the visited state-action pairs, which has not been studied before in
the adversarial cost case to the best of our knowledge. We show that the minimax regret is
of order Θ(

√
DT?SAK) (ignoring logarithmic terms) where S is the number of states and

A is the number of actions. We again developed two algorithms, one with optimal expected
regret (Algorithm 4) and another more complex one with optimal high probability regret
(Algorithm 5). A matching lower bound is shown in Theorem 10.
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Techniques Similarly to (Rosenberg and Mansour, 2020), our algorithms are all based on the
standard Online Mirror Descent (OMD) framework. However, a variety of new techniques are
developed on top of OMD to achieve our results. For example, to obtain the optimal expected
regret in the full-information setting without knowing T? ahead of time, we reduce the problem to
the multi-scale expert problem studied in (Bubeck et al., 2017; Foster et al., 2017; Cutkosky and
Orabona, 2018) and develop a new algorithm with an improved guarantee necessary to achieve our
results, which might be of independent interest.1

Our other algorithms all require a reduction from a general SSP instance to its loop-free version
(Definition 5) as well as executing OMD over a skewed occupancy measure space, both of which
are novel as far as we know. The skewed occupancy measure can be viewed as adding positive bias
to the costs, as a way to reduce the variance of the learner. These algorithms require setting some
parameters in terms of T? to achieve the optimal regret though (see discussions after Theorem 8).

In addition, the two algorithms in the bandit feedback setting require the usage of the log-barrier
regularizer, an increasing learning rate schedule similar to (Lee et al., 2020a), and injecting another
negative bias term into the cost estimator to reduce the variance of the optimal policy. We find the
necessity of both positive and negative bias in the bandit setting intriguing.

Related work Earlier research studies SSP as a control problem and focuses on finding the op-
timal policy efficiently with all the parameters known; see for example (Bertsekas and Tsitsiklis,
1991; Bertsekas and Yu, 2013). Learning with low regret in SSP was first studied in (Tarbouriech
et al., 2020), which considers fixed or stochastic costs and proposes algorithms with sub-linear re-
gret that depends on 1/cmin. Cohen et al. (2020) remove the 1/cmin dependence and propose an
algorithm with almost optimal regret. Note that their bounds do not depend on the parameter T?;
see our discussions after Theorem 3 on why T? shows up in the adversarial cost case.

To the best of our knowledge, (Rosenberg and Mansour, 2020) is the only existing work that
studies SSP with adversarial costs. They only study the full-information setting, with either known
or unknown transition, while we consider both the full-information setting and the bandit feedback
setting, but only with known transition. We note that our loop-free reduction is readily applied to
the unknown transition case, but it only leads to some suboptimal bounds (details omitted).

As mentioned, the special case of SSP with a fixed horizon is extensively studied in recent years,
for both stochastic costs (see e.g., (Azar et al., 2017; Jin et al., 2018; Zanette and Brunskill, 2019;
Shani et al., 2020)) and adversarial costs (see e.g., (Neu et al., 2012; Zimin and Neu, 2013; Rosen-
berg and Mansour, 2019; Jin et al., 2020)). The latter also heavily relies on the OMD framework,
but the occupancy measure space that OMD operates over is much simpler compared to general
SSP. Note that, although one of our key algorithmic ideas is to reduce general SSP to this special
case, it does not mean that one can directly apply these existing algorithms after the reduction, as it
only leads to suboptimal bounds. Instead, one must further utilize different properties of the original
SSP instance to achieve the minimax regret, as we will discuss in detail.

2. Preliminaries

A stochastic shortest path (SSP) instance is defined by an MDP M = (S, s0, g,A, P ) and a se-
quence of K cost functions {ck}Kk=1. Here, S is a finite state space, s0 ∈ S is the initial state,

1. See also concurrent work (Chen et al., 2021) by the same authors for in-depth discussions and significant extensions
of this idea.
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g /∈ S is the goal state, and A = {As}s∈S is a finite action space where As is the available ac-
tion set at state s. We denote by Γ = {(s, a) : s ∈ S, a ∈ As} the set of valid state-action
pairs, and by S = |S| and A = (

∑
s∈S |As|)/S the total number of states and the average number

of available actions respectively. The transition function P : Γ × S ∪ {g} → [0, 1] is such that
P (s′|s, a) is the probability of transiting to s′ after taking action a ∈ As at state s, and it satisfies∑

s′∈S∪{g} P (s′|s, a) = 1 for each (s, a) ∈ Γ. Finally, the cost function ck : Γ → [0, 1] specifies
the cost for each state-action pair during episode k.

The learning protocol is as follows. The learner interacts with a known MDP M through K
episodes. In each episode k = 1, . . . ,K, the environment adaptively decides the cost function ck,
which can depend on the learner’s algorithm and the randomness before episode k. Simultaneously,
starting from the initial state s0 ∈ S , the learner sequentially selects an action and transits to the
next state according to the transition function, until reaching the goal state g. More formally, in
each step i of the episode, the learner observes its current state sik (with s1

k = s0 always). If sik 6= g,
the learner selects an action aik ∈ Asik and moves to the next state si+1

k sampled from P (·|sik, aik).
The episode ends when the current state is the goal state, and we denote by Ik the number of steps
in this episode such that sIk+1

k = g.
We consider two different types of feedback on the cost functions for the learner after the

goal state is reached. In the full-information setting, the entire cost function ck is revealed to the
learner, while in the bandit feedback setting, only the costs for the visited state-action pairs, that is,
ck(s

i
k, a

i
k) for i = 1, . . . , Ik, are revealed to the learner.

Proper policies and related concepts Before discussing the goal of the learner, we introduce
several necessary concepts. A stationary policy is a mapping π such that π(a|s) specifies the prob-
ability of taking action a ∈ As in state s. It is deterministic if π(·|s) concentrates on one single
action (denoted by π(s)) for all s. It is proper if executing it in the MDP starting from any state
ensures that the goal state is reached within a finite number of steps with probability 1 (otherwise it
is called improper). The set of all deterministic and proper policies is denoted by Πproper. Follow-
ing (Rosenberg and Mansour, 2020), we make the basic assumption Πproper 6= ∅.

Let T π(s) denote the expected hitting time it takes for π to reach g starting from state s. If π
is proper, then T π(s) < ∞ for any state s. The fast policy πf is the (deterministic) policy that
achieves the minimum expected hitting time starting from any state, and the diameter of the MDP
is defined as D = maxs∈S minπ∈Πproper T

π(s) = maxs∈S T
πf (s). Note that both πf and D can be

computed ahead of time since we consider the known transition setting.
Given a cost function c and a proper policy π, we define the cost-to-go function Jπ : S → [0,∞)

such that Jπ(s) = E
[∑I

i=1 c(s
i, ai)

∣∣∣P, π, s1 = s
]
, where the expectation is over the randomness

of the action ai drawn from π(·|si), the state si+1 drawn from P (·|si, ai), and the number of steps
I before reaching g. We use Jπk to denote the cost-to-go function with respect to the cost ck.

Learning objective The learner’s goal is to minimize her regret, defined as the difference be-
tween her total cost and the total expected cost of the best deterministic proper policy in hind-
sight: RK =

∑K
k=1

∑Ik
i=1 ck(s

i
k, a

i
k)−

∑K
k=1 J

π?

k (s0), where π? ∈ argminπ∈Πproper

∑K
k=1 J

π
k (s0).

By the Markov property, it is clear that π? is in fact also the optimal policy starting from any
other state, that is, π? ∈ argminπ∈Πproper

∑K
k=1 J

π
k (s) for any s ∈ S . Two quantities related

to π? play an important role in our analysis: its expected hitting time starting from the initial state
T? = T π

?
(s0) and its largest expected hitting time starting from any state Tmax = maxs T

π?(s). Let
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cmin = mink min(s,a) ck(s, a) be the minimum cost, and smax ∈ S be such that Tmax = T π
?
(smax).

We have Tmaxcmin ≤ Jπ
?

k (smax) and Jπ
f

k (smax) ≤ D by definition. Together with the fact∑K
k=1 J

π?

k (smax) ≤
∑K

k=1 J
πf

k (smax), this implies T? ≤ Tmax ≤ D
cmin

if cmin > 0 (which is
one of the reasons why cmin shows up in existing results).

Occupancy measure For a fixed MDP, a proper policy π induces an occupancy measure qπ ∈
RΓ
≥0 such that qπ(s, a) is the expected number of visits to (s, a) when executing π, that is: qπ(s, a) =

E
[∑I

i=1 I{si = s, ai = a}
∣∣∣P, π, s1 = s0

]
. Similarly, qπ(s) =

∑
a∈As qπ(s, a) is the expected

number of visits to s when executing π. Clearly, we have Jπk (s0) =
∑

(s,a)∈Γ qπ(s, a)ck(s, a) =
〈qπ, ck〉, and if the learner executes a stationary proper policy πk in episode k, then the expected
regret can be written as

E[RK ] = E

[
K∑
k=1

Jπkk (s0)− Jπ?k (s0)

]
= E

[
K∑
k=1

〈qπk − qπ? , ck〉

]
, (1)

converting the problem into a form of online linear optimization and making Online Mirror Descent
a natural solution to the problem. Note that, given a function q : Γ→ [0,∞), if it corresponds to an
occupancy measure, then the corresponding policy πq can clearly be obtained by πq(a|s) ∝ q(s, a).
Also note that T π(s0) =

∑
(s,a) qπ(s, a) =

∑
s∈S qπ(s).

Other notations We let Nk(s, a) denote the (random) number of visits of the learner to (s, a)
during episode k, so that the regret can be re-written as RK =

∑K
k=1 〈Nk − qπ? , ck〉. Throughout

the paper, we use the notation 〈f, g〉 as a shorthand for
∑

s∈S f(s)g(s),
∑

(s,a) f(s, a)g(s, a), or∑H
h=1

∑
(s,a) f(s, a, h)g(s, a, h) when f and g are functions in RS , RΓ, or RΓ×[H] (for some H)

respectively. Let Fk denote the σ-algebra of events up to the beginning of episode k, and Ek be a
shorthand of E[·|Fk]. For a convex function ψ, the Bregman divergence between u and v is defined
as: Dψ(u, v) = ψ(u)− ψ(v)− 〈∇ψ(v), u− v〉. For an integer n, [n] denotes the set {1, . . . , n}.

3. Minimax Regret for the Full-information Setting

In this section, we consider the simpler full-information setting where the learner observes ck in
the end of episode k. Somewhat surprisingly, even in this case, ensuring optimal regret is rather
challenging. We first propose an algorithm with expected regret Õ(

√
DT?K) and a matching lower

bound in Section 3.1. Notably, our algorithm is parameter-free and does not need to know T? ahead
of time.2 Next, in Section 3.2, by converting the problem into another loop-free SSP instance and
using a skewed occupancy measure space, we develop an algorithm that achieves the same regret
bound with high probability, although this requires the knowledge of T?.

3.1. Optimal expected regret

To introduce our algorithm, we first briefly review the SSP-O-REPS algorithm of Rosenberg and
Mansour (2020), which only achieves regret Õ( D

cmin

√
K). The idea is to run the standard Online

Mirror Descent (OMD) algorithm over an appropriate occupancy measure space. Specifically, they

2. The knowledge of K is also unnecessary due to the standard doubling trick.
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Algorithm 1 SSP-O-REPS
Input: upper bound on expected hitting time T .

Define: regularizer ψ(q) = 1
η

∑
(s,a) q(s, a) ln q(s, a) and η = min

{
1
2 ,

√
T ln(SAT )

DK

}
.

Initialization: q1 = argminq∈∆(T ) ψ(q) where ∆(T ) is defined in Eq. (2).
for k = 1, . . . ,K do

Execute πqk , receive ck, and update qk+1 = argminq∈∆(T ) 〈q, ck〉+Dψ(q, qk).

Algorithm 2 Adaptive SSP-O-REPS with Multi-scale Experts

Define: j0 = dlog2 T
πf (s0)e − 1, b(j) = 2j0+j , ηj = 1√

b(j)K max{D,16}
, N = dlog2Ke − j0.

