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Abstract
This paper addresses the following natural question: can efficient algorithms weakly learn convex
sets under normal distributions? Strong learnability of convex sets under normal distributions is
well understood, with near-matching upper and lower bounds given in Klivans et al. (2008), but
prior to the current work nothing seems to have been known about weak learning. We essentially
answer this question, giving near-matching algorithms and lower bounds.

For our positive result, we give a poly(n)-time algorithm that can weakly learn the class of con-
vex sets to advantage Ω(1/

√
n) using only random examples drawn from the background Gaussian

distribution. Our algorithm and analysis are based on a new “density increment” result for convex
sets, which we prove using tools from isoperimetry.

We also give an information-theoretic lower bound showing that O(log(n)/
√
n) advantage is

best possible even for algorithms that are allowed to make poly(n) many membership queries.
Keywords: weak learning, convex geometry, Gaussian space

1. Introduction

Background and motivation. Several results in Boolean function analysis and computational
learning theory suggest an analogy between convex sets in Gaussian space and monotone Boolean
functions1 with respect to the uniform distribution over the hypercube. As an example, Bshouty and
Tamon Bshouty and Tamon (1996) gave an algorithm that learns monotone Boolean functions over
the n-dimensional hypercube to any constant accuracy in a running time of nO(

√
n). Much later,

Klivans, O’Donnell and Servedio Klivans et al. (2008) gave an algorithm that learns convex sets
over n-dimensional Gaussian space with the same running time. While the underlying technical
tools in the proofs of correctness are different, the algorithms in Klivans et al. (2008) and Bshouty
and Tamon (1996) are essentially the same: Bshouty and Tamon (1996) (respectively Klivans et al.
(2008)) show that the Fourier spectrum (respectively Hermite spectrum2) of monotone functions (re-
spectively convex sets) is concentrated in the first O(

√
n) levels. Other analogies between convex

sets and monotone functions are known as well; for example, an old result of Harris Harris (1960)
and Kleitman Kleitman (1966) shows that monotone Boolean functions over {−1, 1}n are posi-
tively correlated. The famous Gaussian correlation conjecture (now a theorem due to Royen Royen
(2014)) asserts the same for symmetric convex sets under the Gaussian distribution. We note that
while the assertions are analogous, the proof techniques are very different, and indeed the Gaussian

1. Recall that a function f : {−1, 1}n → {−1, 1} is monotone if f(x) ≤ f(y) whenever xi ≤ yi for all i ∈ [n].
2. The Hermite polynomials form an orthonormal basis for the space of square-integrable real-valued functions over

Gaussian space; the Hermite spectrum of a function over Gaussian space is analogous to the familiar Fourier spectrum
of a function over the Boolean hypercube.
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correlation conjecture was open for more than half a century while the Harris-Kleitman theorem has
a simple one-paragraph inductive proof.

Despite these analogies between convex sets and monotone functions, there are a number of
prominent gaps in our algorithmic understanding of convex sets when compared against monotone
functions. We list two examples below:

1. Nearly matching poly(n) upper and lower bounds are known for the query complexity of
testing monotone functions over the n-dimensional Boolean hypercube Fischer et al. (2002);
Khot et al. (2015); Chakrabarty and Seshadhri (2016); Belovs and Blais (2016); Chen et al.
(2015, 2017b). However, the problem of convexity testing over the Gaussian space is essen-
tially wide open, with the best known upper bound (in Chen et al. (2017a)) being nO(

√
n)

queries and no nontrivial lower bounds being known.

2. Kearns, Li and Valiant Kearns et al. (1994) showed that the class of all monotone Boolean
functions over {−1, 1}n is weakly learnable under the uniform distribution in polynomial
time, meaning that the output hypothesis h satisfies Prx∈{−1,1}n [h(x) = f(x)] ≥ 1/2 +
1/poly(n), where f : {−1, 1}n → {−1, 1} is the target monotone function. Kearns et al.
(1994) achieved an advantage of Ω(1/n) over 1/2; this advantage was improved by Blum,
Burch and Langford Blum et al. (1998) to Ω(n−1/2) and subsequently by O’Donnell and
Wimmer O’Donnell and Wimmer (2009) to Ω(n−1/2 log n) which is optimal up to constant
factors for poly(n)-time learning algorithms. On the other hand, prior to the current work,
nothing non-trivial was known about weak learning convex sets under the Gaussian measure.

The main contribution of this work is in giving upper and lower bounds on the weak learnability
of convex sets in Gaussian space, thus addressing item 2 above.

1.1. Learning convex sets in Gaussian space

As mentioned earlier, in Klivans et al. (2008) Klivans et al. showed that convex sets are strongly
learnable (i.e. learnable to accuracy 1 − ε for any ε > 0) in time nO(

√
n/ε2) under the Gaussian

distribution, given only random examples drawn from the Gaussian distribution. Up to a mildly
better dependence on ε, this matches the running time of the algorithm of Bshouty and Tamon
(1996) for learning monotone functions on the hypercube.

However, there is a large gap in the state of the art between monotone Boolean functions on the
cube and convex sets in the Gaussian space when it comes to weak learning. In particular, while
O’Donnell and Wimmer (2009) showed that monotone functions can be weakly learned to accuracy
1/2 + Ω(n−1/2 log n) in polynomial time, prior to this work nothing better than the n

√
n running

time of Klivans et al. (2008) was known for weakly learning convex sets to any nontrivial accuracy
(even accuracy 1/2 + exp(−n)).

Our main positive result: An algorithm for weak learning convex sets. The main algorithmic
contribution of this paper is to bridge this gap and give a polynomial-time weak learning algorithm
for convex sets. We prove the following:3

3. As stated Theorem 1 only deals with the standard Gaussian distribution N(0, 1n), but since convexity is preserved
under affine transformations, the result holds for weak learning with respect to any Gaussian distribution N(µ,Σ).
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Theorem 1 (Algorithm for weak learning convex sets) There is a poly(n)-time algorithm which
uses only random samples from N(0, 1)n and weak learns any unknown convex set K ⊆ Rn to
accuracy 1/2 + Ω(1/

√
n) under N(0, 1)n .

Our main negative result: A lower bound for weak learning convex sets. We complement The-
orem 1 with an information theoretic lower bound. This lower bound shows that any poly(n)-time
algorithm, even one which is allowed to query the target function on arbitrary inputs of its choos-
ing, cannot achieve a significantly better advantage than our algorithm achieves even for learning
the restricted class of symmetric convex sets (for which x ∈ K iff −x ∈ K):

Theorem 2 (Lower bound for weak learning symmetric convex sets) For sufficiently large n,
for any s ≥ n, there is a distribution D over symmetric convex sets with the following property: for
a target convex set f ∼ D, for any membership-query (black box query) algorithm A making at
most s many queries to f , the expected error of A (the probability over f ∼ D, over any internal
randomness of A, and over a random Gaussian x ∼ N(0, 1n), that the output hypothesis h of A
predicts incorrectly on x) is at least 1/2− O(log s)

n1/2 .

Theorem 2 shows that the advantage of our weak learner for convex sets (Theorem 1) is tight up to
a logarithmic factor for polynomial time algorithms.

1.2. Techniques for our positive result

In this subsection we give a high-level overview of the ideas that underlie our algorithm for weak
learning an unknown convex set K ⊆ Rn. To present these ideas we need a few simple definitions:

• The Gaussian volume of K is vol(K) := Prg∼N(0,1)n [g ∈ K].

• If K contains the origin, the inradius of K is rin(K) := sup{w ≥ 0 : B(0, w) ⊆ K}, where
B(0, w) is the origin-centered ball of radius w in Rn. If K does not contain the origin then
we say that the inradius of K is −∞.

A first easy observation is that if vol(K) (the Gaussian volume ofK under the standardN(0, 1)n

distribution) is not very close to 1/2, then either the constant-0 or constant-1 function is an accept-
able weak hypothesis that achieves accuracy significantly greater than 1/2. Thus we may assume
that vol(K) ≈ 1/2.

In the rest of the argument we consider two cases depending on whether or not the inradius
of K is “large” (where for this intuitive discussion we take “large” to mean “at least some (small)
absolute constant independent of n”). The first case is that the inradius is not large: in this case, by
the separating hyperplane theorem the convex setK is contained in a halfspaceH whose separating
hyperplane passes close to the origin. Such a halfspace H must have vol(H) bounded away from 1;
using the fact thatK ⊆ H , it is not too difficult see that the halfspaceH is in fact a weak hypothesis
for K (in fact, with accuracy 1/2 + Θ(1)). Coupling this with existing results on agnostic learning
of halfspaces Awasthi et al. (2013); Kalai et al. (2008); Diakonikolas et al. (2018), a weak learning
algorithm for K follows easily (again with accuracy 1/2 + Θ(1)).

Thus it remains to handle the second (and more challenging) case, in which the inradius is large.
The main technical tool that we use for this case is the following structural result, which together
with the above discussion easily yields Theorem 1:
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Theorem 3 (Structural result, informal statement) If K ⊆ Rn is a convex set with inradius
bounded away from 0, then (for sufficiently large n) one of the following three hypotheses h has
Prx∼N(0,1)n [h(x) = K(x)] ≥ 1/2 + Ω(1/

√
n): h0 = the empty set, h1 = all of Rn, or h1/2 =

the origin-centered ball of Gaussian volume 1/2.

