Proceedings of Machine Learning Research vol 134:1-37, 2021 34th Annual Conference on Learning Theory

From Local Pseudorandom Generators to Hardness of Learning

Amit Daniely AMIT.DANIELY @ MAIL.HUJI.AC.IL
School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel and Google Re-
search Tel-Aviv

Gal Vardi GAL.VARDI@WEIZMANN.AC.IL
Weizmann Institute of Science, Israel

Editors: Mikhail Belkin and Samory Kpotufe

Abstract

We prove hardness-of-learning results under a well-studied assumption on the existence of local
pseudorandom generators. As we show, this assumption allows us to surpass the current state of
the art, and prove hardness of various basic problems, with no hardness results to date.

Our results include: hardness of learning shallow ReLLU neural networks under the Gaussian
distribution and other distributions; hardness of learning intersections of w(1) halfspaces, DNF
formulas with w(1) terms, and ReLU networks with w(1) hidden neurons; hardness of weakly
learning deterministic finite automata under the uniform distribution; hardness of weakly learning
depth-3 Boolean circuits under the uniform distribution, as well as distribution-specific hardness
results for learning DNF formulas and intersections of halfspaces. We also establish lower bounds
on the complexity of learning intersections of a constant number of halfspaces, and ReLU net-
works with a constant number of hidden neurons. Moreover, our results imply the hardness of
virtually all improper PAC-learning problems (both distribution-free and distribution-specific) that
were previously shown hard under other assumptions.

1. Introduction

The computational complexity of PAC learning has been extensively studied over the past decades.
Nevertheless, for many learning problems there is still a large gap between the complexity of the
best known algorithms and the hardness results. The situation is even worse for distribution-specific
learning, namely, where the inputs are drawn from some known distribution (e.g., the uniform or
the normal distribution). Since there are very few distribution-specific hardness results, the status
of most basic learning problems with respect to natural distributions is wide open.

The main obstacle for achieving hardness results for learning problems, is the ability of a learn-
ing algorithm to return a hypothesis which does not belong to the considered hypothesis class (such
an algorithm is called improper learner). This flexibility makes it very difficult to apply reductions
from NP-hard problems, and unless we face a dramatic breakthrough in complexity theory, it seems
unlikely that hardness of improper learning can be established on standard complexity assumptions
(see Applebaum et al. (2008); Daniely et al. (2014)). Indeed, all currently known lower bounds are
based on assumptions from cryptography or average-case hardness.

In this work, we consider hardness of learning under assumptions on the existence of local
pseudorandom generators (PRG) with polynomial stretch. This type of assumptions was extensively
studied in the last two decades. Under such assumptions we extend the current state of the art,
and establish new hardness results for several hypothesis classes, for both distribution-free and
distribution-specific learning. Our results apply to fundamental classes, such as DNFs, Boolean

© 2021 A. Daniely & G. Vardi.

DANIELY VARDI

circuits, intersections of halfspaces, neural networks and automata. Most of the results are based on
the mere assumption that some local PRG with polynomial stretch exists. The only exceptions are
our lower bounds for intersections of a constant number of halfspaces, and neural networks with a
constant number of neurons, that are based on a stronger assumption, regarding a specific candidate
for such a PRG, that was suggested by Applebaum and Lovett (2016). Below we discuss our results
and related work.

DNFs and Boolean circuits. Learning polynomial-size DNF formulas has been a major effort
in computational learning theory. The best known upper bound for (distribution-free) learning of
polynomial-size DNF formulas over n variables is 20(”1/3), due to Klivans and Servedio (2001).
Already in Valiant’s seminal paper (Valiant, 1984), it is shown that for every constant g, DNF
formulas with ¢ terms can be learned efficiently. Hardness of improperly learning DNF formulas
is implied by Applebaum et al. (2010) under a combination of two assumptions: the first is related
to the planted dense subgraph problem in hypergraphs, and the second is related to local PRGs.
Daniely and Shalev-Shwartz (2016) showed hardness of improperly learning DNF formulas with
g(n) = w(log(n)) terms, under a common assumption, namely, that refuting a random K-SAT
formula is hard. We improve this lower bound, and show hardness of learning DNF formulas with
g(n) = w(1) terms.

Linial et al. (1993) gave a quasi-polynomial (O(nP°¥!°8("))) upper bound for learning constant-
depth Boolean circuits (AC®) on the uniform distribution. Their result was later improved to a
slightly better quasi-polynomial bound (Boppana, 1997; Hastad, 2001). Learning ACY in quasi-
polynomial time under other restricted distributions was studied in, e.g., Furst et al. (1991); Blais
etal. (2010). In Kharitonov (1993) it is shown, under a relatively strong assumption on the complex-
ity of factoring random Blum integers, that learning depth-d circuits on the uniform distribution is
hard, where d is an unspecified sufficiently large constant. Applebaum and Raykov (2016) showed,
under an assumption on a specific candidate for Goldreich’s PRG (based on the XOR-MAJ pred-
icate), that learning depth-3 Boolean circuits under the uniform distribution is hard. We prove
distribution-specific hardness of improperly learning Boolean circuits of depth-2 (namely, DNFs)
and depth-3. For DNF formulas with n° terms, we show hardness of learning on a distribution where
each component is drawn i.i.d. from a Bernoulli distribution (which is not uniform). For depth-3
Boolean circuits, we show hardness of weak learning on the uniform distribution (recall that we
only assume here the existence of some local PRG, rather than a specific candidate).

Intersections of halfspaces. Learning intersections of halfspaces is also a fundamental problem in
learning theory. Klivans and Sherstov (2006) showed, assuming the hardness of the shortest vector
problem, that improper learning of intersections of n¢ halfspaces for a constant ¢ > 0, is hard. The
hardness result from Daniely and Shalev-Shwartz (2016) for learning DNF formulas with w(log(n))
terms, implies hardness of learning intersections of w(log(n)) halfspaces, since every DNF formula
with ¢(n) terms can be realized by the complement of an intersection of g(n) halfspaces. Our result
on hardness of learning DNF formulas with w(1) terms implies hardness of learning intersections
of w(1) halfspaces, and thus improves the bound from Daniely and Shalev-Shwartz (2016). Learn-
ing intersections of halfspaces under some restricted distributions has been studied in, e.g., Baum
(1990); Blum and Kannan (1997); Vempala (1997); Klivans et al. (2004, 2009). Our distribution-
specific hardness result for DNFs implies a first distribution-specific hardness result for improperly
learning intersections of n¢ halfspaces.

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

Efficient algorithms for (distribution-free) learning intersections of k& halfspaces are not known
even for a constant k, and even for k£ = 2. Klivans et al. (2004) showed an algorithm for distribution-
free learning k weight-w halfspaces on the hypercube in time n©@*1og(k)log(w)) where the weight
of a halfspace is the sum of the absolute values of its components. We study distribution-free
improper learning of a constant number of halfspaces, namely, where the number k of halfspaces
is independent of n. We show (under our stronger assumption regarding a specific candidate for a
local PRG) a n* lower bound. More formally, we show that there is an absolute constant 3 > 0
(independent of k,n), such that learning intersections of k halfspaces on the hypercube within
a constant error requires time (n”*). Also, a conjecture due to Applebaum and Lovett (2016)
implies that our lower bound holds for, e.g., 5 = 11—1 This is the first lower bound for improperly
learning intersections of a constant number of halfspaces.

Neural networks. Hardness of improperly learning neural networks (with respect to the square
loss) follows from hardness of learning intersection of halfspaces. Hence, the results from Klivans
and Sherstov (2006) and Daniely and Shalev-Shwartz (2016) imply hardness of improperly learning
depth-2 neural networks with n¢ and w(log(n)) hidden neurons (respectively). Daniely and Vardi
(2020) showed, under the assumption that refuting a random K-SAT formula is hard, that improp-
erly learning depth-2 neural networks is hard already if its weights are drawn from some “natural”
distribution or satisfy some “natural” properties. While hardness of proper learning is implied by
hardness of improper learning, there are some recent works that show hardness of properly learning
depth-2 networks under more standard assumptions (cf. Goel et al. (2020c)).

Our hardness results for DNFs and intersections of halfspaces imply new hardness results for
learning neural networks. We show hardness of improperly learning depth-2 neural networks with
w(1) hidden neurons and the ReL.U activation function, with respect to the square loss. Thus, we
improve the w(log(n)) lower bound implied by Daniely and Shalev-Shwartz (2016). Moreover, the
lower bound implied by Daniely and Shalev-Shwartz (2016) requires an activation function also in
the output neuron, while our lower bound does not. For depth-2 networks with a constant number
k of hidden neuron, namely, where the number of hidden neurons is independent of n, we show
(under our stronger assumption regarding a specific candidate for a local PRG) a Q(n®*) lower
bound, where [is a constant independent of n, k. This is the first lower bound for improperly
learning neural networks with a constant number of hidden neurons.

Due to the empirical success of neural networks, there has been much effort to understand
under what assumptions neural networks may be learned efficiently. This effort includes making
assumptions on the input distribution (Li and Yuan, 2017; Brutzkus and Globerson, 2017; Du et al.,
2017a,b; Du and Goel, 2018; Goel et al., 2018), the network’s weights (Arora et al., 2014; Das et al.,
2019; Agarwal et al., 2020; Goel and Klivans, 2017), or both (Janzamin et al., 2015; Tian, 2017;
Bakshi et al., 2019). Hence, distribution-specific learning of neural networks is a central problem.
Several works in recent years have shown hardness of distribution-specific learning shallow neural
networks using gradient-descent or statistical query (SQ) algorithms (Shamir, 2018; Song et al.,
2017; Vempala and Wilmes, 2019; Goel et al., 2020a; Diakonikolas et al., 2020b). We note that
while the SQ framework captures the gradient-descent algorithm, it does not capture, for example,
stochastic gradient-descent (SGD), which examines training points individually (see a discussion in
Goel et al. (2020a)). Distribution-specific hardness of learning a single ReLLU neuron in the agnostic
setting was studied in Goel et al. (2019, 2020b); Diakonikolas et al. (2020a).

DANIELY VARDI

We show hardness of improper distribution-specific learning of depth-2 and depth-3 ReL.U neu-
ral networks with respect to the square loss. First, our distribution-specific hardness results for
Boolean circuits, imply hardness of learning depth-2 networks on a distribution where each com-
ponent is drawn i.i.d. from a (non-uniform) Bernoulli distribution, and depth-3 networks on the
uniform distribution on the hypercube. More importantly, we also show hardness of improperly
learning depth-3 networks on the standard Gaussian distribution.

Automata. Deterministic finite automata are an elementary computational model, and their learn-
ability is a classical problem in learning theory. An efficient algorithm due to Angluin (1987) is
known for learning deterministic automata with membership and equivalence queries, and was ex-
tensively studied over the last decades. Improper learning of deterministic automata with n¢ states
is known to be harder than breaking the RSA cryptosystem, factoring Blum integers and detect-
ing quadratic residues (Kearns and Valiant, 1994). It is also harder than refuting a random K-SAT
formula (Daniely and Shalev-Shwartz, 2016). The question of whether deterministic automata are
learnable on the uniform distribution was posed by Pitt (1989) over 30 years ago, and remained open
(cf. Fish and Reyzin (2017); Michaliszyn and Otop (2019)). We solve this problem, by showing
hardness of weakly learning deterministic automata on the uniform distribution over the hypercube.
This is the first distribution-specific hardness result for improperly learning automata.

Other classes. Our lower bound for learning DNF formulas with w(1) terms implies hardness
of learning w(1)-sparse polynomial threshold functions over {0, 1}", where a g-sparse polynomial
has at most ¢ monomials with non-zero coefficients. It improves the lower bound from Daniely
and Shalev-Shwartz (2016) for learning w(log(n))-sparse polynomial threshold functions. Also,
we show hardness of learning w(1)-sparse GF'(2) polynomials over {0, 1}". Subexponential-time
upper bounds for these problems are given in Hellerstein and Servedio (2007).

Finally, our lower bound for learning DNFs implies hardness of agnostically learning conjunc-
tions, halfspaces and parities. These problems are already known to be hard under other assumptions
(Feldman et al., 2006; Daniely, 2016; Blum et al., 2003; Daniely and Shalev-Shwartz, 2016).

A summary of our contribution. Below we summarize our main contributions:

* Hardness of learning DNF formulas with w(1) terms.

* Distribution-specific hardness of learning DNFs and weakly learning depth-3 Boolean circuits.
* Hardness of learning intersections of w(1) halfspaces.

* Distribution-specific hardness of learning intersections of halfspaces on the hypercube.

* Q(n®*)-time lower bound for learning intersections of a constant number k of halfspaces, where
[is an absolute constant.

* Hardness of learning depth-2 neural networks with w(1) hidden neuron.

* Q(nP*)-time lower bound for learning depth-2 neural networks with a constant number & of
hidden neurons, where 3 is an absolute constant.

* Distribution-specific hardness of learning depth-2 and 3 neural networks on the hypercube.
* Distribution-specific hardness of learning depth-3 neural networks on the Gaussian distribution.

* Distribution-specific hardness of weakly learning deterministic automata on the hypercube.

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

* Hardness of learning w(1)-sparse polynomial threshold functions and w(1)-sparse GF'(2) poly-
nomials over {0, 1}".

* Hardness of agnostically learning conjunctions, halfspaces and parities (these problems are al-
ready known to be hard under other assumptions).

* Our results imply the hardness of virtually all' improper PAC-learning problems (both distribution-
free and distribution-specific) that were previously shown hard (under various complexity as-
sumptions). Moreover, our technique is simple, and we believe that it might be useful for
showing hardness of more learning problems in the future.

Our paper is structured as follows: In Section 2 we provide necessary notations and definitions,
and discuss our assumptions. The results are stated in Section 3. We informally sketch our proof
technique in Section 4, with all formal proofs deferred to the appendix.

2. Preliminaries

2.1. Notations

We use bold-faced letters to denote vectors, e.g., x = (x1,...,x4). For a vector x and a sequence
S = (i1,...,1x) of k indices, we let xg = (z;,,...,;,), i.., the restriction of x to the indices S.
We denote by 1(-) the indicator function, for example 1(¢ > 5) equals 1 if ¢ > 5 and 0 otherwise.
For an integer d > 1 we denote [d] = {1, ..., d}. The majority predicate MAJy : {0,1}¥ — {0,1}
is defined by MAJy(x) = 1iff >,y 20 > k. We denote XORy, : {0,1}* — {0,1} where
XORg(x) =21 @ ... P k. Form € R we let sign(m) = 1 if m > 0 and sign(m) = 0 otherwise.