Define: Ω =
{
p ∈ RN≥0 :

∑N
j=1 p(j) = 1

}
and ψ(p) =

∑N
j=1

1
ηj
p(j) ln p(j).

Initialize: p1 ∈ Ω such that p1(j) =
ηj
Nη1

, ∀j 6= 1.
Initialize: N instances of Algorithm 1, where the j-th instance uses parameter T = b(j).
for k = 1, . . . ,K do

1 For each j ∈ [N ], obtain occupancy measure qjk from SSP-O-REPS instance j.
2 Sample jk ∼ pk, execute the policy induced by qjkk , receive ck, and feed ck to all instances.
3 Compute `k and ak: `k(j) = 〈qjk, ck〉, ak(j) = 4ηj`

2
k(j), ∀j ∈ [N ].

4 Update pk+1 = argminp∈Ω 〈p, `k + ak〉+Dψ(p, pk).

define the occupancy measure space parameterized by size T > 0 as:

∆(T ) =

{
q ∈ RΓ

≥0 :
∑

(s,a)∈Γ

q(s, a) ≤ T,

∑
a∈As

q(s, a)−
∑

(s′,a′)∈Γ

P (s|s′, a′)q(s′, a′) = I{s = s0}, ∀s ∈ S

}
.

(2)

It is shown that every q ∈ ∆(T ) is a valid occupancy measure induced by the policy πq (recall
πq(a|s) ∝ q(s, a)). Therefore, as long as T is large enough such that qπ? ∈ ∆(T ), based on
Eq. (1), the problem is essentially translated to an instance of online linear optimization and can be
solved by maintaining a sequence of occupancy measures q1, . . . , qK updated according to OMD:
qk+1 = argminq∈∆(T ) 〈q, ck〉+Dψ(q, qk),where ψ is a regularizer with the default choice being the
negative entropy ψ(q) = 1

η

∑
(s,a) q(s, a) ln q(s, a) for some learning rate η > 0. See Algorithm 1

for the pseudocode and (Rosenberg and Mansour, 2020) for the details of implementing it efficiently.
Rosenberg and Mansour (2020) show that as long as qπ? ∈ ∆(T ), Algorithm 1 ensures

E[RK ] = Õ(T
√
K). To ensure qπ? ∈ ∆(T ), they set T = D

cmin
because

∑
(s,a)∈Γ qπ?(s, a) =

T? ≤ D
cmin

as discussed in Section 2. This leads to their final regret bound Õ( D
cmin

√
K).

We improve their approach using the following two ideas. First, we show a more careful analysis
for the same Algorithm 1 and use the fact that the total expected cost of π? is bounded by DK
instead of TK to obtain the following stronger guarantee.

Lemma 1 If T is such that qπ? ∈ ∆(T ), then Algorithm 1 guarantees: E[RK ] = Õ(
√
DTK).
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By using the same T = D
cmin

, this already leads to a better bound Õ(D
√
K/cmin). If T?

was known, setting T = T? would also immediately give the claimed bound Õ(
√
DT?K) (since

qπ? ∈ ∆(T?)), which is optimal as we show later.
The second new idea of our approach is thus to deal with unknown T? by learning it on the fly

via another online learning meta-algorithm (Algorithm 2). Specifically, we maintain roughly lnK
instances of Algorithm 1, where the j-th instance sets the parameter T as b(j) which is roughly
2j , so that there always exists an instance j? with b(j?) very close to the unknown T?. The meta-
algorithm treats each instance as an expert, and in each episode, samples one of these experts and
follows its policy (Line 2). If the regret of this meta-algorithm to instance j? is no larger than
Õ(
√
DT?K), then the overall regret to π? would clearly also be Õ(

√
DT?K).

While seemingly this appears to be a classic expert problem and might be solved by the standard
Hedge algorithm (Freund and Schapire, 1997), the key challenge is that the loss for each expert
j, denoted by `k(j) = 〈qjk, ck〉 (for episode k), has a different scale. Indeed, we have `k(j) ≤∑

(s,a) q
j
k(s, a) ≤ b(j). Standard algorithms such as Hedge have a regret bound that depends on a

uniform upper bound of all losses as large as b(N) ≈ K in our case, leading to a vacuous bound.
More advanced “multi-scale” algorithms (Bubeck et al., 2017; Foster et al., 2017; Cutkosky and
Orabona, 2018) mitigate the issue and ensure regret Õ(b(j?)

√
K) comparing to expert j?, which

still leads to Õ(T?
√
K) regret overhead and ruins the final bound.

To address this challenge, we propose a new multi-scale expert algorithm with regret bound

Õ
(√

b(j?)E[
∑K

k=1 `k(j
?)]
)

, which is always no worse than previous works since
∑K

k=1 `k(j
?) ≤

b(j?)K. The algorithm is similar to that of (Bubeck et al., 2017) which is OMD over the (N − 1)-
dimensional simplex with a weighted negative entropy regularizer ψ(p) =

∑N
j=1

1
ηj
p(j) ln p(j).

Here, each expert uses a different learning rate ηj that depends on the corresponding scale b(j).
The key difference of our algorithm is that we also add a correction term ak(j) = 4ηj`

2
k(j) to the

loss `k(j) (Line 4), an idea used in previous works such as (Steinhardt and Liang, 2014; Wei and
Luo, 2018) to obtain a bound in terms of the loss of the benchmark

∑K
k=1 `k(j

?). Another important
tweak is to set the initial distribution for expert j 6= 1 to be ηj

Nη1
. We note that this new and improved

multi-scale expert algorithm might be of independent interest.

To see why this improved bound Õ
(√

b(j?)E[
∑K

k=1 `k(j
?)]
)

helps, note that Lemma 1 imples:

E[
∑K

k=1 `k(j
?)] ≤ E[

∑K
k=1 J

π?

k (s0)] + Õ(
√
DT?K) ≤ DK + Õ(

√
DT?K). Thus, the overhead

of the meta-algorithm is of order Õ(
√
DT?K) as desired. We summarize the final guarantee below.

Theorem 2 Algorithm 2 enjoys the following expected regret bound: E[RK ] = Õ
(√
DT?K

)
.

Lower bound Our regret bound stated in Theorem 2 not only improves that of (Rosenberg and
Mansour, 2020), but is also optimal up to logarithmic terms as shown in the following lower bound.

Theorem 3 For any D,T?,K with K ≥ T? ≥ D + 1, there exists an SSP instance such that its
diameter is D+ 2, the optimal policy has hitting time T? + 1, and the expected regret of any learner
after K episodes is at least Ω

(√
DT?K

)
under the full-information and known transition setting.

Similarly to most lower bound proofs, our proof also constructs an environment with stochas-
tic costs and with a slightly better state hidden among other equally good states, and argues that
the expected regret of any learner with respect to the randomness of the environment has to be

7
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Ω
(√
DT?K

)
. At first glance, this appears to be a contradiction to existing results for SSP with

stochastic costs (Tarbouriech et al., 2020; Cohen et al., 2020), where the optimal regret is indepen-
dent of T?. However, the catch is that “stochastic costs” has a different meaning in these works.
Specifically, it refers to a setting where the cost for each state-action pair is drawn independently
from a fixed distribution every time it is visited, and is revealed to the learner immediately. On the
other hand, “stochastic costs” in our lower bound proof refers to a setting where at the beginning of
each episode k, ck is sampled once from a fixed distribution and then fixed throughout the episode.
Moreover, it is revealed only after the episode ends. It can be shown that our setting is harder due
to the larger variance of costs, explaining our larger lower bound and the seemingly contradiction.

3.2. Optimal high-probability regret

To obtain a high-probability regret bound, one needs to control the deviation between the actual
total cost of the learner

∑K
k=1 〈Nk, ck〉 and its expectation

∑K
k=1 〈qk, ck〉. While for most online

learning problems with full information, similar deviation can be easily controlled by the Azuma’s
inequality, this is not true for SSP as pointed out in (Rosenberg and Mansour, 2020), due to the lack
of an almost sure upper bound on the random variable 〈Nk, ck〉. Rosenberg and Mansour (2020,
Lemma E.1) point out that with high probability

∑
(s,a)Nπ?(s, a) is bounded by Tmax, and thus it is

natural to enforce the same for Nk. However, this at best leads to a bound of order Õ(
√
DTmaxK).

To achieve the optimal regret, we start with a closer look at the variance of the actual cost of any
policy, showing that it is in fact related to the corresponding cost-to-go function.

Lemma 4 Consider executing a stationary policy π in episode k. Then E[〈Nk, ck〉2] ≤ 2 〈qπ, Jπk 〉.

For the optimal policy π?, although
〈
qπ? , J

π?

k

〉
can still be as large as Tmax, one key observation

is that the sum of these quantities over K episodes is at most DT?K since
∑K

k=1

〈
qπ? , J

π?

k

〉
=∑

s∈S qπ?(s)
∑K

k=1 J
π?

k (s) ≤ DK
∑

s∈S qπ?(s) = DT?K, where the inequality is again due to
the optimality of π? and the existence of the fast policy πf :

∑K
k=1 J

π?

k (s) ≤
∑K

k=1 J
πf

k (s) ≤
DK. Given this observation, it is tempting to enforce that the learner’s policies π1, . . . , πK are also
such that

∑K
k=1

〈
qπk , J

πk
k

〉
≤ DT?K, which would be enough to control the deviation between∑K

k=1 〈Nk, ck〉 and
∑K

k=1 〈qπk , ck〉 by Õ(
√
DT?K) as desired by Freedman’s inequality. However,

it is unclear how to enforce this constraint since it depends on all the cost functions unknown ahead
of time. In fact, even if the cost functions were known, the constraint is also non-convex due to the
complicated dependence of Jπk on qπ. To address these issues, we propose two novel ideas.

First idea: a loop-free reduction Our first idea is to reduce the problem to a loop-free MDP
so that the variance E[〈Nk, ck〉2] takes a much simpler form that is linear in both the occupancy
measure and the cost function. Moreover, the reduction only introduces a small bias in the regret
between the original problem and its loop-free version. The construction of the loop-free MDP is
basically to duplicate each state by attaching a time step h for H1 steps, and then connect all states
to some virtual fast state that lasts for another H2 steps. Formally, we define the following.

Definition 5 For an SSP instance M = (S, s0, g,A, P ) with cost functions c1:K , we define, for
horizon parameters H1, H2 ∈ N, another loop-free SSP instance M̃ = (S̃, s̃0, g, Ã, P̃ ) with cost
function c̃1:K as follows:

• S̃ = (S ∪ {sf})× [H] where sf is an artificially added “fast” state and H = H1 +H2;

8
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• s̃0 = (s0, 1) and the goal state g remains the same;

• Ã = A ∪ {af}, where af is an artificially added action that is only available at (sf , h) for
h ∈ [H] (the available action set at (s, h) is As for all s 6= sf and h ∈ [H]);

• transition from (s, h) to (s′, h′) is only possible when h′ = h+ 1: for the first H1 layers, the
transition follows the original MDP in the sense that P̃ ((s′, h + 1)|(s, h), a) = P (s′|s, a)
and P̃ (g|(s, h), a) = P (g|s, a) for all h < H1 and (s, a) ∈ Γ; from layer H1 to layer
H , all states transit to the fast state: P̃ ((sf , h + 1)|(s, h), a) = 1 for all H1 ≤ h < H

and (s, a) ∈ Γ̃ , Γ ∪ {(sf , af )}; finally, the last layer transits to the goal state always:
P̃ (g|(s,H), a) = 1 for all (s, a) ∈ Γ̃;

• cost function is such that c̃k((s, h), a) = ck(s, a) and c̃k((sf , h), af ) = 1 for all (s, a) ∈ Γ
and h ∈ [H]; for notational convenience, we also write c̃k((s, h), a) as ck(s, a, h).