Theorem 3 is analogous to a result of Blum et al. (1998), who showed that for any monotone
function f : {−1, 1}n → {−1, 1} over the Boolean hypercube, one of the following three functions
achieves an advantage of Ω(n−1/2) with respect to the uniform distribution: the constant 1 function,
the constant −1 function, or the majority function. Our proof of Theorem 3 is inspired by the
argument of Blum et al. (1998). The central ingredient of the Blum et al. (1998) proof is the
Kruskal-Katona theorem Kruskal (1963); Katona (1968); Bollobás and Thomason (1987); Lovász
(1981) over the Boolean hypercube; this is a “density increment” result for monotone Boolean
functions, which asserts that the density of the 1-set of a monotone function must increases non-
trivially over the successive “slices” {x ∈ {−1, 1}n :

∑
xi = `} of {−1, 1}n. Similarly, at the

heart of our Theorem 3 is a new density increment result for convex subsets of Rn with positive
inradius; we explain this new result below.

A density increment for convex sets with positive inradius. Inspired by the Kruskal-Katona
theorem, we begin by identifying an analogue of hypercube slices in the setting of Gaussian space.
The most obvious choice is to consider spherical shells; namely, for r > 0, define the radius-r
spherical shell to be Sn−1

r := {x ∈ Rn : ‖x‖2 = r}.
Given a convex set K ⊆ Rn, we define the shell-density function αK : (0,∞)→ [0, 1] to be

αK(r) := Pr
x∼Sn−1

r

[x ∈ K]. (1)

Having defined αK(·), the most obvious way to give an analogue of Kruskal-Katona for convex
sets is to conjecture that for a convex set K, αK(·) is a non-increasing function, and further, that as
long as αK(r) is bounded away from 0 and 1, it exhibits a non-trivial rate of decay as r increases.
However, a moment’s thought shows that this is not quite true because of the following examples:

1. Let K ⊆ Rn be a convex set with positive Gaussian volume whose closest point to the origin
is at some distance t > 0. Then the shell density function αK(r) is zero for 0 < r ≤ t but
subsequently becomes positive. Thus for αK(·) to be non-increasing, we require 0n ∈ K.

In fact, it is easy to see that if 0n ∈ K and K is convex then αK(·) is in fact non-increasing
(since by convexity the intersection of K with any ray extending from the origin is a line
segment starting at the origin). However, this does not mean that there is an actual decay in
the value of αK , as witnessed by the next example:

2. Let K be an origin-centered halfspace, i.e. K = {x : w · x ≥ 0} for some nonzero w ∈ Rn.
K is convex and 0n ∈ K, but αK(r) = 1/2 for all r > 0, and hence αK(r) exhibits no decay
as r increases.

The second example above shows that in order for αK(·) to have decay, it is not enough for the
origin to belong to K; rather, what is needed is for K to have a positive inradius. Our density incre-
ment result, stated below in simplified form, shows that in fact the above examples are essentially
the only obstructions to getting a decay for αK(r).
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In order to avoid a proliferation of parameters at this early stage, for now we only state a corol-
lary of our more general result, Theorem 12 (the more general result does not put any restriction on
the value of αK(r)):

Theorem 4 (Density increment for convex sets with positive inradius, informal statement) Let
K ⊆ Rn be a convex set with inradius rin > 0. Let r > rin be such that 0.1 ≤ αK(r) ≤ 0.9 and
αK(·) is differentiable at r. Then dαK(r)

dr ≤ −Ω( rin
√
n

r2
).

In a preliminary version of this paper De and Servedio (2019) we gave a self-contained proof
of a (quantitatively weaker) version of Theorem 4 by combining elementary geometric arguments
with an argument inspired by the central technical lemma of Raz (1999). In the current paper we
give a shorter proof which employs the isoperimetric theorem Lévy (1951); Ledoux (2001) for high-
dimensional spheres; this approach was suggested by an anonymous reviewer of the earlier version
of this paper.

1.3. Techniques for our negative result

As the first stage in our proof of Theorem 2, we construct a “hard” distribution Dideal (which is dif-
ferent from the final distribution D, as described below) over symmetric convex subsets of Rn. The
distribution Dideal is a continuous distribution defined in terms of a Poisson point process; a draw
from Dideal is essentially a random symmetric polytope with poly(s) facets where the hyperplane
defining each facet is at distance around O(

√
log s) away from the origin. We analyze the setting in

which a learning algorithm is not allowed to make any queries to a target function f that is drawn
from Dideal. In this setting, the maximum possible accuracy of any zero-query learning algorithm
is achieved by the Bayes optimal classifier for Dideal (which we denote by BODideal

), which simply
labels each x ∈ Rn according to whether it is more likely to be labeled positive or negative by a
randomly selected target concept f ∼ Dideal. The construction of Dideal is well suited to facilitate
such an analysis, and indeed we show that the average accuracy of BODideal

(x) for x ∼ N(0, 1)n

is at most 1/2 + O(log s)

n1/2 .
It becomes tricky to analyze Dideal when a learning algorithm is actually allowed to make

queries to a target function f ∼ Dideal. To deal with this, in the second stage of the proof we
discretize the distribution Dideal to construct the actual hard distribution D (which is finitely sup-
ported). The discretization is carefully done to retain some crucial geometric properties, and in
particular to ensure that for “most” x (again sampled from N(0, 1)n), Prf∼Dideal

[f(x) = 1] is
close to Prf∼D[f(x) = 1]. This implies that the average advantage of the Bayes optimal classifier
for f ∼ D (corresponding again to the best possible zero-query learning algorithm), denoted by
BOD, remains bounded by O(log s)

n1/2 .
In the third and final stage of the proof, we consider the case when the learning algorithm is

allowed to makes s queries to an unknown target function f ∼ D. We show that for any choice of
s query points y = (y1, . . . , ys), with high probability over both f ∼ D and x ∼ N(0, 1)n, the
advantage of the optimal classifier is close to that achieved by BOD (see Appendix A.3). We note
that the third stage of our proof, and the general flavor of the analysis used to establish it, follows
the lower bound approach of Blum, Burch and Langford Blum et al. (1998), who showed that no s-
query algorithm in the membership query model can achieve an advantage of ω( log s√

n
) over random

guessing to learn monotone functions under the uniform distribution on {−1, 1}n. (Stages 1 and 2
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of our proof, which are necessary because of the continuous setting of our lower bound, do not have
analogues in Blum et al. (1998).)

2. Preliminaries

Background results from geometry. We first recall the definition of the shell density function
αK(·) from Equation (1): for r ≥ 0, we have αK(r) := Prx∈Sn−1

r
[x ∈ K], so αK(r) equals the

fraction of the origin-centered radius-r sphere which lies in K, i.e. the normalized Haar measure
of K ∩ Sn−1

r . We write µ(·) to denote the normalized Haar measure (which can be thought of as
simply the uniform measure on Sn−1), so αK(r) = µ(Sn−1

r ∩K). A view which will be useful later
is that αK(r) is the probability that a random Gaussian-distributed point g ∼ N(0, 1)n lies in K,
conditioned on ‖g‖ = r.

An easy fact about the function αK(·) is the following:

Fact 5 If K is convex and 0n ∈ K then αK(·) is non-increasing.

Proof By convexity, if x ∈ K then λx ∈ K for any λ ∈ [0, 1]. This immediately implies that
Prx∈Sn−1

r
[x ∈ K] ≤ Prx∈Sn−1

λr
[x ∈ K] and consequently αK(·) is non-increasing.

Next, we recall the isoperimetric theorem on the sphere. We use the shorthand Sn−1 to denote Sn−1
1 ,

the unit sphere in n dimensions. We recall the definition of the geodesic distance on the unit sphere
as well as the notion of a spherical cap:

Definition 6 Let x, y ∈ Sn−1. The geodesic distance between x and y, denoted dgeo(x, y), is
defined to be dgeo(x, y) = arccos(〈x, y〉). A set A ⊆ Sn−1 is said to be a spherical cap if there
exists x∗ ∈ Sn−1 and θ∗ ∈ [0, π] such that A = {x ∈ Sn−1 : dgeo(x, x

∗) ≤ θ∗}.

We recall the spherical isoperimetry theorem, which states that spherical caps have the smallest
neighborhoods over all measurable sets of a given area:

Theorem 7 (Spherical isoperimetry Lévy (1951); Ledoux (2001)) For any measurable set A ⊆
Sn−1 and any r ∈ [0, π], we define Ar,geo = {z ∈ Sn−1 : dgeo(x, z) ≤ r for some x ∈ A}. Then
µ(Ar,geo) ≥ µ(Hr,geo), where H is a spherical cap such that µ(H) = µ(A).

Background results on the Gaussian distribution. We endow Rn with the standard Gaussian
measureN(0, 1)n (i.e. each coordinate is independently distributed as a standard normal). As stated
earlier the Gaussian volume of a region K ⊆ Rn, denoted vol(K), is Prg∼N(0,1)n [K(g) = 1].

We note some basic but crucial properties of the chi-squared distribution with n degrees of
freedom. Recall that a non-negative random variable r2 is distributed according to the chi-squared
distribution χ2(n) if r2 = g2

1 + · · · + g2
n where g ∼ N(0, 1)n, and that a draw from the chi

distribution χ(n) is obtained by making a draw from χ2(n) and then taking the square root. We
recall the following tail bound:

Lemma 8 (Tail bound for the chi-squared distribution Johnstone (2001)) Let r2 ∼ χ2(n). Then
we have

Pr
[
|r2 − n| ≥ tn

]
≤ e−(3/16)nt2 for all t ∈ [0, 1/2).