2.2. Local pseudorandom generators

An (n,m, k)-hypergraph is a hypergraph over n vertices [n] with m hyperedges S, ..., Sy,, each
of cardinality k. Each hyperedge S = (i1, ..., i) is ordered, and all the £ members of a hyperedge
are distinct. We let G, ,, . be the distribution over such hypergraphs in which a hypergraph is
chosen by picking each hyperedge uniformly and independently at random among all the possible
n-(n—1)-...-(n —k+ 1) ordered hyperedges. Let P : {0,1}* — {0, 1} be a predicate, and
let G be a (n, m, k)-hypergraph. We call Goldreich’s pseudorandom generator (PRG) (Goldreich,
2000) the function fpg : {0,1}" — {0,1}™ such that for x € {0,1}", we have fpa(x) =
(P(xs,),---,P(xs,,)). The integer k is called the locality of the PRG. If k is a constant then the
PRG and the predicate P are called local. We say that the PRG has polynomial stretch if m = n®
for some constant s > 1. Let Fp,, », be the collection of functions fp g where G is an (n,m, k)-
hypergraph. We sample a function from Fp,, ,,, by choosing a random hypergraph G from G, ,, ..

We denote by G il Gn,m,k the operation of sampling a hypergraph G from G, ,, ., and by

x & {0,1}" the operation of sampling x from the uniform distribution on {0,1}". We say that
Fpnm is e-pseudorandom generator (¢-PRG) if for every polynomial-time probabilistic algorithm

1. It does not imply the hardness result from Daniely and Vardi (2020) for learning depth-2 neural networks whose
weights are drawn from some “natural” distribution.

DANIELY VARDI

A the distinguishing advantage

Pr [A(G, fra(x)) =1] - Pr [A(G,y) =1]
G&gn,m,k7x<£{0a1}n Gign,m,k’yg{(]?l}m

is at most €. Thus, the distinguisher A4 is given a random hypergraph G and a string y € {0,1}",
and its goal is to distinguish between the case where y is chosen at random, and the case where y
is a random image of fp . Our main assumption is that local PRGs with polynomial stretch and
constant distinguishing advantage exist:

Assumption 1 For every constant s > 1, there exists a constant k and a predicate P : {0, 1}k —
{0, 1}, such that Fp, ns is %-PRG.

Note that we assume constant distinguishing advantage. In the literature, a requirement of negli-
gible distinguishing advantage? is often considered (cf. Applebaum and Lovett (2016); Applebaum
(2016); Couteau et al. (2018)). Thus, our requirement from the PRG is weaker.

Local PRGs have been extensively studied in the last two decades. In particular, local PRGs with
polynomial stretch have shown to have remarkable applications, such as secure-computation with
constant computational overhead (Ishai et al., 2008; Applebaum et al., 2017), and general-purpose
obfuscation based on constant degree multilinear maps (cf. Lin (2016); Lin and Vaikuntanathan
(2016)). A significant evidence for Assumption 1 was shown in Applebaum (2013). He showed that
Assumption 1 follows from the assumption that for every constant s > 1, there exists a sensitive
local predicate’ P such that Fpnns is one-way. This is a variant of Goldreich’s one-wayness
assumption (Goldreich, 2000).

In light of Assumption 1, an important question is which local predicates are secure. O’Donnell
and Witmer (2014) showed that a property called resiliency yields pseudorandomness against at-
tacks which are based on a large class of semidefinite programs. Feldman et al. (2015) showed that
resiliency also ensures pseudorandomness against a wide family of statistical algorithms. Apple-
baum and Lovett (2016) showed that predicates with high resiliency and high rational degree are
secure against two classes of distinguishing attacks: linear attacks and algebraic attacks. These
classes include all known attacks against PRGs. Furthermore, they suggested the following predi-
cate as a candidate for local PRG with polynomial stretch: XOR-MAJ, ,(z) = (21 @ ... ® 24) &
MAJy(zg41, - - -5 2a+b). By their conjecture, for every constant s > 1 and constants a > 5s
,b > 365 the predicate P = XOR-MAJ, j is such that the collection Fp,, s is PRG with negligi-
ble distinguishing advantage. This predicate has high resiliency and rational degree, and is secured
against all known attacks. Its security has been studied also in Couteau et al. (2018); Méaux et al.
(2019); Applebaum and Raykov (2016). We make a somewhat weaker assumption:

Assumption 2 There is a constant o > 0, such that for every constant s > 1 there is a constant [
such that for the predicate P = XOR-MAJ, the collection Fpy s is %—PRG.

Our results on learning intersections of a constant number of halfspaces, and on leaning neural
networks with a constant number of hidden neurons, rely on Assumption 2. All other results rely

2. More formally, that for 1—o,, (1) fraction of the hypergraphs, the distinguisher has no more than negligible advantage.
3. A predicate is sensitive if at least one coordinate ¢ has full influence, i.e., flipping the value of the i-th variable always
changes the output.

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

on Assumption 1. Thus, most of our results assume the existence of a local PRG with polynomial
stretch, and do not rely on a specific candidate.

In our assumptions we consider local PRGs that are secure against polynomial-time algorithms.
Hence, the hardness results in this paper rule out polynomial-time learning algorithms. We note
that our results can be improved by strengthening the assumptions, e.g., by assuming that the local
PRGs are secure against some quasi-polynomial time algorithms.

Prior works on the relation between Goldreich’s PRG and hardness of learning. First,
Goldreich’s PRG are closely related to CSP refutation, and there have been many works on the
relation between CSP refutation and hardness of learning (e.g., Daniely et al. (2014); Daniely and
Shalev-Shwartz (2016); Daniely (2016); Vadhan (2017); Kothari and Livni (2018); Daniely and
Vardi (2020)). Moreover, some applications of variants of Goldreich’s assumption and local PRGs
for hardness of learning are shown in Applebaum et al. (2010); Applebaum and Raykov (2016);
Nanashima (2020).

2.3. PAC learning

A hypothesis class H is a series of collections of functions H,, C Y*, n = 1,2,.... We often
abuse notation and identify 7 with #,,. The domain sets X, we consider are {0, 1}" or R”, and the
label sets) we consider are {0, 1} or R. Let Z,, = &,, x) and let D,, be a distribution on Z,,. A
loss function is a mapping ¢ : H,, X Z, — R,. We consider the following loss functions. The 0-1/
loss is Lo—1(h, (x,y)) = L(h(x) # y). For ¥ = R, the square loss is lsq(h, (x,y)) = (h(x) — y)*.
The error of h : X,, — Y is Lp,(h) = Ezep, [¢(h,z)]. Note that for the 0-1 loss we have
Lp, (h) = Pr(xy)~p, [M(x) # y|. For aclass H,, we let Lp, (H,) = minpey, Lp, (h). We say
that D,, is realizable by h (respectively H,,) if Lp, (h) = 0 (respectively Lp, (H,) = 0).

A learning algorithm L is given €,0 € (0,1), as well as an oracle access to examples from
an unknown distribution D on Z,. It should output a (description of) hypothesis h : &, —
Y. We say that £ (PAC) learns H, if for every realizable D, with probability at least 1 — 4, the
algorithm £ outputs a hypothesis with error at most e. We say that £ agnostically learns H, if for
every D, with probability at least 1 — ¢, the algorithm £ outputs a hypothesis with error at most
Lp(H) + e. Note that by these definitions, £ should succeed for every realizable distribution D
(in the former definition) or for every distribution D (in the later definition). Hence, this setting is
called distribution-free learning. We now consider distribution-specific learning, namely, where the
marginal distribution of D on &, is fixed. Let Dy be a distribution on X,,. We say that L learns H
on Dy, if for every realizable D whose marginal distribution on X, is Dy, with probability at least
1 — 6, the algorithm £ outputs a hypothesis with error at most e.

When the error is defined with respect to the 0-1 loss, we also consider weak learning: For v > 0
we say that £ y-weakly learns H, if for every realizable D, the algorithm L is given ¢ € (0, 1), and
outputs w.p. at least 1 — § a hypothesis with error at most % — . We say that £ y-weakly learns ‘H
on Dy, if for every realizable D whose marginal distribution on &, is Dy, the algorithm £ is given
d € (0,1), and outputs w.p. at least 1 — ¢ a hypothesis with error at most % — 7v. Thus, when vy is
small, the returned hypothesis needs to be at least slightly better than a random guess.

We say that L is efficient if it runs in time poly(n, 1 /€, 1/J) (or poly(n, 1/6), for weak learning),
and outputs a hypothesis that can be evaluated in time poly(n, 1/€,1/4) (respectively, poly(n, 1/9)).
Finally, £ is proper if it always outputs a hypothesis in /. Otherwise, we say that L is improper.

DANIELY VARDI

By boosting results (Schapire, 1989; Freund, 1995), if there is an efficient algorithm that #—
weakly learns ‘H for some constant ¢ > 0, then there is also an efficient improper algorithm that
learns H. Hence, in the distribution-free setting, hardness of improper learning implies hardness of
improper weak learning. These boosting arguments do not apply to the distribution-specific setting.

2.4. Neural networks and automata

We consider feedforward neural networks, computing functions from R" to R. The network is
composed of layers of neurons, where each neuron computes a function x — o(w ' x + b), where
w is a weight vector, b is a bias term and ¢ : R +— R is a non-linear activation function. We focus
on the ReLU activation, i.e., 0(z) = [z]; = max{0,z}. For a matrix W = (wy,...,wy), we
let o(Wx + b) be a shorthand for (o(w{x +b1),...,0(w,x+bg)), and define a layer of d
neurons as X — o (W 'x + b). By denoting the output of the i-th layer as O;, we define a network
recursively by O;11 = o(W,L,0; + bj11). The weights vector of the j-th neuron in the i-th layer
is the j-th column of W;. The fan-in of a neuron is the number of non-zero entries in its weights
vector. We define the depth of the network as the number of layers. Unless stated otherwise, the
output neuron also has a ReLU activation function. A neuron which is not an input or output neuron
is called a hidden neuron. We sometimes consider neural networks with multiple outputs.

A deterministic finite automaton (DFA) is a tuple A = (X,Q, qo,0, F'), where ¥ is a finite
alphabet, @ is a finite set of states, go € () is the initial state, § : @) X ¥ — (@ is a transition
function, and F' C () are the final states. Given a word w = o1 - 09 - - - 07 € ¥, the run of A on w
is the sequence r = qo, q1, - - . , q; such that g;+1 = 0(g;, 0j+1) for all ¢ > 0. The run r is accepting
if g € F, and A accepts w iff r is accepting. We sometimes use the notation A(w) = 1 (resp.,
A(w) = 0) to indicate that A accepts (resp., rejects) w. The size of A is the number of its states.

3. results

3.1. DNFs and Boolean circuits

In the following theorem we show distribution-free hardness for DNF formulas with w(1) terms,
and distribution-specific hardness for DNF formulas with n¢ terms (see proof in Appendix A.1).

Theorem 3 Under Assumption 1, for every q(n) = w(1), there is no efficient algorithm that learns
DNF formulas with n variables and q(n) terms. Moreover, for every constant € > 0, there is no
efficient algorithm that learns DNF formulas with n® terms, on a distribution where each component
is drawn i.i.d. from a (non-uniform) Bernoulli distribution.

Theorem 3 gives distribution-specific hardness for learning DNF formulas, namely, depth-2
Boolean circuits, where the input distribution is such that the components are i.i.d. copies from a
Bernoulli distribution. For depth-3 Boolean circuits we show hardness of weak learning, where the
input distribution is uniform on the hypercube (see proof in Appendix A.2).

Theorem 4 Under Assumption 1, for every constants vy, € > 0, there is no efficient algorithm that
~v-weakly learns depth-3 Boolean circuits of size n® on the uniform distribution over {0,1}™.

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

3.2. Intersections of halfspaces

Any function realized by a DNF formula with ¢(n) terms can be also realized by the complement
of an intersection of ¢(n) halfspaces. Hence, Theorem 3 implies the following corollary.

Corollary 5 Under Assumption 1, for every q(n) = w(1l), there is no efficient algorithm that
learns intersections of q(n) halfspaces over {0,1}". Moreover, for every constant € > 0, there
is no efficient algorithm that learns intersections of n® halfspaces, on a distribution where each
component is drawn i.i.d. from a (non-uniform) Bernoulli distribution.

We now consider intersections of a constant number k& of halfspaces (i.e., k is independent of
n), and show a Q(n”*) lower bound (see proof in Appendix A.3).

Theorem 6 Let H C {0, 1}({0’1}n) be the functions expressible by intersections of k halfspaces,
where k is a constant independent of n. Let L be a learning algorithm, that for every H-realizable
distribution, returns with probability at least % a hypothesis with error at most 1—10. Then, under As-
sumption 2, there is a universal constant 3 > 0 (independent of k,n) such that the time-complexity

of L is Q(nPk).

Remark 7 Applebaum and Lovett (2016) conjectured that Assumption 2 holds for o > 5. It implies
that Theorem 6 holds for, e.g., B = ﬁ

3.3. Neural networks

We consider neural networks with the ReL.U activation function. Since neural networks are real-
valued, we consider here the square loss rather than the 0-1 loss. Our results hold for networks
where the norms of the weights of each neuron are bounded by some poly(n). By a simple scaling
trick (i.e., by increasing the input dimension), it follows that for every constant € > 0, the results
also hold for networks where the norms of the weights of every neuron are bounded by n°.

From Theorems 3 and 4, it is not hard to show the following theorems (see proofs in Appen-
dices A.4 and A.5).

Theorem 8 Under Assumption 1, we have:

1. For every q(n) = w(1), there is no efficient algorithm that learns depth-2 neural networks
with q(n) hidden neurons, and no activation function in the output neuron, where the input
distribution is supported on {0,1}".

2. For every constant € > 0, there is no efficient algorithm that learns depth-2 neural networks
with n® hidden neurons, on a distribution where each component is drawn i.i.d. from a (non-
uniform) Bernoulli distribution.

3. For every constant € > 0, there is no efficient algorithm that learns depth-3 neural networks
with n® hidden neurons, on the uniform distribution over {0, 1}".

