
Proceedings of Machine Learning Research vol 134:1–29, 2021 34th Annual Conference on Learning Theory

Online Markov Decision Processes with Aggregate Bandit Feedback

Alon Cohen aloncohen@google.com
Google Research, Tel Aviv

Haim Kaplan haimk@post.tau.ac.il
Blavatnik School of Computer Science, Tel Aviv University and Google Research, Tel Aviv

Tomer Koren tkoren@tauex.tau.ac.il
Blavatnik School of Computer Science, Tel Aviv University and Google Research, Tel Aviv

Yishay Mansour mansour@tau.ac.il
Blavatnik School of Computer Science, Tel Aviv University and Google Research, Tel Aviv

Editors: Mikhail Belkin and Samory Kpotufe

Abstract
We study a novel variant of online finite-horizon Markov Decision Processes with adversarially
changing loss functions and initially unknown dynamics. In each episode, the learner suffers the
loss accumulated along the trajectory realized by the policy chosen for the episode, and observes
aggregate bandit feedback: the trajectory is revealed along with the cumulative loss suffered, rather
than the individual losses encountered along the trajectory. Our main result is a computationally
efficient algorithm with $ (

√
 ) regret for this setting, where  is the number of episodes.

We establish this result via an efficient reduction to a novel bandit learning setting we call
Distorted Linear Bandits (DLB), which is a variant of bandit linear optimization where actions
chosen by the learner are adversarially distorted before they are committed. We then develop a
computationally-efficient online algorithm for DLB for which we prove an $ (

√
)) regret bound,

where ) is the number of time steps. Our algorithm is based on online mirror descent with a
self-concordant barrier regularization that employs a novel increasing learning rate schedule.

1. Introduction

Markov Decision Processes are a ubiquitous model for decision making that captures a wide array
of applications including autonomous road navigation, robotics, gaming and many more. In the
finite-horizon version of the model, the goal of the agent is to minimize her expected total loss over
a fixed number of time steps. Classic results in finite-horizon MDPs state that the optimal policy of
the agent is deterministic; namely, a mapping between each state and time step to an action for the
agent to play.

In this paper, we study the problem of Online MDPs with Aggregate Feedback which is played
for  episodes. The dynamics of the MDP are fixed but unknown to the learner. After each episode,
in addition to observing her trajectory within the MDP, the agent also gets to view her total loss
along this trajectory. The agent, however, does not get to observe the individual losses of specific
states and actions that comprise the trajectory. This setting was recently considered in Efroni et al.
(2020) where the authors derived computationally-efficient learning algorithms for the case where
the losses are sampled i.i.d. from some unknown distribution. In this work, we assume that the losses
are non-stochastic and may be chosen by an adversary—a significantly more challenging task. This,
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for example, can be seen as a relaxation of the Markov assumption, where some complex part of the
environment that is hard to model influences only the learner’s losses.

The adversarial setting is a variant of onlineMDPs (Even-Dar et al., 2009) with initially unknown
model dynamics, previously considered eitherwhen full information about the losses is received (Neu
et al., 2010), or with traditional bandit feedback where the agent sees the individual losses of all
states and actions that were visited along each of her generated trajectories (Rosenberg andMansour,
2019). Commonly, the main solution technique is to separate the  episodes into $ (log ) epochs;
in each epoch, the agent runs a no-regret algorithm using an estimate of the dynamics obtained from
observations accrued up to the beginning of the epoch. To tackle bandit feedback in general, it is
common practice to employ a full-information learning algorithm which is fed with an unbiased
estimate of the losses in each episode. Nevertheless, in our setup we do not know the MDP
dynamics, so it is hopeless for the learner to generate such an unbiased estimate since it is impossible
to calculate the probability of visiting each state and action without exact knowledge of the transition
distributions. This impediment was overcome in Jin et al. (2020) that followed the “optimism in
the face of uncertainty” principle: they fed the learning algorithm with a certain underestimate of
the loss. This drives the agent to explore under-sampled state-action pairs, helps to obtain better
estimates of the dynamics, and reduces the overall bias of the loss estimators over time.

We utilize a similar approach to tackle the aggregate feedback by reducing the problem to
$ (log ) epochs in each of which we solve a variant of linear bandits over our current estimate of
the model dynamics. We name the learning problem in each epochDistorted Linear Bandits (DLB).
This is a variant of the linear bandits problem in which, after choosing an action, it can be distorted
(i.e., perturbed) in an adversarial manner before it is played. This distortion unavoidably introduces
a non-negligible bias when trying to generate an estimate of the loss vector. The DLB problem is
also interesting in its own right, capturing scenarios where there is uncertainty regarding the action
that is actually taken, which might deviate significantly from the action intended to be taken—a
phenomenon that occurs in applications in robotics and control, where the actions are continuous
in nature.

We derive two learning algorithms for the DLB setting that yield a $ (
√
 ) regret bound, yet

mitigate the estimation bias in different ways. Our first algorithm, based on EXP2 (Awerbuch
and Kleinberg, 2004; McMahan and Blum, 2004), utilizes an optimistic approach by feeding the
algorithm with underestimates of the loss similarly to Bartlett et al. (2008). This technique, it turns
out, is not computationally efficient due to the non-convex nature of these underestimates. Our
second algorithm, however, runs in polynomial-time per episode. It is a variant of Online Mirror
Descent that uses a self-concordant barrier function as a regularizer (Abernethy et al., 2009) with a
series of increasing learning rates. The idea of using increasing learning rates to alleviate estimation
bias is used in various recent works (Bubeck et al., 2017; Agarwal et al., 2017; Lee et al., 2020).
Intuitively, it gives the learner a “boost” towards playing better actions whenever the estimation bias
is large.

1.1. Summary of Contributions

The main contributions of the paper are as follows:

• We introduce the setting of Online MDPs with Aggregate Bandit Feedback, where the dy-
namics are initially unknown and costs may be chosen by an adversary; to the best of our
knowledge, such a problem has not been studied before.
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• We establish an efficient reduction from Online MDPs with Aggregate Bandit Feedback to the
novel Distorted Linear Bandits (DLB) problem.

• We give a computationally-efficient online learning algorithm for the DLB problem with
$ (
√
)) regret over ) rounds.

• Combining the two techniques, we obtain a computationally-efficient online learning method
for Online MDPs with Aggregate Bandit Feedback with $ (

√
 ) regret over  episodes.

In Section 3 we present the Online MDP with Aggregate Feedback model explicitly and give our
main result. We also present the Distorted Linear Bandits (DLB) setting, the reduction between the
two models, and prove our regret bound for online MDPs. In Section 4 we give our two algorithms
for the DLB setting and analyze their regrets.

1.2. Additional Related Work

The study of regret minimization in reinforcement learning dates back to Jaksch et al. (2010) who
considered an MDP with unknown dynamics and losses, but where the losses are sampled i.i.d.
This model was further studied in Azar et al. (2017); Zanette and Brunskill (2019) that provided
improved bounds.

OnlineMDPswere introduced inEven-Dar et al. (2009)who studiedMDPswith knowndynamics
and adversarially changing losses. Later Neu et al. (2013) extended the online MDP to handle bandit
feedback. Abbasi Yadkori et al. (2013) considered MDPs where both the dynamics and the losses
change adversarially. Their algorithm, however, is not computationally-efficient as they show in
a hardness result. All the above results assume access to individual losses while in this work we
assume the learner observes only the aggregate loss of an episode.

Bandit linear optimization has been extensively studied under both semi-bandit and bandit feed-
back; for an extensive survey of this literature, see Slivkins et al. (2019); Lattimore and Szepesvári
(2020). Misspecified linear bandits were introduced in Ghosh et al. (2017) where the loss of each
action can be perturbed arbitrarily. They give an impossibility result for large sparse deviations
and a regret bound for small deviations (see also Lattimore et al., 2020). Our model differs from
misspecified linear bandit, most importantly, in that we allow for adversarial losses. In addition, we
also differ both in the fact that the deviations might be large (and we can only globally bound them)
and the fact that the loss is linear but with respect to a distorted action.

2. Preliminaries

Finite-Horizon MDPs. A finite-horizon Markov Decision Process is a tuple ((, �, B1, %, `, �)
where ( is a finite set of states; � is a finite set of actions; B1 ∈ ( is the start state; the integer �
defines the horizon. The transition function % defines a probability distribution %(B′ | B, 0, ℎ) of the
next state B′ given the current state B, action 0, and time ℎ ∈ [�]. The loss function is ` defines a
loss `(ℎ, B, 0, B′) ∈ [0, 1] for every time ℎ ∈ [�] state B, action 0, and next state B′.

A (randomized) policyπ : (×[�] ↦→ ∆(�)maps each state and time to a probability distribution
over the actions. A trajectory is a sequence (B1, 01, . . . , B� , 0� , B�+1). The probability of such
trajectory with respect to a policy π and a transition function % is

∏�
ℎ=1 π(0ℎ | Bℎ, ℎ)%(Bℎ+1 |

Bℎ, 0ℎ, ℎ). The accumulated loss of such a trajectory using a loss function` is
∑�
ℎ=1 `(ℎ, Bℎ, 0ℎ, Bℎ+1).
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The expected loss of a policy π with respect to a transition function % and loss function ` is

!π,%,` = E

[
�∑
ℎ=1

`(ℎ, Bℎ, 0ℎ, Bℎ+1)
]
=

∑
(ℎ,B,0,B′) ∈
[� ]×(×�×(

`(ℎ, B, 0, B′) Pr[Bℎ = B, 0ℎ = 0, Bℎ+1 = B′] .

Occupancy Measures. A combination of a policy π and a transition function % provide an
occupancy measure Gπ,% such that Gπ,% (ℎ, B, 0, B′) is the probability, according to % and π, of being
at state B at time ℎ, playing action 0, and transitioning to state B′. Formally,

Gπ,% (ℎ, B, 0, B′) = Pr
π,%
[Bℎ = B, 0ℎ = 0, Bℎ+1 = B′] .