Note that in this definition, there are some redundant states such as (s, h) for s ∈ S and h > H1

or (sf , h) for h ≤ H1 since they will never be visited. However, having these redundant states
greatly simplifies our presentation. For notations related to the loop-free version, we often use
a tilde symbol to distinguish them from the original counterparts (such as M̃ and S̃), and for a
function f̃((s, h), a) that takes a state in M̃ and an action as inputs, we often simplify it as f(s, a, h)

(such as ck and qk). For such a function, we will also use the notation h ◦ f ∈ RΓ̃×[H] such that
(h ◦ f)(s, a, h) = h · f(s, a, h). Similarly, for a function f ∈ RΓ̃, we use the same notation
h ◦ f ∈ RΓ̃×[H] such that (h ◦ f)(s, a, h) = h · f(s, a).

As mentioned, one key reason of considering such a loop-free MDP is that the variance of the
learner’s actual cost takes a much simpler form that is linear in both the occupancy measure and the
cost function, as shown in the lemma below (which is an analogue of Lemma 4).

Lemma 6 Consider executing a stationary policy π̃ in M̃ in episode k and let Ñk(s, a, h) ∈ {0, 1}
denote the number of visits to state-action pair ((s, h), a). Then E[〈Ñk, ck〉2] ≤ 2 〈qπ̃,h ◦ ck〉.

Next, we complete the reduction by describing how one can solve the original problem via
solving its loop-free version. Given a policy π̃ for M̃ , we define a non-stationary policy σ(π̃) for
M as follows: for each step h ≤ H1, follow π̃(·|(s, h)) when at state s; after the first H1 steps (if
not reaching g yet), execute the fast policy πf until reaching the goal state g. When executing σ(π̃)
in M for episode k, we overload the notation Ñk defined in Lemma 6 and let Ñk(s, a, h) be 1 if
(s, a) is visited at time step h ≤ H1, or 0 otherwise; and Ñk(sf , af , h) be 1 if H1 < h ≤ H and
the goal state g is not reached within H1 steps, or 0 otherwise. Clearly, Ñk(s, a, h) indeed follows
the same distribution as the number of visits to state-action pair ((s, h), a) when executing π̃ in M̃ .
We also define a deterministic policy π̃? for M̃ that mimics the behavior of π? in the sense that
π̃?(s, h) = π?(s) for s ∈ S and h ≤ H1 (for larger h, s has to be sf and the only available action is
af ). The next lemma shows that, as long as the horizon parametersH1 andH2 are set appropriately,
this reduction makes sure that the regret between these two problems are similar.

Lemma 7 Suppose H1 ≥ 8Tmax lnK,H2 = d4D ln 4K
δ e and K ≥ D for some δ ∈ (0, 1). Let

π̃1, . . . , π̃K be policies for M̃ with occupancy measures q1, . . . , qK ∈ [0, 1]Γ̃×[H]. Then the regret

9
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Algorithm 3 SSP-O-REPS with Loop-free Reduction and Skewed Occupancy Measure
Input: Upper bound on expected hitting time T , horizon parameter H1, confidence level δ

Parameters: η = min
{

1
2 ,
√

T
DK

}
, λ =

√
ln(1/δ)
DTK , H2 = d4D ln 4K

δ e
Define: H = H1 +H2, regularizer ψ(φ) = 1

η

∑H
h=1

∑
(s,a)∈Γ̃

φ(s, a, h) lnφ(s, a, h)

Define: decision set Ω = {φ = q + λh ◦ q : q ∈ ∆̃(T )} (with ∆̃(T ) defined in Eq. (8))
Initialization: φ1 = q1 + λh ◦ q1 = argminφ∈Ω ψ(φ).
for k = 1, . . . ,K do

Execute σ(π̃k) where π̃k is such that π̃k(a|(s, h)) ∝ qk(s, a, h), and receive ck.
Update φk+1 = qk+1 + λh ◦ qk+1 = argminφ∈Ω 〈φ, ck〉+Dψ(φ, φk).

of executing σ(π̃1), . . . , σ(π̃K) in M satisfies: 1) for any λ ∈ (0, 2/H], with probability 1− δ,

RK ≤
K∑
k=1

〈
Ñk − qπ̃? , ck

〉
+ Õ (1) ≤

K∑
k=1

〈qk − qπ̃? , ck〉︸ ︷︷ ︸
REG

+λ

K∑
k=1

〈qk,h ◦ ck〉︸ ︷︷ ︸
VAR

+
2 ln (2/δ)

λ
+ Õ (1) ,

and 2) E[RK ] ≤ E[REG] + Õ (1).

Note that the REG term is the expected regret (to π̃?) in M̃ and can again be controlled by
OMD. The VAR term comes from the derivation between the actual cost of the learner in M̃ and
its expectation, according to Freedman’s inequality and Lemma 6. At this point, one might wonder
whether directly applying an existing algorithm such as (Zimin and Neu, 2013) for loop-free MDPs
solves the problem, since Lemma 7 shows that the regret in these two problems are close. Doing so,
however, leads to a suboptimal bound of order Õ(H

√
K) = Õ((Tmax +D)

√
K). This is basically

the same as trivially bounding VAR by H2K. It is thus critical to better control this term using
properties of the original problem, which requires the second idea described below.

Second idea: skewed occupancy measure space Similarly to earlier discussions, it can be
shown that

∑K
k=1 〈qπ̃? ,h ◦ ck〉 = O (DT?K) (Lemma 15), making it hopeful to bound VAR by

the same. However, even though the variance now takes a simpler form, it is still unclear how
to directly enforce the algorithm to satisfy VAR = O (DT?K). Instead, we take a different
route and make sure that the REG term is at most Õ

(√
DT?K + λDT?K

)
− λVAR, thus can-

celing the variance term. To do so, thanks to the simple form of VAR, it suffices to inject a
small positive bias into the action space of OMD, making it a skewed occupancy measure space:
Ω = {φ = q + λh ◦ q : q ∈ ∆̃(T?)} where ∆̃(T?) is the counterpart of ∆(T?) for M̃ (see Eq. (8)
in Appendix A for the spelled out definition). Indeed, by similar arguments from Section 3.1,
operating OMD over this space ensures a bound of order O

(√
DT?K

)
on the “skewed regret”:∑K

k=1 〈(qk + λh ◦ qk)− (qπ̃? + λh ◦ qπ̃?), ck〉 = REG + λVAR − λ
∑K

k=1 〈qπ̃? ,h ◦ ck〉 , and we
already know that the last term is of order O (λDT?K). Rearranging thus proves the desired bound
on REG, and finally picking the optimal λ to trade off the term 2 ln(2/δ)

λ leads to the optimal bound.
We summarize the final algorithm in Algorithm 3 and its regret guarantee below. (Note that the
algorithm can be implemented efficiently since Ω is a convex polytope with O(SAH) constraints.)

Theorem 8 If T ≥ T? + 1, H1 ≥ 8Tmax lnK, and K ≥ H2 ln
(

1
δ

)
, then with probability at least

1− δ, Algorithm 3 ensures RK = Õ(
√
DTK ln (1/δ)).

10
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To obtain the optimal bound, we need to set T = cT?+1 for any constant c ≥ 1. Unfortunately,
we are unable to extend the idea from Section 3.1 to also learn this parameter on the fly, and we
leave it as an important future direction (see Section 5 for more discussions). Note that, however, in
the construction of the lower bound (Theorem 3), T? is indeed known to the learner. Thus, assuming
the knowledge of T? does not make the problem any easier information-theoretically. As for the
parameter H1, we can always set it to something large such as K1/3 so that the conditions of the
theorem hold for large enough K (though leading to a larger time complexity of the algorithm).

We also remark that instead of injecting bias to the occupancy measure space, one can obtain the
same by injecting a similar positive bias to the cost function. However, we use the former approach
because it turns out to be critical for the bandit feedback setting that we consider in the next section.

4. Minimax Regret for the Bandit Feedback Setting

We now consider the more challenging case with bandit feedback, that is, at the end of each episode,
the learner only receives the cost of the visited state-action pairs. A standard technique in the
adversarial bandit literature is to construct an importance-weighted cost estimator ĉk for ck and
then feed it to OMD, which is even applicable to learning loop-free SSP (Zimin and Neu, 2013; Jin
et al., 2020; Lee et al., 2020a). For general SSP, the natural importance-weighted estimator ĉk is:
ĉk(s, a) = Nk(s,a)ck(s,a)

qk(s,a) where Nk(s, a) is the number of visits to (s, a) and qk is the occupancy
measure of the policy executed in episode k. This is clearly unbiased since Ek[Nk(s, a)] = qk(s, a).

However, it is well-known that unbiasedness alone is not enough — the variance of the estimator
also plays a key role in the OMD analysis even if one only cares about expected regret. For example,
if we still use the entropy regularizer as in Section 3, the so-called stability term of OMD is in terms
of the weighted variance

∑
(s,a) qk(s, a)Ek[ĉ2

k(s, a)] =
∑

(s,a)
Ek[N2

k (s,a)]c2k(s,a)

qk(s,a) . While this term is
nicely bounded in the loop-free case (since Nk(s, a) is binary and thus Ek[N2

k (s, a)] = qk(s, a)
cancels out the denominator), unfortunately it can be prohibitively large in the general case. In light
of this, it might be tempting to use our loop-free reduction again and then directly apply an existing
algorithm such as (Zimin and Neu, 2013). However, this again leads to a suboptimal bound with
dependence on H = Õ (Tmax). It turns out that this is significantly more challenging than other
bandit problems and requires a combination of various techniques, as described below.

Log-barrier regularizer Although the entropy regularizer is a classic choice for OMD to deal
with bandit problems, in recent years, a line of research discovers various advantages of using a
different regularizer called log-barrier (see e.g. (Foster et al., 2016; Agarwal et al., 2017; Wei and
Luo, 2018; Luo et al., 2018; Bubeck et al., 2019; Kotłowski and Neu, 2019; Lee et al., 2020b)).
In our context, the log-barrier regularizer is − 1

η

∑
(s,a) ln q(s, a), and it indeed leads to a smaller

stability term in terms of
∑

(s,a) q
2
k(s, a)Ek[ĉ2

k(s, a)] =
∑

(s,a) Ek[N2
k (s, a)]c2

k(s, a) (note the extra
qk(s, a) factor compared to the case of entropy). This term is further bounded by Ek[〈Nk, ck〉2],
which is exactly the variance of the learner’s actual cost considered in Section 3.2!

Loop-free reduction and skewed occupancy measure Based on the observation above, it is nat-
ural to apply the same ideas of loop-free reduction and skewed occupancy measure from Section 3.2
to deal with the stability term Ek[〈Nk, ck〉2]. However, some extra care is needed when using log-
barrier in the loop-free instance M̃ . Indeed, directly using ψ(φ) = − 1

η

∑
h

∑
(s,a) lnφ(s, a, h)

would lead to another term of order Õ(HSA/η) in the OMD analysis and ruin the bound. Instead,
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Algorithm 4 Log-barrier Policy Search for SSP
Input: Upper bound on expected hitting time T and horizon parameter H1.

Parameters: η =
√

SA
DTK , λ = 8η,H2 = d4D ln 4K

δ e, H = H1 +H2

Define: regularizer ψ(φ) = − 1
η

∑
(s,a)∈Γ̃

lnφ(s, a) where φ(s, a) =
∑H

h=1 φ(s, a, h)

Define: decision set Ω = {φ = q + λh ◦ q : q ∈ ∆̃(T )} (with ∆̃(T ) defined in Eq. (8))
Initialization: φ1 = q1 + λh ◦ q1 = argminφ∈Ω ψ(φ).
for k = 1, . . . ,K do

Execute σ(π̃k) where π̃k is such that π̃k(a|(s, h)) ∝ qk(s, a, h).

Construct cost estimator ĉk ∈ RΓ̃
≥0 such that ĉk(s, a) = Ñk(s,a)ck(s,a)

qk(s,a) where Ñk(s, a) =∑
h Ñk(s, a, h) and qk(s, a) =

∑
h qk(s, a, h) (Ñk is defined after Lemma 6).