Theorem 9 Let H C RUO™) pe the functions expressible by depth-2 neural networks with k
hidden neurons and no activation function in the output neuron, where k is a constant independent
of n. Let L be a learning algorithm, that for every H-realizable distribution, returns with probability
at least % a hypothesis with error at most %. Then, under Assumption 2, there is a universal constant
B > 0 (independent of k,n) such that the time-complexity of L is Q(n”F).

DANIELY VARDI

Remark 10 Applebaum and Lovett (2016) conjectured that Assumption 2 holds for o« > 5. It
implies that Theorem 9 holds for, e.g., B = 57.

We now consider continuous input distributions. We focus here on the normal distribution, but
our result can be extended to other continuous distributions (see proof in Appendix A.6).

Theorem 11 Under Assumption 1, for every constant € > 0, there is no efficient algorithm that
learns depth-3 neural networks with n® hidden neurons on the standard Gaussian distribution.

3.4. Automata

We show hardness of weakly-learning DFAs on the uniform distribution (see proof in Appendix A.7).

Theorem 12 Under Assumption 1, for every constants c,e > 0, there is no efficient algorithm that

#-weakly learns DFAs of size n®, on the uniform distribution over {0, 1}".

3.5. Other classes

Our results imply lower bounds for some additional classes. We start with hardness of learning
w(1)-sparse polynomial threshold functions on {0, 1}". Recall that a g-sparse polynomial has at
most ¢ monomials with non-zero coefficients.

Corollary 13 Under Assumption 1, for every q(n) = w(1), there is no efficient algorithm that
learns q(n)-sparse polynomial threshold functions over {0, 1}".

Corollary 13 follows from Theorem 3 since any function realized by a DNF formula with ¢(n)
terms can be also realized by a polynomial threshold function over {0, 1}" with ¢(n) monomials.
We also consider w(1)-sparse GF'(2) polynomials over {0, 1}". Such a polynomial is simply a sum
modulo 2 of w(1) monomials (see proof in Appendix A.8).

Theorem 14 Under Assumption 1, for every q(n) = w(1), there is no efficient algorithm that
learns q(n)-sparse GF(2) polynomials over {0, 1}".

Finally, the following corollaries follow from the hardness of learning DNFs (see Daniely and
Shalev-Shwartz (2016)). We note that these results are already known under other assumptions
(Feldman et al., 2006; Daniely, 2016; Blum et al., 2003; Daniely and Shalev-Shwartz, 2016).

Corollary 15 Under Assumption 1, no efficient algorithm agnostically learns conjunctions.
Corollary 16 Under Assumption 1, no efficient algorithm agnostically learns halfspaces.
Corollary 17 Under Assumption 1, no efficient algorithm agnostically learns parities.

4. Our technique

4.1. Hardness under Assumption 1

We first describe the proof ideas for the case of DNFs. Then, we explain how to apply the method
to other classes.

10

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

4.1.1. DISTRIBUTION-FREE HARDNESS FOR DNFs

We describe the main ideas in the proof of the first part of Theorem 3. We encode a hyperedge
S = (i,...,i) by z° € {0,1}*™, where z° is the concatenation of k vectors in {0,1}", such
that the j-th vector has O in the 7;-th component and 1 elsewhere. Thus, z° consists of k size-n
slices, each encodes a member of S. For a predicate P : {0,1}* — {0,1} and x € {0,1}", let
Py : {0,1}*¥" — {0,1} be a function such that for every hyperedge S we have Px(z°) = P(xs).

Let s > 1 be a constant. By Assumption 1, there exists a constant k£ and a predicate P :
{0,1}% — {0,1}, such that Fp,, ;- is 1-PRG. Assume that there is an efficient algorithm £ that
learns DNF formulas with n’ variables and ¢(n’) = w,/(1) terms. We will use the algorithm £ to
obtain an algorithm A with distinguishing advantage greater than % and thus reach a contradiction.

Given a sequence (S1,¥1),--.,(Sns,Yns), where Sq,...,Sys are i.i.d. random hyperedges,
the algorithm .4 needs to distinguish whether y = (y1,...,yns) is random or that we have y =
(P(xg,),--+,P(x5,,)) = (Px(z%1),..., Px(z%*)) for a random x € {0,1}". We denote S =
(@5 0), .. (25 o).

We show that for every predicate P : {0,1}* — {0,1} and x € {0, 1}", there is a DNF formula
1 over {0, 1}*¥" with at most 2¥ terms, such that for every hyperedge S we have Py (z°) = 1(z°).
The formula ¢ is such that for each satisfying assignment b € {0, 1}* of P there is a term in) that
checks whether xg = b. Thus, 1)(z°) = P(xg) = Px(z”). Therefore, if S is pseudorandom then
it is realizable by a DNF formula with at most 2* terms. Since is constant, then for a sufficiently
large n we have 2% < q(kn). Hence, the algorithm A can distinguish whether S is pseudorandom
or random as follows. It partitions S to a training set and a test set, and runs £ on the training set
(we show that if s is a sufficiently large constant then we can choose a training set large enough for
L). Let h be the hypothesis returned by L. If S is pseudorandom then we show that h will have
small error on the test set, and if S is random then h will have large error on the test set. Hence, A
can distinguish between the cases.

4.1.2. DISTRIBUTION-SPECIFIC HARDNESS FOR DNFS

We turn to describe the main ideas in the proof of the second part of Theorem 3. We show how to
distinguish whether the sequence S from the previous paragraph is random or pseudorandom, given
access to a distribution-specific learning algorithm. Let £’ be an efficient algorithm that learns DNF
formulas with n’ variables and at most (n)¢ terms, on a distribution D’ such that each component
is drawn i.i.d. from a Bernoulli distribution where the probability of 1 is p. Assume that p is such
that the probability that a random z ~ D’ is an encoding of a hyperedge is not too small.

We show an algorithm A’ such that given a sequence S = ((z°1,y1), . . ., (2%, y,s)), it distin-
guishes whether S is pseudorandom or random. Here, the algorithm A’ has access to £/, which is
guaranteed to learn successfully only if the input distribution is D’. Note that for every i € [n®] the
vector z% is an encoding of a random hyperedge, and does not have the distribution D’. Therefore,
the algorithm 4" will run £’ with an examples oracle that essentially works as follows: In the i-th
call to the oracle, it chooses z; ~ D'. If z; is an encoding of a hyperedge then the oracle returns
(z°7,y;), and otherwise it returns (z;,1). Namely, if z; is an encoding of a hyperedge then we
replace it by z%, which is an encoding of a random hyperedge, and hence we do not change the
distribution. Thus, the oracle uses S as a source for random encodings.

Let A/ be the hypothesis returned by £’. The algorithm A’ now checks 2’ on a test set created by
the examples oracle (we show that if s is large enough then we can create sufficiently large training

11

DANIELY VARDI

and test sets). If S is pseudorandom then we show that the examples returned by the oracle are
realized by some DNF formula with an appropriate number of terms, and hence A’ will have small
error on the test set. Note that this DNF formula needs to return 1 if the input is not an encoding
of a hyperedge, and to return Py (z”) if the input is the encoding z° of a hyperedge S. If S is
random then i’ will be incorrect in roughly half of the examples in the test set that correspond to
pairs (2%, y;) from S, and hence will have larger error on the test set. Therefore, A’ can distinguish
between the cases.

4.1.3. DISTRIBUTION-SPECIFIC HARDNESS FOR OTHER CLASSES

While each of the distribution-specific hardness results involves some unique challenges, all the
proofs roughly follow a similar method to the one used in the case of DNFs.

Let ‘H be the hypothesis class for which we want to show hardness and let D be the input dis-
tribution. Assuming that there is an algorithm L that learns (or weakly learns) H on the distribution
D, we show an algorithm A that distinguishes whether a sequence S = ((S1,¥1), .- -, (Sns, Yns))
is pseudorandom or random. The algorithm A runs £ with an examples oracle that can be imple-
mented efficiently, and returns examples (z,y) such that z ~ D. The oracle uses S as a source
for labeled random hyperedges, and with sufficiently high probability the returned example (z, y)
corresponds to some (.S;,y;) in S. Let h be the hypothesis returned by £. If S is pseudorandom,
then we show that the examples returned by the oracle are realizable by #, and hence h has a small
error on a test set created by the oracle. If S is random then £ is incorrect in roughly half of the
examples in the test set that correspond to pairs (S;, y;) from S, and hence has larger error on the
test set. Hence, A can distinguish between the cases.

The implementation details of the above method are different for every class H that we consider.
Thus, in each proof we use different encodings of hyperedges and a different examples oracle.
Moreover, in each proof we need to show that the examples returned by the oracle are realizable,
and hence we construct a function i € H that labels correctly all examples returned by the oracle.

4.2. Lower bounds under Assumption 2

We explain how to apply Assumption 2 in the case intersections of a constant number of halfspaces
(we sketch here a proof for Theorem 6). The case of neural networks with a constant number of
hidden neurons (Theorem 9) is similar.

It is not hard to show that Assumption 2 implies that there is a constant 8 > 0 such that for
every constant k, there is [such that for the predicate P = XOR-MAJy the collection Fp,, ,2.15x
is %—PRG. Assume that there is an efficient algorithm L that learns intersections of k& halfspaces
over {0, 1}". Assume that £ uses a sample of size m(72) = 72°* and returns with probability at least
% a hypothesis with error at most %. We will use the algorithm £ to establish an algorithm A with
distinguishing advantage greater than % and thus reach a contradiction. It implies that an efficient
algorithm that learns intersections of k halfspaces over {0, 1}" must use a sample of size greater
than 7%, and therefore runs in time Q(7°%).

Letn = % +2n + 1. Forz € {0,1}?", we denote by z € {0,1}" the vector of
all monomials over z of degree at most 2. We call z the monomials encoding of z. We encode
a hyperedge S = (i1,...,ip4) by z° € {0,1}?", where z° is the concatenation of 2 vectors in
{0, 1}™, such that the first vector has 1-bits in the indices i1, . . . , iy, and 0 elsewhere, and the second
vector has 1-bits in the indices ix41, ..., %,+; and O elsewhere. We denote by z° the monomials

12

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

encoding of z°. For x € {0,1}", let P, : {0,1}"* — {0,1} be a function such that for every
hyperedge S we have Px(z°) = P(xs).

We show that for every x € {0,1}", there is a function g : {0,1}" — {0,1} that can be
expressed by an intersection of k halfspaces, such that for every hyperedge S we have g(z°) =
Py (z°). Intuitively, an intersection of k halfspaces over z° is an intersection of k degree-2 polyno-
mial threshold functions over z°, and we show that each degree-2 polynomial threshold function is
powerful enough to handle the case where the number of 1-bits in the XOR part of P is %, for some
i € [k]. With this claim at hand, we establish the algorithm A as follows.

Given a sequence (S1,¥1), ..., (Sy2.18k, Yp2.16x), Where Si,..., S, 2.6k are i.i.d. random hy-
peredges, the algorithm A needs to distinguish whether y = (y1,...,y,2.1s%) is random, or that
Y = (P(Xs,), -, P(X5 4,5.)) = (Px(2%), ..., Py(z%27%)) for a random x € {0,1}". Let
S = ((z%,11),...,(2°218% |y, 2151)). The algorithm A learns a function h : {0,1}* — {0,1}
by running £ with an examples oracle that in each call returns the next example from S. Re-
call that £ uses at most m(n) = nPk examples, and hence S contains at least n21Bk _ pBk >
n21Pk — (2n)2P% > In(n) examples that £ cannot view (for a sufficiently large n). We use these
examples as a test set. If S is pseudorandom then it is realizable by an intersection of k halfspaces,
and thus w.h.p. h has small error on the test set. If S is random then h has error of roughly % on the
test set. Hence, A can distinguish between the cases.

Acknowledgments

We thank Benny Applebaum and anonymous reviewers for their valuable comments. This research
is partially supported by ISF grant 2258/19.

References

Naman Agarwal, Pranjal Awasthi, and Satyen Kale. A deep conditioning treatment of neural net-
works. arXiv preprint arXiv:2002.01523, 2020.

Dana Angluin. Learning regular sets from queries and counterexamples. Information and compu-
tation, 75(2):87-106, 1987.

B. Applebaum, B. Barak, and D. Xiao. On basing lower-bounds for learning on worst-case assump-
tions. In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium
on, pages 211-220. IEEE, 2008.

Benny Applebaum. Pseudorandom generators with long stretch and low locality from random local
one-way functions. SIAM Journal on Computing, 42(5):2008-2037, 2013.

Benny Applebaum. Cryptographic hardness of random local functions. Computational complexity,
25(3):667-722, 2016.

Benny Applebaum and Shachar Lovett. Algebraic attacks against random local functions and their
countermeasures. In Proceedings of the forty-eighth annual ACM symposium on Theory of Com-
puting, pages 1087-1100, 2016.

Benny Applebaum and Pavel Raykov. Fast pseudorandom functions based on expander graphs. In
Theory of Cryptography Conference, pages 27-56. Springer, 2016.

13

DANIELY VARDI

Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from different as-
sumptions. In Proceedings of the forty-second ACM symposium on Theory of computing, pages
171-180, 2010.

Benny Applebaum, Ivan Damgard, Yuval Ishai, Michael Nielsen, and Lior Zichron. Secure arith-
metic computation with constant computational overhead. In Annual International Cryptology
Conference, pages 223-254. Springer, 2017.

Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. Provable bounds for learning some
deep representations. In International Conference on Machine Learning, pages 584-592, 2014.

Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer rectified neural net-
works in polynomial time. In Conference on Learning Theory, pages 195-268. PMLR, 2019.

Eric B Baum. A polynomial time algorithm that learns two hidden unit nets. Neural Computation,
2(4):510-522, 1990.

Eric Blais, Ryan O’Donnell, and Karl Wimmer. Polynomial regression under arbitrary product
distributions. Machine learning, 80(2-3):273-294, 2010.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and
the statistical query model. Journal of the ACM (JACM), 50(4):506-519, 2003.

Avrim L Blum and Ravindran Kannan. Learning an intersection of a constant number of halfspaces
over a uniform distribution. Journal of Computer and System Sciences, 54(2):371-380, 1997.

Ravi B Boppana. The average sensitivity of bounded-depth circuits. Information processing letters,
63(5):257-261, 1997.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with gaussian
inputs. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 605-614. JMLR. org, 2017.

Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and Yann Rotella. On the
concrete security of goldreich’s pseudorandom generator. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 96—124. Springer, 2018.