It follows that for r ∼ χ(n), Pr
[√

n/2 ≤ r ≤
√

3n/2
]
≥ 1− e−

3n
64 .
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The following fact about the anti-concentration of the chi distribution will be useful:

Fact 9 For n > 1, the maximum value of the pdf of the chi distribution χ(n) is at most 1, and
hence for any interval I = [a, b] we have Prr2∼χ2(n)[r ∈ [a, b]] ≤ b− a.

3. A density increment result for convex sets with positive inradius

In this section we establish our density increment result, Theorem 12. We note that related results of
various types can be found in the literature (see e.g. Latala and Oleszkiewicz (1999), which proved
the “S-conjecture” due to Shepp, and Theorem 3 of Latala and Oleszkiewicz (2005)), including
folklore results such as Lemma 4.4 and Corollary 4.5 of Lovász and Vempala (2007). We were
unable to find the exact statement we require in the literature and so we prove it here.

The key technical ingredient we use to prove Theorem 12 is the following consequence of the
spherical isoperimetry theorem. (In the lemma below, forA a measurable subset of Sn−1 and δ > 0,
we define Aδ,Euc ⊆ Sn−1 to be the set of all points of Sn−1 at Euclidean distance at most δ from A.)

Lemma 10 There is an absolute constant c > 0 such that for every sufficiently large n, the
following holds: Let A be a measurable subset of Sn−1. As δ → 0+ (independent of n), we have
that

µ(Aδ,Euc \A) ≥


cδµ(A) if µ(A) ≤ 1/2

cδ(1− µ(A)) if µ(A) > 1/2

cδ
√
n · µ(A) if e−n/4 ≤ µ(A) ≤ 1/2

cδ
√
n · (1− µ(A)) if 1/2 ≤ µ(A) ≤ 1− e−n/4.

(2)

Proof We first note that since the geodesic distance on Sn−1 dominates the Euclidean distance, we
have that Aδ,geo ⊆ Aδ,Euc. Thus, to prove Lemma 10, it suffices to lower bound µ(Aδ,geo \A).

Let α∗ be chosen so that the spherical cap H = {v ∈ Sn−1 : 〈v, e1〉 ≥ α∗} centered around
e1 ∈ Sn−1 has µ(H) = µ(A), i.e. Prv∈Sn−1 [〈v, e1〉 ≥ α∗] = µ(A). Observe that the set Hδ,geo is
given by

Hδ,geo = {v ∈ Sn−1 : 〈v, e1〉 ≥ β∗}, where arccos(β∗) = arccos(α∗) + δ.

Let us define ε = ε(δ) to be the value such that β∗ = α∗ − ε. Note that ε → 0 as δ → 0. It is
well-known (see e.g. Baum (1990)) that for any c ∈ [0, 1],

Pr
v∈Sn−1

[〈v, e1〉 ≥ c] =
An−2

An−1

∫ 1

z=c
(1− z2)

n−3
2 dz, (3)

where An−1 is the surface area of Sn−1 and An−2/An−1 = Θ(
√
n). This equation (3) implies that

for ε→ 0,

µ(Hδ,geo \H) =
An−2

An−1
· (1− α∗2)

n−3
2 · ε.

A simple calculus argument shows that for δ → 0, we have ε = δ ·
√

1− α∗2. Consequently, for
δ → 0, we have that

µ(Hδ,geo \H) =
An−2

An−1
· δ · (1− α∗2)

n−2
2 . (4)
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For the rest of the proof we will assume that α∗ ≥ 0 (an entirely similar argument handles the
complementary case when α∗ < 0). We first establish a simple lower bound on µ(Hδ,geo \H): to
do this, we observe that

µ(H) = Pr
v∼Sn−1

[〈v, e1〉 ≥ α∗] =
An−2

An−1

∫ 1

z=α∗
(1− z2)

n−3
2 dz ≤ An−2

An−1
(1− α∗2)

n−3
2 · (1− α∗)

≤ An−2

An−1
(1− α∗2)

n−2
2 . (5)

Plugging (5) into (4), we get µ(Hδ,geo \H) ≥ δµ(H), giving the first two bounds of Equation (2).
We now establish the last two lines of Equation (2), which give a much better bound when

µ(A) = µ(H) is not too close to 0 or 1. Let us assume that e−n/4 ≤ µ(H) ≤ 1/2. We recall the
following bound on the surface area of a spherical cap (see e.g. Lemma 2.2 of Ball (1997)):

Fact 11 For β ∈ [0, 1], define the spherical cap Fβ to be Fβ = {v ∈ Sn−1 : 〈v, e1〉 ≥ β}. Then
µ(F ) ≤ e−nβ2/2.

Fact 11 and the assumption on µ(H) imply that α∗ ≤ 1/
√

2. Let us now define J to be the largest
integer such that α∗ + J/

√
n ≤ 1 (note that J = Θ(

√
n)). We have that

∫ 1

z=α∗
(1− z2)

n−3
2 dz ≤

J∑
j=0

1√
n
·
(

1−
(
α∗ +

j√
n

)2)n−3
2

≤
J∑
j=0

1√
n
·
(

1− α∗2 − j2

n

)n−3
2

≤
J∑
j=0

1√
n
· (1− α∗2)

n−3
2 ·

(
1− j2

n

)n−3
2

≤
J∑
j=0

1√
n
· (1− α∗2)

n−3
2 · e−j2/4 =

O(1)√
n
· (1− α∗2)

n−3
2 , (6)

where the last inequality uses that n is sufficiently large. From (3) and (6), we get that µ(H) ≤
An−2

An−1
· O(1)√

n
· (1− α∗2)

n−3
2 . Combining with (4) and recalling that α∗ ≤ 1/

√
2, we have µ(Hδ,geo \

H) ≥ O(1) · δ
√
n · µ(H). Finally, by the spherical isoperimetric theorem Theorem 7, we have

µ(Aδ,Euc \A) ≥ µ(Aδ,geo \A) ≥ µ(Hδ,geo \H) ≥ O(1) · δ
√
n · µ(A).

This finishes the proof of Lemma 10.

With Lemma 10 in hand the desired density increment result is easily obtained:

Theorem 12 (Density increment for convex sets with positive inradius.) Let K ⊂ Rn be a con-
vex set that has inradius rin > 0. Then for r > rin and ∆r → 0+, we have

αK(r−∆r)−αK(r) ≥

Ω
(
rin
√
n∆r
r2

)
αK(r)(1− αK(r)) if min{αK(r), 1− αK(r)} ≥ e−n/4,

Ω
(
rin∆r
r2

)
αK(r)(1− αK(r)) otherwise.
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Proof Set ε := ∆r/r, and for any real number a > 0 and convex set K, define aK := {ax : x ∈
K}. Let K ′ denote (1− ε)−1K,and observe that

αK(r −∆r) = αK′(r).

Now, observe that as ε → 0, K ′ approaches the convex set (1 + ε)K (and always contains it). By
our inradius assumption we have that K +B(0, ε · rin) ⊆ (1 + ε)K, so we get that

αK(r −∆r) = αK′(r) ≥ α(1+ε)K(r) ≥ αK+B(0,ε·rin)(r).

Scaling the results of Lemma 10 to the ball of radius r, the theorem is proved.

4. A weak learner for convex sets with large inradius

In this section we formally state and prove Theorem 3. For t ∈ (0, 1) define the function ht : Rn →
{−1, 1} as ht(x) = 1 if x is in the origin-centered closed ball of Gaussian volume t (and define h0

to be the constant −1 function and h1 to be the constant 1 function).

Theorem 3 (Structural result, formal statement) Fix any constant rin > 0. If K ⊆ Rn is a convex
set with inradius at least rin, then there is some h ∈ {h0, h1/2, h1} such that

Pr
g∼N(0,1)n

[h(g) = K(g)] ≥ 1

2
+ Ω(n−

1
2 ). (7)

Intuition. Before entering into the detailed analysis of Theorem 3, we give an informal overview
of the high level idea. First off, we can assume that the set K is close to being balanced, i.e.,∣∣∣∣ Pr

g∼N(0,1)n
[K(g) = 1]− 1

2

∣∣∣∣ ≤ 1√
n
, (8)

because otherwise either h = h0 or h = h1 satisfies (7).
For the purpose of this intuitive explanation, let us assume that there is a value r1/2 such that

αK(r1/2) = 1/2.4 We first argue at a high level why hmed(x) := sign
(
(r1/2)2 −

∑n
i=1 x

2
i

)
, i.e. the

{−1, 1}-valued indicator function of the origin-centered ball of radius r1/2, must have some non-
negligible correlation with K and can serve as a weak hypothesis.

To see this, we first argue that the advantage of hmed is at least non-negative. To see this, first
observe that

Pr
g∼N(0,1)n

[K(g) = hmed(g)] = E
r2∼χ2(n)

Pr
x∼Sn−1

r

[K(x) = hmed(x)],

and next observe that for each r > 0, by the choice of r1/2 and the definition of hmed, we have that

Pr
x∼Sn−1

r

[K(x) = hmed(x)] =

{
αK(r) if r < r1/2

1− αK(r) if r ≥ r1/2,

4. In general the function αK(·) need not be continuous, but it can be made continuous by perturbingK by an arbitrarily
small amount, so this is essentially without loss of generality.