Any G : [�] × ( × � × ( ↦→ ℝ is an occupancy measure, if and only if

G(ℎ, B, 0, B′) ≥ 0, ∀(ℎ, B, 0, B′) ∈ [�] × ( × � × (,∑
(B,0,B′) ∈(×�×(

G(ℎ, B, 0, B′) = 1, ∀ℎ ∈ [�],∑
(0,B′) ∈�×(

G(ℎ + 1, B, 0, B′) =
∑

(B′,0) ∈(×�
G(ℎ, B′, 0, B), ∀(B, ℎ) ∈ ( × [� − 1] . (1)

Indeed, any G that satisfies the conditions above corresponds to an occupancy measure for some
policy π and transition function %, both can easily be extracted from G—this correspondence is
therefore one-to-one. That is, given an occupancy measure G we can define the corresponding policy
and dynamics as follows:

π(G) (0 | B, ℎ) =
∑
B′∈( G(ℎ, B, 0, B′)∑

(0,B′) ∈�×( G(ℎ, B, 0, B′)
, and %̃ (G) (B′ | B, 0, ℎ) = G(ℎ, B, 0, B′)∑

B′∈( G(B, 0, ℎ, B′)
. (2)

For more on occupancy measures, see Rosenberg and Mansour (2019).

Self-concordant Barriers and Bregman Divergence. We next briefly review self-concordant
barrier functions—a fundamental tool in interior-point methods that was also shown to be highly-
useful in linear bandit optimization (Abernethy et al., 2009). Self-concordant barriers are discussed
in-depth in Nemirovski (2004); we give the technical definitions in Appendix C and here focus on
some useful properties of such functions that we use.

We consider a ϑ-self-concordant barrier function ' over a convex set S. In particular, for a
self-concordant barrier ', the function ‖ℎ‖G =

√
ℎT∇2'(G)ℎ is a norm, and also ∇' : int(S) ↦→ ℝ3

is invertible. In addition, an important property of the norm ‖ · ‖G is that for any point H ∈ ℝ3 and
G ∈ int(S),

‖H − G‖G < 1 =⇒ H ∈ int(S). (3)

We define the Bregman divergence with respect to a ϑ-self-concordant barrier ' as follows:

�' (H ‖ G) = '(H) − '(G) − ∇'(G) · (H − G).

The Bregman divergence is always nonnegative: �' (H ‖ G) ≥ 0 for any G, H ∈ int(S). Moreover, we
shall need the following lower bound on the Bregman divergence (see Nemirovski, 2004):

�' (H ‖ G) ≥ ρ(‖H − G‖G) for ρ(I) = I − log(1 + I). (4)

We also require the following lemma whose proof is found in Appendix B.
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Lemma 1. Define Sγ = {(1 − γ)G + γG1 | G ∈ S} for G1 = arg minG∈S '(G) and some γ ∈ [0, 1].
Then �' (H ‖ G1) ≤ ϑ log(1/γ) for any H ∈ Sγ.

Online Mirror Descent with Barriers. We rely on standard properties of the Online Mirror
Descent (OMD) algorithmwith a self-concordant barrier function ' for a domainS as regularization,
applied to an arbitrary sequence of loss vectors `1, . . . , `) ∈ ℝ3 (Abernethy et al., 2009). Starting
from an initial G1 ∈ S, OMD makes the following updates for C = 1, . . . , ) :1

GC+1 = ∇'−1 (∇'(GC ) − ηC`C ) . (5)

This version of OMD has the following guarantee (we include a proof in Appendix B for complete-
ness); here we use the notation ‖`‖★G =

√
`T∇2'(G)−1` for G ∈ S and ` ∈ ℝ3 .

Lemma 2. Let ' : int(S) ↦→ ℝ be self-concordant and assume that ηC ‖`C ‖★GC ≤
1
2 for all C. Then,

for any D ∈ S,
)∑
C=1

`C · (GC − D) ≤
1
η1
�' (D ‖ G1) −

)∑
C=2

(
1

ηC−1
− 1
ηC

)
�' (D ‖ GC ) +

)∑
C=1

ηC (‖`C ‖★GC )
2.

Observe that when the learning rate sequence is strictly increasing, the middle term in the above
bound becomes negative and can potentially serve to decrease the regret ofOMDwhen the divergence
�' (D ‖ GC ) is large. This observation is key to our algorithmic development in Section 4.2.

3. Setup and Overview of Results

3.1. Online MDPs with Aggregate Bandit Feedback

We consider an online version of finite-horizon MDPs in which the interaction between learner and
theMDP proceeds for  episodes. Before the interaction begins, the environment assigns a sequence
of loss functions `1, . . . , `: : [�] × ( × � × ( ↦→ [0, 1] one for each episode : ∈ [ ]. The choice
of loss functions is done in an arbitrary, possibly adversarial, manner.

At the start of each episode : the online algorithm defines a policy π: . At the end of the episode
the online algorithm receives the trajectory realized by π: , i.e., (B:1 , 0

:
1 , . . . , B

:
�
, 0:
�
, B:
�+1), and the

aggregate loss incurred during this trajectory with respect to `: , i.e.,
∑�
ℎ=1 `: (ℎ, B:ℎ, 0

:
ℎ
, B:
ℎ+1).

We define the regret of the learner over the  episodes as

Reg =

 ∑
:=1

!π: ,%,`: −min
π

 ∑
:=1

!π,%,`: ,

where the minimum is taken over all policies π, and we let π★ denote a minimizer. The regret can
also be written in terms of occupancy measures, by noticing that the expected loss of a policy π and
transition function % with respect to a loss function ` is !π,%,` = Gπ,% · `. Thus, the regret of the
learner over the  episodes can be written as:

Reg =

 ∑
:=1

Gπ: ,% · `: −min
π

 ∑
:=1

Gπ,% · `: .

1. Typically, OMD has an additional projection step when employed on a bounded domain. However, when ' is a
barrier, such a projection is redundant as the OMD update never steps out of the domain (as a consequence of Eq. (3)).

5



Online MDPs with Aggregate Bandit Feedback

The main result of this paper is a computationally-efficient learning algorithm for the setting
described above.

Theorem 3. There exists an online learning algorithm for finite-horizon MDPs with aggregated
bandit feedback that guarantees

E[Reg ] = poly(�, |( |, |�|)$ (
√
 ).

Moreover, the per-episode runtime complexity of the algorithm is polynomial in �, |( |, |�|, and  .

We prove the theorem by efficiently reducing the online MDPs setting to a sequence of instances
of a novel setting we term Distorted Linear Bandits (DLB). In what follows, we describe the DLB
setting, the reduction, and prove the correctness of the reduction.

We note that the dependence on  in Theorem 3 is optimal due to a lower bound in the simpler
setting of stochastic MDPs with bandit feedback (Osband and Van Roy, 2016). The dependence on
�, |( |, |�|, however, is likely to be suboptimal. We defer the reader to Section 5 where we describe
the regret bound with more explicit dependence on the problem parameters.

3.2. Distorted Linear Bandits (DLB)

In this game, the learner plays by picking vectors from a compact and convex body S ⊆ ℝ3 . We
assume that ‖H‖1 ≤ � for all H ∈ S for some � > 0. Further, let β > 0 be a bias parameter.
Learning in the DLB setting proceed according the following protocol: Initially, the adversary
privately chooses a sequence of loss vectors `1, . . . , `) and a sequence of perturbation vectors
ε1, . . . , ε) ∈ [0,β]3 . Then, at rounds C = 1, . . . , ) ,

(i) Learner selects HC ∈ S.
(ii) Adversary picks IC ∈ ℝ3 , where ‖IC ‖1 ≤ � such that ‖IC − HC ‖1 ≤ min{|IC · εC |, |HC · εC |}.
(iii) A random ÎC is sampled such thatEC [ÎC | IC ] = IC and ‖ ÎC ‖1 ≤ �, whereEC denotes expectation

conditioned on all randomness prior to round C.
(iv) The action ÎC is played; the learner suffers and observes the loss `C · ÎC ; the learner additionally

observes ÎC and εC .

We emphasize that the IC are arbitrary and can be chosen in an adaptive manner after the learner
chooses HC . Note, however, that we assume that the loss vectors (as well as the perturbation vectors)
are chosen before the game starts; namely, the adversary is oblivious.

We define the regret in the DLB setting as follows:

Reg) =

)∑
C=1

ÎC · `C −min
I∈S

)∑
C=1

I · `C .

The learner’s goal is therefore to minimize the losses attained by the perturbations Î1, . . . , Î) of the
actions H1, . . . , H) chosen by the learner. Clearly, the regret necessarily scales with the magnitudes
of ε1, . . . , ε) , and our regret bounds will ultimately depend on a parameter � that upper bounds the
magnitude of the perturbations via the quantity

∑)
C=1( ÎC · εC )2. The following theorem is the main

technical result of our work.
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Theorem 4. There exists an efficient (poly-time) online learning algorithm for the DLB setting whose
regret is at most poly(�, 3,β, �)$ (

√
)).

We prove this theorem by showing two online learning algorithms (one is computationally-
efficient; the other is not) in Section 4. We conclude this current section by describing the reduction
from online MDPs with aggregate bandit feedback to DLB.

3.3. The Reduction

We now show how to reduce the MDP with aggregate feedback problem to instances of DLB
described above (proofs of results of this section appear in Appendix B.) Our algorithm for learning
MDPs with aggregate feedback is depicted in detail in Appendix A, and here we give a verbal
description of the algorithm. The algorithm assumes the existence of a computationally-efficient
online learning algorithm for DLB with $ (

√
)) regret which exists due to Theorem 4.

The algorithm partitions the  episodes into epochs, where epoch 8 contains episodes :8 through
:8+1 − 1 (:1 = 1). Each epoch ends whenever the number of visits to some state-action pair B, 0 at
some time step ℎ is doubled. Thus, the total number of epochs is at most 2� |( | |�| log .

In epoch 8, we produce an empirical estimate of the transition probabilities %̂ based on all
observations prior to epoch 8. We apply a high probability argument to bound the estimation error
% of the dynamics as: ‖%̂(· | B, 0, ℎ) − %(· | B, 0, ℎ)‖1 ≤ ε8 (B, 0, ℎ)/� for a confidence parameter
ε8 : (× �× [�] ↦→ [0,β] associated with epoch 8. (ε8 (B, 0, ℎ) decreases as a function of the number
of times each (B, 0, ℎ) has been visited up to epoch 8.)