Amit Daniely. Complexity theoretic limitations on learning halfspaces. In Proceedings of the forty-
eighth annual ACM symposium on Theory of Computing, pages 105-117. ACM, 2016.

Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learning dnf’s. In
Conference on Learning Theory, pages 815-830, 2016.

Amit Daniely and Gal Vardi. Hardness of learning neural networks with natural weights. arXiv
preprint arXiv:2006.03177, 2020.

Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complexity to improper
learning complexity. In STOC, 2014.

Abhimanyu Das, Sreenivas Gollapudi, Ravi Kumar, and Rina Panigrahy. On the learnability of deep
random networks. arXiv preprint arXiv:1904.03866, 2019.

14

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

Ilias Diakonikolas, Daniel Kane, and Nikos Zarifis. Near-optimal sq lower bounds for agnosti-
cally learning halfspaces and relus under gaussian marginals. Advances in Neural Information
Processing Systems, 33, 2020a.

Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, and Nikos Zarifis. Algorithms and sq lower
bounds for pac learning one-hidden-layer relu networks. arXiv preprint arXiv:2006.12476,
2020b.

Simon S Du and Surbhi Goel. Improved learning of one-hidden-layer convolutional neural networks
with overlaps. arXiv preprint arXiv:1805.07798, 2018.

Simon S Du, Jason D Lee, and Yuandong Tian. When is a convolutional filter easy to learn? arXiv
preprint arXiv:1709.06129, 2017a.

Simon S Du, Jason D Lee, Yuandong Tian, Barnabas Poczos, and Aarti Singh. Gradient de-
scent learns one-hidden-layer cnn: Don’t be afraid of spurious local minima. arXiv preprint
arXiv:1712.00779, 2017b.

Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. New results for
learning noisy parities and halfspaces. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06), pages 563-574. IEEE, 2006.

Vitaly Feldman, Will Perkins, and Santosh Vempala. On the complexity of random satisfiability
problems with planted solutions. In STOC, 2015.

Benjamin Fish and Lev Reyzin. Open problem: Meeting times for learning random automata. In
Conference on Learning Theory, pages 8—11, 2017.

Yoav Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121
(2):256-285, 1995.

Merrick L Furst, Jeffrey C Jackson, and Sean W Smith. Improved learning of ac0 functions. In
COLT, volume 91, pages 317-325, 1991.

Surbhi Goel and Adam Klivans. Learning neural networks with two nonlinear layers in polynomial
time. arXiv preprint arXiv:1709.06010, 2017.

Surbhi Goel, Adam Klivans, and Raghu Meka. Learning one convolutional layer with overlapping
patches. arXiv preprint arXiv:1802.02547, 2018.

Surbhi Goel, Sushrut Karmalkar, and Adam Klivans. Time/accuracy tradeoffs for learning a relu
with respect to gaussian marginals. In Advances in Neural Information Processing Systems, pages
8584-8593, 2019.

Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, and Adam Klivans. Superpolyno-
mial lower bounds for learning one-layer neural networks using gradient descent. arXiv preprint
arXiv:2006.12011, 2020a.

Surbhi Goel, Aravind Gollakota, and Adam Klivans. Statistical-query lower bounds via functional
gradients. Advances in Neural Information Processing Systems, 33, 2020b.

15

DANIELY VARDI

Surbhi Goel, Adam Klivans, Pasin Manurangsi, and Daniel Reichman. Tight hardness results for
training depth-2 relu networks. arXiv preprint arXiv:2011.13550, 2020c.

Oded Goldreich. Candidate one-way functions based on expander graphs. IACR Cryptol. ePrint
Arch., 2000:63, 2000.

Johan Hastad. A slight sharpening of Imn. Journal of Computer and System Sciences, 63(3):498—
508, 2001.

Lisa Hellerstein and Rocco A Servedio. On pac learning algorithms for rich boolean function
classes. Theoretical Computer Science, 384(1):66-76, 2007.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant com-
putational overhead. In Proceedings of the fortieth annual ACM symposium on Theory of com-
puting, pages 433-442, 2008.

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-convexity:
Guaranteed training of neural networks using tensor methods. arXiv preprint arXiv:1506.08473,
2015.

Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning Boolean formulae
and finite automata. Journal of the Association for Computing Machinery, 41(1):67-95, January
1994.

Michael Kharitonov. Cryptographic hardness of distribution-specific learning. In Proceedings of
the twenty-fifth annual ACM symposium on Theory of computing, pages 372-381. ACM, 1993.

Adam R Klivans and Rocco Servedio. Learning dnf in time 20('%) Ip Proceedings of the thirty-

third annual ACM symposium on Theory of computing, pages 258-265. ACM, 2001.

Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learning intersections of
halfspaces. In FOCS, 2006.

Adam R Klivans, Ryan O’Donnell, and Rocco A Servedio. Learning intersections and thresholds
of halfspaces. Journal of Computer and System Sciences, 68(4):808-840, 2004.

Adam R Klivans, Philip M Long, and Alex K Tang. Baum’s algorithm learns intersections of
halfspaces with respect to log-concave distributions. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 588—600. Springer, 2009.

Pravesh K Kothari and Roi Livni. Improper learning by refuting. In 9¢h Innovations in Theoretical
Computer Science Conference (ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu activation.
In Advances in Neural Information Processing Systems, pages 597-607, 2017.

Huijjia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 28-57. Springer, 2016.

16

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-like assumptions
on constant-degree graded encodings. In 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pages 11-20. IEEE, 2016.

Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform, and
learnability. Journal of the Association for Computing Machinery, 40(3):607-620, July 1993.

Pierrick Méaux, Claude Carlet, Anthony Journault, and Francois-Xavier Standaert. Improved filter
permutators: Combining symmetric encryption design, boolean functions, low complexity cryp-
tography, and homomorphic encryption, for private delegation of computations. I[ACR Cryptol.
ePrint Arch., 2019:483, 2019.

Jakub Michaliszyn and Jan Otop. Approximate learning of limit-average automata. arXiv preprint
arXiv:1906.11104, 2019.

Mikito Nanashima. Extending learnability to auxiliary-input cryptographic primitives and meta-pac
learning. In Conference on Learning Theory, pages 2998-3029. PMLR, 2020.

Ryan O’Donnell and David Witmer. Goldreich’s prg: Evidence for near-optimal polynomial stretch.
In 2014 IEEE 29th Conference on Computational Complexity (CCC), pages 1-12. IEEE, 2014.

Leonard Pitt. Inductive inference, dfas, and computational complexity. In International Workshop
on Analogical and Inductive Inference, pages 18-44. Springer, 1989.

R.E. Schapire. The strength of weak learnability. In FOCS, pages 28—33, October 1989.

Ohad Shamir. Distribution-specific hardness of learning neural networks. The Journal of Machine
Learning Research, 19(1):1135-1163, 2018.

Le Song, Santosh Vempala, John Wilmes, and Bo Xie. On the complexity of learning neural net-
works. In Advances in neural information processing systems, pages 5514-5522, 2017.

Yuandong Tian. An analytical formula of population gradient for two-layered relu network and its
applications in convergence and critical point analysis. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 3404-3413. JMLR. org, 2017.

Salil Vadhan. On learning vs. refutation. In Conference on Learning Theory, pages 1835-1848.
PMLR, 2017.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, Novem-
ber 1984.

Santosh Vempala. A random sampling based algorithm for learning the intersection of half-spaces.
In Proceedings 38th Annual Symposium on Foundations of Computer Science, pages 508—513.
IEEE, 1997.

Santosh Vempala and John Wilmes. Gradient descent for one-hidden-layer neural networks: Poly-
nomial convergence and sq lower bounds. In Conference on Learning Theory, pages 3115-3117.
PMLR, 2019.

17

DANIELY VARDI

Appendix A. Proofs
A.1. Proof of Theorem 3

We encode a hyperedge S = (iy,...,i;) by z° € {0,1}*", where z° is the concatenation of k
vectors in {0, 1}", such that the j-th vector has 0 in the ¢;-th component and 1 elsewhere. Thus, z°
consists of k size-n slices, each encodes a member of S. For z € {0,1}*", i € [k] and j € [n], we
denote z; j = 2(j_1).n4j- Thatis, z;; is the j-th component in the i-th slice in z. For a predicate
P:{0,1}* — {0,1} and x € {0,1}", let Py : {0,1}*" — {0,1} be a function such that for every
hyperedge S we have Py(z°) = P(xg).

Lemma 18 For every predicate P : {0,1}* — {0,1} and x € {0,1}", there is a DNF formula)
over {0, 1}*" with at most 2 terms, such that for every hyperedge S we have Py(2°) = 1(2z°).

Proof We denote by B C {0, 1}* the set of satisfying assignments of P. Note that the size of B is
at most 2¥. Consider the following DNF formula over {0, 1}

=V A A

bEBjE[k‘} {l1$l7ébj}
For a hyperedge S = (i1, .. .,1x), we have

$(z°) =1 <= TbeBYj e [k] Vo, #£bj, 25, =1
HbeBVje[k]v:zHéb], ij #1
]

=

<= JdbeBVjelk], v, =
<~ dbeB, xs=b
— P(Xs)ZI

— P(z°)=1.

In the following lemma we prove the first part of the theorem.

Lemma 19 Under Assumption 1, there is no efficient algorithm that learns DNF formulas with n
variables and wy, (1) terms.

Proof Assume that there is an efficient algorithm L that learns DNF formulas with n’ variables and
q(n') = wy(1) terms. Let m(n’) be a polynomial such that £ uses a sample of size at most m(n’)
and returns with probability at least % a hypothesis with error at most 1—10. Let s > 1 be a constant
such that n® > m(nlog(n)) + n for every sufficiently large n. By Assumption 1, there exists a
constant k and a predicate P : {0,1}* — {0,1}, such that Fp,, s is 1-PRG. We will show an
algorithm .4 with distinguishing advantage greater than 5 and thus reach a contradiction.

Given a sequence (S1,¥1), ..., (Sns,Yns), Where Sl, ..., Sps are i.i.d. random hyperedges,
the algorithm A needs to distinguish whether y = (y1,...,Yyns) is random or that we have y =
(P(xs,),---,P(x5,.)) = (P(z%1),..., Pc(z°*)) for a random x € {0,1}". We denote S =
(2%, 41), ..., (2°%° , yps)). Let D be a distribution on {0, 1}*" such that z ~ D is an encoding of
a random hyperedge. Note that each z° from S is drawn i.i.d. from D.

18

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

We use the efficient algorithm £ in order to obtain distinguishing advantage greater than % as
follows. The algorithm A learns a hypothesis 4 : {0, 1}*” — {0, 1} by running £ with an examples
oracle that in each call returns the next example from S. Recall that £ uses at most m(kn) <
m(nlog(n)) examples (assuming n is large enough), and hence S contains at least n examples that
L cannot view. Denote the indices of these examples by I = {m(nlog(n))+1,...,m(nlog(n))+
n}, and the examples by S; = {(z%, ;) }ier. Let £7(h) = ﬁ Sier L(h(z%) # y;). Now, if

lr(h) < %, then A returns 1, and otherwise it returns 0.

Clearly, the algorithm A runs in polynomial time. We now show that if S is pseudorandom then
A returns 1 with probability greater than %, and if S is random then A returns 1 with probability
less than . By Lemma 18, there is a DNF formula ¢y over {0, 1}*" with at most 2¥ < g(kn) terms
(for a sufficiently large n), such that for every hyperedge S we have Py (z°) = 1x(2°). Thus, S is
realized by 1x. Hence, if S is pseudorandom then with probability at least % the algorithm L returns
a hypothesis h such that E,p 1(h(z) # Px(z)) < {. Therefore, Es, (;(h) = E,up 1(h(z) #
Px(z)) < . If S is random then for every function h : {0,1}*" — {0, 1} the events {h(z%) =
i }ic1 are independent from one another, and each has probability % Hence, Es, (1 (h) = %

By the Hoefding bound, for a sufficiently large n we have

Pr [
St

Therefore, if S is pseudorandom then for a sufficiently large n we have with probability at least
1-(4+ %) =5 > 2thatEg, {;(h) < 3 and |[¢;(h) — Es, £7(h)| < &, and hence £7(h) < &.
Thus, the algorithm A returns 1 with probability greater than % If S is random then Eg ¢;(h) =
and for a sufficiently large n we have with probability at least 33 that |¢;(h) — Es, £;(h)| <

1
E .
Hence, with probability greater than % we have ¢;(h) > 1—20 and the algorithm A returns 0. |

1 1
(4(h) —;SE/I(h)\ >l <

We will use the following lemma throughout our proofs.

Lemma 20 Let ¢ > 0 be a constant. Let &1, ... ,&,2c+3 be a sequence of i.i.d. random variables
and let £ = ﬁ Zie[n25+3] &i. Assume that Pr [0 < & < 1] = 1 for every i. Then for a sufficiently
large n we have

1

Pr [l ~ Bl > | < 5

< —.
20

Proof By the Hoefding bound we have

1 n2c+3
pr e~ Bie) > L] < 20w (- 255) =20 (-2
Thus, for a sufficiently large n the requirement holds. |
In the following lemma we prove the second part of the theorem.
Lemma 21 For every constant € > 0, there is no efficient algorithm that learns DNF formulas with

n* terms, on a distribution such that each component is drawn i.i.d. from a (non-uniform) Bernoulli
distribution.

19

DANIELY VARDI

Proof Consider the distribution D over {0, 1}”1+3/E , such that each component is drawn i.i.d. from
a Bernoulli distribution where the probability of 0 is % Assume that there is an efficient algorithm

L that learns DNF formulas over {0, 1}”1+3/6 with at most n? terms on the distribution D. Let m(n)
be a polynomial such that £ uses a sample of size at most m(n) and returns with probability at least
% a hypothesis with error at most % Let s > 1 be a constant such that n* > m(n) + n? for every
sufficiently large n. By Assumption 1, there exists a constant k£ and a predicate P : {0, 1}’“ —
{0, 1}, such that Fp,, s is %—PRG. We will show an algorithm .4 with distinguishing advantage
greater than % and thus reach a contradiction.