Update φk+1 = qk+1 + λh ◦ qk+1 = argminφ∈Ω

∑
(s,a) φ(s, a)ĉk(s, a) +Dψ(φ, φk).

taking advantage of the fact that ck(s, a, h) is the same for a fixed (s, a) pair regardless of the value
of h,3 we propose to perform OMD with φ(s, a) =

∑
h φ(s, a, h) for all (s, a) ∈ Γ̃ as the vari-

ables, even though the skewed occupancy measure Ω is still defined in terms of φ(s, a, h) as in
Algorithm 3. More specifically, this means that our regularizer is ψ(φ) = − 1

η

∑
(s,a) lnφ(s, a), and

the cost estimator is ĉk(s, a) = Ñk(s,a)ck(s,a)
qk(s,a) where Ñk(s, a) =

∑
h Ñk(s, a, h) and qk(s, a) =∑

h qk(s, a, h). This completely avoids the factor H in the analysis (other than lower order terms).
With the ideas above, we can already show an optimal expected regret bound for an oblivious

adversary who selects ck independent of the learner’s randomness. We summarize the algorithm in
Algorithm 4 and its guarantee in the following theorem.

Theorem 9 If T ≥ T? + 1, H1 ≥ 8Tmax lnK, and K ≥ 64SAH2, then Algorithm 4 ensures
E [RK ] = Õ

(√
DTSAK

)
for an oblivious adversary.

Setting T = T? + 1 leads to Õ(
√
DT?SAK), which is optimal in light of the following lower

bound theorem (the adversary is indeed oblivious in the lower bound construction).

Theorem 10 For any D,T?,K, S ≥ 4 with K ≥ ST? and T? ≥ D + 1, there exists an SSP
problem instance with S states and A = O(1) actions such that its diameter is D + 2, the optimal
policy has expecting hitting time T? + 1, and the expected regret of any learner after K episodes is
at least Ω

(√
DT?SAK

)
under the bandit feedback and known transition setting.

To further obtain a high probability regret bound for general adaptive adversaries (thus also a
more general expected regret bound), it is important to analyze the the derivation between the opti-
mal policy’s estimated total loss

∑
k 〈qπ̃? , ĉk〉 and its expectation

∑
k 〈qπ̃? , ck〉. Using Freedman’s

inequality, we need to carefully control the conditional variance Ek[ĉ2
k(s, a)] =

Ek[Ñ2
k (s,a)]c2k(s,a)

q2
k(s,a)

for

each (s, a), which is much more difficult than the aforementioned stability term due to the lack of

3. This also explains why injecting the bias to the occupancy space instead of the cost vectors is important here, as
mentioned in the end of Section 3, since the latter makes the cost different for different h.
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the extra q2
k(s, a) factor. To address this, we first utilize the simpler form of Ek[Ñ2

k (s, a)] in the loop-
free setting and bound it by

∑
h hqk(s, a, h) (see Lemma 19). Then, with ρK(s, a) = maxk

1
qk(s,a)

and bk(s, a) =
∑
h hqk(s,a,h)ck(s,a)

qk(s,a) , we bound the key term in the derivation
∑

k 〈qπ̃? , ĉk − ck〉 by

∑
(s,a)

qπ̃?(s, a)

√√√√ρK(s, a)
K∑
k=1

bk(s, a) ≤ 1

η
〈qπ̃? , ρK〉+ η

K∑
k=1

〈qπ̃? , bk〉 ,

where qπ̃?(s, a) =
∑

h qπ̃?(s, a, h) and the last step is by AM-GM inequality (see Lemma 17 for
details). The last two terms above are then handled by the following two ideas respectively.

Increasing learning rate The first term 1
η 〈qπ̃? , ρK〉 appears in the work of (Lee et al., 2020a)

already for loop-free MDPs and can be canceled by a negative term introduced by an increasing
learning rate schedule. (See the last for loop of Algorithm 5 and Lemma 16.)

Injecting negative bias to the costs To handle the second term η
∑K

k=1 〈qπ̃? , bk〉, note again that
its counterpart η

∑K
k=1 〈qk, bk〉 is exactly η

∑K
k=1 〈qk,h ◦ ck〉, a term that can be canceled by the

skewed occupancy measure as discussed. Therefore, if we could inject another negative bias term
into the cost vectors, that is, replacing ĉk with ĉk − ηbk, then this bias would cancel the term
η
∑K

k=1 〈qπ̃? , bk〉 while introducing the term η
∑K

k=1 〈qk, bk〉 that could be further canceled by the
skewed occupancy measure. However, the issue is that bk depends on the unknown true cost ck. We
address this by using b̂k instead which replaces ck with ĉk, that is, b̂k(s, a) =

∑
h hqk(s,a,h)ĉk(s,a)

qk(s,a) .

This leads to yet another derivation term between b̂k and bk that needs to be controlled in the
analysis. Fortunately, this term is of lower order compared to others since it is multiplied by η (see
Lemma 18). Note that at this point we have used both the positive bias from the skewed occupancy
measure space and the negative bias from the cost estimators, which we find intriguing.

Combining everything, our final algorithm is summarized in Algorithm 5 (see Appendix B due
to space limit). The following theorem shows that, with the knowledge of T? or a suitable upper
bound, our algorithm again achieves the optimal regret bound with high probability.

Theorem 11 If T ≥ T? + 1, H1 ≥ 8Tmax lnK, and K is large enough (K & SAH2 ln
(

1
δ

)
), then

Algorithm 5 ensures RK = Õ
(√

DTSAK ln (1/δ)
)

with probability at least 1− 6δ.

5. Conclusion

In this paper, we develop matching upper and lower bounds for the stochastic shortest path prob-
lem with adversarial costs and unknown transition, significantly improving previous results. Our
algorithms are built on top of a variety of techniques that might be of independent interest.

There are two key future directions. The first one is to develop parameter-free and optimal
algorithms without the knowledge of T?. We only achieve this in the full-information setting for
expected regret bounds. Indeed, generalizing our techniques that learn T? automatically to obtain
a high-probability bound in the full-information setting boils down to getting the same multi-scale
expert result with high probability, which is still open unfortunately (see also discussions in (Chen
et al., 2021, Section 5)). The difficulty lies in bounding the deviation between the learner’s expected
loss and the actual loss in terms of the loss of the unknown comparator. On the other hand, it is
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also difficult to generalize our technique to obtain an expected bound in the bandit setting (without
knowing T?), since this becomes a bandit-of-bandits type of framework and is known to suffer some
tuning issues; see for example (Foster et al., 2019, Appendix A.2).

The second future direction is to figure out the minimax regret of the more challenging setting
where the transition is unknown. We note that our loop-free reduction is readily to be applied to this
case, but due to some technical challenges, it is highly unclear how to avoid having the dependence
on Tmax in the regret bounds. A follow-up work by the first two authors (Chen and Luo, 2021)
makes some progress in this direction, but the minimax regret remains unknown in this case.
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Appendix A. Omitted details for Section 3

In this section, we provide all proofs for Section 3.

A.1. Proof of Lemma 1

Proof By standard OMD analysis (see for example Eq. (12) of (Rosenberg and Mansour, 2020)),
for any q ∈ ∆(T ) we have:

K∑
k=1

〈qk − q, ck〉 ≤ Dψ(q, q1) +

K∑
k=1

〈
qk − q′k+1, ck

〉
, (3)

where q′k+1 = argminq∈RΓ 〈q, ck〉 + Dψ(q, qk), or equivalently, with the particular choice of the
regularizer, q′k+1(s, a) = qk(s, a)e−ηck(s,a). Applying the inequality 1− e−x ≤ x, we obtain

K∑
k=1

〈
qk − q′k+1, ck

〉
≤ η

K∑
k=1

∑
(s,a)

qk(s, a)c2
k(s, a) ≤ η

K∑
k=1

〈qk, ck〉 .

Substituting this back into Eq. (3), choosing q = qπ? (recall the condition qπ? ∈ ∆(T ) of the
lemma), and rearranging, we arrive at

K∑
k=1

〈qk − qπ? , ck〉 ≤
1

1− η

(
Dψ(qπ? , q1) + η

K∑
k=1

〈qπ? , ck〉

)

≤ 2Dψ(qπ? , q1) + 2η

K∑
k=1

〈qπ? , ck〉 . (4)

It remains to bound the last two terms. For the first one, since q1 minimizes ψ over ∆(T ), we have
〈∇ψ(q1), qπ? − q1〉 ≥ 0, and thus

Dψ(qπ? , q1) ≤ ψ(qπ?)− ψ(q1) =
1

η

∑
(s,a)

qπ?(s, a) ln qπ?(s, a)− 1

η

∑
(s,a)

q1(s, a) ln q1(s, a)

≤ 1

η

∑
(s,a)

qπ?(s, a) lnT − T

η

∑
(s,a)

q1(s, a)

T
ln
q1(s, a)

T

≤ T ln(T )

η
+
T ln(SA)

η
=
T ln(SAT )

η
.

For the second one, we use the fact
∑K

k=1 〈qπ? , ck〉 ≤
∑K

k=1 〈qπf , ck〉 ≤ DK. Put together, this
implies

K∑
k=1

〈qk − qπ? , ck〉 ≤
2T ln(SAT )

η
+ 2ηDK.

With the optimal η = min

{
1
2 ,

√
T ln(SAT )

DK

}
, we have thus shown

E[Rk] = E

[
K∑
k=1

〈qk − qπ? , ck〉

]
= O

(√
DTK ln(SAT ) + T ln(SAT )

)
= Õ

(√
DTK

)
,
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completing the proof.

A.2. Proof of Theorem 2

Proof First, note that the value of j0 is such that the smallest parameter b(1) is larger than T π
f
(s0)

and thus ∆(b(j)) is non-empty for all j ∈ [N ], making allN instances of Algorithm 1 well-defined.
Next, let j? be the index of the instance with size parameter closest to the unknown parameter T?,
that is, b(j

?)
2 ≤ T? ≤ b(j?). Such j? must exist since b(N) ≥ K and we only need to consider the

case T? ≤ K (otherwise the claimed regret bound is vacuous). Now we decompose the regret as
two parts, the regret of the meta algorithm to instance j?, and the regret of instance j? to the best
policy:

E[RK ] = E

 K∑
k=1

N∑
j=1

pk(j)
〈
qjk, ck

〉
−

K∑
k=1

〈qπ? , ck〉


= E

 K∑
k=1

N∑
j=1

pk(j)
〈
qjk, ck

〉
−
〈
qj
?

k , ck

〉+ E

[
K∑
k=1

〈
qj
?

k − qπ? , ck
〉]

= E

[
K∑
k=1

〈pk − ej? , `k〉

]
+ E

[
K∑
k=1

〈
qj
?

k − qπ? , ck
〉]

,

where ej? ∈ Ω is the basis vector with the j?-th coordinate being 1. By the regret guarantee of
Algorithm 1 (Lemma 1), the second term above is bounded by Õ(

√
Db(j?)K) = Õ(

√
DT?K),

which also means

E

[
K∑
k=1

`k(j
?)

]
≤ E

[
K∑
k=1

〈qπ? , ck〉

]
+ Õ(

√
DT?K)

≤ E

[
K∑
k=1

〈qπf , ck〉

]
+ Õ(

√
DT?K)

≤ DK + Õ(
√
DT?K).

Using Lemma 12, the first term is bounded as

E

[
K∑
k=1

〈pk − ej? , `k〉

]
= Õ

(
1

ηj?
+ ηj?b(j

?)E

[
K∑
k=1

`k(j
?)

])

= Õ
(

1

ηj?
+ ηj?DT?K + ηj?T?

√
DT?K

)
= Õ

(
1

ηj?
+ ηj?DT?K

)
.

Finally plugging in the definition of ηj? finishes the proof.
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The lemma below is an improved guarantee for the multi-scale expert problem, which might be
of independent interest.

Lemma 12 For any j? ∈ [N ], Algorithm 2 ensures

K∑
k=1

〈pk − ej? , `k〉 =
2 + ln

(
N
√

b(j?)
b(1)

)
ηj?