We fix a convex and compact S8 to be the set of all feasible occupancy measures based on our
current estimate of the dynamics of the MDP. We claim that in each epoch, the setting admits to the
distorted linear bandits problem. Indeed, we show that with high probability, S8 contains Gπ

★,%—the
occupancy measure associated with the optimal policy and the true dynamics. Now, throughout
epoch 8, for : = :8 , . . . , :8+1 − 1:

(i) Learner picks a policy π: associated with some occupancy measure H: ∈ S8 .
(ii) π: is played on the trueMDP and the learner observes a trajectory Î: , such that Î: (ℎ, B, 0, B′) =

1 iff the trajectory passed through state B at time ℎ, played action 0 and transitioned to state
B′. Otherwise Î: (ℎ, B, 0, B′) = 0. The learner suffers and observes the loss of `: · Î: .

(iii) Let I: be the occupancy measure of π: and the true dynamics %; then E[Î: | I:] = I: . We
prove that ‖I: − H: ‖1 ≤ min{ε8 · IC , ε8 · HC }.

Moreover, we give a bound of
∑:8+1−1
:=:8

(ε8 · Î:)2 = $̃ (�4 |( |2 |�|) as required by the DLB setting.
We consequently apply the DLB algorithm to obtain a regret bound of $ (

√
:8+1 − :8) = $ (

√
 )

in each epoch, and as the number of epochs is only at most $ (log ) this gives an overall regret
bound of $̃ (

√
 ) as required. The complete proof of this claim appears in Appendix B. The analysis

of the running time of the algorithm is found in Section 5.

4. Algorithms for Distorted Linear Bandits

In this section we prove Theorem 4 by presenting our online algorithms for the DLB problem. The
difficulty of this setting lies in the fact that the main mechanism to cope with lack of information in
bandit optimization is to construct unbiased estimates of the loss vectors. In the DLB setting this is
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impossible to do since the actions chosen by the learner are shifted by the adversary. Nevertheless,
having

∑)
C=1( ÎC · εC )2 bounded, intuitively means that the estimation bias at the actions played by the

learner is bounded in an amortized sense—a useful property that we utilize in our algorithms.

4.1. Simple Approach via Optimism

Our first algorithm is based on what is arguably the most straightforward approach to the problem:
construct an “optimistic” estimator to the player’s loss—one whose expectation underestimates the
loss of all actions at a given round, yet is sufficiently accurate in estimating the player’s loss at the
same round—and feed it to a standard bandit linear optimization algorithm. However, as we show
in this section, such a loss estimator becomes a non-convex (in fact, concave) function of the played
action, thus overall this approach leads to a computationally inefficient algorithm. We nevertheless
present the algorithm in this work to illustrative why this approach fails before moving on to a more
sophisticated approach in Section 4.2.

Throughout this section, we assume that the decision set S is finite of size $ ((�))3); since for
now we are not bound by computational complexity considerations, if S is a larger (or infinite) set
we may replace S with a 1/(�))-net of S, which has the required size. The algorithm we describe
below (Algorithm 1) assumes as input an exploration distribution µ over the set S, such that for H ∼ µ
it holds that E[HHT] � λ� for a constant λ > 0. Standard techniques in linear bandit optimization
(e.g., Bubeck et al., 2012; Hazan and Karnin, 2016) show that under fairly general conditions on S,
one can pick an exploration distribution µ so as λ = Ω(1/

√
3).2

Algorithm 1 Distorted Linear Bandits via Optimistic Biases
1: input: η > 0, γ > 0, exploration distribution µ.
2: initialize: F1(H) = 1 for all H ∈ S.
3: for C = 1, . . . , ) do
4: define probability density ?C ∝ FC , and let @C = (1 − γ)?C + γµ.
5: sample point HC ∼ @C in the domain S.
6: adversary chooses IC such that ‖IC − HC ‖1 ≤ min{|HC · εC |, |IC · εC |}, and plays ÎC where

EC [ÎC | IC ] = IC .
7: observe εC and loss `C · ÎC ∈ [0, �].
8: compute the second moment of HC : "C = EC [HC HT

C ] .
9: compute ˆ̀

C = (`C · ÎC )"−1
C HC and ˜̀

C (H) = ˆ̀
C · H −

√
3 ‖H‖"−1

C
‖εC ‖"C

.
10: update FC+1(H) = FC (H) · exp(−η ˜̀

C (H)), ∀ H ∈ S.
11: end for

The algorithm relies on a standard estimator ˆ̀
C = (`C · ÎC )"−1

C HC to estimate the loss vector
`C . Note that if it were that IC = HC then this would have been an unbiased estimator for the loss,
i.e., EC [ ˆ̀

C ] = `C . However, due to the adversarial perturbations IC might be shifted away from the
intended HC . We thus modify the estimator to account for this shift and make it “optimistic,” in the
sense that its expectation is a lower bound on the real loss function. Given these corrected estimates,
the rest of the algorithmic development follows standard lines in the linear bandit optimization
literature (Dani et al., 2008; Bubeck et al., 2012).

2. Some of these techniques rely on solving intractable optimization problems, but recall that in the context of this
section we are not concerned by the computational complexity of the resulting algorithm.
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Concretely, we define the following bias-corrected loss functions:

˜̀
C (H) = ˆ̀

C · H −
√
3 ‖H‖"−1

C
‖εC ‖"C

, ∀ C ∈ [)], H ∈ S .

Then, the algorithm essentially performs multiplicative-weights updates on the modified loss func-
tions ˜̀

C (H), which can be seen to be a concave function of H. In general, it is a hard problem to
sample from the resulting distributions @C given that these losses are concave. (If, on the other hand,
they were convex, then the resulting distributions would have been log-concave for which efficient
sampling algorithms are well-known.) Therefore, the algorithm is computationally inefficient.

We prove that Algorithm 1 provides the following regret guarantee.

Theorem 5. Set η = (2�β3)−1
√

log |S|/) , γ = 2�2(� +β
√
3)η/λ. Then, given that � ≥

∑)
C=1( ÎC ·

εC )2 (almost surely), for any H★ ∈ S, Algorithm 1 satisfies that

E

[
)∑
C=1

`C · ( ÎC − H★)
]
= $̃

(
�β3 + β3

√
� + �3

βλ3
+ �2

λ
√
3

)√
),

provided that β ≥ 1 and ) ≥ (4�2(� + β
√
3)2 log |S|)/(λ2β232).

We only sketch the proof here, deferring details and precise bounds to Appendix B.

Proof (sketch). Webegin by showing that ˜̀
C is indeed an underestimate of the true loss (see Lemma 6

below): EC [ ˜̀
C (H)] ≤ `C · H for any H ∈ S. For the converse direction, we show that in expectation

over the learner’s decision, ˜̀
C is close to `C in the following sense:

EC


∑
H∈S

?C (H) ˜̀
C (H)

 ≥ EC [`C · ÎC ] − γ� − 53‖εC ‖"C
.

With these two results at hand, we argue that the regret of Algorithm 1 is bounded by the regret of the
Multiplicative Weights updates, plus an additive error term that scales with the perturbations εC :

E

[
)∑
C=1

`C · ( ÎC − H★)
]
≤ E

[
)∑
C=1

∑
H∈S

?C (H)
( ˜̀
C (H) − ˜̀

C (H★)
) ]
+ γ�) + 53 E

[
)∑
C=1
‖εC ‖"C

]
. (6)

Next, we apply a standard second-order regret bound of Multiplicative Weights to obtain the
following:

)∑
C=1

∑
H∈S

?C (H)
( ˜̀
C (H) − ˜̀

C (H★)
)
≤ log|S|

η
+ η

∑
H∈S

?C (H)
( ˜̀
C (H)

)2
,

and we bound the term EC [
∑
H∈S ?C (H) ( ˜̀

C (H))2] ≤ 8(�β3)2 using simple algebra.
The theorem is now given by combining the second-order regret bound above together with

Eq. (6), and by bounding the bias terms using the DLB setting assumptions, as E[
∑)
C=1‖εC ‖"C

] ≤
2β
√
�). �

We now prove that as mentioned, the expectation of ˜̀
C is an underestimate of the true loss.

Lemma 6. EC [ ˜̀
C (H)] ≤ `C · H for any H ∈ S.

9
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Proof. Observe that

EC [ ˆ̀
C ] = EC [(`C · IC )"−1

C HC ]
= EC ["−1

C HC H
T
C `C ] + EC ["−1

C HC (IC − HC ) · `C ]
= `C + "−1

C EC [HC (IC − HC ) · `C ] .

Our assumptions imply that | (IC − HC ) · `C | ≤ ‖IC − HC ‖1‖`C ‖∞ ≤ |HC · εC |. Thus, by two applications
of Cauchy-Schwartz, for any H ∈ S we obtain

EC [| ( ˆ̀
C − `C ) · H |] = EC

[
|HT"−1

C HC | · | (IC − HC ) · `C |
]

≤ ‖H‖"−1
C
EC

[
‖HC ‖"−1

C
|HC · εC |

]
≤ ‖H‖"−1

C

√
EC [‖HC ‖2"−1

C

] EC [(HC · εC )2]

= ‖H‖"−1
C

√
EC [HT

C "
−1
C HC ]

√
εT
C EC [HC HT

C ]εC
=
√
3‖H‖"−1

C
‖εC ‖"C

.

(7)

This means that

EC [ ˜̀
C (H) − `C · H] = EC [( ˆ̀

C − `C ) · H] −
√
3‖H‖"−1

C
‖εC ‖"C

≤ 0

which proves that E[ ˜̀
C (H)] ≤ `C · H for any H ∈ S. �

4.2. Efficient Approach via OMD with Increasing Learning Rates

Our previous algorithmenjoys an $̃ (
√
)) regret bound, but it is inherently computationally inefficient.

In this section we take a different approach that leads to an algorithm with $̃ (
√
)) regret, but one

that can also be implemented efficiently.

Algorithm 2 Distorted Linear Bandits via Increasing Learning Rates
1: input: η0 > 0, ϑ-self-concordant barrier ' : int(S) ↦→ ℝ.
2: init: G1 = arg minG∈S '(G).
3: for C = 1, . . . , ) do
4: sample DC uniformly at random from the unit sphere of ℝ3 .
5: predict HC = GC + ∇2'(GC )−1/2DC .
6: adversary chooses IC such that ‖IC − HC ‖1 ≤ min{|HC · εC |, |IC · εC |}, and plays ÎC where

EC [ÎC | IC ] = IC .
7: observe ÎC , εC , and loss `C · ÎC ∈ [0, �].
8: construct ˜̀

C = 3 (`C · ÎC )∇2'(GC )1/2DC .
9: update η−1

C = η−1
C−1 − 23 | ÎC · εC |.