9
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which is at least 1/2 in each case by Fact 5.
Extending this simple reasoning, it is easy to see that if we have

Pr
r2∼χ2(n)

[

=αK(r)︷ ︸︸ ︷
| Pr
x∼Sn−1

r

[K(x) = 1]−1/2| ≥ β] ≥ γ, (9)

for some β, γ > 0, then hmed is a weak hypothesis for K with advantage Ω(γβ). Putting it another
way, the only way that hmed could fail to be a weak hypothesis with non-negligible advantage would
be if the function αK(·) “stayed close to 1/2” for a “wide range of values around r1/2” — but this
sort of behavior of αK(·) is precisely what is ruled out by our density increment result, Theorem 12.

Finally, to establish Theorem 3 we must show that h1/2 (rather than hmed) has advantage
Ω(n−1/2). This can be handled by a slight modification of the above argument that exploits (8).

4.1. Proof of Theorem 3

Let rmedian denote the median of the χ(n) distribution. Define the function r : [0, 1)→ [0,∞) by

Pr
r∼χ(n)

[r ≤ r(c)] = c.

Observe that since the pdf of χ2(n) is always positive, the function r(c) is well-defined, and that
we have r(1/2) = rmedian. Theorem 8 and Theorem 9 together easily yield the following claim:

Claim 13 The value rmedian satisfies |rmedian −
√
n| = O(1).5 Further, there exist positive

constants A, B ≥ 1/4 such that r(1/4) = rmedian −A and r(3/4) = rmedian +B.

We now state the two main lemmas, Lemma 14 and Lemma 15. Theorem 3 is an immediate conse-
quence of these two lemmas. To state these lemmas, let us set c := 1/40 (the precise value is not
important as long as it is positive and sufficiently small).

Lemma 14 If |vol(K)− 1/2| > c · n−1/2, then either h = h0 or h = h1 achieves

Pr
g∼N(0,1)n

[h(g) = K(g)] ≥ 1

2
+ Θ(n−1/2).

Lemma 15 If |vol(K)− 1/2| ≤ c · n−1/2, then

Pr
g∼N(0,1)n

[h1/2(g) = K(g)] ≥ 1

2
+ Θ(n−1/2).

Lemma 14 is immediate, so it remains to prove Lemma 15.

Proof of Theorem 15. We begin by defining the function β : [0, 1)→ [0, 1) as follows:

β(c) := Pr
x∈Sn−1

r(c)

[x ∈ K] = αK(r(c)).

5. In fact it is known that rmedian ≈
√
n · (1− 2

9n
)3/2, though we will not need this more precise bound.

10
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Fact 16 If K is a convex set that contains the origin, then β(·) is a non-increasing function.

Proof This holds since r(·) is strictly increasing and the function αK(·) is non-increasing when
0n ∈ K (Theorem 5).

Next, we have the following basic claim.

Claim 17 For convex set K and β(·) as defined above, we have∫
x∈[0,1)

β(x)dx = vol(K).

Proof Let χ(n, b) denote the pdf of the χ-distribution with n degrees of freedom at b. Then

vol(K) = E
g∼N(0,1)n

[K(g)] =

∫ ∞
b=0

χ(n, b)αK(b)db.

Substituting b by r(ν) (as ν ranges from 0 to 1), we have

vol(K) =

∫ 1

ν=0
χ(n, r(ν))r′(ν)β(ν)dν. (10)

Finally, by definition of r(ν), we have that
∫ r(ν)
z=0 χ(n, z)dz = ν. Taking the derivative of this with

respect to ν, we get that χ(n, r(ν))r′(ν) = 1, and substituting back into (10), we get the claim.

Now we are ready to analyze h1/2. The following claim says that if β(1/4) is “somewhat large”,
then h1/2 is a weak hypothesis with constant advantage:

Claim 18 If β(1/4) ≥ 3
4 then Prg∼N(0,1)n [h1/2(g) = K(g)] ≥ 1

2 + 1
24 .

Proof Define s =
∫ 1/4
x=0 β(x)dx and t =

∫ 1/2
x=1/4 β(x)dx. Using the fact that β(·) is non-increasing

we have

(i) s =

∫ 1/4

x=0
β(x)dx ≥ 3

4
· 1

4
=

3

16
, (ii) t =

∫ 1/2

x=1/4
β(x)dx ≥ 1

3
·
(∫ 1

x=1/4
β(x)dx

)
=

vol(K)− s
3

(11)

(where Theorem 17 was used for the last inequality of (ii)). We thus get∫ 1/2

x=0
β(x)dx−

∫ 1

x=1/2
β(x)dx = 2

∫ 1/2

x=0
β(x)dx−

∫ 1

x=0
β(x)dx

= 2s+ 2t− vol(K) ≥ 4s

3
− vol(K)

3
≥ 1

24
, (12)

where the first inequality above follows by item (ii) of (11) and the second inequality uses item (i)
of (11) along with the hypothesis |vol(K) − 1/2| ≤ c/

√
n ≤ 1/40. Combining these bounds, we

have

Pr
g∈N(0,1)n

[h1/2(g) = K(g)] =

∫ 1/2

x=0
β(x)dx+

∫ 1

x=1/2
(1− β(x))dx

≥ 1

2
+

∫ 1/2

x=0
β(x)dx−

∫ 1

x=1/2
β(x)dx ≥ 1

2
+

1

24
, (by (12))

11
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and Theorem 18 is proved.

Thus to prove Theorem 15, it remains to consider the case that β(1/4) ≤ 3/4. By the mono-
tonicity of β(·), Claim 17, and the hypothesis of Theorem 15, we have that

1

2
− 1

40
≤
∫ 1

x=0
β(x)dx ≤ 1

4
+

3

4
· β(1/4).

and hence β(1/4) ≥ 3/10, so we subsequently assume that 3/10 ≤ β(1/4) ≤ 3/4. Now, recall
that r(1/4) = rmedian −A and r(3/4) = rmedian +B, where 1/4 ≤ A and rmedian =

√
n±O(1)

by Theorem 13. Thus

β(1/4) = αK(rmedian −A) and β(3/4) = αK(rmedian +B) where A,B ≥ 1/4. (13)

Using the fact that 3/10 ≤ β(1/4) ≤ 3/4, Equation (13), by Theorem 12 we get that β(1/4) ≥
β(3/4)+Ω(rin · n−1/2). As rin > 0 is an absolute constant, we get that

β(1/4) ≥ β(3/4) + C · n−1/2 (14)

for an absolute constant C > 0. This implies that∫ 1/2

x=0
β(x)dx−

∫ 1

x=1/2
β(x)dx

=

∫ 1/4

x=0
β(x)dx−

∫ 1

x=3/4
β(x)dx+

∫ 1/2

x=1/4
β(x)dx−

∫ 3/4

x=1/2
β(x)dx

≥ C

4
√
n

+

∫ 1/2

x=1/4
β(x)dx−

∫ 3/4

x=1/2
β(x)dx ≥ C

4
√
n
, (15)

where both inequalities use the monotonicity of β(·) and the penultimate inequality additionally
uses Equation (14). Applying (15), we get

Pr
g∈N(0,1)n

[h1/2(g) = K(g)] =

∫ 1/2

x=0
β(x)dx+

∫ 1

x=1/2
(1− β(x))dx

=
1

2
+

∫ 1/2

x=0
β(x)dx−

∫ 1

x=1/2
β(x)dx

≥ 1

2
+

C

4
√
n
. (16)

This proves Theorem 15.

5. A weak learner for general convex sets

In this section we prove Theorem 1. The high level proof strategy is as follows: Note that Theorem 3
gives a weak learner for convex setsK that haveB(0, rin) ⊆ K (for any positive constant rin). Thus,
to get a weak learner for general convex sets, it suffices to consider the case when for some positive
constant rin > 0, B(0, rin) 6⊆ K. In particular, we show that there is a positive constant ζ > 0 such
that if B(0, ζ) 6⊆ K (and K is close to being balanced), then there is an efficient weak learner for
K (with constant advantage). Formally, we prove the following theorem.

12
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Theorem 19 There is a fixed positive constant ζ > 0 and a poly(n) time algorithm Learn-
halfspace with the following guarantee: Suppose K ⊆ Rn is a convex set satisfying:

1. B(0, ζ) 6⊆ K;

2. |vol(K)− 1/2| ≤ ζ · n−1/2.

Then, given random labeled samples of the form (g,K(g)), the algorithm Learn-halfspace outputs
a halfspace h` : Rn → {−1, 1} such that

Prg∼N(0,1)n [h`(g) = K(g)] ≥ 7

8
.

Before proving Theorem 19, let us first see how it implies Theorem 1.

Proof of Theorem 1 using Theorem 19. For convex setK and positive constant ζ (from Theorem 19),

1. If |vol(K)− 1/2| > ζ · n−1/2, then using Lemma 14, there is an h ∈ {h0, h1} such that

Pr
g∼N(0,1)n

[h(g) = K(g)] ≥ 1

2
+ Ω(n−1/2).

2. If B(0, ζ) ⊆ K, then using Theorem 3, it follows that for some h ∈ {h0, h1/2, h1},

Pr
g∼N(0,1)n

[h(g) = K(g)] ≥ 1

2
+ Ω(n−1/2).