+ 4ηj?b(j
?)

K∑
k=1

`k(j
?).

Proof Similar to Eq. (3), by standard OMD analysis (see also (Bubeck et al., 2017, Lemma 6)) we
have:

K∑
k=1

〈pk − ej? , `k + ak〉 ≤ Dψ(ej? , p1) +
K∑
k=1

〈
pk − p′k+1, `k + ak

〉
(5)

where p′k+1(j) = pk(j)e
−ηj(`k(j)+ak(j)). Using the inequality 1 − e−x ≤ x and the fact ak(j) ≤

4ηjb(j)`k(j) ≤ `k(j) (since `k(j) ≤
∑

(s,a) q
j
k(s, a) ≤ b(j) and ηj ≤ 1

4b(j) ), we obtain

〈
pk − p′k+1, `k + ak

〉
≤

N∑
j=1

ηjpk(j) (`k(j) + ak(j))
2 ≤ 4

N∑
j=1

ηjpk(j)`
2
k(j) = 〈pk, ak〉 .

Plugging this back into Eq. (5) and rearranging leads to

K∑
k=1

〈pk − ej? , `k〉 ≤ Dψ(ej? , p1) +
K∑
k=1

ak(j
?) = Dψ(ej? , p1) + 4ηj?

K∑
k=1

`2k(j
?)

≤ Dψ(ej? , p1) + 4ηj?b(j
?)

K∑
k=1

`k(j
?).

It remains to bound Dψ(ej? , p1), which by definition is

N∑
j=1

1

ηj

(
ej?(j) ln

ej?(j)

p1(j)
− ej?(j) + p1(j)

)
≤ 1

ηj?
ln

1

p1(j?)
+

N∑
j=1

p1(j)

ηj
.

Using the definition of p1, when j? 6= 1 we have

1

ηj?
ln

1

p1(j?)
=

1

ηj?
ln

(
Nη1

ηj?

)
=

ln
(
N
√

b(j?)
b(1)

)
ηj?

;

when j? = 1, the same holds as an upper bound since p1(1) ≥ 1/N . Finally, the second term can
be bounded as

N∑
j=1

p1(j)

ηj
=
p1(1)

η1
+
∑
j 6=1

1

Nη1
≤ 2

η1
≤ 2

ηj?
,

which finishes the proof.
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A.3. Proof of Theorem 3

Proof By Yao’s minimax principle, in order to obtain a regret lower bound, it suffices to show that
there exists a distribution of SSP instances that forces any deterministic learner to suffer a regret
bound of Ω

(√
DT?K

)
in expectation. Below we describe such a distribution (the MDP is fixed but

the costs are stochastic).

• The state space is S = {s0, s1, . . . , sN , f} for any N ≥ 2.

• At state s0, there are N available actions a1, . . . , aN ; at each state of s1, . . . , sN , there are
two available actions ag and af ; and at state f , there is only one action ag.

• At state s0, taking action aj transits to state sj deterministically for all j ∈ [N ]. At any state
sj (j ∈ [N ]), taking action af transits to state f deterministically, while taking action ag
transits to the goal state g with probability 1/T? and stays at the same state with probability
1− 1/T?. Finally, at state f , taking action ag transits to the goal state g with probability 1/D
and stays with probability 1− 1/D.

• The cost at state s0 is always zero, that is, ck(s0, a) = 0 for all k and a; the cost of action
af is also always zero, that is, ck(s, af ) = 0 for all k and s ∈ {s1, . . . , sN}; the cost at
state f is always one, that is, ck(f, ag) = 1 for all k; finally, the cost of taking action ag at
state s ∈ {s1, . . . , sN} is generated stochastically as follows: first, a good state j? ∈ [N ] is
sampled uniformly at random ahead of time and then fixed throughout the K episodes; then,
in each episode k, ck(s, ag) is an independent sample of Bernoulli( D

2T?
) if s = sj? , and an

independent sample of Bernoulli( D
2T?

+ ε) if s 6= sj? , for some ε ≤ D
2T?

to be specified later.

It is clear that in all these SSP instances, the diameter is D + 2 (since one can reach the goal
state via the fast state f within at most D + 2 steps in expectation), and the hitting time of the
optimal policy is indeed T? + 1 (in fact, the hitting time of any stationary deterministic policy is
either T? + 1 or D+ 2 ≤ T? + 1). It remains to argue E[RK ] = Ω

(√
DT?K

)
for any deterministic

learner, where the expectation is over the randomness of the costs. To do so, let Ej denote the
conditional expectation given that the good state j? is j. Then we have

E[RK ] =
1

N

N∑
j=1

(
Ej

[
K∑
k=1

Ik∑
i=1

ck(s
i
k, a

i
k)− min

π∈Πproper

K∑
k=1

Jπk (s0)

])

≥ 1

N

N∑
j=1

(
Ej

[
K∑
k=1

Ik∑
i=1

ck(s
i
k, a

i
k)−

K∑
k=1

J
πj
k (s0)

])
,

where πj is the policy that picks action aj at state s0 and ag at state sj (other states are irrelevant).
Note that it takes T? steps in expectation for πj to reach g from sj and each step incur expected cost
D

2T?
, which means Ej [J

πj
k (s0)] = D

2T?
× T? = D

2 . On the other hand, the learner is always better
off not visiting f at all, since starting from state f , the expected cost before reaching g is D, while
the expected cost of reaching the goal state via any other states is at most

(
D

2T?
+ ε
)
× T? ≤ D.

Therefore, depending on whether the learner selects the good action aj? or not at the first step, we
further lower bound the expected regret as

E[RK ] ≥ 1

N

N∑
j=1

K∑
k=1

Ej
[
D

2
+ T?εI{a1

k 6= aj} −
D

2

]
= T?Kε−

T?ε

N

N∑
j=1

Ej [Kj ],
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where Kj =
∑K

k=1 I{a1
k = aj}.

It thus suffices to upper bound
∑N

j=1 Ej [Kj ]. To do so, consider a reference environment with-
out a good state, that is, ck(s, ag) is an independent sample of Bernoulli( D

2T?
+ ε) for all k and all

s ∈ {s1, . . . , sN}. Denote by E0 the expectation with respect to this reference environment, and by
P0 the distribution of the learner’s observation in this environment (Pj is defined similarly). Then
with the fact Kj ≤ K and Pinsker’s inequality, we have

Ej [Kj ]− E0[Kj ] ≤ K‖Pj − P0‖1 ≤ K
√

2KL(P0, Pj).

By the divergence decomposition lemma (see e.g. (Lattimore and Szepesvári, 2020, Lemma 15.1))
and the nature of the full-information setting, we further have

KL(P0, Pj) =

N∑
j′=1

E0[Kj′ ]× KL
(

Bernoulli
(
D

2T?
+ ε

)
,Bernoulli

(
D

2T?

))

= K × KL
(

Bernoulli
(
D

2T?
+ ε

)
,Bernoulli

(
D

2T?

))
≤ Kε2

α(1− α)
,

where the last step is by (Gerchinovitz and Lattimore, 2016, Lemma 6) with α = D
2T?

. Therefore,
we have

N∑
j=1

Ej [Kj ] ≤
N∑
j=1

E0[Kj ] +NK

√
2Kε2

α(1− α)
= K +NK

√
2Kε2

α(1− α)
.

This is enough to show the claimed lower bound:

E[RK ] ≥ T?εK −
T?ε

N

N∑
j=1

Ej [Kj ]

≥ T?εK −
T?ε

N

[
K +NK

√
2Kε2

α(1− α)

]

= T?εK

[
1− 1

N
− ε

√
2K

α(1− α)

]

≥ T?εK

[
1

2
− ε

√
2K

α(1− α)

]

=
T?K

16

√
α(1− α)

2K
= Ω

(√
DT?K

)
,

where in the last line we choose ε = 1
4

√
α(1−α)

2K ≤ 1
8

√
D
T?K
≤ D

2T?
to maximize the lower bound.
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A.4. Proof of Lemma 4

Proof With the inequality (
∑I

i=1 ai)
2 ≤ 2

∑
i ai(

∑I
i′=i ai′), we proceed as

E

∑
(s,a)

Nk(s, a)ck(s, a)

2
= E

 Ik∑
i=1

∑
(s,a)

I{sik = s, aik = a}ck(s, a)

2
≤ 2E

 Ik∑
i=1

∑
(s,a)

I{sik = s, aik = a}

 Ik∑
i′=i

∑
(s′,a′)

I{si′k = s′, ai
′
k = a′}ck(s′, a′)


= 2E

 Ik∑
i=1

∑
s∈S

I{sik = s}E

 Ik∑
i′=i

∑
(s′,a′)

I{si′k = s′, ai
′
k = a′}ck(s′, a′)

∣∣∣∣∣∣ sik = s


= 2E

[
Ik∑
i=1

∑
s∈S

I{sik = s}Jπk (s)

]
= 2

∑
s∈S

qπ(s)Jπk (s) = 2 〈qπ, Jπk 〉 ,

completing the proof.

A.5. Proof of Lemma 6

Proof Applying Lemma 4 (to the loop-free instance), we have

E
[〈
Ñk, ck

〉2
]
≤ 2

∑
s̃∈S̃

qπ̃(s̃)J π̃k (s̃) = 2
H∑
h=1

∑
s∈S∪{sf}

qπ̃(s, h)J π̃k (s, h).

Denote qπ̃,(s,h) as the occupancy measure of policy π̃ with initial state (s, h), so that

J π̃k (s, h) =
∑

(s′,a′)∈Γ̃

∑
h′≥h

qπ̃,(s,h)(s
′, a′, h′)ck(s

′, a′, h′).

Then we continue with the following equalities:

H∑
h=1

∑
s∈S∪{sf}

qπ̃(s, h)J π̃k (s, h)

=

H∑
h=1

∑
s∈S∪{sf}

qπ̃(s, h)
∑

(s′,a′)∈Γ̃

∑
h′≥h

qπ̃,(s,h)(s
′, a′, h′)ck(s

′, a′, h′)
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=

H∑
h=1

∑
(s′,a′)∈Γ̃

∑
h′≥h

 ∑
s∈S∪{sf}

qπ̃(s, h)qπ̃,(s,h)(s
′, a′, h′)

 ck(s
′, a′, h′)

=

H∑
h=1

∑
(s′,a′)∈Γ̃

∑
h′≥h

qπ̃(s′, a′, h′)ck(s
′, a′, h′)

=
H∑
h=1

∑
(s,a)∈Γ̃

h · qπ̃(s, a, h)ck(s, a, h) = 〈qπ̃,h ◦ ck〉 . (6)

where in the third line we use the equality
∑

s∈S∪{sf} qπ̃(s, h)qπ̃,(s,h)(s
′, a′, h′) = qπ̃(s′, a′, h′)

by definition (since both sides are the probability of visiting (s′, a′, h′)). This completes the proof.

A.6. Proof of Lemma 7

Proof We first prove the second statement E[RK ] ≤ E[REG] + Õ (1). Since the fast policy reaches
the goal state within D steps in expectation starting from any state, by the definition of σ(π̃) and
M̃ , we have Jσ(π̃)

k (s0) ≤ J π̃k (s̃0) for any π̃, that is, the expected cost of executing σ(π̃) in M is not
larger than that of executing π̃ in M̃ . On the other hand, since the probability of not reaching the

goal state within H1 steps when executing π? is at most: 2e−
H1

4Tmax ≤ 2
K2 by Lemma 13 and the

choice of H1, the expected cost of π? in M and the expected cost of π̃? in M̃ is very similar:

J π̃
?

k (s̃0) ≤ Jπ?k (s0) +
2H2

K2
= Jπ

?

k (s0) + Õ
(

1

K

)
. (7)

This proves the second statement:

E[RK ] = E

[
K∑
k=1

J
σ(π̃k)
k (s0)− Jπ?k (s0)

]

≤ E

[
K∑
k=1

J π̃kk (s̃0)− J π̃?k (s̃0)

]
+ Õ (1) = E[REG] + Õ (1) .