10: set GC+1 = ∇'−1(∇'(GC ) − ηC ˜̀
C ).

11: end for

Algorithm 2 is based on Online Mirror Descent with a self-concordant barrier ' as a regularizer
(Abernethy et al., 2009). The algorithm maintains a sequence of points G1, . . . , G) ∈ S. In

10
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line 5, the algorithm makes a prediction HC by sampling uniformly at random from the ellipsoid
{H : ‖H − GC ‖GC ≤ 1}, known as the Dikin Ellipsoid associated with ' at GC , that is always contained
in S (this follows from Eq. (3)). Then, according to the DLB protocol, the algorithm receives εC , ÎC
and loss `C · ÎC such that IC = EC [ÎC | IC ] where IC is a perturbation of HC .

The algorithm proceeds to construct an estimator ˜̀
C of the loss vector `C in line 8. Note that

if we replace ÎC with HC in line 8, then ˜̀
C would be an unbiased estimator. However, as this is not

the case, the algorithm must mitigate the bias in the ˜̀
C , and does that by increasing its learning rate

according to the perturbation magnitude | ÎC · εC | (line 9). Finally, in line 10, the algorithm performs
the mirror descent update.

Algorithm 2 can be implemented efficiently as long as S is not degenerate (namely, S is compact
and has volume inℝ3 , and thus admits a proper self-concordant barrier ') and as long as gradients and
Hessians of ' can be computed efficiently. We defer a more detailed discussion of implementation
issues to Section 5.

Our main result regarding the algorithm is as follows.

Theorem 7. Algorithm 2 with η0 = Θ̃(ϑ/(3ϑ
√
�) + 3�

√
ϑ))) provides the following regret guar-

antee, for any H★ ∈ S:

E

[
)∑
C=1
( ÎC − H★) · `C

]
= $̃

(
3ϑ
√
�) + 3�

√
ϑ)

)
,

provided that � ≥ max{
∑)
C=1( ÎC · εC )2, �} (almost surely).

Here we sketch the proof of Theorem 7 highlighting the key ideas; the complete proof and
precise bounds can be found in Appendix B.

Proof (sketch). The first part of the proof is straightforward. We split the regret into three terms:

E

[
)∑
C=1
( ÎC − H★) · `C

]
= E

[
)∑
C=1
(IC − GC ) · `C

]
+ E

[
)∑
C=1
(GC − H★γ ) · `C

]
+ E

[
)∑
C=1
(H★γ − H★) · `C

]
, (8)

where H★γ = (1 − γ)H★ + γG1 ∈ Sγ for sufficiently small γ. (Following a standard technique,
we introduce H★γ as otherwise we would eventually have to bound �' (H★ ‖ G1) which might be
arbitrarily large; by introducing H★γ , we instead would have to bound �' (H★γ ‖ GC ), which is bounded
by Lemma 1.) The first summand in Eq. (8) pertains to the bias generated by the perturbation of HC
to IC , and is bounded by

√
�) ; the third summand bounds the loss difference between that of H★ and

of H★γ , and is bounded by 2γ�) . All of these quantities are $̃
(
3ϑ
√
�) + 3�

√
ϑ)

)
.

The heart of the proof focuses on bounding the second summand. To this end, we apply Lemma 8
(see below) to bound the instantaneous regret of the algorithm at each time step C, by the instantaneous
regret using the loss estimator ˜̀

C plus an additional bias term that scales with ‖GC − H★γ ‖GC . This
results with

(GC − H★γ ) · `C ≤ EC [(GC − H★γ ) · ˜̀
C ] + 3‖GC − H★γ ‖GCEC [| ÎC · εC |], (9)

and we proceed in boundingE[
∑)
C=1 EC [(GC − H★γ ) · ˜̀

C ]] = E[
∑)
C=1(GC−H★γ ) · ˜̀

C ]. Since the algorithm
is taking OMD steps with loss vectors ˜̀

C , we can apply Lemma 2 to get

E

[
)∑
C=1
(GC − H★γ ) · ˜̀

C

]
≤ E

[
1
η1
�' (H★γ ‖ G1) −

)∑
C=2

(
1

ηC−1
− 1
ηC

)
�' (H★γ ‖ GC ) +

)∑
C=1

ηC (‖ ˜̀
C ‖★GC )

2

]
.

11
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Handling the first and third terms is standard (followingAbernethy et al., 2009), and they are shown to
be bounded by $ ((ϑ/η0) log(1/γ)) and $ (η03

2�2)) respectively, both are $̃ (3ϑ
√
�) + 3�

√
ϑ))

for our choice of parameters. The middle term in the bound above is what enables the algorithm to
compensate for the bias in the loss estimation by employing an increasing learning rate schedule.
Indeed, together with Eq. (9) we obtain

E

[
)∑
C=1
(GC − H★γ ) · `C

]
≤ 3 E

[
)∑
C=1
‖GC − H★γ ‖GC | ÎC · εC |

]
− E

[
)∑
C=2

(
1

ηC−1
− 1
ηC

)
�' (H★γ ‖ GC )

]
+ $̃

(
3ϑ
√
�) + 3�

√
ϑ)

)
.

(10)

The key observation is that the divergence �' (H★γ ‖ GC ) here is directly related to the bias term
‖H★γ − GC ‖GC via Lemma 9 (found below), as �' (H★γ ‖ GC ) ≥ 1

2 ‖H
★
γ − GC ‖GC − 1. Now, with our

particular setting of learning rates (line 9) the second term in Eq. (10) is upper bounded by
−3

∑)
C=1‖H★γ − GC ‖GCEC [| ÎC · εC |] + $ ((ϑ/η0) log(1/γ)) (in expectation), which precisely cancels

out the first summation over the bias terms and gives the $̃
(
3ϑ
√
�) + 3�

√
ϑ)

)
regret bound. �

The following lemma bounds the instantaneous regrets suffered by the algorithm, by the algo-
rithm’s estimates of the instantaneous regret plus an additive bias term that scales as ‖GC − G‖GC .

Lemma 8. Let G ∈ S. Then, (GC − G) · `C ≤ EC [(GC − G) · ˜̀
C ] + 3‖GC − G‖GCEC [| ÎC · εC |] .

Proof. Recall that GC is determined given the randomness up to time C. We have that

EC
[
(GC − G) · ˜̀

C

]
= EC

[
(GC − G) · 3 (`C · ÎC )∇2'(GC )1/2DC

]
= EC

[
(GC − G) · 3

(
`C · EC [ÎC | IC ]

)
∇2'(GC )1/2DC

]
= EC

[
(GC − G) · 3 (`C · IC )∇2'(GC )1/2DC

]
= EC

[
(GC − G) · 3 (`C · GC )∇2'(GC )1/2DC

]︸                                           ︷︷                                           ︸
(1)

+EC
[
(GC − G) · 3

(
`C · (HC − GC )

)
∇2'(GC )1/2DC

]︸                                                     ︷︷                                                     ︸
(2)

− EC
[
(GC − G) · 3

(
`C · (HC − IC )

)
∇2'(GC )1/2DC

]︸                                                     ︷︷                                                     ︸
(3)

.

Next, we analyze each of the three summands above. As the only randomness given the history up
to time C is in DC , we have (1) = 0, and as HC − GC = ∇2'(GC )−1/2DC , we have

(2) = EC
[
(GC − G) · 3∇2'(GC )1/2DC (HC − GC ) · `C

]
= EC

[
(GC − G) · 3 ∇2'(GC )1/2DCDT

C ∇2'(GC )−1/2`C
]

= (GC − G) · 3 ∇2'(GC )1/2EC
[
DCD

T
C

]
∇2'(GC )−1/2`C

= (GC − G) · 3 ∇2'(GC )1/2 · 1
3
� · ∇2'(GC )−1/2`C

= (GC − G) · `C .

For term (3), two applications of Hölder’s inequality yield

(3) ≤ 3 EC
[
‖GC − G‖GC ‖∇

2'(GC )1/2DC ‖★GC ‖`C ‖∞‖HC − IC ‖1
]
.

12
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Now, to obtain the lemma, we use our assumption that ‖`C ‖∞ ≤ 1, that

EC [‖HC − IC ‖1] ≤ EC [|IC · εC |] = EC
[
|EC [ÎC | IC ] · εC |

]
≤ EC [| ÎC · εC |],

by Jensen’s inequality, and finally ‖'(GC )1/2DC ‖★GC = 1 due to Lemma 19 (see Appendix B). �

The next lemma lower bounds the Bregman divergence of any point G ∈ S from GC by an order
of their distance in local norm; i.e., ‖G − GC ‖GC .

Lemma 9. Let G ∈ S. Then, �' (G ‖ GC ) ≥ 1
2 ‖G − GC ‖GC − 1.

Proof. Recall that �' (G ‖ GC ) ≥ ρ(‖G − GC ‖GC ) by Eq. (4) where ρ(I) = I − log(1 + I). Since ρ(I)
is convex, we can lower bound

ρ(I) ≥ ρ(1) + ρ′(1) · (I − 1) = 1
2
− log(2) + 1

2
I ≥ 1

2
I − 1,

which yields the lemma’s statement for I = ‖G − GC ‖GC . �

5. Efficient Implementation of the Reduction

In this section we complete the proof of Theorem 3 by showing a computationally-efficient reduction
between Finite-Horizon MDPs with Aggregate Feedback and that of distorted linear bandits.

Recall the reduction in Section 3.3 in which we showed how to solve a Finite-HorizonMDPswith
Aggregated Feedback by constructing a sequence of $ (log ) instances (epochs) of the distorted
linear bandits problem and running a no-regret algorithm in each such instance (which exists due
to Theorem 4). In subsequent sections we reviewed Algorithms 1 and 2, both of which guarantee
no-regret for DLB. In this section we make the choice of the algorithm for the reduction explicit
by fixing it to be Algorithm 2. Note that the reduction itself, as well as Algorithm 2, can be
implemented in polynomial-time as long as in each epoch 8, the barrier ' chosen for S8 can be
computed efficiently. However, Algorithm 2 is made for the case in which S has volume inℝ3 which
is not the case of our body S8 . Thus, in what follows we give two options on how to alleviate this
problem and build an efficiently-computable barrier function for each option. In option 1, we show
how to alter Algorithm 2 to accommodate the case for S8 not being fully-dimensional. In option 2,
we keep Algorithm 2 as it is, but change the reduction so that S8 has a small volume in ℝ3 .