3. Finally, if B(0, ζ) 6⊆ K and |vol(K) − 1/2| ≤ ζ · n−1/2, then we can apply Theorem 19 to
obtain a hypothesis h` such that

Prg∼N(0,1)n [h`(g) = K(g)] ≥ 7

8
.

Thus, it follows that for any convex set K, there is a h ∈ {h0, h1/2, h1, h`} which satisfies

Pr
g∼N(0,1)n

[h(g) = K(g)] ≥ 1

2
+ Ω(n−1/2). (17)

Note that the complexity of computing h` is poly(n) (both samples and running time). Further,
we can identify the “right” h (i.e., an element of the set {h0, h1/2, h1, h`} satisfying (17)) using a
simple hypothesis testing routine using poly(n) samples and running time. This finishes the proof
of Theorem 1.

It remains to prove Theorem 19. To prove this theorem, we essentially use a so-called “agnostic
learner” for halfspaces. Several results in the literature, including Kalai et al. (2008); De et al.
(2014); Awasthi et al. (2013); Diakonikolas et al. (2018), suffice for our purposes. For the sake of
concreteness, we use the following result from Diakonikolas et al. (2018).

Theorem 20 (Theorem 1.2 from Diakonikolas et al. (2018), taking “d = 1”) There is an algo-
rithm Learn-halfspace with the following guarantee: Let f : Rn → {−1, 1} be a target halfs-
pace such that the algorithm gets access to samples of the form (g,Ψ(g)) where g ∼ N(0, 1)n

and Ψ : Rn → {−1, 1} satisfies Prg[Ψ(g) 6= f(g)] ≤ δ. Then Learn-halfspace runs in time
poly(n, 1/δ) and outputs a hypothesis halfspace h` : Rn → {−1, 1} such that Prg∼N(0,1)n [f(g) 6=
h`(g)] ≤ δB , where B > 0 is an absolute constant.

13
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Proof of Theorem 1. Let us set ζ so that (4ζ) + (4ζ)B < 1/8 where B is the constant appearing
in Theorem 20. We run algorithm Learn-halfspace from Theorem 20 with samples (g,K(g)) and
δ := ζ/4. We show that the output h` satisfies

Pr
g∼N(0,1)n

[K(g) = h`(g)] ≥ 7

8
. (18)

Towards this, first observe that since B(0, ζ) 6⊆ K, there must be a point z∗ such that ‖z∗‖2 ≤ ζ
and z∗ 6∈ K. Using the supporting hyperplane theorem (see e.g. page 510 in Luenberger and Ye), it
follows that there is a unit vector v̂ ∈ Sn−1 such that the halfspace defined as

f(x) = sign(v̂ · x+ ζ),

satisfies K ⊆ f−1(1). Using the fact that the pdf of an N(0, 1) Gaussian is everywhere at most 1,
we get that

Pr
g∼N(0,1)n

[f(g) = 1] ≤ 1

2
+ ζ.

This implies that

Pr
g∼N(0,1)n

[K(g) = 1|f(g) = 1] ≥
1
2 −

ζ√
n

1
2 + ζ

≥ 1− 2ζ − 2ζ√
n
. (19)

On the other hand, by construction of f(·), we have that Prg∼N(0,1)n [K(g) = −1|f(g) = −1] = 1.
Combining this with (19), we get that

Pr
g∼N(0,1)n

[K(g) = f(g)] ≥ 1− 2ζ − 2ζ√
n
≥ 1− 4ζ. (20)

If we run the algorithm Learn-halfspace on samples of the form (g,K(g)) (where δ := 4ζ), then
by Theorem 20 the output h` satisfies

Pr
g∼N(0,1)n

[f(g) 6= h`(g)] ≤ (4ζ)B.

Combining this with (20), we get

Pr
g∼N(0,1)n

[K(g) = h`(g)] ≥ 1− 4ζ − (4ζ)B >
7

8
.

The last inequality follows by our choice of ζ. This finishes the proof of Theorem 1.
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Appendix A. A lower bound for weak learning symmetric convex sets

In this section we prove Theorem 2, which we restate here for the convenience of the reader:

Theorem 2 For sufficiently large n, for any s ≥ n, there is a distribution Dactual over centrally
symmetric convex sets with the following property: for a target convex set f ∼ Dactual, for any
membership-query (black box query) algorithmA making at most s many queries to f , the expected
error ofA (the probability over f ∼ Dactual, over any internal randomness ofA, and over a random
Gaussian x ∼ N(0, 1n), that the output hypothesis h of A predicts incorrectly on x) is at least
1/2− O(log s)

n1/2 .

We note that this lower bound holds even in the membership query (hereafter abbreviated as
MQ) model. In this model the learning algorithm has query access to a black-box oracle for the
unknown target function f ; note that a learning algorithm in this model can simulate a learning
algorithm in the model where the algorithm receives only random labeled examples of the form
(x,f(x)) (with x ∼ N(0, 1)n) with no overhead. Thus a lower bound in the MQ model holds a
fortiori for the random examples model (which is the model that our algorithms use). In particular,
by instantiating s = poly(n) in the above theorem, we get that no algorithm which receives poly(n)

samples (and hence no algorithm running in poly(n) time) can achieve an advantage of ω(logn)√
n

over random guessing for learning centrally symmetric convex sets. Thus, our algorithm for weak
learning of convex sets, i.e., Theorem 1, achieves an optimal advantage (up to an O(log n) factor).

Since the proof of Theorem 2 is somewhat involved we begin by explaining its general strategy:
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1. We start by constructing a “hard” distribution Dideal over centrally symmetric convex subsets
of Rn (note that Dideal is different from the final distribution Dactual). We then analyze the
case in which the learning algorithm is not allowed to make any queries to the target function
f ∼ Dideal. It is easy to see that in this setting, the maximum possible accuracy of any
zero-query learning algorithm for Dideal is achieved by the so-called Bayes optimal classifier
(which we denote by BODideal

) which labels each x ∈ Rn as follows:

BODideal
(x) =

{
1 if Prf∼Dideal

[f(x) = 1] ≥ 1/2

0 otherwise.

We show that for “most” x sampled from N(0, 1)n, the accuracy of BODideal
(x) is close to

1/2 and in fact, the average advantage over 1/2 for x ∼ N(0, 1)n is bounded by O(log s)

n1/2 .

2. The distribution Dideal is a continuous distribution defined in terms of a so-called Poisson
point process. While the construction of Dideal is particularly well-suited to the analysis of
a zero-query learner, i.e. of the Bayes optimal classifier (indeed this is the motivation for our
introducing Dideal), it becomes tricky to analyze Dideal when the learning algorithm is ac-
tually allowed to make queries to the target function f . To deal with this, we “discretize”
the distribution Dideal to construct the actual hard distribution Dactual (which is finitely sup-
ported). The discretization is carefully done to ensure that for “most” x (again sampled from
N(0, 1)n), Prf∈Dideal

[f(x) = 1] is close to Prf∈Dactual
[f(x) = 1]. This implies that the

average advantage of the Bayes optimal classifier for f ∼ Dactual (corresponding to the best
possible zero-query learning algorithm), denoted by BODactual

, remains bounded by O(log s)

n1/2 .

3. Finally, we consider the case when the learning algorithm is allowed to makes s queries to
the unknown target function f . Roughly speaking, we show that for any choice of s query
points y = (y1, . . . , ys), with high probability over both f ∼ Dactual and x ∼ N(0, 1)n, the
advantage of the optimal classifier is close to that achieved by BODactual

(see Appendix A.3).
The techniques used to prove this crucially rely on the specific construction of Dactual, so
we refrain from giving further details here. However, using this and the upper bound on the
advantage of BODactual

, we obtain Theorem 2.

We note that step 3 and the general flavor of the analysis used to establish that step closely fol-
lows the lower bound approach of Blum, Burch and Langford Blum et al. (1998), who showed that
no s-query algorithm in the MQ model can achieve an advantage of ω( log s√

n
) over random guessing

to learn monotone functions under the uniform distribution on {−1, 1}n. Of course, the choice of
the hard distribution is quite different in our work than in Blum et al. (1998); in particular, a draw
from Dideal is essentially a random symmetric polytope with poly(s) facets where the hyperplane
defining each facet is at distance around O(

√
log s) away from the origin. The distribution Dactual

is obtained by essentially discretizing Dideal while retaining some crucial geometric properties. In
contrast, the hard distribution in Blum et al. (1998) is constructed in one step and is essentially a
random monotone DNF of width O(log s+ log n) with roughly s terms. Another significant differ-
ence between our argument and that of Blum et al. (1998) is the technical challenges that arise in
our case because of dealing with a continuous domain and the resulting discretization that we have
to perform.

Finally, we note that in the proof of Theorem 2, which we give below, we may assume that
s = 2O(

√
n), since otherwise the claimed bound trivially holds.
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A.1. The idealized distribution Dideal and the Bayes optimal classifier for it

We will define the distribution Dactual by first defining a related distribution Dideal. As mentioned
earlier, the distribution Dactual will be obtained by discretization of Dideal. To define Dideal, we
need to recall the notion of a spatial Poisson point process; we specialize this notion to the unit
sphere Sn−1, though it is clear that an analogue of the definition we give below can be given over
any bounded measurable set B ⊆ Rn.

Definition 21 A point process X on the carrier space Sn−1 is a stochastic process such that a draw
from this process is a sequence of points x1, . . . ,xN ∈ Sn−1. (Note that each individual point xi
as well as the number of points N are all random variables as described below.)