To prove the first statement, we apply Lemma 13 again to show that for each episode k, the proba-
bility of the learner not reaching g withinH steps is at most 2e−

H2
4D = δ

2K . With a union bound, this
means, with probability at least 1 − δ

2 , the learner reaches the goal within H steps for all episodes

and thus her actual loss in M is not larger than that in M̃ :
∑K

k=1 〈Nk, ck〉 ≤
∑K

k=1

〈
Ñk, ck

〉
.

Together with Eq. (7), this shows

RK ≤
K∑
k=1

〈
Ñk − qπ̃? , ck

〉
+ Õ (1) .

It thus remains to bound the deviation
∑K

k=1

〈
Ñk − qk, ck

〉
, which is the sum of a martingale

difference sequence. We apply Freedman’s inequality Lemma 21 directly: the variable
〈
Ñk, ck

〉
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is bounded by H always, and its conditional variance is bounded by 2 〈qk,h ◦ ck〉 as shown in
Lemma 6, which means for any λ ∈ (0, 2/H],

K∑
k=1

〈
Ñk − qk, ck

〉
≤ λ

K∑
k=1

〈qk,h ◦ ck〉+
2 ln (2/δ)

λ

holds with probability at least 1− δ
2 . Applying another union bound finishes the proof.

Lemma 13 (Rosenberg and Mansour, 2020, Lemma E.1) Let π be a policy with expected hitting
time at most τ starting from any state. Then, the probability that π takes more than m steps to reach
the goal state is at most 2e−

m
4τ .

A.7. Proof of Theorem 8

For completeness, we first spell out the definition of ∆̃(T ), which is the exact counterpart of ∆(T )

defined in Eq. (2) for M̃ (the first equality below), but can be simplified using the special structure
of P̃ (the second equality below).

∆̃(T ) =

{
q ∈ [0, 1]Γ̃×[H] :

H∑
h=1

∑
(s,a)∈Γ̃

q(s, a, h) ≤ T,

∑
a∈Ã(s,h)

q(s, a, h)−
H∑
h′=1

∑
(s′,a′)∈Γ̃

P̃ ((s, h)|(s′, h′), a′)q(s′, a′, h′) = I{(s, h) = s̃0}, ∀(s, h) ∈ S̃

}

=

{
q ∈ [0, 1]Γ̃×[H] :

H∑
h=1

∑
(s,a)∈Γ̃

q(s, a, h) ≤ T,
∑
a∈As0

q(s0, a, 1) = 1,

q(s, a, 1) = 0, ∀s 6= s0 and a ∈ As, q(s, a, h) = 0, ∀(s, a) ∈ Γ and h > H1,

q(sf , af , h) = I{h > H1}
∑

(s′,a′)∈Γ

q(s′, a′, H1),

∑
a∈As

q(s, a, h) =
∑

(s′,a′)∈Γ

P (s|s′, a′)q(s′, a′, h− 1), ∀s ∈ S and 1 < h ≤ H1.

}
(8)

Note that qπ̃? belongs to ∆̃(T? + 1) as shown in the following lemma.

Lemma 14 The policy π̃? satisfies T π̃
?
(s̃0) =

∑H
h=1

∑
(s,a)∈Γ̃

qπ̃?(s, a, h) ≤ T? + 1 and thus

qπ̃? ∈ ∆̃(T? + 1).

Proof This is a direct application of the fact T π
?
(s0) = T? and Lemma 13: the probability of not

reaching the goal state within H1 steps when executing π? is at most: 2e−
H1

4Tmax ≤ 2
K2 . Therefore,

T π̃
?
(s̃0) ≤ T π?(s0) + 2H2

K2 ≤ T? + 1, finishing the proof.

We also need the following lemma.
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Lemma 15 The policy π̃? satisfies
∑K

k=1 〈qπ̃? ,h ◦ ck〉 = O (DT?K).

Proof We proceed as follows:

K∑
k=1

〈qπ̃? ,h ◦ ck〉 =

K∑
k=1

H∑
h=1

∑
s∈S∪{sf}

qπ̃?(s, h)J π̃
?

k (s, h)

=
H∑
h=1

∑
s∈S∪{sf}

qπ̃?(s, h)
K∑
k=1

J π̃
?

k (s, h)

≤
H∑
h=1

∑
s∈S∪{sf}

qπ̃?(s, h)

K∑
k=1

J π̃
?

k (s, 1)

≤
H∑
h=1

∑
s∈S∪{sf}

qπ̃?(s, h)

(
Õ (1) +

K∑
k=1

Jπ
?

k (s)

)

≤
H∑
h=1

∑
s∈S∪{sf}

qπ̃?(s, h)

(
Õ (1) +

K∑
k=1

Jπ
f

k (s)

)

≤
(
Õ (1) +DK

) H∑
h=1

∑
s∈S∪{sf}

qπ̃?(s, h)

≤ Õ (DT?K) ,

where the first line is by Eq. (6), the fourth line is by the same reasoning of Eq. (7), and the last line
is by Lemma 14.

We are now ready to prove Theorem 8.
Proof Define φ? = qπ̃? + λh ◦ qπ̃? . which belongs to the set Ω by Lemma 14 and the condition
T ≥ T? + 1. By the exact same reasoning of Eq. (4) in the proof of Lemma 1, OMD ensures

K∑
k=1

〈φk − φ?, ck〉 ≤ 2Dψ(φ?, φ1) + 2η
K∑
k=1

〈φ?, ck〉 .

The last two terms can also be bounded in a similar way as in the proof of Lemma 1: for the
first term, since φ1 minimizes ψ over Ω, we have 〈∇ψ(φ1), φ? − φ1〉 ≥ 0, and thus with the fact∑H

h=1

∑
(s,a) φ(s, a, h) ≤ T + λHT ≤ 2T for any φ ∈ Ω we obtain

Dψ(φ?, φ1) ≤ ψ(φ?)− ψ(φ1)

=
1

η

H∑
h=1

∑
(s,a)

φ?(s, a, h) lnφ?(s, a, h)− 1

η

H∑
h=1

∑
(s,a)

φ1(s, a, h) lnφ1(s, a, h)

≤ 2T ln(2T )

η
− 2T

η

H∑
h=1

∑
(s,a)

φ1(s, a, h)

2T
ln
φ1(s, a, h)

2T
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≤ 2T ln(2T )

η
+

2T ln(|Γ̃|H)

η

= O
(
T ln(SAHT )

η

)
;

for the second term, we have

K∑
k=1

〈φπ̃? , ck〉 ≤ 2
K∑
k=1

〈qπ̃? , ck〉 ≤ 2
K∑
k=1

Jπ
?

k (s0) + Õ (1)

≤ 2
K∑
k=1

Jπ
f

k (s0) + Õ (1) ≤ 2DK + Õ (1) ,

where the second inequality is by Eq. (7). Combining the above and plugging the choice of η, we
arrive at

K∑
k=1

〈φk − φ?, ck〉 ≤ O
(
T ln(SAHT )

η

)
+ 2ηDK + Õ (1) = Õ

(√
DTK

)
.

Finally, we apply Lemma 7: with probability at least 1− δ,

RK ≤
K∑
k=1

〈qk − qπ̃? , ck〉+ λ
K∑
k=1

〈qk,h ◦ ck〉+
2 ln (2/δ)

λ
+ Õ (1)

=

K∑
k=1

〈φk − φ?, ck〉+ λ

K∑
k=1

〈qπ̃? ,h ◦ ck〉+
2 ln (2/δ)

λ
+ Õ (1)

= Õ
(√

DTK
)

+ λ
K∑
k=1

〈qπ̃? ,h ◦ ck〉+
2 ln (2/δ)

λ

= Õ
(√

DTK
)

+ Õ (λDTK) +
2 ln (2/δ)

λ
(Lemma 15)

= Õ
(√

DTK ln (1/δ)
)
, (by the choice of λ)

which finishes the proof.

Appendix B. Omitted details for Section 4

In this section, we provide all omitted algorithms and proofs for Section 4.

B.1. Optimal Expected Regret

Proof [of Theorem 9] Using the second statement of Lemma 7, we have

E [RK ] = E

[
K∑
k=1

〈qk − qπ̃? , ck〉

]
+ Õ(1).
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As in all analysis for OMD with log-barrier regularizer, we consider a slightly perturbed benchmark
q? = (1− 1

TK )qπ̃? + 1
TK q1 which is in ∆̃(T ) by the convexity of ∆̃(T ), the condition T ≥ T? + 1,

and Lemma 14. We then have

E [RK ] ≤ E

[
K∑
k=1

〈qk − q?, ck〉

]
+

1

TK − 1
E

[
K∑
k=1

〈q1, ck〉

]
+ Õ(1)

= E

[
K∑
k=1

〈qk − q?, ck〉

]
+ Õ (1) .

It remains to bound E
[∑K

k=1 〈qk − q?, ck〉
]
. Let φ? = q?+λh◦q? ∈ Ω. By the non-negativity and

the unbiasedness of the cost estimator, the obliviousness of the adversary, and the same argument
of (Agarwal et al., 2017, Lemma 12), OMD with log-barrier regularizer ensures

E

[
K∑
k=1

〈φk − φ?, ck〉

]
= E

[
K∑
k=1

〈φk − φ?, ĉk〉

]
≤ Dψ(φ?, φ1) + ηE

 K∑
k=1

∑
(s,a)

φ2
k(s, a)ĉ2

k(s, a)

 .
For the first term, as φ1 minimizes ψ, we have 〈∇ψ(φ1), φ? − φ1〉 ≥ 0 and thus

Dψ(φ?, φ1) ≤ 1

η

∑
(s,a)

ln
φ1(s, a)

φ?(s, a)
=
SA

η
ln(HT ) = Õ

(
SA

η

)
.

For the second term, we note that

E

∑
(s,a)

φ2
k(s, a)ĉ2

k(s, a)

 ≤ 4E

∑
(s,a)

q2
k(s, a)ĉ2

k(s, a)

 = 4E

∑
(s,a)

Ñ2
k (s, a)c2

k(s, a)


≤ 4E

[〈
Ñk, ck

〉2
]
≤ 8E [〈qk,h ◦ ck〉] ,

where the last step is by Lemma 6. Combining everything, we have shown

E

[
K∑
k=1

〈φk − φ?, ck〉

]
= Õ

(
SA

η

)
+ 8ηE

[
K∑
k=1

〈qk,h ◦ ck〉

]
,

and thus

E

[
K∑
k=1

〈qk − q?, ck〉

]
= E

[
K∑
k=1

〈φk − φ?, ck〉

]
+ λE

[
K∑
k=1

〈q?,h ◦ ck〉

]
− λE

[
K∑
k=1

〈qk,h ◦ ck〉

]

= Õ
(
SA

η

)
+ 8ηE

[
K∑
k=1

〈q?,h ◦ ck〉

]
(λ = 8η)

= Õ
(
SA

η
+ ηDTK

)
. (Lemma 15)

Plugging the choice of η finishes the proof.
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B.2. Proof of Theorem 10

Proof By Yao’s minimax principle, in order to obtain a regret lower bound, it suffices to show that
there exists a distribution of SSP instances that forces any deterministic learner to suffer a regret
bound of Ω

(√
DT?SAK

)
in expectation. We use the exact same construction as in Theorem 3

with N = S − 2 (note that the average number of actions A is O(1)). The proof is the same up to
the point where we show

E[RK ] ≥ T?Kε−
T?ε

N

N∑
j=1

Ej [Kj ],

with Kj =
∑K

k=1 I{a1
k = aj}, and

Ej [Kj ]− E0[Kj ] ≤ K‖Pj − P0‖1 ≤ K
√

2KL(P0, Pj).