Option 1. We follow a technique used in Lee et al. (2020). The set S8 consists of an intersection
between linear equations (Eqs. (17) to (19)) of the form 28 · G = 38 for 8 = 1, . . . , ? and linear
inequalities (Eqs. (16) and (20)) of the form 08 · G ≤ 18 for 8 = 1, . . . , < where < = $ ( |( |2� |�|).
Our approach is to set the log barrier '(G) = −

∑<
8=1 log(18 − 08 · G) over the inequalities (note that

its barrier parameter ϑ is <; see Nemirovski, 2004). However, we still have to handle the linear
equations in order to make sure that Algorithm 2 will not generate predictions that are not in S8 .

Recall that Algorithm 2 is essentially a variant of OMD, which commonly has a projection
step that does not appear in Algorithm 2. First, we add a projection step in Algorithm 2 after
line 10 onto the affine subspace defined by the linear equations of S8: we replace line 10 with
G ′
C+1 = ∇'−1(∇'(GC ) − ηC ˜̀

C ), and then add after line 10: GC+1 = arg minG:�G=3 �' (G ‖ G ′C+1), where
� is a matrix whose columns are 21, . . . , 2?. This validates that the iterates G1, G2, . . . are in S8 .

Second, recall that originally H: , is sampled uniformly at random from the Dikin ellipsoid
centered at GC : {H : ‖H − GC ‖GC ≤ 1}. Concretely, H: = G: + ∇2'(G:)−1/2D: (line 5) for D: sampled

13
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uniformly at random from the unit sphere of ℝ3 . We also like to make sure that H: is in the
aforementioned affine subspace, by instead sampling H: uniformly at random from the intersection
of the Dikin ellipsoid with the affine subspace. To achieve this, we let , be an orthogonal matrix
whose range spans the null space of �. We now sample D: uniformly from the unit sphere in ℝ?.
We replace line 5 in Algorithm 2 by choosing H: = G: +,,T∇2'(G:)−1/2,D: , so now H: − G: is in
the null space spanned by 21, . . . , 2?. Moreover, we have H: ∈ S8 as we show that ‖H: − G: ‖G: = 1
and by Eq. (3) (proof in Appendix B).

The estimators { ˜̀
C })C=1 have to be changed accordingly. We change line 8 by redefining ˜̀

C =

?(`C · ÎC ),,T∇2'(GC )1/2,DC . The proof of Lemma 8 is altered to accommodate for these changes,
using the fact that G: − G is in the span of , . In addition, we replace the technical results in
Lemma 19, by these of Lemma 21 (both found in Appendix B). The rest of the proof of the analysis
of Algorithm 2 remains without any further changes.

Option 2. In this option, instead of altering Algorithm 2, we alter S8 to give it a small volume in
ℝ3 . We replace the ? linear equations of the form 28 · G = 38 with linear inequalities of the form
|28 · G − 38 | ≤ 1/poly( ). We then set the barrier on the new body to be the log barrier of the new
set of linear inequalities:

'(G) = −
<∑
8=1

log(18 − 08 · G) −
?∑
8=1

log(poly( )−1 − |38 − 28 · G |),

which also has a barrier parameter of ϑ = $ ( |( |2 |�|�) (number of linear inequalities defining the
new body; see Nemirovski, 2004).

The issue here is that, when running Algorithm 2 on the new body, we might choose H: that is
on the exterior of S8 . However, we could then replace H: by its projection, which we denote by H′

:
,

onto S8 and play that projection instead. Note that ‖H: − H′: ‖1 ≤ $ (1/poly( )). This ensures that
‖H: − I: ‖1 ≤ |ε8 · I: | + $ (1/poly( )) and fulfills the assumptions of the distorted linear bandits
setting (Section 3.2) thus ensuring that Algorithm 2 will maintain its $̃ (

√
 ) regret bound.

Finally, we note that taking either option 1 or option 2 yields the following, more explicit, regret
guarantee (proof in Appendix B).

Corollary 10. There exists a learning algorithm for finite-horizon MDPs with aggregate bandit
feedback that attains a regret bound of

E[Reg ] = $̃
(
|( |6 |�|5/2�5√ 

)
,

and runs in time per episode that is polynomial in �, |( |, |�|,  .
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Appendix A. Reduction Algorithm

Algorithm 3 Reduction from online MDPs with aggregate feedback to DLB
1: Init: #1(B, 0, ℎ) = 0, # (B, 0, ℎ, B′) = 0, ∀(B, 0, ℎ, B′) ∈ ( × � × [�] × (, : = 1.
2: for epoch 8 = 1, 2, . . . do
3: construct empirical transition function:

%̂8 (B′ | B, 0, ℎ) =
#8 (B, 0, ℎ, B′)

max{#8 (B, 0, ℎ), 1}
, ∀(B, 0, ℎ, B′) ∈ ( × � × [�] × (. (11)

4: set confidence bounds:

ε8 (B, 0, ℎ) = 5�

√
|( | + log(� |( | |�| /δ)

max{#8 (B, 0, ℎ), 1}
, ∀(B, 0, ℎ) ∈ ( × � × [�] . (12)

5: construct polytope of feasible occupancy measure S8 (Eqs. (17) to (20)).
6: init: =8 (B, 0, ℎ) = 0, =8 (B, 0, ℎ, B′) = 0 for all (B, 0, ℎ, B′) ∈ ( × � × [�] × (.
7: while =8 (B, 0, ℎ) < max{#8 (B, 0, ℎ), 1} for all (B, 0, ℎ) ∈ ( × � × [�] do
8: predict occupancy measure H: ∈ S8 using algorithm from Theorem 4.
9: play π: such that π: = π(H: ) (recall Eq. (2)).
10: observe trajectory Î: , and aggregate loss `: · Î: .
11: feed DLB algorithm with Î: , `: · Î: , and ε8 .
12: increment: : = : + 1, =8 (B, 0, ℎ, B′) = =8 (B, 0, ℎ, B′) + Î: (B, 0, ℎ, B′), and =8 (B, 0, ℎ) =∑

B′∈( =8 (B, 0, ℎ, B′).
13: end while
14: update: #8+1(B, 0, ℎ) = #8 (B, 0, ℎ) + =8 (B, 0, ℎ), #8+1(B, 0, ℎ, B′) = #8 (B, 0, ℎ, B′) +

=8 (B, 0, ℎ, B′).
15: end for

Appendix B. Deferred Proofs

B.1. Proof of Lemma 1

Proof. Note that �' (H ‖ G1) ≤ '(H) −'(G1) since ∇'(G1) · (H−G1) ≥ 0 by the first-order optimality
criterion of G1. Since H = (1 − γ)G + γG1 for some G ∈ S,

πG1 (H) = inf
{
C > 0 : G1 + C−1(1 − γ) (H − G1) ∈ S

}
≤ 1 − γ.

We now bound '(H) − '(G1) using Eq. (22). �

B.2. Proof of Lemma 2

For the proof we shall need the following fact about Bregman divergences. For any G, H, I ∈ int(S),
it satisfies the following equation (easily shown):

�' (H ‖ G) = �' (H ‖ I) + �' (I ‖ G) − (∇'(G) − ∇'(I)) · (H − I). (13)
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Proof. First let us show that �' (D ‖ G ′C+1) ≥ �' (D ‖ GC+1). Note that �' is convex in its first
argument, and GC+1 minimizes �' ( · ‖ G ′C+1), entails (∇'(GC+1) − ∇'(G

′
C+1)) · (GC+1 − D) ≤ 0, due to

the first-order optimality of convex functions. Therefore, by Eq. (13),

�' (D ‖ G ′C+1) = �' (D ‖ GC+1) + �' (GC+1 ‖ G
′
C+1) − (∇'(GC+1) − ∇'(G

′
C+1)) · (GC+1 − D)

≥ �' (D ‖ GC+1), (14)

by the first-order optimality criterion of the projection step and the non-negativity of the Bregman
divergence.

Next, we follow the standard mirror-descent analysis, reusing Eq. (13), to obtain

ηC`C · (GC − D) = (∇'(GC ) − ∇'(G ′C+1)) · (GC − D) = �' (D ‖ GC ) − �' (D ‖ G
′
C+1) + �' (GC ‖ G

′
C+1).

Combining with Eq. (14) and summing over C = 1, . . . , ) :

)∑
C=1

`C · (GC − D) ≤
)∑
C=1

1
ηC
(�' (D ‖ GC ) − �' (D ‖ GC+1)) +

)∑
C=1

1
ηC
�' (GC ‖ G ′C+1),

where, using �' (D ‖ G) +1) ≥ 0,

)∑
C=1

1
ηC
(�' (D ‖ GC ) − �' (D ‖ GC+1)) ≤

1
η1
�' (D ‖ G1) −

)∑
C=2

(
1

ηC−1
− 1
ηC

)
�' (D ‖ GC ).

Now denote I = GC − G ′C+1. For the term �' (GC ‖ G ′C+1), Eq. (4) entails that

�' (GC ‖ G ′C+1) = '(GC ) − '(G
′
C+1) − ∇'(G

′
C+1) · I

≤
(
∇'(GC ) − ∇'(G ′C+1)

)
· I − ρ

(
‖I‖GC

)
= ηC`C · I − ρ

(
‖I‖GC

)
≤ ηC ‖`C ‖★GC · ‖I‖GC − ρ

(
‖I‖GC

)
(Hölder inequality)

≤ supα∈ℝ{ηC ‖`C ‖★GC · α − ρ(α)}
= ρ★

(
ηC ‖`C ‖★GC

)
,

where ρ★ is the Fenchel conjugate of ρ: ρ★(G) = −G − log(1 − G) defined for any G < 1. The final
statement is then given using ρ★(G) ≤ G2 for any G ∈ [0, 1/2]. �

B.3. Proof of Theorem 3

Theorem 3 (restated). There exists an online algorithm for Finite-Horizon MDPs with Aggregated
Feedback of expected regret,

E[Reg ] = poly( |( |, |�|, �) $̃ (
√
 ),

in  episodes.