A spatial Poisson point process with parameter λ on Sn−1 is a point process on Sn−1 with the
following two properties:

1. For any measurable subset B ⊆ Sn−1, let N(B) denote the number of points which fall in
B. Then, the distribution of N(B) follows Poi(λµ(B)) where µ(B) is the fractional density
of B inside Sn−1.

2. If B1, . . . , Bk ⊆ Sn−1 are pairwise disjoint measurable sets, then N(B1), . . . ,N(Bk) are
mutually independent.

Finally, we note that the spatial Poisson point process with parameter λ can be realized as
follows: Sample N ∼ Poi(λ), and output N points x1, . . . ,xN that are chosen uniformly and
independently at random from Sn−1.

We refer the reader to Last and Penrose (2017) and Daley and Vere-Jones (2007) for details about
Poisson point processes.

We next choose d > 0 so that for any unit vector v,

Pr
u∼Sn−1

[
|v · u| ≥ d√

n

]
=

1

s100
. (21)

Note that by symmetry the choice of v is immaterial. We also recall the following fundamental fact
about inner products with random unit vectors (which is easy to establish using e.g. Equation (36)):

Claim 22 Let v ∈ Sn−1. For any 0 < t < 1/2,

Pr
u∈Sn−1

[|v · u| ≥ t] = e−Θ(t2n).

Since we have s = 2O(
√
n), it follows from this fact that d = Θ(

√
log s) in (21). Next, for any unit

vector z ∈ Sn−1, we define the “slab” function slabz : Rn → {0, 1},

slabz(x) := 1 [−d ≤ z · x ≤ d] .

It is clear that for any unit vector z the function slabz(·) defines a centrally symmetric convex set.
Finally, we define the parameter Λ to be

Λ := s100 · ln 2. (22)

Now we are ready to define the distribution Dideal. A function f is sampled from Dideal as
follows:
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• Sample z1, . . . ,zN from the spatial Poisson point process on Sn−1 with parameter Λ.

• Set f to be

f(x) =
N∧
i=1

slabzi(x).

We have the following observation (whose proof is immediate from the construction):

Observation 23

1. Any f ∼ Dideal defines a centrally symmetric convex set.

2. For any point x ∈ Rn, the value of Dideal(x) := Prf∼Dideal
[f(x) = 1] is completely deter-

mined by ‖x‖2, the distance of x from the origin.

A.1.1. ANALYZING THE BAYES OPTIMAL CLASSIFIER FOR Dideal

We now bound the advantage of the Bayes optimal classifier (denoted by BODideal
) for Dideal,

which, as stated earlier, corresponds to the best possible learning algorithm that makes zero queries
to the unknown target function f ∼ Dideal. Observe that on input x ∈ Rn, the classifierBODideal

(x)
outputs 1 if Dideal(x) ≥ 1/2 and outputs 0 on x if Dideal(x) < 1/2. Thus, the expected error of
BODideal

is

opt(Dideal) := E
x∼N(0,1)n

[min{Dideal(x), 1−Dideal(x)}],

and the expected advantage of BODideal
is 1/2− opt(Dideal).

The next lemma bounds opt(Dideal) and completes Step 1 of the proof outline given earlier:

Lemma 24 We have
1

2
− opt(Dideal) =

O(log s)√
n

.

Proof For c = 1, 2, . . . , 4
√

lnn, define the set

Sc := {x ∈ Rn : |‖x‖22 − n| ∈ [2(c− 1)
√
n, 2c
√
n)}

and further define the set

Sextreme := {x ∈ Rn : |‖x‖22 − n| > 8
√
n lnn}.

We observe that by Theorem 8, we have that

Pr
g∼N(0,1)n

[g ∈ Sextreme] ≤
1

n5
. (23)

We will show that for each c = 1, . . . , 4
√

lnn the value of Dideal(x) is “close” to 1/2 for every
x ∈ Smed (in a quantitative sense that depends on c), and combining the resulting bounds will easily
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yield the lemma. To do this, we define Region(x) to be the set of those unit vectors z such that x
does not lie within the slab defined by z, i.e.

Region(x) := {z ∈ Sn−1 : |z · x| > d}.

Observe that the fractional density of Region(x) inside Sn−1, which we denote by µ1(Region(x)),
is determined by ‖x‖2.

Fix a value of c; we would like to analyze µ1(Region(x)) for all points x ∈ Sc. To do this, we
first analyze it for points at distance exactly

√
n from the origin. So choose any point a0 ∈ Rn such

that ‖a0‖2 =
√
n. By the definition of d in (21) and observing that a0/

√
n is a unit vector, we have

µ1(Region(a0)) = Pr
u∼Sn−1

[
a0√
n
· u ≥ d√

n

]
=

1

s100
. (24)

Next, consider any b0 ∈ Sc, and note that ‖b0‖2 =
√
n(1 + δ) where |δ| = O(

√
c
n). Hence

µ1(Region(b0)) = Pr
u∼Sn−1

[
b0√

n(1 + δ)
· u ≥ d√

n(1 + δ)

]
,

where b0√
n(1+δ)

is a unit vector. Recalling that we can assume log s ≤ c0
√
n for a sufficiently small

positive constant c0 > 0 and that d = Θ(
√

log s), we can apply Theorem 40 to get that∣∣∣∣µ1(Region(a0))

µ1(Region(b0))
− 1

∣∣∣∣ = O

(
d2 · c√

n

)
= O

(
c log s√

n

)
. (25)

From (25) and (24), we get that every x ∈ Smed satisfies

µ1(Region(x)) =
1

s100
·
(

1 +O

(
c log s√

n

))
. (26)

To finish the proof, we observe that sampling f ∼ Dideal is equivalent to sampling z1, . . . ,zN

from the spatial Poisson point process on Sn−1 with parameter Λ. Let Numx be the random
variable defined as |{zi}Ni=1 ∩ Region(x)|. Observe that

1. f(x) = 1 iff Numx = 0;

2. Numx is distributed as Poi(Λ · µ1(Region(x))).

Putting these two items together with (26) and (22), we get that for x ∈ Sc,

Pr
f∼Dideal

[f(x) = 1] = Pr[Poi(Λ · µ(Region(x)))) = 0] = e−Λ·µ1(Region(x)) =
1

2
±O

(
c log s√

n

)
,

so recalling that Dideal(x) = Prf∼Dideal
[f(x) = 1], we have that

min{Dideal(x), 1−Dideal(x)} =
1

2
±O

(
c log s√

n

)
.

Recalling (23) and observing that by Theorem 8 we have that Prg∼N(0,1)n [g ∈ Sc] ≤ e−Ω(c2), we
get that

1

2
− opt(Dideal) ≤

1

n5
+

4
√

lnn∑
c=1

c log s√
n
· e−Ω(c2) ≤ 1

n5
+

log s√
n

∞∑
c=1

c · e−Ω(c2) ≤ O(log s)√
n

,

and Theorem 24 is proved.
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A.2. Discretizing Dideal to obtain Dactual, and the Bayes optimal classifier for Dactual

We now discretize the distributionDideal to construct the distributionDactual. We begin by recalling
some results which will be useful for this construction.

Definition 25 Let X1, X2 be two distributions supported on Rn. The Wasserstein distance between
X1 and X2, denoted by dW,1(X1,X2) is defined to be

dW,1(X1,X2) = min
Z

EZ [‖Z1 −Z2‖1],

where Z = (Z1,Z2) is a coupling of X1 and X2.

The following fundamental result is due to Dudley Dudley (1969):

Theorem 26 Let X be any compactly supported measure on Rn. Let x1, . . . ,xM be M random
samples from X and let XM be the resulting empirical measure. Then

E[dW,1(X ,XM )] = O(M−1/n).

Let USn−1 denote the Haar measure (i.e., the uniform measure) on Sn−1. Instantiating Theo-
rem 26 with USn−1 , we get the following corollary:

Corollary 27 For any error parameter ζ > 0, there exists Mn,ζ such that for any M ≥ Mn,ζ ,
there is a distribution UM,emp which satisfies the following:

1. dW,1(UM,emp,USn−1) ≤ ζ.

2. The distribution UM,emp is uniform over its M -element support, which we denote by Sactual.

We are now ready to construct the distributionDactual. We fix parameters ζ, p andM as follows:

ζ
√

log(1/ζ) :=
1

Λ ·
√
n
, M := max

{
Mn,ζ ,

Λ2

ζ

}
, p :=

Λ

M
. (27)

Definition 28 A draw of a function f ∼ Dactual is sampled as follows: For each z in Sactual,
define an independent Bernoulli random variable W z which is 1 with probability p. The function
f is

f(x) :=
∧

z∈Sactual:W z=1

slabz(x).

Given such a f , we define Rel(f) := {z ∈ Sactual : W z = 1}

For intuition, Rel(f) can be viewed as the set of those elements of Sactual that are “relevant” to f .
With the definition of Dactual in hand, we define Dactual(x) (analogous to Dideal(x)) as follows:

Dactual(x) = Pr
f∼Dactual

[f(x) = 1].

Similar to Dideal, we now consider the Bayes optimal classifier BODactual
(x), which corre-

sponds to the output of the best zero-query learning algorithm for an unknown target function
f ∼ Dactual. The expected error of BODactual

is given by

opt(Dactual) := E
x∼N(0,1)n

[min{Dactual(x), 1−Dactual(x)}].