We say that z € {0, 1}"1+3/6 is an extended encoding of a hyperedge if (21, ..., 2,) = z° for
some hyperedge S. That is, in each of the first £ size-n slices in z there is exactly one 0-bit and each
two of the first & slices in z encode different indices. Assuming that n1t3/¢ > kn, the probability
that z ~ D is an extended encoding of a hyperedge, is given by

ook () (5= (05 ()
e

Since for every € (0, 1) we have e™* < 1 — Z, then for a sufficiently large n the above is at least

2k? 2k(n —1 1
exp (—— | -exp _2kn—1) >exp(—1) - exp (—2k) > : (1)
n n log(n)
Given a sequence (S1,¥1),...,(Sns,Yns), where Sq,...,Sys are i.i.d. random hyperedges,

the algorithm A needs to distinguish whether y = (y1,...,yns) is random or that we have y =
(P(xs,),---,P(xs,.)) = (Px(z%1),..., Pc(z°*)) for a random x € {0,1}". We denote S =
(2%, 91), ..., (2797, Yps).

We use the efficient algorithm £ in order to obtain distinguishing advantage greater than % as
follows. The algorithm A runs £ with the following examples oracle. In the i-th call to the oracle,
it chooses z; € {0,1}"
(with probability at most 1 —

according to D. If z; is not an extended encoding of a hyperedge
@ by Eq. 1) then the oracle returns (z}, y}) where z;, = z; and
y, = 1. Otherwise, the oracle obtains a vector z; by replacing the first kn components in z; with
z%, and returns (z},y!) where y/ = y;. Note that the vector z| returned by the oracle has the
distribution D, since replacing a random hyperedge with another random hyperedge does not change
the distribution. Let h be the hypothesis returned by £. Recall that £ uses at most m(n) examples,
and hence S contains at least n® examples that £ cannot view. We denote the indices of these
examples by I = {m(n) + 1,...,m(n) + n*}, and the examples by S; = {(z°,y;)}ics. By
n3 additional calls to the oracle, the algorithm A obtains the examples S} = {(z,y!)}ics that
correspond to S;. Let £7(h) = ﬁ Sier L(h(2}) # yl). Now, if £7(h) < 2, then A returns 1, and
otherwise it returns 0. Clearly, the algorithm A runs in polynomial time. We now show that if S is
pseudorandom then A returns 1 with probability greater than 2, and if S is random then A returns
1 with probability less than %

Consider a DNF formula ¢ with & - n(nT_l) +k+n- @ terms such that ¢)(z) = 1 iff at least
one of the first k size-n slices in z contains 0 more than once or less than once, or that from the first &

slices in z there are two slices that encode the same index. Namely, ¢/ return 1 iff z is not an extended

20

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

encoding of a hyperedge. The construction of such a formula v is straightforward. By Lemma 18,
there is a DNF formula 1y over {0, 1}* with at most 2* terms, such that for every hyperedge S we
have Py (2z°) = 1x(2°). Let ¢/ = 1 V 4. Note that ¢/’ consists of k - n(nT_l) +k+n- @ + 2k
terms, which is at most n3 (for a sufficiently large n). Also, note that the inputs to 1’ are in
{0, 1}"1”/6, but it uses only the first kn components of the input.

If S is pseudorandom then the examples (z;, ;) returned by the oracle satisfy y, = ¢/(z}).
Indeed, if z; is an extended encoding of a hyperedge S; then 1(z]) = 0 and ¢} = Px(z%) =
Y« (2%), and otherwise y, = 1(z}) = 1. Hence, if S is pseudorandom then with probability at
least 2 the algorithm £ returns a hypothesis h such that E,.p 1(h(z) # /(z)) < L. Therefore,
Es; £1(h) < 5.

If S is random, then for every ¢ such that z is an extended encoding of a hyperedge S;, we have
yi = 1 w.p. 2 and y, = 0 otherwise, and y/ is independent of S;. Hence, for every h and i € I we
have

Pr [h(z;) # y;] > Pr [h(z;) # v} | z; represents a hyperedge| - Pr [z; represents a hyperedge|
(Bq- 1) 1 1 1
> 2. — ,
2 log(n) 2log(n)

Thus,]ES} g](h) Z ﬁg(n)

By Lemma 20 (with ¢ = 0), we have for a sufficiently large n that

Pr [
S

Therefore, if S is pseudorandom, then for a sufficiently large n, we have with probability at least 1 —
t+5)=%> %thatEs} ¢r(h) < Land ‘El(h) —Eg, fl(h)’ < 1 and hence ¢;(h) < 2. Thus,
the algorithm .4 returns 1 with probability greater than % If S is random then Eg/ £7(h) > m

1
o

1 1
I

and for a sufficiently large n we have with probability at least % that ‘f 7(h) —E S 14 I(h)) <

Hence, with probability greater than % we have ¢7(h) > ﬁg(n) - % > %
returns 0.

Hence, it is hard to learn DNF formulas with n> terms where the input distribution is D. Thus,
for i = nl™3/¢, we have that it is hard to learn DNF formulas with 7€ = n{13/€¢ = pet3 >
n3 terms on a distribution over {0,1}", where each component is drawn i.i.d. from a Bernoulli

distribution. [

and the algorithm A

A.2. Proof of Theorem 4

Let D be the uniform distribution on {0, 1}" . Assume that there is an efficient algorithm £ that
learns depth-3 Boolean circuits of size n? on the distribution D. Let m(n) be a polynomial such
that £ uses a sample of size at most m(n) and returns with probability at least % a hypothesis h
with error at most % — 7. Let s > 1 be a constant such that n®* > m(n) 4 n for every sufficiently
large n. By Assumption 1, there exists a constant k and a predicate P : {0,1}¥ — {0, 1}, such that
Fprnns 18 %—PRG. We will show an algorithm A with distinguishing advantage greater than % and
thus reach a contradiction.

14+2/€

21

DANIELY VARDI

For a hyperedge S we denote by z° € {0,1}*" the encoding of S that is defined in the proof
of Theorem 3. The compressed encoding of S, denoted by z° € {0,1}¥1°8(") is a concatenation
of k size-log(n) slices, such that the i-th slice is a binary representation of the i-th member in S.
We sometimes denote the i-th slice of z € {0, 1}¥18(") by 2, ;... s Zilog(n)- For x € {0, 1}", let
Py : {0,1}%" — {0,1} and Py : {0, 1}¥18(") — {0, 1} be such that for every hyperedge S we have

Py(2%) = Py(2°) = P(xs). We say that z € {0, 1}”1+2/5 is an extended compressed encoding of
a hyperedge S, if (Z1,..., 2, 1Og(n)) = 7%, namely, Z starts with the compressed encoding z°.
1+42/€

If z is drawn from the uniform distribution on {0, 1}" , then, for a sufficiently large n, the
probability that it is an extended compressed encoding of a hyperedge, namely, that each two of the
first k size-log(n) slices encode different indices, is

k k
n-(nfl)-...-(n—k:+1)Z n—k\" _ 1_& 1.7)
nk n n 2
Given a sequence (S1,¥1),...,(Sns,Yns), where Sq,...,Sys are i.i.d. random hyperedges,

the algorithm A needs to distinguish whether y = (y1,...,yns) is random or that we have y =
(P(xs,),-., P(xs,.)) = (Px(z%),..., Px(z5)) for a random x € {0,1}". We denote S =
(Z5, 1), .., (297, yps).

We use the efficient algorithm £ in order to obtain distinguishing advantage greater than % as
follows. The algorithm A runs £ with the following examples oracle. In the i-th call to the oracle,
it chooses z; € {0, 1}”1+3/6 according to D. If z; is not an extended compressed encoding of a
hyperedge (with probability at most 2, by Eq. 2), then the oracle returns (z,, y;) where z, = z; and
y, = 1. Otherwise, the oracle obtained a vector z| by replacing the first klog(n) components in
7; with z%, and returns (z/,y}) where y, = ;. Note that the vector z/ returned by the oracle has
the distribution D, since replacing a random hyperedge with another random hyperedge does not
change the distribution. Let h be the hypothesis returned by £. Recall that £ uses at most m(n)
examples, and hence S contains at least n examples that £ cannot view. We denote the indices of
these examples by I = {m(n) + 1,...,m(n) + n}, and the examples by S; = {(2%,v;)}icr.
By n additional calls to the oracle, the algorithm A obtains the examples S} = {(z},y}) }icr that
correspond to Sy. Let ¢7(h) = \%I Sicr L(h(2}) # yl). Now, if £;(h) < § — 3, then A returns
1, and otherwise it returns 0. Clearly, the algorithm A runs in polynomial time. We now show that
if S is pseudorandom then A returns 1 with probability greater than %, and if S is random then A
returns 1 with probability less than %

Consider the encoding z° and the compressed encoding z° of a hyperedge S. Note that for
every i € [k] and j € [n], we have zfj = 0 iff (251, s Zflog(n)) is the binary representation
of j. Hence, we can express ﬂzfj by a conjunction with the variables z°, and express zfj by a
disjunction with the variables z°. By Lemma 18, there is a DNF formula v, over {0, 1}*" with at
most 2¥ terms, such that for every hyperedge S we have Py (z°) = 1x(z°). Let Cx be a depth-3
Boolean circuit such that for every hyperedge S we have Cy(z°) = 9« (2%). The circuit Cy is
obtained from vy by replacing every literal z; ; with the appropriate disjunction. Hence, we have
Cy(2%) = 1y (2°%) = Px(2°) = Py(2%). Note that Cy has 1+2F +nk < %2 gates (for a sufficiently
large n).

Consider a DNF formula 1) over {0, 1}"1+2/€ with 7 - @ < "72 terms (for a sufficiently large
n) such that ¢)(z) = 1 iff Z is not an extended compressed encoding of a hyperedge, namely, from
the first &k size-log(n) slices in z there are two slices that encode the same index. The construction

22

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

of such a formula 1 is straightforward. Let C’ be a depth-3 Boolean circuit such that ¢’ = Cx V).
Note that the inputs to C” are in {0, 1}"1”/6, but it uses only the first k£ log(n) components of the
input. The circuit C’ has at most n? gates.

If S is pseudorandom then the examples (z;,y}) returned by the oracle satisfy vy, = C’(z}).
Indeed, if z, is an extended compressed encoding of a hyperedge S; then)(z;) = 0 and y, =
Py(z%) = Cx(2%), and otherwise y; = v (z,) = 1. Hence, if S is pseudorandom then with
probability at least 2 the algorithm £ returns a hypothesis & such that Ezp 1(h(Z) # C'(Z)) <
3 — . Therefore, Es, £r(h) < -

If S is random, then for every i such that z, is an extended compressed encoding of a hyperedge
S;, we have y; = 1 w.p. 1 and y; = 0 otherwise, and y/ is independent of S;. Hence, for every h
and ¢ € I we have

Pr (h(z;) =+ y{) > Pr [h(z;) # y. | Z; represents a hyperedge] -Pr [z; represents a hyperedge}
(Eq. 2)
SRR

Thus, ES} lr(h) > % - %
By the Hoefding bound, for a sufficiently large n we have

Pr [
S;

Therefore, if S is pseudorandom then for a sufficiently large n we have with probability at least

1—(3+5) =15 > 2 that Es, €1(h) < $ —~and ‘Ej(h) —Eg; El(h)‘ < 7, and hence £7(h) <

2

2 4

o) — Efl(h)‘ > Z] < %

% - %’y < % -3 Thus the algorithm A returns 1 with probability greater than %. If § is random
then Eg} lr(h) > % — 7, and for a sufficiently large n we have with probablhty at least 19 that
‘Z 1(h) = Es; €1 (‘ 2. Hence, with probability greater than 2 we have ¢;(h) > 1 — 1 and the

algorithm A returns 0.

Hence, it is hard to weakly-learn depth-3 Boolean circuits of size at most n? where the input
distribution is D. Thus, for 7 = n'*2/¢, we have that it is hard to weakly-learn depth-3 Boolean
circuits of size 7€ = n(1+2/9¢ = p<+2 > n2 on the uniform distribution over {0, 1}™.

A.3. Proof of Theorem 6

By Assumption 2, there is a constant o > 0 such that for every constant s > 1 there is a constant l
such that for the predicate P = XOR-MAJ [, ; the collectlon FPnns s g—PRG Let 8 = 5= la’ and
let k > « be an integer constant. By our assumption, for s = a, there is a constant [such that for the
predicate P = XOR-MAJ,;; = XOR-MAJy,; the collection Fp,, ps = Fpnnkia = Fppp218k

is %—PRG. Letn = w + 2n + 1. Assume that there is an efficient algorithm £ that learns
intersections of k halfspaces over {0, 1}". Assume that £ uses a sample of size m(7) = 7°* and
returns with probability at least % a hypothesis with error at most 1—10. We will show an algorithm
A with distinguishing advantage greater than % and thus reach a contradiction. It implies that an
efficient algorithm that learns intersections of & halfspaces over {0, 1}" must use a sample of size
greater than 7%, and therefore runs in time Q(7°*). Note that we assume that k¥ > «. For k < a
the claim holds trivially, since learning intersections of & halfspaces on {0, 1}" clearly requires time
Q(7), and we have 72°F < pfo = p1/21 < p,

23

DANIELY VARDI

For z € {0,1}?", we denote by Z € {0, 1}" the vector of all monomials over z of degree at

most 2. We call z the monomials encoding of z. We encode a hyperedge S = (i1,...,ix4+;) by

z° € {0,1}%", where z° is the concatenation of 2 vectors in {0, 1}", such that the first vector

has 1-bits in the indices 71, ..., %¢; and O elsewhere, and the second vector has 1-bits in the indices
Tk+1, - - - 1k and O elsewhere. We denote by z° the monomials encoding of z°. For x € {0,1}",
let Py : {0,1}" — {0, 1} be a function such that for every hyperedge S we have Px(z°) = P(xs).

Lemma 22 For every x € {0, 1}, there is a function g : {0,1}" — {0, 1} that can be expressed
by an intersection of k halfspaces, such that for every hyperedge S we have g(z°) = Py (z%).