In the remainder of this section we prove that the assumptions of the DLB setting hold in each
epoch with high probability, and bound the constants β, �, � (defined in Section 3.2). The following
lemma quantifies how concentrated are our empirical estimates of the dynamics (Eq. (11)) around
the true values.
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Lemma 11. With probability at least 1 − δ, the following holds for all epochs 8 = 1, 2, . . . simulta-
neously:

‖%(· | B, 0, ℎ) − %̂8 (· | B, 0, ℎ)‖1 ≤ 5

√
|( | + log

(
� |( | |�| /δ

)
max{#8 (B, 0, ℎ), 1}

, ∀(B, 0, ℎ) ∈ ( × � × [�] . (15)

To prove the lemma, we need the following simple technical result.

Lemma 12 (Weissman et al., 2003). Let ?(·) be a distribution over < elements, and let ?̄C (·) be
the empirical distribution defined by C i.i.d. samples from ?(·). Then, with probability at least 1− δ,

‖ ?̄C (·) − ?(·)‖1 ≤ 2
√
< + log(δ−1)

C
.

Proof of Lemma 11. Note that any state-action pair can be sampled at time ℎ during the episode at
most  times over the entire  episodes. Then, the lemma from Lemma 12 and a union bound over
all (B, 0, ℎ) ∈ ( × � × [�] and over all possible number of times in which (B, 0, ℎ) can be sampled
in total. �

Now, let 8 be any epoch. Before defining the set of feasible occupancy measures for epoch 8, S8 ,
let us first simplify our notation. We write for any occupancy measure G,

G(ℎ, B, 0) =
∑
B′∈(

G(ℎ, B, 0, B′); G(ℎ, B) =
∑
0∈�

G(ℎ, B, 0); and G(ℎ) =
∑
B∈(

G(ℎ, B).

We define S8 as follows:

S8 =
{
G ∈ ℝ [� ]×(×�×( :

G(ℎ, B, 0, B′) ≥ 0, ∀(ℎ, B, 0, B′) ∈ [�] × ( × � × ( (16)
G(ℎ) = 1, ∀ℎ ∈ [�], (17)
G(1, B) = I{B = B1}, ∀B ∈ (. (18)

G(ℎ + 1, B) =
∑

(B′,0) ∈(×�
G(ℎ, B′, 0, B), ∀(ℎ, B) ∈ [� − 1] × (. (19)

‖%̃ (G) (· | B, 0, ℎ) − %̂8 (· | B, 0, ℎ)‖1 ≤
ε8 (B, 0, ℎ)

�
, ∀(ℎ, B, 0) ∈ [�] × ( × �

}
. (20)

Eqs. (16) to (19) simply define an occupancy measure, while Eq. (20) requires that the next-state
distribution associated with the occupancy measure, %̃ (G) (Eq. (2)), are close to the empirical next-
state distribution (Eq. (11)). The following lemma states that S8 contains all occupancy measures
associated with the true model dynamics %.

Lemma 13. Suppose that Eq. (15) holds, and let Gπ, % be an occupancy measure corresponding to
some policy π and the true model dynamics. Then G ∈ S8 .
Proof. By definition of an occupancy measure, we have that Eqs. (16) to (19) hold, and that

%̃ (G) (B′ | B, 0, ℎ) = %(B′ | B, 0, ℎ), ∀(ℎ, B, 0, B′) ∈ [�] × ( × � × (,

where % is the true dynamics. Thus Eq. (20) holds by Lemma 11 and our claim follows. �
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The next lemma bounds the difference in norm between any two occupancy measures in S8 that
correspond to the same policy (proof is lone and deferred to Appendix B.4 below).

Lemma 14. Suppose that Eq. (15) holds, and let G ∈ S8 . Let G ′ be the occupancy measure of π(G)
under the true model dynamics %. Then, ‖G − G ′‖1 ≤ min{ε8 · G, ε8 · G ′}.

Lastly, note that according to the DLB setting, one has to know an a-priori upper bound on∑)
C=1( ÎC · εC )2. The bound is given by the following lemma.

Lemma 15. Let :1, :2, . . . be such that :8 is the initial episode for epoch 8. Then, for every epoch 8,

:8+1−1∑
:=:8

(ε8 · Î:)2 ≤ 25�4 |( | |�|
(
|( | + log

� |( | |�| 
δ

)
.

Proof. We have that Î: (B, 0, ℎ) is the empirical trajectory of episode : ∈ [:8 , :8+1 − 1]. Therefore,
=8 (B, 0, ℎ) =

∑:8+1−1
:=:8

Î: (B, 0, ℎ). Since during epoch 8 we have =8 (B, 0, ℎ) ≤ max{#8 (B, 0, ℎ), 1}, at
the end of epoch 8 we have =8 (B, 0, ℎ) ≤ max{#8 (B, 0, ℎ), 1} + 1, since the last trajectory might add
1. Also note that ÎC is a vector whose elements are zero or one with exactly � non-zeros. Therefore,

:8+1−1∑
:=:8

(ε8 · Î:)2 ≤
:8+1−1∑
:=:8

�
∑
(B,0,ℎ)
∈(×�×[� ]

Î: (B, 0, ℎ) · ε8 (B, 0, ℎ)2

=
∑
(B,0,ℎ)
∈(×�×[� ]

=8 (B, 0, ℎ) · 25�3 · |( | + log(� |( | |�| /δ)
max{#8 (B, 0, ℎ), 1}

≤
∑
(B,0,ℎ)
∈(×�×[� ]

max{#8 (B, 0, ℎ), 1} · 25�3 · |( | + log(� |( | |�| /δ)
max{#8 (B, 0, ℎ), 1}

≤
∑
(B,0,ℎ)
∈(×�×[� ]

25�3
(
|( | + log

� |( | |�| 
δ

)
≤ 25�4 |( | |�|

(
|( | + log

� |( | |�| 
δ

)
,

where the first inequality is by Cauchy-Schwartz, the second is replacing the sum over Î: (B, 0, ℎ)
by =8 (B, 0, ℎ), and the third uses the inequality =8 (B, 0, ℎ) ≤ max{#8 (B, 0, ℎ), 1} from definition of
Algorithm 3. �

We now prove the main theorem.

Proof of Theorem 3. We run the algorithm of Theorem 4 on S8 in epoch 8, for every 8, resetting
the algorithm between epochs. Theorem 4 bounds the expected regret in each epoch, whereas
Lemmas 11, 13 and 14 imply that the DLB setting holds in each epoch with high probability.

To avoid having to deal with probabilistic dependencies, we only bound the expected regret.
To do so, we can assume that there are exactly 2� |( | |�| log epochs (by adding epochs with zero
episodes), and that each epoch is run for exactly  episodes (by padding with zero losses and the
remaining episodes).
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The analysis proceeds as follows. We set δ = 1/(� ), β = 5�
√
|( | + log(� |( | |�| /δ),

� = β2 |( | |�|�2, and 3 = |( |2 |�|�. Recall that Eq. (15) holds with probability at least 1 − δ,
and consider some epoch 8. When Eq. (15) holds, we have G ∈ S8 by Lemma 13 as well as that
‖H: − I: ‖1 ≤ min{H: · ε8 , I: · ε8} for all episodes : during the epoch by Lemma 14. Moreover,
we have that ‖ε8 ‖∞ ≤ β and that

∑:8+1−1
:=:8

(ε8 · Î:)2 ≤ � (Lemma 15). Thus, conditioned on that
Eq. (15) holds up to epoch 8 (which depends only on randomness prior to epoch 8), the algorithm of
Theorem 4 obtains an expected regret bound in epoch 8 of

poly(3,β, �, �)$ (
√
 ) = poly(�, |( |, |�|) $̃ (

√
 ).

If, on the other hand, Eq. (15) does not hold, the regret in epoch 8 is at most � which happens with
probability at most δ. Therefore, by the choice of δ, we obtain that the expected regret in epoch 8 is at
most poly( |( |, |�|, �) $̃ (

√
 ), where now the expectation is taken with respect to any randomness

prior to the start of the epoch as well as during the epoch.
We conclude the proof by summing over all epochs, which yields the final regret bound. �

B.4. Proof of Lemma 14

Proof. To simplify notation, we write

G(ℎ, B, 0) =
∑
B′∈(

G(ℎ, B, 0, B′), and G(ℎ, B) =
∑
0∈�

G(ℎ, B, 0).

Define %̃(B′ | B, 0, ℎ) = G (ℎ,B,0,B′)
G (ℎ,B,0) and recall that πℎ (0 | B) = G (ℎ,B,0)

G (ℎ,B) . For ℎ = 1, we have∑
(B,0,B′)
∈(×�×(

��G(1, B, 0, B′) − G ′(1, B, 0, B′)�� = ∑
(B,0,B′)
∈(×�×(

��G(1, B)%̃(B′ | B, 0, 1) − G ′(1, B)%(B′ | B, 0, 1)��π1(0 | B)

=
∑
(0,B′)
∈�×(

��%̃(B′ | B1, 0, 1) − %(B′ | B1, 0, 1)
��π1(0 | B1) (Eq. (18))

≤
∑
0∈�

ε8 (B1, 0, 1)
�

π1(0 | B1) (Eq. (20))

≤
∑
(B,0)
∈(×�

ε8 (B, 0, 1)
�

G ′(1, B, 0).
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Next, for ℎ > 1,∑
(B,0,B′)
∈(×�×(

��G(ℎ, B, 0, B′) − G ′(ℎ, B, 0, B′)��
=

∑
(B,0,B′)
∈(×�×(

��G(ℎ, B)%̃(B′ | B, 0, ℎ) − G ′(ℎ, B)%(B′ | B, 0, ℎ)�� · πℎ (0 | B)
=

∑
(B,0,B′)
∈(×�×(

���� ∑
(0′′,B′′)
∈�×(

(
G(ℎ − 1, B′′, 0′′, B)%̃(B′ | B, 0, ℎ) − G ′(ℎ − 1, B′′, 0′′, B)%(B′ | B, 0, ℎ)

)���� πℎ (0 | B)
(Eq. (19))

≤
∑
(B,0,B′)
∈(×�×(

���� ∑
(0′′,B′′)
∈�×(

(
G(ℎ − 1, B′′, 0′′, B) − G ′(ℎ − 1, B′′, 0′′, B)