The next lemma is the main result of this subsection and the rest of this subsection is devoted to its
proof. It relates opt(Dactual) to opt(Dideal) and completes Step 2 of the outline given earlier:
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Lemma 29 For Dactual and Dideal as defined above and parameters ζ, M and p as set in (27),

|opt(Dactual)− opt(Dideal)| = O(n−1/2).

The proof of Theorem 29 requires several claims.

Claim 30 Let vectors z, z′ ∈ Sn−1 satisfy ‖z − z′‖2 ≤ 1/3. Then

Pr
x∼N(0,1)n

[slabz(x) 6= slabz′(x)] ≤ 5‖z − z′‖2

√
ln

(
1

‖z − z′‖2

)
.

Proof Define Bdκ := {y ∈ R : ||y| − d| ≤ κ}. For any parameter t > 0 and any x ∈ Rn, observe
that

slabz(x) 6= slabz′(x) only if (|(z − z′) · x| ≥ t‖z − z′‖2) and (z · x ∈ Bdt‖z−z′‖2). (28)

Let us write erfc(t) to denote Prx∼N(0,1)n [|x| ≥ t]. Recalling that erfc(t) ≤ (e−t
2
+e−2t2)/2 (e.g.,

see equation 10 in Chiani et al. (2003)), we have that

Pr
x∼N(0,1)n

[|(z − z′) · x| ≥ t‖z − z′‖2] ≤ e−t
2

+ e−2t2

2
.

Likewise, using the fact that the density of the standard normal is bounded by 1 everywhere, we
have that

Pr
x∼N(0,1)n

[z · x ∈ Bdt‖z−z′‖2 ] ≤ 4t‖z − z′‖2.

Plugging the last two equations back into (28), we have that

Pr
x∼N(0,1)n

[slabz(x) 6= slabz′(x)] ≤ min
t>0

{
e−t

2
+ e−2t2

2
+ 4t‖z − z′‖2

}

≤ 5‖z − z′‖2

√
ln

(
1

‖z − z′‖2

)
,

giving Theorem 30.

The next (standard) claim relates the Poisson point process over a finite set A to the process of
sampling each element independently (with a fixed probability) from A.

Claim 31 Let A be any set of size M and let Λ > 0. Consider the following two stochastic
processes (a draw from the first process outputs a subset ofA while a draw from the second process
outputs a multiset of elements from A):

1. The process Indsample(A,Λ) produces a subset Bb ⊆ A where each element a ∈ A is
included independently with probability p = Λ/|A|.

2. The process Poisample(A,Λ) produces a multiset Bp of elements fromA where we first draw
L ∼ Poi(Λ) and then set Bp to be a multiset consisting of L independent uniform random
elements from A (drawn with replacement).
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Then the statistical distance ‖Indsample(A,Λ)− Poisample(A,Λ)‖1 is at most 2Λ2/M .

Proof A draw of Bp from Poisample(A,Λ) can equivalently be generated as follows: for each
a ∈ A, sample xa ∼ Poi(p) independently at random and then include xa many copies of a in Bp.
For 0 ≤ q ≤ 1, let Bern(q) denote a Bernoulli random variable with expectation q. Recalling that
‖Poi(q)−Bern(q)‖1 ≤ 2q2, applying this bound to every a ∈ A and taking a union bound, we have
that

‖Indsample(A,Λ)− Poisample(A,Λ)‖1 ≤
∑
a∈A

2p2 = 2
Λ2

M2
·M =

2Λ2

M
.

Finally, to prove Theorem 29, we will use an intermediate distribution of functions defined as
follows:

Definition 32 For the parameter Λ defined earlier, we define the distribution Dinter as follows:
to sample a draw f ∼ Dinter, we (i) first sample L ∼ Poi(Λ), and (ii) then sample z1, . . . ,zL ∼
UM,emp. The function f is

f(x) :=

L∧
i=1

slabzi(x).

As with Dactual and Dideal, we define Dinter(x) and opt(Dinter) as

Dinter(x) := Pr
f∼Dinter

[f(x) = 1], opt(Dinter) := E
x∼N(0,1)n

[min{Dinter(x), 1−Dinter(x)}].

Now we are ready for the proof of Theorem 29:

Proof of Theorem 29. We begin with the following easy claim which shows that Dinter(x) is very
close to Dactual(x) for every x:

Claim 33 For any x ∈ Rn,

|Dinter(x)−Dactual(x)| ≤ 2Λ2

M
.

Proof Observe that f inter ∼ Dinter (factual ∼ Dactual, respectively) can be sampled as fol-
lows: Sample (z1, . . . ,zL) ∼ Poisample(Sactual,Λ) ((y1, . . . ,yQ ∼ Indsample(Sactual,Λ), re-
spectively), and set

f inter(x) =

L∧
i=1

slabzi(x) and factual(x) =

Q∧
i=1

slabyi(x).

It follows from Theorem 31 that ‖Poisample(Sactual,Λ)− Indsample(Sactual,Λ)‖1 ≤ 2Λ2/M and
consequently ‖Dinter −Dactual‖1 ≤ 2Λ2/M . This implies that

|Dinter(x)−Dactual(x)| =
∣∣∣∣ Pr
f inter∼Dinter

[factual(x) = 1]− Pr
factual∼Dactual

[factual(x) = 1]

∣∣∣∣ ≤ 2Λ2

M
.

Next we relate the average value of Dinter (for x ∼ N(0, 1)n) to the average value of Dideal:
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Claim 34
E

x∼N(0,1)n
[|Dinter(x)−Dideal(x)|] = O(Λζ

√
log(1/ζ)).

Proof Recall that by Theorem 27 there exists a coupling Z = (z1, z2) between UM,emp and USn−1

such that E[‖z1 − z2‖1] ≤ ζ. We consider the following coupling between Dinter and Dideal:

1. Sample L ∼ Poi(Λ).

2. Sample {(z(j)
1 , z

(j)
2 )}1≤j≤L independently from ZL.

3. Define

f in(x) =
L∧
j=1

slab
z
(j)
1

(x) and f id(x) =
L∧
j=1

slab
z
(j)
2

(x).

Observe that f in follows the distribution Dinter and f id follows the distribution Dideal. Thus, the
process above indeed describes a coupling between Dinter and Dideal. We consequently have

|opt(Dideal)− opt(Dinter)| ≤ E
x∼N(0,1)n

[∣∣∣∣Pr
f id

[f id(x) = 1]−Pr
f in

[f in(x) = 1]

∣∣∣∣]
= E

x∼N(0,1)n

[∣∣∣∣∣ E
L∼Poi(Λ)

E
ZL

[
L
∧
i=1

slab
z
(i)
1

(x)−
L
∧
i=1

slab
z
(i)
2

(x)

]∣∣∣∣∣
]

≤ E
x∼N(0,1)n

E
L∼Poi(Λ)

[∣∣∣∣E
ZL

[
L
∧
i=1

slab
z
(i)
1

(x)−
L
∧
i=1

slab
z
(i)
2

(x)

]∣∣∣∣]

≤ E
x∼N(0,1)n

E
L∼Poi(Λ)

[∣∣∣∣∣EZL

[
L∑
i=1

slab
z
(i)
1

(x)−
L∑
i=1

slab
z
(i)
2

(x)

]∣∣∣∣∣
]

≤ E
L∼Poi(Λ)

E
ZL

L∑
i=1

(
E

x∼N(0,1)n

[∣∣∣slab
z
(i)
1

(x)− slab
z
(i)
2

(x)
∣∣∣]). (29)

Now, by Theorem 30, we have that(
E

x∼N(0,1)n

[∣∣∣slab
z
(i)
1

(x)− slab
z
(i)
2

(x)
∣∣∣]) ≤ 5‖z(i)

1 − z
(i)
2 ‖2

√
log

(
1

‖z(i)
1 − z

(i)
2 ‖2

)
.

Plugging this back into (29), we have that

|opt(Dideal)− opt(Dinter)| ≤ E
L∼Poi(Λ)

E
ZL

L∑
i=1

[
5‖z(i)

1 − z
(i)
2 ‖2

√
log

(
1

‖z(i)
1 − z

(i)
2 ‖2

)]

≤ E
L∼Poi(Λ)

L∑
i=1

[
5 · ζ

√
log(1/ζ)

]
≤ 5Λζ

√
log(1/ζ), (30)

where the penultimate inequality used E[‖z1 − z2‖1] ≤ ζ and the concavity of the function
x
√

log(1/x).

Theorem 29 follows from Theorem 33 and Theorem 34, recalling the values of the parameters
set in (27).
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A.3. Analyzing query algorithms

Theorem 29 and Theorem 24 together imply a bound on the accuracy of the Bayes optimal classifier
for Dactual when the algorithm makes zero queries to the target function f ∼ Dactual. To analyze
the effect of queries, it will be useful to first consider an alternate combinatorial formulation of
Dactual(x). For any point x ∈ Sn, define Sactual(x) = {z ∈ Sactual : slabz(x) = 0}. By definition
of Dactual, recalling the definition of p from Equation (27), we have that for any x ∈ Rn,

Pr
f∼Dactual

[f(x) = 1] = (1− p)|Sactual(x)|. (31)

Restated in these terms, Theorem 24 and Theorem 29 give us that

E
x∼N(0,1)n

[∣∣(1− p)|Sactual(x)| − 1/2
∣∣] = O

(
log s√
n

)
(32)

We return to our overall goal of analyzing the Bayes optimal classifier when the learning algo-
rithm makes at most s queries to the unknown target f . While the actual MQ oracle, when invoked
on x ∈ Rn, returns the binary value of f(x), for the purposes of our analysis we consider an
augmented oracle which provides more information and is described below.