Proof For z € {0,1}?", we denote z' = (z1,...,2,) and 2> = (2,41,...,22,). For every
z € {0,1}?" and even i € [k], let

and for every odd i € [k] let

@) = (ot = i) 14 1= () - |5)
Then, let f : {0,1}2" — {0, 1} be such that
fz) =)\ sign(fi(z)).
1€[k]

Note that the functions f; are degree-2 polynomials. For every i € [k], let g; : {0,1}" — R be
a linear function such that for every z € {0, 1}?" we have g;(Z) = fi(z), where Z is the monomials
encoding of z. Let g : {0, 1} — {0, 1} be such that

9(2) = /\ sign(gi(2)) .
i€[k]

Note that the function g is an intersection of k halfspaces, and that for every z € {0, 1}?" we have

f(z) = g(2).
Assume that z = z° for a hyperedge S = (iy,. .., i), and let ST = (iy,...,i;) and S? =
(ik+1, - - - »ik41)- Note that sign ((x,22) — |L]) = MAJ;(xg2). We have:

« If i is even and (x, z') = i, then sign(f;(z)) = sign ((x,2%) — | 1]) = MAJ)(xg2).
« Ifiisodd and (x,z') = 4, then sign(f;(z)) = sign (1 — ((x,2*) — [5])) = 1-MAJ;(xg2).

o If (x,z') # i then ((x,2') — i)2 -1 > 1. Since we also have —L%J < (x,2?%) — Léj < (é],
then sign(f;(z)) = 1.

Since for every i such that (x,z') # i we have sign(f;(z)) = 1, then f(z) = sign(fix,z1)(2))-
Hence, if (x,z') is even then f(z) = MAJ;(xg2), and otherwise f(z) = 1 — MAJ;(xg2). Note
that (x,z') is the Hamming weight of xg1. Therefore, we have

f(Z) = [ﬁ XORk(XSl) VAN MAJ[(XSQ)] V [XORk(Xsl) VAN ﬁMAJl(XS2)]
= XOR—MAJ;CJ(Xs) = P(Xs) .

24

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

For z = 7°, we have g(z) = f(z) = P(xg) = Px(Z). Since g is an intersection of k halfspaces,

the lemma follows. |
Given a sequence (S1,y1),. .., (S,2.18k, Yp216%), Where Si,...,S, 214 are i.i.d. random hy-
peredges, the algorithm A needs to distinguish whether y = (y1,...,¥,2.15) is random, or that

Yy = (P(X5,); -, P(X5 41)) = (Px(2%1), ..., Py(2°%21%)) for a random x € {0,1}". Let
S = ((z°,11), ..., (2%:215% y, 215:)). Let D be a distribution on {0, 1}" such that z ~ D is the
monomials encoding of a random hyperedge. Note that each z°¢ from S is drawn i.i.d. from D.

We use the efficient algorithm £ in order to obtain distinguishing advantage greater than % as
follows. The algorithm A learns a function h : {0,1}" — {0,1} by running £ with an examples
oracle that in each call returns the next example from S. Recall that £ uses at most m/(7) = 77
examples, and hence S contains at least

n218k _ 5Bk > 218k _ (2n)26k > 218k _ (n1.01)2,8k: — 218k _ 2028k
— n2.02,8k(n0.086k _ 1) > ln(n)

examples that £ cannot view (for a sufficiently large n). We denote the indices of these examples
by I = {m(d) + 1,...,m(R) + In(n)}, and the examples by S; = {(z%, y;) }icr. Let £7(h) =
T}\ >ier 1(h(2%) # y;). Now, if £;(h) < 3, then A returns 1, and otherwise it returns 0. Clearly,
the algorithm A runs in polynomial time. We now show that if S is pseudorandom then A returns 1
with probability greater than %, and if S is random then A returns 1 with probability less than %

If S is pseudorandom, then by Lemma 22, it can be realized by an intersection of % halfspaces.
Hence, with probability at least % the algorithm L returns a function h, such that E;p 1(h(z) #
Px(z)) < 75. Therefore, Es, ¢;(h) < 7. If S is random then for every function h : {0,1}" —
{0,1} the events {h(Z;) = y; };er are independent from one another, and each has probability 2.
Hence, Es, ¢;(h) = 3.

By the Hoefding bound, for a sufficiently large n we have

Pr [
St

Therefore, if S is pseudorandom then for a sufficiently large n we have with probability at least
1-(4+ %) =15 > 2 thatEg, {;(h) < 35 and |[¢;(h) — Es, £;(h)| < 1, and hence £;(h) < &.
Thus, the algorithm A returns 1 with probability greater than % If S is random then Eg ¢;(h) = %
and for a sufficiently large n we have with probability at least %—8 that [¢;(h) — Es, ¢1(h)| < %.

Hence, with probability greater than % we have ¢;(h) > 1—20 and the algorithm A returns 0.

1 1
£4(h) ;g@(h)‘ >l <

A.4. Proof of Theorem 8

Lemma 23 Let D be a distribution on {0,1}" and let ¢ > 0. Let f : {0,1}" — {0,1} and h :
{0,1}"™ — R be functions such that Exp(f(x) — h(x))? < £. Let b’ : {0,1}"* — {0, 1} be such
that for every x € {0,1}" we have h/(x) = sign (h(x) —). Then Ex.p L(h'(x) # f(x)) < e.

Proof For every x such that #'(x) # f(x), we have (h(x) — f(x))? > 1. Hence,

E_A(R(x) # () < E_d(h(x) ~ [(x)* <4

= €.

o

25

DANIELY VARDI

Lemma 24 Let H' C {0, 1}({0’1}n) be a hypothesis class, and let H C RUOU") be a hypothesis
class such that H' C H. If it is hard to learn H' with respect to the 0-1 loss, then it is hard to learn
H with respect to the square loss. Moreover, for every distribution D on {0,1}", if it is hard to
learn H' on D with respect to the 0-1 loss, then it is hard to learn H on D with respect to the square
loss.

Proof Lete,d € (0,1). Assume that there is an efficient algorithm £ that for every f € H and
distribution D on {0, 1}", given access to examples (x, f(x)) where x ~ D, finds a hypothesis
h : {0,1}™ — R such that with probability at least 1 — § we have Ex.p(h(x) — f(x))? < £.
Consider a learning algorithm £’, that given access to examples (x, f/(x)) where x ~ D and
' € H', runs L, and returns a hypothesis A’ : {0,1}" — {0, 1} such that for every x € R™ we
have /(x) = sign (h(x) —). By Lemma 23, we have Ex.p 1(h/(x) # f(x)) < e. Therefore,
H’ can be learned efficiently with respect to the 0-1 loss. The same argument holds also for the case
of distribution-specific learning. |

A.4.1. PROOF OF (1)

Note that in order to express a DNF formula with a depth-2 neural network, the network should have
an activation function in the output neuron. Since, this is not allowed here, then the claim does not
follow immediately from Lemma 19 and Lemma 24. Nevertheless, the proof follows similar ideas
to the proof of Lemma 19, with a few modifications as detailed below.

In the proof of Lemma 19, we consider a sequence S = ((z%,y1), ..., (z°"*, yns)), and show
that if S is pseudorandom, namely, y; = Py (2z°) for all i, then for every hyperedge S we have
Px(zs) = wx(zs), where 1) is a DNF formula with at most 2% terms. Then, we use the assumption
that there is an efficient algorithm for learning DNF formulas with w(1) terms, in order to obtain a
hypothesis A such that E,p 1(h(z) # Px(z)) < 7, and we use h in order to obtain distinguishing
advantage greater than % and reach a contradiction. Here, we will show that for every hyperedge
S we also have Py(z°) = Nx(zs), where Ny is a depth-2 neural network with 2 hidden neurons
and no activation in the output neuron. Then, if we assume that there is an efficient algorithm for
learning depth-2 neural networks with w(1) hidden neurons and no activation in the output neuron,
with respect to the square loss, then we can obtain a hypothesis & with small error with respect to
the square loss. By Lemma 23, we can obtain a hypothesis 2’ with small error with respect to the
0-1 loss. The arguments from the proof of Lemma 19 then imply that we can use A’ in order to
obtain distinguishing advantage greater than % and reach a contradiction.

We now construct the neural network Ny such that for every hyperedge S we have Py (z°) =
Yy (z%) = Nyx(z”). Note that Ny should simulate 1), only for inputs that encode hyperedges, and
not for all z € {0,1}*". Each term C; in tx is a conjunction of positive literals. Let I; C [kn]
be the indices of these literals. Note that Cj(zs) can be expressed by a single ReLU neuron that

computes [(Zle I zlS > — (5] = 1)} o Thus, our neural network Ny includes a hidden neuron for

every term in)x. By the construction in Lemma 18, each conjunction C} (z°) checks whether xg
is the j-th satisfying assignment of the predicate P. Hence, it is not possible that more than one
term in 1)y (z°) is satisfied. Therefore, the network N, computes 1) (z°) by summing the outputs
of the hidden neurons, and since this sum is in {0, 1} then an activation function is not required in
the output neuron.

26

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

A.4.2. PROOF OF (2) AND (3)

Implementing a depth-d Boolean circuit with a depth-d neural network is straightforward. Hence,
the claims follow immediately from Theorems 3 and 4, and from Lemma 24.

A.5. Proof of Theorem 9

Note that in order to express an intersection of halfspaces with a depth-2 neural network, the network
should have an activation function in the output neuron. Since, this is not allowed here, then the
claim does not follow immediately from Theorem 6 and Lemma 23. Nevertheless, the proof follows
similar ideas to the proof of Theorem 6, with a few modifications as detailed below.

In the proof of Theorem 6, we consider a sequence S = ((z%,y1), ..., (Z°n21%% 4, »14:)), and
show that if S is pseudorandom, namely, y; = Py (2°) for all 4, then for every hyperedge S we
have Py (z°) = gx(2°), where gy is an intersection of k halfspaces. Then, we use the assumption
that there is an efficient algorithm that learns an intersections of k halfspaces and uses a sample
of size 7°*, in order to obtain a hypothesis A such that E,p 1(h(z) # Px(z)) < %0, and we
use h in order to obtain distinguishing advantage greater than % and reach a contradiction. Here,
we will show that for every hyperedge S we also have Py (2°) = Ny (2°), where Ny is a depth-2
neural networks with 2k hidden neurons and no activation in the output neuron. Then, if we assume
that there is an efficient algorithm that learns such networks with respect to the square loss and
uses a sample of size 72°%, then we can obtain a hypothesis 4 with small error with respect to the
square loss. By Lemma 23, we can obtain a hypothesis i’ with small error with respect to the 0-1
loss. The arguments from the proof of Theorem 6 then imply that we can use /' in order to obtain
distinguishing advantage greater than % and reach a contradiction.

We now construct the neural network Ny such that for every hyperedge S we have PX(ZS) =
gx(2%) = Ny (z°). Note that Ny should simulate g, only for inputs that encode hyperedges, and
not for all Z € {0,1}". By Lemma 22, g, (2°) = Niepx sign(g;(z°)), and we show there that for

every hyperedge S, there is at most one index i with sign(g;(z°)) = 0. Hence,

9x(z%) = sign(gi(z°)) — (k= 1) .
i€[k]

The network N, computes sign(g;(z°)) for every i € [k] using a single nonlinear layer. Then,
the computation of gx(Z°) does not require an activation function in the output neuron. Note that
the output neuron does not have to include a bias term, since the additive term —(k — 1) can be
implemented by adding a hidden neuron with fan-in 0 and bias k — 1, that is connected to the output
neuron with weight 1.

For every i € [k] and z € {0, 1}", the network Ny computes sign(g;(z)) as follows. We denote
9i(z) = (w;,z). Since (w;, z) is an integer, we have

sign(gi(2)) = [((wi, 2)], — [(wi,2) — 1], .
Hence, computing sign(g;(z°)) requires 2 hidden neurons. Therefore, the network Ny includes 2k
hidden neurons.
A.6. Proof of Theorem 11

Let D be the standard Gaussian distribution on R "/, Assume that there is an efficient algorithm
L that learns depth-3 neural networks with n® hidden neurons on the distribution D. Let m(n) be

27

DANIELY VARDI

a polynomial such that £ uses a sample of size at most m(n) and returns with probability at least
% a hypothesis h with error at most % Let s > 1 be a constant such that n* > m(n) + n> for
every sufficiently large n. By Assumption 1, there exists a constant k and a predicate P : {0, 1} —
{0, 1}, such that Fp,, s is %—PRG. We will show an algorithm .4 with distinguishing advantage
greater than % and thus reach a contradiction.

For a hyperedge S we denote by z° € {0, 1}*" the encoding of S that is defined in the proof
of Theorem 3. For x € {0, 1}, let Py : {0, 1}*" — {0, 1} be such that for every hyperedge S we
have Py (z°) = P(xg). We denote by A(0, 1) the standard univariate normal distribution. Let ¢ be
a constant such that Pr; o 1)[t < ¢] = 1. Let y be the density of N(0,1), let p_(t) = n - L(t <
c) - u(t), and let puy (t) = L= - 1(t > c) - p(t). Let ¥ : R* — {0,1}*" be a mapping such
that for every z’ € R¥ and i € [kn] we have W(z'); = 1iff 2z} > c. Forz € R™ " we denote
Zjkn) = (21, . - -, Zkn), namely, the first kn component of z.

Let N; : R — [0,2*] be a depth-3 neural network with at most %3 hidden neurons (for a
sufficiently large n), and no activation function in the output neuron, that satisfies the following
property. Let z' € R*" be such that ¥(z') = z° for some hyperedge S, and assume that for every
i € [kn] we have z] & (c,c +), then N1(z') = Px(z®). The construction of the network N

is given in Lemma 25. Let Ny : R¥” — R be a depth-3 neural network with at most %3 hidden
neurons (for a sufficiently large n), and no activation function in the output neuron, that satisfies the
following property. Let z’ € R*" be such that for every i € [kn] we have z] & (c,c+ -5). If ¥(2)
is an encoding of a hyperedge then N(z') = 0, and otherwise Na(z') > 2¥. The construction of
the network Ny is given in Lemma 26. Let N3 : R¥” — R, be a depth-2 neural network with
at most %3 hidden neurons (for a sufficiently large n), such that for z’ € R*™ we have: If there
exists i € [kn] such that z{ € (c,c +) then N3(z') > 2, and if for every i € [kn] we have
2 & (c— n—12, c+ n%) then N3(z’) = 0. The construction of the network N3 is given in Lemma 27.
Note that the network N; depends on x, and the networks N, N3 are independent of x. Let N/ be a
depth-3 neural network such that for every z’ € R*¥" we have N'(z') = [N1(2z')—Na(2z')—N3(Z')] .
The network N' has at most n> hidden neurons. We note that all weights in N’ are bounded by some
poly(n) that is independent of k, namely, using weights of magnitude n* is not allowed. This is
crucial since we need to show hardness of learning already where the weights of the network are

bounded. Let N : R" " s Rbea depth-3 neural network such that N'(z) = N’ (Z[kon))-
Given a sequence (S1,¥1),--.,(Sns,Yns), where Sq,...,Sps are i.i.d. random hyperedges,
the algorithm A needs to distinguish whether y = (y1,...,yns) is random or that we have y =

(P(xg,),--+, P(xs,,)) = (Px(z%1),..., Px(z%*)) for a random x € {0,1}". We denote S =
((ZSl7y1)7 R (ZSnS) yns)).