) ���� · %̃(B′ | B, 0, ℎ) · πℎ (0 | B)
+

∑
(B,0,B′)
∈(×�×(

���� ∑
(0′′,B′′)
∈�×(

G ′(ℎ − 1, B′′, 0′′, B)
(
%̃(B′ | B, 0, ℎ) − %(B′ | B, 0, ℎ)

)���� · πℎ (0 | B)
=
∑
B∈(

����� ∑
(0′′,B′′)
∈�×(

(
G(ℎ − 1, B′′, 0′′, B) − G ′(ℎ − 1, B′′, 0′′, B)

) �����
+

∑
(B,0,B′)
∈(×�×(

���� ∑
(0′′,B′′)
∈�×(

G ′(ℎ − 1, B′′, 0′′, B)
(
%̃(B′ | B, 0, ℎ) − %(B′ | B, 0, ℎ)

)���� · πℎ (0 | B)
≤

∑
(B,0′′,B′′)
∈(×�×(

��G(ℎ − 1, B′′, 0′′, B) − G ′(ℎ − 1, B′′, 0′′, B)
��

+
∑

(B,0,B′,0′′,B′′)
∈(×�×(×�×(

G ′(ℎ − 1, B′′, 0′′, B)
���%̃(B′ | B, 0, ℎ) − %(B′ | B, 0, ℎ)��� · πℎ (0 | B)

≤
∑

(B,0′′,B′′)
∈(×�×(

��G(ℎ − 1, B′′, 0′′, B) − G ′(ℎ − 1, B′′, 0′′, B)
��

+
∑

(B,0,0′′,B′′)
∈(×�×�×(

G ′(ℎ − 1, B′′, 0′′, B) · ε8 (ℎ, B, 0)
�

· πℎ (0 | B) (Eq. (20))

=
∑
(B,0,B′)
∈(×�×(

��G(ℎ − 1, B, 0, B′) − G ′(ℎ − 1, B, 0, B′)
�� + ∑
(B,0)
∈(×�

G ′(ℎ, B) · ε8 (ℎ, B, 0)
�

· πℎ (0 | B) (Eq. (19))

=
∑
(B,0,B′)
∈(×�×(

��G(ℎ − 1, B, 0, B′) − G ′(ℎ − 1, B, 0, B′)
�� + ∑
(B,0)
∈(×�

G ′(ℎ, B, 0) · ε8 (ℎ, B, 0)
�

.
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Applying this argument recursively, we obtain∑
(B,0,B′)
∈(×�×(

��G(ℎ, B, 0, B′) − G ′(ℎ, B, 0, B′)�� ≤ 1
�

∑
(ℎ,B,0)
∈[� ]×(×�

G ′(ℎ, B, 0) · ε8 (B, 0, ℎ) =
G ′ · ε8
�

,

so that
‖G − G ′‖1 =

∑
(ℎ,B,0,B′)
∈[� ]×(×�×(

��G(ℎ, B, 0, B′) − G ′(ℎ, B, 0, B′)�� ≤ G ′ · ε8 .
A symmetric argument also provides ‖G − G ′‖1 ≤ G · ε8 . �

B.5. Proof of Theorem 5

In this section we prove:

Theorem 5 (restated). Consider Algorithm 1 with η = (2�β3)−1
√

log |S|/) and γ = 2�2(� +
β
√
3)η/λ. Then, given that � ≥

∑)
C=1( ÎC · εC )2 (almost surely), we have for any H★ ∈ S:

E

[
)∑
C=1

`C · ( ÎC − H★)
]
≤

(
4�β3 + �3

βλ3
+ �2

λ
√
3

)√
) log|S| + 10β3

√
�),

provided that β ≥ 1 and ) ≥ (4�2(� + β
√
3)2 log |S|)/(λ2β232).

The proof uses the following series of lemmas. The following lemma argues that the regret of
Algorithm 1 is bounded by the regret of the multiplicative weights updates, plus an additive error
term that scales with the perturbations εC .

Lemma 16. Assume γ ≤ 1
2 . For all H

★ ∈ S it holds that

E

[
)∑
C=1

`C · ( ÎC − H★)
]
≤ E

[
)∑
C=1

∑
H∈S

?C (H)
( ˜̀
C (H) − ˜̀

C (H★)
) ]
+ γ�) + 53 E

[
)∑
C=1
‖εC ‖"C

]
.

Proof. We prove that EC [
∑
H∈S ?C (H) ˜̀

C (H)] ≥ `C · ÎC − 33 ‖εC ‖"C
which, together with Lemma 6,

will imply the lemma by taking expectation and summing over C = 1, . . . , ) . To see this, observe
that by Eq. (7), for all H ∈ S one also has EC [ ˜̀

C (H)] ≥ `C · H − 2
√
3‖H‖"−1

C
‖εC ‖"C

, thus

EC

[∑
H∈S

?C (H) ˜̀
C (H)

]
≥ `C ·

∑
H∈S

?C (H) H − 2
√
3 EC

[∑
H∈S

?C (H)‖H‖"−1
C
‖εC ‖"C

]
.

Now, @C = (1 − γ)?C + γµ together with γ ≤ 1
2 implies @C − γµ ≤ ?C ≤ 2@C . Therefore, (defining

GC =
∑
H∈S @C (H) · H)

EC

[∑
H∈S

?C (H) ˜̀
C (H)

]
≥ `C · GC − γ

∑
H∈S

µ(H) `C · H − 4
√
3 EC

[∑
H∈S

@C (H)‖H‖"−1
C
‖εC ‖"C

]
≥ `C · GC − γ� − 4

√
3 ‖εC ‖"C

EC
[
‖HC ‖"−1

C

]
≥ `C · GC − γ� − 43 ‖εC ‖"C

,
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where the final inequality used EC [‖HC ‖"−1
C
] ≤

√
EC [HT

C "
−1
C HC ] =

√
3. Finally, observe that

(EC |HC · εC |)2 ≤ EC [(HC · εC )2] = εT
C EC [HC HT

C ]εC = ‖εC ‖2"C
, so

`C · GC = EC [`C · ÎC ] + EC [`C · (HC − IC )]
≥ EC [`C · ÎC ] − EC |HC · εC |
≥ EC [`C · ÎC ] − ‖εC ‖"C

.

Thus we have

EC

[∑
H∈S

?C (H) ˜̀
C (H)

]
≥ EC [`C · ÎC ] − γ� − (43 + 1)‖εC ‖"C

≥ EC [`C · ÎC ] − γ� − 53‖εC ‖"C
.

This concludes the proof. �

Next, we apply a standard second-order regret bound for the multiplicative weights method to
obtain the following:

Lemma 17. Provided that γ ≥ 2�2 max{�,β
√
3}η/λ, the following regret bound holds for any

H★ ∈ S:

)∑
C=1

∑
H∈S

?C (H)
( ˜̀
C (H) − ˜̀

C (H★)
)
≤ log|S|

η
+ η

∑
H∈S

?C (H) ( ˜̀
C (H))2.

Proof. The claim would follow directly from the classical second-order bound for multiplicative
weights (e.g., Cesa-Bianchi et al., 2007; Dani et al., 2008) once we establish that | ˜̀C (H) | ≤ 1/η for
all C and H ∈ S. Indeed, for all C and H we have

| ˜̀C (H) | = | (`C · ÎC )HT"−1
C HC −

√
3 ‖H‖"−1

C
‖εC ‖"C

|

≤ |`C · ÎC | · |HT"−1
C HC | +

√
3 ‖H‖"−1

C
‖εC ‖"C

.

Recall that |`C · ÎC | ≤ ‖`C ‖∞‖ ÎC ‖1 ≤ �, ‖H‖ ≤ � and ‖HC ‖ ≤ � (see Section 3.2). Further,
‖εC ‖2"C

= EC [(HC · εC )2] ≤ (β�)2. Hence, we obtain that | ˜̀C (H) | ≤ (�3 + β�2√3)‖"−1
C ‖. To

conclude, recall that "C � γλ� thanks to the added exploration, so ‖"−1
C ‖ ≤ 1/(λγ). Substituting

this in the right-hand side and using the assumption that γ ≥ 2�2 max{�,β
√
3}η/λ, the desired

bound on | ˜̀C (H) | follows. �

Finally, we establish a bound on the second-order variance term.

Lemma 18. Assume β23 ≥ 1. It holds that

EC

[∑
H∈S

@C (H) ˜̀
C (H)2

]
≤ (2�β3)2.

Proof. Using the inequality (0 + 1)2 ≤ 202 + 212, we have

EC [ ˜̀
C (H)2] = EC [( ˆ̀

C · H −
√
3 ‖H‖"−1

C
‖εC ‖"C

)2] ≤ 2EC [( ˆ̀
C · H)2] + 23‖H‖2

"−1
C

‖εC ‖2"C
.
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Now, for the first term we have

EC [( ˆ̀
C · H)2] = EC

[
(`C · ÎC )2 HT"−1

C HC H
T
C "
−1
C H

]
≤ �2 HT"−1

C EC [HC HT
C ]"−1

C H = �2HT"−1
C H = �2‖H‖2

"−1
C

.

For the second term, notice that

‖εC ‖2"C
= EC [(HC · εC )2] ≤ (β�)2.

Hence EC [ ˜̀
C (H)2] ≤ 2�2(1 + 3β2)‖H‖2

"−1
C

≤ 4�2β23‖H‖2
"−1

C

, thus we can bound

EC

[∑
H∈S

@C (H) ( ˜̀
C (H))2

]
≤ 4�2β23

∑
H∈S

@C (H)‖H‖2"−1
C

.

To conclude, observe that∑
H∈S

@C (H)‖H‖2"−1
C

= Tr
(
"−1
C

∑
H∈S

@C (H)HHT
)
= Tr("−1

C "C ) = 3. �

We can now prove Theorem 5.

Proof. Combining Lemmas 16 and 17 and using Lemma 18, we have

E

[
)∑
C=1

`C · ( ÎC − H★)
]
≤ log|S|

η
+ 4(�β3)2η) + γ�) + 53 E

[
)∑
C=1
‖εC ‖"C

]
. (21)

To bound the final term, we use two applications of Jensen’s inequality,

E

[
)∑
C=1
‖εC ‖"C

]
≤

√√√
)

)∑
C=1

E‖εC ‖2"C
=

√√√
)

)∑
C=1

E[(HC · εC )2] .