What is different is the usage of the divergence decomposition lemma (see e.g. (Lattimore and
Szepesvári, 2020, Lemma 15.1)) due to the different observation model:

KL(P0, Pj) =
N∑
j′=1

E0[Kj′ ]× KL
(

Bernoulli
(
D

2T?
+ ε

)
,Bernoulli

(
D

2T?
+ εI{j′ 6= j}

))

= E0[Kj ]× KL
(

Bernoulli
(
D

2T?
+ ε

)
,Bernoulli

(
D

2T?

))
≤ E0[Kj ]ε

2

α(1− α)
,

where the last step is again by (Gerchinovitz and Lattimore, 2016, Lemma 6) with α = D
2T?

. There-
fore, we can upper bound

∑N
j=1 Ej [Kj ] as:

N∑
j=1

Ej [Kj ] ≤
N∑
j=1

E0[Kj ] +K

√
2ε2

α(1− α)

N∑
j=1

√
E0[Kj ]

≤
N∑
j=1

E0[Kj ] +K

√√√√ 2Nε2

α(1− α)

N∑
j=1

E0[Kj ] (Cauchy-Schwarz inequality)

= K +K

√
2NKε2

α(1− α)
. (

∑N
j=1 E0[Kj ] = K)

This shows the following lower bound:

E[RK ] ≥ T?εK −
T?ε

N

N∑
j=1

Ej [Kj ]

≥ T?εK −
T?ε

N

[
K +K

√
2NKε2

α(1− α)

]
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= T?εK

[
1− 1

N
− ε

√
2K

Nα(1− α)

]

≥ T?εK

[
1

2
− ε

√
2K

Nα(1− α)

]

=
T?K

16

√
Nα(1− α)

2K
= Ω

(√
DT?NK

)
= Ω

(√
DT?SAK

)
,

where in the last step we set ε = 1
4

√
Nα(1−α)

2K ≤ 1
8

√
SD
T?K
≤ D

2T?
to maximize the lower bound.

B.3. Optimal High-probability Regret

We present our algorithm with optimal high-probability regret in Algorithm 5. The key difference
compared to Algorithm 4 is the use of the extra bias term b̂k in the OMD update and the time-
varying individual learning ηk(s, a) for each state-action pair together with an increasing learning
rate schedule (see the last for loop). Note that, similar to (Lee et al., 2020a), the decision set Ω
has the extra constraint q(s, a) ≥ 1

TK4 compared to Algorithm 3 and Algorithm 4, and it is always
non-empty as long as K is large enough and every state is reachable within H steps starting from
s0 (states not satisfying this can simply be removed without affecting M̃ ).

Below we present the proof of Theorem 11. It decomposes the regret into several terms, each
of which is bounded by a lemma included after the proof.

Proof [of Theorem 11] We apply the first statement of Lemma 7: with probability 1− δ,

RK ≤
K∑
k=1

〈
Ñk − qπ̃? , ck

〉
+ Õ (1) .

Similar to the proof of Theorem 9, we define a slightly perturbed benchmark q? = (1− 1
TK )qπ̃? +

1
TK q0 ∈ ∆̃(T ) for some q0 ∈ ∆̃(T ) with q0(s, a) ≥ 1

K3 for all (s, a) ∈ Γ̃ (which again exists as

long as K is large enough), so that RK ≤
∑K

k=1

〈
Ñk − q?, ck

〉
+ Õ(1) still holds. Also define

φ? = q?+λh◦q? ∈ Ω and bk ∈ RΓ̃ such that bk(s, a) =
∑
h hqk(s,a,h)ck(s,a)

qk(s,a) , which clearly satisfies

Ek [̂bk] = bk. We then decompose
∑K

k=1

〈
Ñk − q?, ck

〉
as

K∑
k=1

〈
Ñk − q?, ck

〉
=

K∑
k=1

〈qk, ĉk〉 −
K∑
k=1

〈q?, ck〉 (〈Ñk, ck〉 = 〈qk, ĉk〉)

=

K∑
k=1

〈φk − φ?, ĉk〉+

K∑
k=1

〈φ?, ĉk − ck〉+ λ

K∑
k=1

〈h ◦ q?, ck〉 − λ
K∑
k=1

〈h ◦ qk, ĉk〉
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Algorithm 5 Log-barrier Policy Search for SSP (High Probability)
Input: Upper bound on expected hitting time T , horizon parameter H1, and confidence level δ
Parameters: H2 = d4D ln 4K

δ e, H = H1 + H2, C = dlog2(TK4)edlog2(T 2K9)e, β =

e
1

7 lnK , η =
√

SA ln 1/δ
DT?K

, γ = 100η lnK

(
1 + C

√
8 ln CSA

δ

)2

, λ = 40η + 2γ.

Define: regularizer ψk(φ) =
∑

(s,a)∈Γ̃
1

ηk(s,a) ln 1
φ(s,a) where φ(s, a) =

∑H
h=1 φ(s, a, h)

Define: decision set Ω = {φ = q + λh ◦ q : q ∈ ∆̃(T ), q(s, a) ≥ 1
TK4 , ∀(s, a) ∈ Γ̃}

Initialization: φ1 = q1 + λh ◦ q1 = argminφ∈Ω ψ1(φ).
Initialization: for all (s, a) ∈ Γ̃, η1(s, a) = η, ρ1(s, a) = 2T .
for k = 1, . . . ,K do

Execute σ(π̃k) where π̃k is such that π̃k(a|(s, h)) ∝ qk(s, a, h).

Construct cost estimator ĉk ∈ RΓ̃
≥0 such that ĉk(s, a) = Ñk(s,a)ck(s,a)

qk(s,a) where Ñk(s, a) =∑
h Ñk(s, a, h) and qk(s, a) =

∑
h qk(s, a, h) (Ñk is defined after Lemma 6).

Construct bias term b̂k ∈ RΓ̃
≥0 such that b̂k(s, a) =

∑
h hqk(s,a,h)ĉk(s,a)

qk(s,a) .
Update

φk+1 = qk+1 + λh ◦ qk+1 = argmin
φ∈Ω

∑
(s,a)

φ(s, a)
(
ĉk(s, a)− γb̂k(s, a)

)
+Dψk(φ, φk).

for ∀(s, a) ∈ Γ̃ do
if 1
φk+1(s,a) > ρk(s, a) then
ρk+1(s, a) = 2

φk+1(s,a) , ηk+1(s, a) = βηk(s, a).

else
ρk+1(s, a) = ρk(s, a), ηk+1(s, a) = ηk(s, a).

=
K∑
k=1

〈φk − φ?, ĉk〉+
K∑
k=1

〈φ?, ĉk − ck〉+ Õ (λDTK)− λ
K∑
k=1

〈h ◦ qk, ĉk〉 (Lemma 15)

=
K∑
k=1

〈φk − φ?, ĉk〉+ Õ (λDTK) + DEV1 + DEV2 − λ
K∑
k=1

〈h ◦ qk, ck〉

(define DEV1 =
∑K

k=1 〈φ?, ĉk − ck〉 and DEV2 = λ
∑K

k=1 〈h ◦ qk, ck − ĉk〉)

= REGφ + Õ (λDTK) + DEV1 + DEV2 + γ

K∑
k=1

〈
φk − φ?, b̂k

〉
− λ

K∑
k=1

〈h ◦ qk, ck〉

(define REGφ =
∑K

k=1〈φk − φ?, ĉk − γb̂k〉)
= REGφ + Õ (λDTK) + DEV1 + DEV2 + DEV3 + DEV4

+ γ
K∑
k=1

〈φk − φ?, bk〉 − λ
K∑
k=1

〈h ◦ qk, ck〉

(define DEV3 = γ
∑K

k=1〈φk, b̂k − bk〉 and DEV4 = γ
∑K

k=1〈φ?, bk − b̂k〉)
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≤ REGφ + Õ (λDTK) + DEV1 + DEV2 + DEV3 + DEV4

+ 2γ
K∑
k=1

〈qk, bk〉 − γ
K∑
k=1

〈φ?, bk〉 − λ
K∑
k=1

〈h ◦ qk, ck〉

= REGφ + Õ (λDTK) + DEV1 + DEV2 + DEV3 + DEV4

+ (2γ − λ)

K∑
k=1

〈qk,h ◦ ck〉 − γ
K∑
k=1

〈φ?, bk〉 .

(〈qk, bk〉 = 〈qk,h ◦ ck〉)

The REGφ term can be upper bounded by the OMD analysis (see Lemma 16), and the four
deviation terms DEV1,DEV2,DEV3, and DEV4 are all sums of martingale difference sequences
and can be bounded using Azuma’s or Freedman’s inequality (see Lemma 17 and Lemma 18).
Combining everything, we obtain

RK ≤ Õ
(
SA

η

)
− 〈φ

?, ρK〉
70η lnK

+ 40η

K∑
k=1

〈qk,h ◦ ck〉+ Õ (λDTK)

+

(
1 + C

√
8 ln

(
CSA

δ

))(
〈φ?, ρK〉

η′
+ η′

〈
φ?,

K∑
k=1

bk

〉)
+

(
4CH ln

(
CSA

δ

))
〈φ?, ρK〉

+ (2γ − λ)
K∑
k=1

〈qk,h ◦ ck〉 − γ
K∑
k=1

〈φ?, bk〉

= Õ
(
SA

η
+ λDTK

)
+

1 + C
√

8 ln
(
CSA
δ

)
η′

+ 4CH ln

(
CSA

δ

)
− 1

70η lnK

 〈φ?, ρK〉
+ (40η + 2γ − λ)

K∑
k=1

〈qk,h ◦ ck〉+

((
1 + C

√
8 ln

(
CSA

δ

))
η′ − γ

)
K∑
k=1

〈φ?, bk〉 .

Finally, note that η′ ≥ 0 from Lemma 17 and Lemma 18 can be chosen arbitrarily. Setting

η′ = γ/

(
1 + C

√
8 ln

(
CSA
δ

))
, and plugging the choice of γ = 100η lnK

(
1 + C

√
8 ln CSA

δ

)2

and λ = 40η + 2γ, one can see that the coefficients multiplying the last three terms 〈φ?, ρK〉,∑K
k=1 〈qk,h ◦ ck〉, and

∑K
k=1 〈φ?, bk〉 are all non-positive. Therefore, we arrive at

RK = Õ
(
SA

η
+ ηDTK ln (1/δ)

)
= Õ

(√
DTSAK ln (1/δ)

)
,

where the last step is by the choice of η.

Lemma 16 Algorithm 5 ensures with probability at least 1− δ:

REGφ ≤ Õ
(
SA

η

)
− 〈φ

?, ρK〉
70η lnK

+ 40η
K∑
k=1

〈qk,h ◦ ck〉+ Õ
(
H2
√
SA ln (1/δ)

)
.
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Proof Denote by n(s, a) the number of times the learning rate for (s, a) increases, such that
ηK(s, a) = ηβn(s,a), and by k1, . . . , kn(s,a) the episodes where ηk(s, a) is increased, such that
ηkt+1(s, a) = β · ηkt(s, a). Since ρ1(s, a) = 2T and

ρ1(s, a)2n(s,a)−1 ≤ · · · ≤ ρkn(s,a)
(s, a) ≤ 1

φkn(s,a)+1(s, a)
≤ 1

qkn(s,a)+1(s, a)
≤ TK4,

we have n(s, a) ≤ 1 + log2
K4

2 ≤ 7 log2K. Therefore, ηK(s, a) ≤ ηe
7 log2 K
7 lnK ≤ 5η.

Now, notice that

γb̂k(s, a) ≤
γH

∑
h qk(s, a, h)ĉk(s, a)

qk(s, a)
= γHĉk(s, a) ≤ ĉk(s, a).