We use the efficient algorithm £ in order to obtain distinguishing advantage greater than % as
follows. The algorithm A runs £ with the following examples oracle. In the i-th call, the oracle first
draws z € {0, 1}*" such that each component is drawn i.i.d. from a Bernoulli distribution where
the probability of O is % If z is an encoding of a hyperedge then the oracle replaces z with z°5:.
Then, the oracle chooses z’ € R*™ such that for each component j, if zj > c then zg is drawn

from g, and otherwise z; is drawn from p_. Let z € R " be such that Zikn) = z/, and the

other n!'*3/¢ — kn components of z are drawn i.i.d. from A(0,1). Note that the vector Z has the
distribution D, due to the definitions of the densities p4 and p—, and since replacing an encoding of
a random hyperedge by an encoding of another random hyperedge does not change the distribution
of z. The oracle returns (Z,), where the labels 7 are chosen as follows:

28

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

o If W(z') is not an encoding of a hyperedge, then § = 0.
e If U(2) is an encoding of a hyperedge:

— If 2’ does not have components in the interval (¢ — n—lz, c+ %), then § = y;.
— If 2’ has a component in the interval (¢, ¢ 4+ -3), then § = 0.

— If ' does not have components in the interval (¢, c +) but has a component in the
interval (¢ — 5, ¢+) then § = [y; — N3(2')]+.

Let h be the hypothesis returned by £. Recall that £ uses at most m(n) examples, and hence
S contains at least n® examples that £ cannot view. We denote the indices of these examples by
I ={m(n)+1,...,m(n) +n>}, and the examples by S; = {(z%, ;) }:c;. By n® additional calls
to the oracle the algorithm 4 obtains the examples S 1 = {(2i, ;) }icr that correspond to Sy. Let
lr(h) = I S ier(h(Z;) — §;)% Now, if £7(h) < 2, then A returns 1, and otherwise it returns 0.
Clearly, the algorithm A runs in polynomlal time. We now show that if S is pseudorandom then .4
returns 1 with probability greater than 2 3, and if S is random then A returns 1 with probability less
than é
In Lemma 28, we show that if S is pseudorandom then the examples (z,) returned by the
oracle are realized by N. Hence, with probability at least % the algorithm L returns a hypothesis i
such that Ezp(h(z) — N(2))? < 1. Therefore, Eg, tr(h) < 1
Let Z’ C R be such that z € Z if Z[y,) does not have components in the interval (c—
c+z 2), and Y (Z{n)) = 2% for a hyperedge S. If S is random, then for every i such that z; € Z,

n2 9
we have ¥yi = 1 w.p. % and y; = 0 otherwise. Also, by the definition of the oracle 7; 1s independent
of S; and independent of the choice of the vector z; that corresponds to z°¢. Hence, for every h and

7 € I we have

Pr | (h(z) — §:)? > 111] > Pr [(h(zz) —)2 > i % € z] Pr [zz e z] % Pr (z e Z) .
In Lemma 29 we show that Pr [zz S Z} > 2log(- Hence,

Pr(43) 30" 2 § 2 s
Thus, . .)

Egl(h) = 4 4log(n) - 16log(n)

By Lemma 20 (with ¢ = 0), we have for a sufficiently large n that

|
St
Therefore, if S is pseudorandom then for a sufﬁciently large n, we have with probability at least 1 —

(34 %) =14 > ZthatEg Lr(h) < 5 1 and ‘61 —Eg, fl(h)’ < 1 and hence ¢;(h) < 2. Thus,
the algorithm A returns 1 w1th probablhty greater than % If S is random then Eg ¢;(h)

mm—gmm\l}<$

1
> 16 log(n)

29

DANIELY VARDI

and for a sufficiently large n we have with probability at least % that |¢7(h) — Eg ¢ 1(h)| < %

Hence, with probability greater than 2 we have ¢;(h) > 1> 2 and the algorithm A
returns 0.

Hence, it is hard to learn depth-3 neural networks with n3 hidden neurons on the distribution
D. Thus, for 7w = n'*3/¢, we have that it is hard to learn depth-3 neural networks with 7€ =

np+3/e)e — pet3 > n? hidden neurons on a standard Gaussian distribution over R™.

1
16log(n)

Lemma 25 There exists a depth-3 neural network Ny : R¥™ — [0, 2F] with at most 2kn+2F hidden
neurons and no activation function in the output neuron, that satisfies the following property. Let
z' € R* be such that V(z') = z° for some hyperedge S, and assume that for every i € [kn] we
have 2| & (c,c+), then N1(z') = Px(z°).

Proof Let Ny be the depth-2 neural network from the proof of Theorem 8 (part 1). The network
Ny is such that for every hyperedge S, we have Ny (z°) = Py(z°). Also, the network Ny is such
that for every z € R*", we have

Ne(z)= > [Doa| -(h-n|

1<j<J | \lel; N

where J < 2%, and I; C [kn]. Therefore, for every z € [0, 1] we have Ny (z) € [0, 2].

Next, we construct a depth-2 neural network Ny : R — [0, 1]*" with a single layer of non-
linearity, such that for every z’ € R*" with 2/ & (c,c +) for every i € [kn], we have Ny(z') =
W(z'). The network Ny has 2kn hidden neurons, and computes Ny (z') = (f(2)),..., f(2},,)),
where f : R — [0, 1] is such that

f(t) =n?- <[t—c]+— [t— <c+;2>L> :

Note that if ¢ < cthen f(t) = 0,if t > ¢+ - then f(t) = 1, and if ¢ < ¢t < ¢+ - then
£(t) € (0,1).

The network N; is obtained by combining the networks Ny and Ny. Note that N; has at most
2kn + 2* hidden neurons, and satisfies the requirements. |

Lemma 26 There exists a depth-3 neural network No : RE" — R with at most 2kn+k- % +

k+n- @ hidden neurons, and no activation function in the output neuron, that satisfies the
following property. Let z' € R*™ be such that for every i € [kn] we have z, & (c,c + n—lg) Ifv(z')
is an encoding of a hyperedge then No(z') = 0, and otherwise No(z') > 2F.

Proof By the proof of Lemma 21, there is a DNF formula ¢ over {0, 1}*" with k - @ +

k+n- @ terms such that p(z) = 1 iff z is not an encoding of a hyperedge. Each term
in ¢ can be implemented by a single ReLU neuron. By summing the outputs of these neurons
and multiplying by 2¥ we obtain a depth-2 neural network N, such that if z € {0,1}*" is an
encoding of a hyperedge then N,,(z) = 0, and otherwise N,,(z) > 2*. For every z € R*" we have

Ny(z) > 0.

30

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

Let Ny : R¥" — [0,1]*" be the depth-2 neural network from the proof of Lemma 25, with
a single layer of non-linearity of 2kn hidden neurons, such that for every z' € R with z &
(c,c+ i) for every i € [kn], we have Ny(z') = ¥(z’). By combining Ny and N, we obtain
a depth-3 network Ny with 2kn + k - "(U4 k+n M hidden neurons that satisfies the
requirements. |

Lemma 27 There exists a depth-2 neural network N3 : RF" — R with at most 4kn hidden
neurons, such that for z' € RF"™ we have: If there exists i € [kn] such that 2} € (c,c + %) then
N3(2') > 2%, and if for every i € [kn] we have 2} & (¢ — 5, ¢ + %) then N3(2') = 0.

n27

Proof We construct a depth-2 network N3 : R*™ — [0, 2% - kn] with 4kn hidden neurons, such that
Ny(2') = 2% - 30,y i, where

* If 2 € (¢c,c+) thenm; = 1.
o If 2/ & (c — % 2)thenmi:().
o If2 € (¢ — %]thenml—(zzf—c%—%)-nQE[O,l].

s Ifz) € e+ 5,c+ %) thenm; =1 — (2] —c— 5) - n? € [0,1].

The construction now follows immediately from the fact that for every ¢ € [kn] we have

mi =(n?) ([zg— (c— é)L - [z;_ch) .
o) (o= e+ ;)L— - (o j)D |

Lemma 28 If S is pseudorandom then the examples (Z,y) returned by the oracle are realized by
N.
Proof Letz' = Z,,. Thus, N (%) = N’(z'). We show that § = N'(z).

o If W(z') is not an encoding of a hyperedge, then:

— If Z’ does not have components in the interval (c,c + =), then Ni(2') € [0,2"],
No(z') > 2%, and N3(z") > 0. Therefore, N’(=0=74.

— If 2’ has a component in the interval (c, ¢ + -), then Ny(z') € [0,2¥], Na(2') > 0, and
N3(z') > 2%, Therefore, N'(z') = 0 = §.

o If ¥(z') is an encoding of a hyperedge S, then:

— If 2’ does not have components in the interval (¢ — % c+ %) then Ny(z') = Py(z°),
Ny (z') = N3(z') = 0. Therefore, N'(z') = Px(z S) = .

31

DANIELY VARDI

— If 2 has a component in the interval (c, ¢ + -), then Ny(z') € [0,2¥], Ny(2') > 0, and
N3(z') > 2*. Therefore, N'(z') = 0 = 4.

— If z’ does not have components in the interval (c,c + %) but has a component in
the interval (¢ — 3, ¢+ %), then Ni(z') = Px(2z”) and Na(z') = 0. Therefore,
N'(2') = [Px(2%) — N3(2')]+ = 3.

Lemma29 Letz € R" ' be the vector returned by the oracle. We have

1
2log(n)

Pr [2 S Zﬂ >
Proof Letz' = Zj;,,;. We have

Pr [zeé}

) 1 2
=Pr [z' does not have components in (c -, ¢+ —
n

) ‘ U (z') represents a hyperedge | -
n

Pr [¥(z') represents a hyperedge] .

Let z = ¥(2z'). By the definition of the oracle, the probability that z is an encoding of a hyperedge,
equals to the probability that a random vector whose components are drawn i.i.d. from the Bernoulli

distribution encodes a hyperedge. In the proof of Lemma 21, we showed that the probability that

such vector is an encoding of a hyperedge is at least % Thus, it remains to show that
og(n)

N =

. 1 2
Pr [z’ does not have components in (c - —,c+ 2)
n n

z represents a hyperedge} >

Note that the density x— is bounded by 5-, and that ;1 is bounded by ﬁ Hence, for a
sufficiently large n, we have

1 2
Pr [z’ has a component in <c - —,c+ 2)
n n

z represents a hyperedge]

1 n 2 n k k 1
<k (k—k) = _ LA
- n? 27r+(n) n? (n—1)2x 27m+7m —2

A.7. Proof of Theorem 12

Let D be the uniform distribution on {0, 1}, Let ¢ = ¢ (14 2). Assume that there is an effi-
cient algorithm £ that learns DFAs with n? states on the distribution D. Let m(n) be a polynomial
such that £ uses a sample of size at most m(n) and returns with probability at least % a hypothesis
h with error at most % — ﬁ Let s > 1 be a constant such that n®* > m(n) + n2¢'+3 for every suf-

ficiently large n. By Assumption 1, there exists a constant k and a predicate P : {0,1}* — {0, 1},

32

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

such that Fp,, s is %—PRG. We will show an algorithm 4 with distinguishing advantage greater
than % and thus reach a contradiction.

For a hyperedge S = (iy,...,i3), we denote by z° € {0,1}"* an encoding of S, which
consists of n slices of size k, where the j-th bit in the [-th slice is 1 iff [= 7;, namely, if the index
| is the j-th member in S. We call z° the short encoding of S. For z € {0,1}"¥, we index the
coordinates by [n] x [k], thus 2, ; = z(_1),4;. For z € {0, 1}7k1og(n) "we index the coordinates by
[n] x [k] x [log(n)], thus, 25 = ZG-1)(klog(n))+(j—1) log(n)-+i- Let ¥ : {0, 1}7F1e8() — £0 1}nk
be a mapping, such that (%), ; = 1iff ,;; = 1 for every i € [log(n)]. If z € {0, 1}"Fle()
is such that ¥(z) = z° for a hyperedge S, then we say that Z is a long encoding of S. Note that
a hyperedge S has a single short encoding z°, but many long encodings, since every 0-bit in z°
can be represented in the long encoding by any vector in the set B = {0,1}1°8(") \ {(1,...,1)}.
Hence, given S, a random long encoding of S can be obtained by replacing every 1-bit in z° by the
size-log(n) vector (1,..., 1), and replacing every 0-bit by a random vector from B.

Letz € {0,1}¢ log?(n)nk be 3 vector that consists of ¢/ log?(n) slices of size nk. If z has a size-
nk slice that is a short encoding of a hyperedge .5, and all preceding size-nk slices do not encode
hyperedges, then we say that z is a multi-short encoding of S. Note that if all ¢/ log?(n) slices do not
encode hyperedges then z is not a multi-short encoding of any hyperedge. For z € {0, 1}0/ logQ(”)”k,
we index the coordinates by [’ log?(n)] x [n] x [k], thus z4;; = 2(d—1)nk+(I—1)k+j- FOr Z €
{0, 1}¢' log*(n)nk-log(n) e index the coordinates by [’ log®(n)] x [n] x [k] x [log(n)], thus, Zal i =
é(d—l)nklog(n)+(l—1)(klog(n))+(j—1)log(n)—I—i' Let ¥’ : {07 1}0’1og2(n)nklog(n) - {07 1}0’10g2(n)nkz be
a mapping, such that ¥'(z)q, ; = 1iff Z4; ;; = 1 for every i € [log(n)]. Thus, ¥'(z) is obtained
by applying ¥ to every size-nk log(n) slice in z. If z € {0, 1}¢ 108" (nklog(n) js such that ¥’ (z)
is a multi-short encoding of a hyperedge S, then we say that z is a multi-long encoding of S. Note
that a hyperedge S has a single short encoding z°, but many multi-short encodings. Also, each
multi-short encoding corresponds to many multi-long encodings. We say that z € {0, 1}"1+3/€ is an
extended multi-long encoding of a hyperedge S, if (Z1,..., 2, log? (n)nk) is a multi-long encoding of

(n
%(n)

S, namely, Z starts with a multi-long encoding of S. We assume that n!*3/¢ > ¢ log?®(n)nk. For
x € {0,1}", let P : {0, 1}”1+3/€ — {0, 1} be such that for every hyperedge S, if Z is an extended
multi-long encoding of S, then Px(z) = P(xg).