Further, observe that since ‖εC ‖∞ ≤ β and ‖HC − IC ‖1 ≤ |IC · εC |, we have

E[(HC · εC )2] ≤ 2E[(IC · εC )2] + 2E[((HC − IC ) · εC )2]
≤ 2E[(IC · εC )2] + 2E[‖HC − IC ‖21‖εC ‖

2
∞]

≤ 2(1 + β2)E[(IC · εC )2],

and by Jensen’s inequality we obtain

E[(IC · εC )2] = E[(EC [ÎC | IC ] · εC )2] ≤ E[( ÎC · εC )2] .

Thus,

E

[
)∑
C=1
‖εC ‖"C

]
≤

√√√
) · 4β2

)∑
C=1

E[( ÎC · εC )2] ≤ 2β
√
�).

Plugging this into Eq. (21), and using the choices of η and γ, the statement follows. �
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B.6. Proof of Theorem 7

Here we prove:

Theorem 7 (restated). Consider Algorithm 2 with

η0 = min
{√

ϑ log(�))
32�2)

,
1

43
√
�)

}
.

Then, for any H★ ∈ S we have

E

[
)∑
C=1
( ÎC − H★) · `C

]
= $

(
3β�ϑ log(�)) + 3ϑ

√
�) log(�)) + 3�

√
ϑ) log(�))

)
,

provided that � ≥ max{
∑)
C=1( ÎC · εC )2, �} (almost surely).

To prove the theorem, we first prove a few lemmas that will aid in the main proof. Our first lemma
shows some necessary technical results, the first of which is that indeed HC ∈ S for all C = 1, . . . , ) .

Lemma 19. For all C = 1, . . . , ): HC ∈ S; ‖∇2'(GC )1/2DC ‖★GC = 1; and ‖ ˜̀
C ‖★GC ≤ 3�.

Proof. Since ' is a self-concordant barrier function over a compact set S, following Eq. (3), it
suffices to show that for all C, ‖HC − GC ‖GC ≤ 1, and indeed

‖HC − GC ‖2GC = ‖∇
2'(GC )−1/2DC ‖2GC = D

T
C ∇2'(GC )−1/2∇2'(GC )∇2'(GC )−1/2DC = 1.

Similarly, (

∇2'(GC )1/2DC


★
GC

)2
= DT

C ∇2'(GC )1/2∇2'(GC )−1∇2'(GC )1/2DC = 1,

and
‖ ˜̀
C ‖★GC = 3 |`C · ÎC | ‖∇

2'(GC )1/2DC ‖★GC ≤ 3�. �

Lemma 20. Suppose η0 ≤ 1/43
√
�) , then η0 ≤ ηC ≤ 2η0, ∀C = 1, . . . , ) .

Proof. η0 ≤ ηC holds by definition. The other direction is because

η−1
C = η−1

0 − 23
C∑
B=1
| ÎC · εC | ≥ η−1

0 − 23

√√√
) ·

C∑
B=1
( ÎC · εC )2 ≥ η−1

0 − 23
√
�) ≥ 1

2
η−1

0 . �

Finally, we combine the lemmas above with the guarantee of OMD to yield the main theorem.

Proof of Theorem 7. Observe the three summands of Eq. (8). For the first summand, we have

E

[
)∑
C=1
(IC − GC ) · `C

]
= E

[
)∑
C=1
(IC − HC ) · `C

]
≤ E

[
)∑
C=1
|IC · εC |

]

≤ E

[
)∑
C=1
| ÎC · εC |

]
≤

√√√
) E

[
)∑
C=1
( ÎC · εC )2

]
≤
√
�),

where the first inequality uses that ‖`C ‖∞ ≤ 1 and the assumption that ‖IC − HC ‖1 ≤ |IC · εC |, the
second inequality is by Jensen’s inequality, and the third inequality is due to Cauchy-Schwartz. For
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the last inequality we recall that
∑)
C=1( ÎC · εC )2 ≤ � by the assumptions of the DLB setting (see

Section 3.2).
For the second summand in Eq. (8), since � ≥ �, by our choice of η0, and by Lemma 20 we

have ηC ≤ 2η0 ≤ 1/23�, so ηC ‖ ˜̀
C ‖★GC ≤

1
2 by Lemma 19. We can therefore apply Lemma 2 to get

E

[
)∑
C=1
(GC − H★γ ) · ˜̀

C

]
≤ E

[
1
η1
�' (H★γ ‖ G1)︸            ︷︷            ︸
(1)

−
)∑
C=2

(
1

ηC−1
− 1
ηC

)
�' (H★γ ‖ GC )︸                               ︷︷                               ︸

(2)

+
)∑
C=1

ηC (‖ ˜̀
C ‖★GC )

2

︸             ︷︷             ︸
(3)

]
.

We now bound each of the three terms (1), (2), and (3). We have (1) ≤ η−1
0 ϑ log(γ−1) by Lemma 1

and as η1 ≥ η0 (Lemma 20). For term (2), we have

(2) = 23
)∑
C=2
| ÎC · εC |�' (H★γ ‖ GC )

= 23
)∑
C=1
| ÎC · εC |�' (H★γ ‖ GC ) − 23 | Î1 · ε1 |︸  ︷︷  ︸

≤‖ Î1 ‖1 ‖ε1 ‖∞≤�β

�' (H★γ ‖ G1)

≥ 23
)∑
C=1
| ÎC · εC |

(
1
2
‖GC − H★γ ‖GC − 1

)
− 23β� · ϑ log

1
γ

(Lemmas 1 and 9)

= 3

)∑
C=1
| ÎC · εC |‖GC − H★γ ‖GC − 23

)∑
C=1
| ÎC · εC | − 23β� · ϑ log

1
γ

≥ 3
)∑
C=1
| ÎC · εC | ‖GC − H★γ ‖GC − 23

√
�) − 23β� · ϑ log

1
γ
,

where the last inequality is since
∑)
C=1 | ÎC · εC | ≤

√
)
∑)
C=1( ÎC · εC )2 by Cauchy-Schwartz and as∑)

C=1( ÎC · εC )2 ≤ � by assumption. We lastly employ Lemma 19 and that ηC ≤ 2η0 by Lemma 20 to
bound (3) ≤ 2η03

2�2). All in all, this obtains us Eq. (10).
We sum Eq. (9) over all C and take expectation. Together with Eq. (10) this replaces the perceived

losses, ˜̀
C , by the real losses, `C . The terms 3 E[

∑)
C=1 | ÎC · εC | ‖GC − H★‖GC ] in Eq. (9) and in Eq. (10)

cancel out, and we get

E

[
)∑
C=1
(GC − H★γ ) · `C

]
≤

(
1
η0
+ 23β�

)
ϑ log

1
γ
+ 23
√
�) + 2η03

2�2).

Finally, for the third summand in Eq. (8), we have

)∑
C=1
(H★γ − H★) · `C = γ

)∑
C=1
(G1 − H★) · `C ≤ 2γ�).

Combining the bounds on all three summands and setting γ, η0 as in the theorem’s statement yields
the final regret bound. �

27



Online MDPs with Aggregate Bandit Feedback

B.7. Proof of Corollary 10

Lemma 21. For option 1 in Section 5, the following holds:
(i) ‖H: − G: ‖G: = 1.
(ii)

(
‖,,T∇2'(GC )1/2,DC ‖★GC

)
= 1.

(iii) ‖ ˜̀
C ‖★GC ≤ ?�.

Proof. We have,

‖H: − G: ‖2G: = (H: − G:)T∇2'(G:) (H: − G:)
= DT

:,
T∇2'(G:)−1/2,,T∇2'(G:),,T∇2'(G:)−1/2,D:

= DT
: (,

T∇2'(G:),)−1/2(,T∇2'(G:),) (,T∇2'(G:),)−1/2D: = 1.
(, is orthogonal)

In addition,(
‖,,T∇2'(GC )1/2,DC ‖★GC

)2
= DT

C,
T∇2'(GC )1/2,,T∇2'(GC )−1,,T∇2'(GC )1/2,DC

= DT
C (,T∇2'(GC ),)1/2(,T∇2'(GC ),)−1(,T∇2'(GC ),)1/2DC

= DT
C DC = 1,

where the second equality is as, is orthogonal.
Finally,

‖ ˜̀
C ‖★GC = ? |`C · ÎC | ‖,,

T∇2'(GC )1/2,DC ‖★GC ≤ ?�.
�

Proof of Corollary 10. The proof follows that of Theorem 3 but uses the the regret bound obtained
from Theorem 7 with ϑ-self-concordant barrier for ϑ = $ ( |( |2 |�|�). To prove Theorem 7, we
replace the results of Lemma 19 by these of Lemma 21. The computational efficiency of the
algorithm stems from the discussion in Section 5. �

Appendix C. Self-concordant Barriers: definitions and basic properties

For a :-array tensor* ∈ ℝ3×: , we define

* [ℎ1, . . . , ℎ:] =
∑

81,...,8: ∈[3 ]
* (81, . . . , 8:)

:∏
9=1

ℎ 9 (8 9).

For : = 2 we have that* is a matrix, ℎ1 and ℎ2 are vectors, and* [ℎ1, ℎ2] = ℎT
1*ℎ2.

Definition 22. For a convex set S ⊂ ℝ=, a self-concordant function ' : int(S) ↦→ ℝ is a �3-convex
function such that ���3'(G) [ℎ, ℎ, ℎ]

�� ≤ 2
(
�2'(G) [ℎ, ℎ]

)3/2
.

In words: the third derivative of ' at G in direction ℎ is upper bounded by a constant times the
second derivative of ' at G in direction ℎ, raised to the 3/2 power.

Definition 23. A self-concordant function ' is a ϑ-self-concordant barrier if���'(G) [ℎ]�� ≤ ϑ1/2 (�2'(G) [ℎ, ℎ]
)1/2

.
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We have the following upper bound on the difference a ϑ-self-concordant barrier ' at two points
G, H ∈ K:

'(H) − '(G) ≤ ϑ log
1

1 − πG (H)
, (22)

where πG (H) is the Minkowski function of S w.r.t. G: πG (H) = inf{C > 0 : G + C−1(H − G) ∈ S}.
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