This means that the cost ĉk − γb̂k we feed to OMD is always non-negative, and thus by the same
argument of (Agarwal et al., 2017, Lemma 12), we have

REGφ =

K∑
k=1

〈
φk − φ?, ĉk − γb̂k

〉
≤

K∑
k=1

Dψk(φ?, φk)−Dψk(φ?, φk+1) +
K∑
k=1

∑
(s,a)

ηk(s, a)φ2
k(s, a)(ĉk(s, a)− γb̂k(s, a))2

≤ Dψ1(φ?, φ1) +
K−1∑
k=1

(
Dψk+1

(φ?, φk+1)−Dψk(φ?, φk+1)
)

+ 5η
K∑
k=1

∑
(s,a)

φ2
k(s, a)ĉ2

k(s, a)

≤ Dψ1(φ?, φ1) +
K−1∑
k=1

(
Dψk+1

(φ?, φk+1)−Dψk(φ?, φk+1)
)

+ 20η
K∑
k=1

∑
(s,a)

q2
k(s, a)ĉ2

k(s, a)

= Dψ1(φ?, φ1) +
K−1∑
k=1

(
Dψk+1

(φ?, φk+1)−Dψk(φ?, φk+1)
)

+ 20η
K∑
k=1

∑
(s,a)

Ñ2
k (s, a)c2

k(s, a).

For the first term, since φ1 minimizes ψ1 and thus 〈∇ψ1(φ1), φ? − φ1〉 ≥ 0, we have

Dψ1(φ?, φ1) ≤ ψ1(φ?)− ψ1(φ1) =
1

η

∑
(s,a)

ln
φ1(s, a)

φ?(s, a)
≤ 1

η

∑
(s,a)

ln
2H

q?(s, a)
= Õ

(
SA

η

)
.

For the second term, we define χ(y) = y− 1− ln y and proceed similarly to (Agarwal et al., 2017):

K−1∑
k=1

Dψk+1
(φ?, φk+1)−Dψk(φ?, φk+1)

=

K−1∑
k=1

∑
(s,a)

(
1

ηk+1(s, a)
− 1

ηk(s, a)

)
χ

(
φ?(s, a)

φk+1(s, a)

)

≤
∑
(s,a)

1− β
ηβn(s,a)

χ

(
φ?(s, a)

φkn(s,a)+1(s, a)

)
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=
∑
(s,a)

1− β
ηβn(s,a)

(
φ?(s, a)

φkn(s,a)+1(s, a)
− 1− ln

φ?(s, a)

φkn(s,a)+1(s, a)

)

≤ − 1

35η lnK

∑
(s,a)

(
φ?(s, a)

ρK(s, a)

2
− 1− ln

φ?(s, a)

φkn(s,a)+1(s, a)

)

≤ SA(1 + 6 lnK)

35η lnK
− 〈φ

?, ρK〉
70η lnK

= Õ
(
SA

η

)
− 〈φ

?, ρK〉
70η lnK

,

where in the last two lines we use the facts 1−β ≤ − 1
7 lnK , β

n(s,a) ≤ 5, ρK(s, a) = 2
φkn(s,a)+1(s,a) ,

and ln q?(s,a)
qkn(s,a)+1(s,a) ≤ ln(HTK4) ≤ 6 lnK.

Finally, for the third term, since
∑

(s,a) Ñ
2
k (s, a)c2

k(s, a) ≤
(∑

(s,a) Ñk(s, a)
)2
≤ H2, we

apply Azuma’s inequality (Lemma 20) and obtain, with probability at least 1− δ:

η
K∑
k=1

∑
(s,a)

Ñ2
k (s, a)c2

k(s, a) ≤ η
K∑
k=1

Ek

∑
(s,a)

Ñ2
k (s, a)c2

k(s, a)

+ Õ
(
ηH2

√
K ln (1/δ)

)

≤ η
K∑
k=1

Ek
[〈
Ñk, ck

〉2
]

+ Õ
(
H2
√
SA ln (1/δ)

)
≤ 2η

K∑
k=1

〈qk,h ◦ ck〉+ Õ
(
H2
√
SA ln (1/δ)

)
. (Lemma 6)

Combining everything shows

REGφ ≤ Õ
(
SA

η

)
− 〈φ

?, ρK〉
70η lnK

+ 40η
K∑
k=1

〈qk,h ◦ ck〉+ Õ
(
H2
√
SA ln (1/δ)

)
.

finishing the proof.

Lemma 17 For any η′ > 0, with probability at least 1− δ,

DEV1 ≤ C

√
8 ln

(
CSA

δ

)(
〈φ?, ρK〉

η′
+ η′

〈
φ?,

K∑
k=1

bk

〉)
+

(
4CH ln

(
CSA

δ

))
〈φ?, ρK〉 .

Also, with probability at least 1− δ, DEV2 = Õ
(
H2
√
SA ln (1/δ)

)
.

Proof Define Xk(s, a) = ĉk(s, a)− ck(s, a). Note that

Xk(s, a) ≤ H

qk(s, a)
≤ 2H

φk(s, a)
≤ 2Hρk(s, a) ≤ 4HTK4,
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and

K∑
k=1

Ek
[
X2
k(s, a)

]
≤

K∑
k=1

Ek
[
Ñ2
k (s, a)c2

k(s, a)
]

q2
k(s, a)

≤ 2ρk(s, a)

K∑
k=1

Ek
[
Ñ2
k (s, a)c2

k(s, a)
]

qk(s, a)

= 4ρk(s, a)
K∑
k=1

bk(s, a). (Lemma 19)

Therefore, by applying a strengthened Freedman’s inequality (Lemma 22) with b = 4HTK4,Bk =
2Hρk(s, a),maxk Bk = 2HρK(s, a), and V = 4ρk(s, a)

∑K
k=1 bk(s, a), we have with probability

1− δ/(SA),

K∑
k=1

ĉk(s, a)− ck(s, a)

≤ C


√√√√32ρK(s, a)

K∑
k=1

bk(s, a) ln

(
CSA

δ

)
+ 4HρK(s, a) ln

(
CSA

δ

)
≤ C

√
8 ln

(
CSA

δ

)(
ρK(s, a)

η′
+ η′

K∑
k=1

bk(s, a)

)
+ 4CHρK(s, a) ln

(
CSA

δ

)
,

where the last step is by AM-GM inequality. Further using a union bound shows that the above
holds for all (s, a) ∈ Γ̃ with probability 1− δ and thus

DEV1 =
K∑
k=1

〈φ?, ĉk − ck〉

≤ C

√
8 ln

(
CSA

δ

)(
〈φ?, ρK〉

η′
+ η′

〈
φ?,

K∑
k=1

bk

〉)
+

(
4CH ln

(
CSA

δ

))
〈φ?, ρK〉 .

To bound DEV2, simply note that |〈h ◦ qk, ck − ĉk〉| ≤ 2H2 and apply Azuma’s inequality
(Lemma 20): with probability 1− δ,

DEV2 = λ

K∑
k=1

〈h ◦ qk, ck − ĉk〉 = O
(
λH2

√
K ln (1/δ)

)
= Õ

(
H2
√
SA ln (1/δ)

)
.

This completes the proof.

Lemma 18 With probability at least 1− δ, we have DEV3 = Õ
(
H2
√
SA ln (1/δ)

)
. Also, for any

η′ > 0, with probability at least 1− δ, we have

DEV4 ≤
〈φ?, ρK〉

η′
+ η′

〈
φ?,

K∑
k=1

bk

〉
+ Õ (1) .
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Proof To bound DEV3, simply note that

∣∣∣〈φk, b̂k − bk〉∣∣∣ ≤ 4H 〈qk, ĉk〉 ≤ 4H

∑
(s,a)

Ñk(s, a)

 ≤ 4H2

and apply Azuma’s inequality: with probability 1− δ,

DEV3 = γ
K∑
k=1

〈
φk, b̂k − bk

〉
= Õ

(
γH2

√
K ln (1/δ)

)
= Õ

(
H2
√
SA ln (1/δ)

)
.

To bound DEV4 = γ
∑K

k=1

〈
φ?, bk − b̂k

〉
, we note that bk(s, a)− b̂k(s, a) ≤ bk(s, a) ≤ H , and

Ek
[
bk(s, a)− b̂k(s, a)

]2
≤

Ek
[
(
∑

h h · qk(s, a, h)ĉk(s, a))2
]

q2
k(s, a)

≤
H2Ek

[
Ñ2
k (s, a)c2

k(s, a)
]

q2
k(s, a)

≤ 2H2ρK(s, a)
Ek
[
Ñ2
k (s, a)c2

k(s, a)
]

qk(s, a)

≤ 4H2ρK(s, a)bk(s, a). (Lemma 19)

Hence, applying a strengthened Freedman’s inequality (Lemma 22) with b = Bi = H , V =
4H2ρK(s, a)

∑K
k=1 bk(s, a), and C ′ = dlog2Hedlog2(H2K)e, we have with probability at least

1− δ/(SA),

K∑
k=1

bk(s, a)− b̂k(s, a)

≤ 2C ′H

√
ln

(
C ′SA

δ

)√√√√8ρK(s, a)

K∑
k=1

bk(s, a) + 2C ′H ln

(
C ′SA

δ

)

= 2C ′H

√
ln

(
C ′SA

δ

)(
2ρK(s, a)

η′
+ η′

∑
k

bk(s, a)

)
+ 2C ′H ln

(
C ′SA

δ

)
,

where the last step is by AM-GM inequality. Finally, applying a union bound shows that the above
holds for all (s, a) ∈ Γ̃ with probability at least 1− δ and thus

DEV4 = γ

K∑
k=1

〈
φ?, bk − b̂k

〉
≤ 〈φ

?, ρK〉
η′

+ η′

〈
φ?,

K∑
k=1

bk

〉
+ Õ (1) ,

where we bound γC ′H
√

ln
(
C′SA
δ

)
by a constant since γ is of order 1/

√
K and is small enough

when K is large.
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Lemma 19 For any episode k and (s, a) ∈ Γ̃: Ek
[
Ñk(s, a)2ck(s, a)2

]
≤ 2qk(s, a)bk(s, a).

Proof The proof is similar to those of Lemma 4 and uses (
∑I

i=1 ai)
2 ≤ 2

∑
i ai(

∑I
i′=i ai′):

Ek
[
Ñk(s, a)2ck(s, a)2

]
≤ Ek

( H∑
h=1

Ñk(s, a, h)

)2

ck(s, a)


≤ 2Ek

( H∑
h=1

Ñk(s, a, h)

) H∑
h′≥h

Ñk(s, a, h
′)ck(s, a)


≤ 2Ek

 H∑
h=1

H∑
h′≥h

Ñk(s, a, h
′)ck(s, a)

 (Ñk(s, a, h) ∈ {0, 1})

= 2

H∑
h=1

H∑
h′≥h

qk(s, a, h
′)ck(s, a)

= 2

H∑
h=1

hqk(s, a, h)ck(s, a) = 2qk(s, a)bk(s, a),

where the last step is by the definition of bk.

Appendix C. Concentration Inequalities

Lemma 20 (Azuma’s inequality) LetX1:n be a martingale difference sequence and |Xi| ≤ B holds
for i = 1, . . . , n and some fixed B > 0. Then, with probability at least 1− δ:∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≤ B
√

2n ln
2

δ
.

Lemma 21 (A version of Freedman’s inequality from (Beygelzimer et al., 2011)) Let X1:n be a
martingale difference sequence and Xi ≤ B holds for i = 1, . . . , n and some fixed B > 0. Denote
V =

∑n
i=1 Ei[X2

i ]. Then, for any λ ∈ [0, 1/B], with probability at least 1− δ:
n∑
i=1

Xi ≤ λV +
ln(1/δ)

λ
.

Lemma 22 (Strengthened Freedman’s inequality from (Lee et al., 2020a, Theorem 2.2)) LetX1:n be
a martingale difference sequence with respect to a filtrationF1 ⊆ · · · ⊆ Fn such that E[Xi|Fi] = 0.
Suppose Bi ∈ [1, b] for a fixed constant b is Fi-measurable and such that Xi ≤ Bi holds almost
surely. Then with probability at least 1− δ we have

n∑
i=1

Xi ≤ C
(√

8V ln (C/δ) + 2B? ln (C/δ)
)
,

where V = max
{

1,
∑n

i=1 E[X2
i |Fi]

}
, B? = maxi∈[n]Bi, and C = dln(b)edln(nb2)e.
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