Letz € {0, 1} log(n) be a random vector drawn from the uniform distribution. The probability
that z is a long encoding of a hyperedge is

1\ log(m\ ¥ 1\ log(m) " F
m=1-...-n—k+1)- = 1—(=
k k(n—1) k k(n—1)
— 1 1
() (=) 0= 0
n n n n
Since for every z € (0, 1) we have e™* < 1 — 7 then for a sufficiently large n the above is at least

exp <—2n"’2> exp (-2’“("n_1)> > exp (—1) - exp (—2k) > logl(n) .

33

DANIELY VARDI

Hence, the probability that z ~ D is an extended multi-long encoding of a hyperedge is at least

1
ne
(3)
Given a sequence S = (S1,¥1),- .-, (Sns,Yns), where Sp,...,Sys are i.i.d. random hyper-
edges, the algorithm A needs to distinguish whether y = (y1,...,¥yns) is random or that y =
(P(xs,),...,P(xg,)) forarandom x € {0,1}". We use the efficient algorithm £ in order to ob-
tain distinguishing advantage greater than % as follows. The algorithm A runs £ with the following

1 ¢’ log?(n) 1
1—(1- >1— — - log? >1-— -1 =1-

examples oracle. In the i-th call to the oracle, it chooses z; € {0, 1}”1+3/6 according to D. If z; is
not an extended multi-long encoding of a hyperedge (with probability at most ﬁ by Eq. 3), then
the oracle returns (z,,y,) where z, = z; and y; = 0. Otherwise, the oracle chooses a random long
encoding z% of S;, obtains z; by replacing the first size-nk log(n) slice in z; that encodes a hyper-
edge with Z°%, and returns (2, y/}) where ! = ;. Note that the vector z/ returned by the oracle has
the distribution D, since replacing a random long encoding of a random hyperedge with a random
long encoding of another random hyperedge does not change the distribution (see Lemma 30 for
a more formal proof). Let h be the hypothesis returned by £. Recall that £ uses at most m(n)
examples, and hence S contains at least n2¢' T3 examples that £ cannot view. We denote the indices
of these examples by I = {m(n) + 1,...,m(n) + n?*3}, and denote S; = {(S;,¥:)}ics. By
n?¢'+3 additional calls to the oracle, the algorithm A obtains the examples S} = {(z},1/}) }ics that
correspond to Sy. Let £7(h) = ﬁ Sier L(h(Z)) # yl). Now, if £7(h) < § — 47%,, then A returns
1, and otherwise it returns 0. Clearly, the algorithm A runs in polynomial time. We now show that
if S is pseudorandom then A returns 1 with probability greater than 2, and if S is random then A
returns 1 with probability less than %

If S is pseudorandom, then by Lemma 33, the examples (z}, y;) returned by the oracle satisfy
y, = A(zl), where A is a DFA with at most n? states. Indeed, if z; is an extended multi-long
encoding of a hyperedge S; then y, = P(xg,) = Px(z,) = A(z}), and otherwise y, = A(z}) = 0.
Hence, if S is pseudorandom then with probability at least % the algorithm £ returns a hypothesis h
such that Ezp 1(h(z) # A(z)) < & — ﬁ Therefore, Eg; {;(h) < i - ﬁ

If S is random, then for the indices i such that z; is an extended multi-long encoding of a
hyperedge, the labels 3/ are independent uniform Bernoulli random variables. Hence, for every h
and ¢ € I we have

Pr [h(z;) # y;] > Pr [h(z;) # v} | z; represents a hyperedge| - Pr [z; represents a hyperedge]

(Eg-3) 1 1 1 1
> s\l)=5—5=-
- 2 ne 2 2n¢

Thus, ES} E[(h) 2 % — 1c, .
By Lemma 20, for a sufficiently large n, we have
Pr|lesh) = E o) > —2 | <Pr|le(h) = E)] > —— | < 2
r — — T — — — .
S) ! S ! TAnd | T s !) V)= e+t 20

Therefore, if S is pseudorandom, then for a sufficiently large n, we have with probability at least
1—(;+5) = 15 > 5 thatEg £1(h) < § — - and)Ef(h) —Eg El(h)‘ < -1, and hence

4ncl s

34

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

lr(h) < % — 45’6, . Thus, the algorithm A returns 1 with probability greater than % If S is random

then Eg/ ¢7(h) > % — 2;, and for a sufficiently large n we have with probability at least %—(9) that
‘E 1(h) = Egs £1(h)| < 4,%/- Hence, with probability greater than 2 we have ¢;(h) > 1 — 434 and

the algorithm A returns 0.
Hence, it is hard to learn DFAs with n? states and error at most % — ﬁ, where the input

distribution is D. Thus, for n = nit3/ €, we have that it is hard to learn DFAs with n¢ = n+3/e)e —

nt3 > n3 states and error at most 3+ — & =1 — ——L— =1 — L. on the uniform distribution

b 2 p+3/ec 2
over {0, 1}".
Lemma 30 The distribution of an example z' € {0, 1}”1+3/5 returned by the oracle is D.

Proof Let 72 = n'*3/¢, Recall that the oracle first chooses z € {0, 1}" according to D. If z is not an
extended multi-long encoding of a hyperedge then z' = z. Otherwise, the oracle chooses a random
long encoding z° of a random hyperedge S, and obtains z’ by replacing the first size-nk log(n)
slice in Z that encodes a hyperedge with z°.

Let z° € {0,1}". We show that the probability of z’ = 2% is J&. If 2z is not an extended
multi-long encoding of a hyperedge, then Pr[z’ = z°] = Pr[z = 2z°] = 2% Assume that z° is an
extended multi-long encoding of a hyperedge Sp, and the first size-nk log(n) slice in z" that encodes
a hyperedge is the d-th slice, for some d € [¢/ log2(n)]. Thus, Z?d—l)nk log(n)+17 - ,zgnk log(n) is
a long encoding of Sy. Let By C {0,1}" be the set of all extended multi-long encodings that
can be obtained from z° by replacing the d-th size-nklog(n) slice with some long encoding of
some hyperedge. Note that z' = z° iff the oracle chooses Z € By, and then chooses S = S,
and then chooses the long encoding z° = Z?d—l)nk log(n)+17 " *» zgnk log(n)* For every z € By, by
replacing the d-th size-nk log(n) slice with a random long encoding of a random hyperedge, we
obtain a random (uniformly distributed) vector in By. Hence, z’ = z° iff we have: (1) the oracle

first chooses z € By, (2) the oracle chooses z as the random vector in By. Therefore, we have

Bl 11

/10
Pr[z—z} o |B0] o -

Lemma 31 For a sufficiently large n, there exists a DFA Ag with at most log(n) states such that
Agp accepts aword z € {0, 1Y% iff z is a short encoding of a hyperedge.

Proof A word z € {0,1}"" is a short encoding of a hyperedge iff the following conditions hold:
* Every size-k slice in z includes at most one 1-bit.

* There are no two size-k slices in z that have 1-bit in the same index (and thus correspond to
the same member in the hyperedge).

* Forevery j € [k] there is a size-k slice in z with 1-bit in index j.

35

DANIELY VARDI

We construct a DFA Ap = (X, @, qo, 0, F') that checks these conditions. We have ¥ = {0, 1},
Q = {qrwj} U ([k] x {0,1} x 2[k)), g9 = (1,0,0), and F = {(1,0, [k])}. Note that Q is of size at
most log(n) (for a sufficiently large n). The states in () are such that the first component keeps the
current location in the size-k slice, the second component keeps whether a 1-bit already appeared in
the current slice, and the third component keeps the subset of indices in [k] that are already occupied.
Fori e [k —1],b€ {0,1} and I C [k], we have

5((4,b,1),0) = (i+1,b,1).

. 5((k,b,1),0) = (1,0, 1).
* 6((4,1,1),1) = 6((k,1,1),1) = Grej-
e §((3,0,1),1) = (i + 1,1, U {i}) if i & I, and 6((i,0,1),1) = guej otherwise.
e 5((k,0,1),1) = (1,0,1U {k})if k & I, and 6((k, 0, 1), 1) = ge; otherwise.
* (arejs 0) = 0(drejs 1) = Grej-

Lemma 32 For every x € {0,1}" and a sufficiently large n, there is a DFA Ap with at most
nlog(n) states such that Ap accepts a short encoding of a hyperedge S iff P(xg) = 1.

Proof Let z° be a short encoding of a hyperedge S. We construct Ap = (¥, Q, qo, 0, F) that
accepts z° iff P(xs) = 1. Let ¥ = {0,1}, let B = {0,1, _}¥ and Q = {q} U ([n] x [k] x B),
and let F' = {n} x {k} x {b € {0,1}* : P(b) = 1}. Note that Q is of size at most n log(n) (for a
sufficiently large n). The states in @) are such that the first two components keep the current location
in the short encoding, and the third component keeps the information on xg. The transitions are

* 5((]0;0) = (13 1, (*’ s a*))'
* 5((]0a 1) = (17 1, (331,,, s 7*))'

» Fori € [n],j € [k — 1], b € B we have:

- 0((i,4,b),0) = (i,j + 1,b).

- 0((4,7,b),1) = (4,5 + 1, (b1, ..., bj, s, bj2, ..., by)).

- 6((i,k,b),0) = ((: mod n)+1,1,b).

- 0((4,k,b),1) = ((i mod n) +1,1,(T(; mod n)+1502; -, 0k)).

Lemma 33 For every x € {0,1}" and a sufficiently large n, there is a function f : {0, 1}”1+3/E

{0,1} that can be expressed by a DFA with at most n® states, such that:

o For every hyperedge S and every extended multi-long encoding z of S, we have f(z) =
Py(z).

36

FrROM LOCAL PSEUDORANDOM GENERATORS TO HARDNESS OF LEARNING

e For every z € nlt3/c

f(z) =o0.

that is not an extended multi-long encoding of a hyperedge, we have

Proof Let d > ¢/log®(n) - nk. We first construct a DFA A’ such that for every z € {0,1}% we
have: If z starts with a multi-short encoding of a hyperedge S then A’ accepts z iff P(xg) = 1,
and if z does not start with a multi-short encoding of a hyperedge then A’ rejects z. Let Ag and
Ap be the DFAs from Lemmas 31 and 32. Thus, Ag checks whether a word is a short encoding
of a hyperedge, and Ap checks whether a short encoding z° is such that P(xg5) = 1. The DFA A’
runs Ag and Ap in parallel on the first size-nk slice. If both A and Ap accept then A’ accepts, if
Ap accepts and Ap rejects then A’ rejects, and if Ag rejects then A’ continues to the next size-nk
slice in a similar manner. Also, A’ keeps a counter and stops after ¢’ log?(n) slices. Constructing
such a DFA is straightforward. Moreover, since Ag has at most log(n) states and Ap has at most
nlog(n) states, then A’ has at most log(n) - nlog(n) - (¢'log?(n)nk + 1) < n?log®(n) states (for
a sufficiently large n).

Next, we construct a DFA A such that for every z € {0, 1}" we have: If z starts with a
multi-long encoding of a hyperedge S then A accepts z iff P(xg) = 1, and if z does not start with a
multi-long encoding of a hyperedge then A rejects z. Note that such a DFA A satisfies the lemma’s
requirements. The DFA A is obtained from A’ by replacing each state ¢ in A’ by the DFA A? =
(%,Q1,q,8%, F1) such that Q7 = {g} U [log(n) — 1] x {0,1}). 8%(q,0) = (1,0), 8%(g, 1) = (1, 1),
and for every i € [log(n) — 2] we have §9((4,1),1) = (¢ + 1,1), and 6%((4,0),0) = §9((4,0),1) =
09((i,1),0) = (i + 1,0). Then, for the transitions ¢’(¢,0) = ¢’ and §'(¢,1) = ¢” in the DFA A’,
the DFA A includes the appropriate transitions from the states (log(n) — 1,0) and (log(n) — 1,1)
of A9, namely, §((log(n) — 1,1),0) = §((log(n) — 1,0),0) = §((log(n) — 1,0),1) = ¢’ and
d((log(n) — 1,1),1) = ¢”. Also, if ¢ is an accepting state in A’ then we set F'? = {¢} and
otherwise F'? = (). Thus, A’ and A have the same accepting states. Note that A has at most
n?log’(n) - 2log(n) < n? states. [

143/€

A.8. Proof of Theorem 14

In the proof of Theorem 3, we constructed a DNF formula 1, such that for every encoding z° €
{0,1}*" of a hyperedge S we have ¥ (z°) = Px(2°) = P(xs). We now show that there is a
2F_sparse GF(2) polynomial h : {0,1}*® — {0,1}, such that for every hyperedge S we have
h(z%) = Px(z”). Namely, h agrees with v, on inputs that encode hyperedges. Then, the theorem
follows from the arguments in the proof of Theorem 3.

By Lemma 18, the DNF 1) has at most 2" terms. Each term C in 1y is a conjunction of positive
literals, such that C (z°) = 1iff xg is the j-th satisfying assignment of the predicate P. Hence,
it is not possible that more than one term in)y (z°) is satisfied. Let h be the GF(2) polynomial
induced by 1)y, i.e., each monomial in h corresponds to a term C'; from 9. Since at most one term
in ¢ (z°) is satisfied, then we have: If ¢ (z°) = 1 then exactly one term in 1)y (z°) is satisfied, and
therefore h(z°) = 1. Also, if 1x(z°) = 0 then all terms in 1/ (2z°) are unsatisfied, and therefore
h(z%) = 0.

37

	Introduction
	Preliminaries
	Notations
	Local pseudorandom generators
	PAC learning
	Neural networks and automata

	results
	DNFs and Boolean circuits
	Intersections of halfspaces
	Neural networks
	Automata
	Other classes

	Our technique
	Hardness under Assumption 1
	Distribution-free hardness for DNFs
	Distribution-specific hardness for DNFs
	Distribution-specific hardness for other classes

	Lower bounds under Assumption 2

	Proofs
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 6
	Proof of Theorem 8
	Proof of (1)
	Proof of (2) and (3)

	Proof of Theorem 9
	Proof of Theorem 11
	Proof of Theorem 12
	Proof of Theorem 14