A.3.1. AN AUGMENTED ORACLE, AND ANALYZING LEARNING ALGORITHMS THAT USE THIS

ORACLE

Similar to Blum et al. (1998), to keep the analysis as clean as possible it is helpful for us to consider
an augmented version of the MQ oracle. (Note that this is in the context ofDactual, so the set Sactual

is involved in what follows.) Fix an ordering of the elements in Sactual, and let f be a function in
the support ofDactual. Recalling the definition of Rel(f) from Theorem 28, we observe that for any
point x ∈ Rn,

f(x) = 1 if and only if Sactual(x) ∩ Rel(f) = ∅.

This motivates the definition of our “augmented oracle” for f . Namely,

1. On input x, if f(x) = 1 then the oracle returns 1 (thereby indicating that Sactual(x) ∩
Rel(f) = ∅).

2. On input x, if f(x) = 0 then the oracle returns the first z ∈ Sactual (according to the above-
described ordering on Sactual) for which z ∈ Sactual(x) ∩ Rel(f).6

It is clear that on any query string x, the augmented oracle for f provides at least as much infor-
mation as the standard oracle for f . Thus, it suffices to prove a query lower bound for learning
algorithms which have access to this augmented oracle.

At any point in the execution of the s-query learning algorithm, letX represent the list of query-
answer pairs that have been received thus far from this augmented oracle. Let Dactual,X denote the
conditional distribution of f ∼ Dactual conditioned on the query-answer list given by X . As in
Blum et al. (1998), the distribution Dactual,X is quite clean and easy to describe. To do so, consider

6. We note that the need to define this “first z” is the main reason that we do not work with Dideal directly and instead
discretized it to obtain Dactual.
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a vector VX whose entries are indexed by the elements of Sactual. For z ∈ Sactual, we define VX(z)
as

VX(z) := Pr
f∼Dactual,X

[z ∈ Rel(f)].

Let us also define the Bernoulli random variables {WX,z}z∈Sactual
, where WX,z is 1 if z ∈ Rel(f)

for f ∼ Dactual,X .
We begin by making the following observation:

Claim 35 When X is the empty list (i.e. when zero queries have been made), each VX(z) is equal
to p, and the Bernoulli random variables {WX,z}z∈Sactual

are mutually independent.

Let us consider what happens when the “current” query-answer list X is extended with a new
query x. We can view the augmented oracle as operating as follows: it proceeds over each entry z
in Sactual(x) (according to the specified ordering), and:

1. If VX(z) = 0, this means that the query-answer pairs already in X imply that z 6∈ Rel(f).
Then the augmented oracle proceeds to the next z.

2. If VX(z) = 1, this means that the query-answer pairs already in X imply that z ∈ Rel(f).
In this case, the oracle stops and returns z (recall that this is a vector in Rn, specifically an
element of Sactual) to the algorithm. Note that this z is the first z ∈ Sactual (in order) such
that slabz(x) = 0.

3. Finally, if VX(z) = p, then the oracle fixes WX,z to 1 with probability p and to 0 with
probability 1 − p. (Recall that the random variable WX,z corresponds to the event that
z ∈ Rel(f).) If WX,z is fixed to 0 then the oracle moves on to the next z, and if it is fixed to
1 then the oracle stops and returns z. As in the previous case, this is then the first z in Sactual

such that slabz(x) = 0.

Finally, we augment X with the query x and the above-defined response from the oracle. Based
on the above description of the oracle, it is easy to see that the following holds:

Claim 36 For any X , each entry of VX(z) is either 0, 1 or p. Further, for any X , the random
variables WX,z are mutually independent. Consequently, we can sample f ∼ Dactual,X as

f(x) =
∧

z∈Sactual:WX,z=1

slabz(x).

Next, we have the following two claims (which correspond respectively to Claim 1 and Claim 2
of Blum et al. (1998):

Claim 37 If the learning algorithm makes s queries, then the number of entries in VX(·) which
are set to 1 is at most s.

Theorem 37 is immediate from the above description of the oracle. The next claim is also fairly
straightforward:

Claim 38 If the learning algorithm makes s queries, then with probability at least 1 − e−
s
4 , the

number of zero entries in VX is bounded by 2s/p.

27



DE SERVEDIO

Proof Given any X , on a new query x the oracle iterates over all z ∈ Sactual(x) and sets VX(z) to
0 with probability 1− p and 1 with probability p, stopping this process as soon as (a) it sets the first
1, or (b) it has finished iterating over all z ∈ Sactual(x), or (c) the current VX(z) was already set to
1 in a previous round.

Thus, given any X , the number of new zeros added to VX on a new query x is stochastically
dominated by Geom(p), the geometric random variable with parameter p. It follows that the (ran-
dom variable corresponding to the) total number of zeros in VX is stochastically dominated by a
sum of s independent variables, each following Geom(p). We now recall the following standard tail
bound for sums of geometric random variables Janson (2018):

Theorem 39 Let R1, . . ., Rs be independent Geom(p) random variables. For λ ≥ 1,

Pr
[
R1 + . . .+ Rs ≥

λs

p

]
≤ e−s(λ−1−lnλ).

Substituting λ = 2, we get that the number of zeros in VX is bounded by 2s/p with probability at
least 1− e−s/4. This finishes the proof.

A.4. Proof of Theorem 2

All the pieces are now in place for us to finish our proof of Theorem 2. The high-level idea is
that thanks to Theorem 37 and Theorem 38, the distribution Dactual,X cannot be too different from
Dactual as far as the accuracy of the Bayes optimal classifier is concerned; this, together with Theo-
rem 29 and Theorem 24, gives the desired result.

Let E be the event (defined on the space of all possible outcomes ofX , the list of at most s query-
answer pairs) that the number of zero entries in VX is at most 2s/p. Observe that Pr[E ] ≤ e−s/4

by Theorem 38. We now bound the performance of the Bayes optimal estimator for Dactual,X

conditioned on the event E .
LetA1 = {z ∈ Sactual : VX(z) = 1} andA0 = {z ∈ Sactual : VX(z) = 0}. Using Theorem 36

and Theorem 37, we have the following observations:

• If x ∈ Rn is such that Sactual(x) ∩ A1 6= ∅, then Pr
f∼Dactual,X

[f(x) = 0] = 1.

• If x ∈ Rn is such that Sactual(x) ∩ A1 = ∅, then Pr
f∼Dactual,X

[f(x) = 1] = (1− p)|Sactual(x)\A0|.

• Pr
x∼N(0,1)n

[Sactual(x) ∩ A1 6= ∅] ≤
∑
z∈A1

Pr[slabz(x) = 0] ≤ |A1|
s100

≤ 1

s99
. (33)

The last inequality uses Theorem 37 to bound the size of |A1| and the definition of slabz(·). Next,
for any z ∈ A0, observe that

E
x∼N(0,1)n

[1[z ∈ Sactual(x)]] = Pr
x∼N(0,1)n

[slabz(x) = 1] =
1

s100
.

This immediately implies that

E
x∼N(0,1)n

[ ∑
z∈A0

1[z ∈ Sactual(x)]

]
=
|A0|
s100

≤ 2

p · s99
.
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By Markov’s inequality, this implies that

Pr
x∼N(0,1)n

[ ∑
z∈A0

1[z ∈ Sactual(x)] ≥ 2

ps98

]
≤ 1

s
. (34)

Let us say that x ∈ Rn is good if Sactual(x) ∩ A1 = ∅ and∑
z∈A0

1[z ∈ Sactual(x)] ≥ 2

ps98
.

By (34), we have that Prx∼N(0,1)n [x is good] ≤ 1/s. We observe that for any good x, we have

|Sactual(x)| − 2

ps98
≤ |Sactual(x) \ A0| ≤ |Sactual(x)|.

It follows that

(1− p)|Sactual(x)| · (1− p)−
2

ps98 ≥ (1− p)|Sactual(x)\A0| ≥ (1− p)|Sactual(x)|.

Using the fact that (1− p)−
2

ps98 ≤ 1 + 4
s98

, we have that

(1− p)|Sactual(x)| ·
(

1 +
4

s98

)
≥ (1− p)|Sactual(x)\A0| ≥ (1− p)|Sactual(x)|.

This implies that for any x ∈ Rn which is good,∣∣∣∣Dactual,X(x)− 1

2

∣∣∣∣ =

∣∣∣∣(1− p)|Sactual(x)\A0| − 1

2

∣∣∣∣ ≤ ∣∣∣∣(1− p)|Sactual(x)| − 1

2

∣∣∣∣+
4

s98
. (35)

Combining this with (32), (34) and (33), we get that

E
x∼N(0,1)n

[∣∣∣∣Dactual,X(x)− 1

2

∣∣∣∣] ≤ 1

s
+

4

s98
+

1

s99
+O

(
log s√
n

)
.

This bounds the error of the Bayes optimal classifier for Dactual,X conditioned on E to be at least
1
2 −O( log s√

n
). Observing that Pr[E ] ≥ 1− e−s/4 and s ≥ n, the proof of Theorem 2 is complete.

Appendix B. Correlation of a fixed vector with a random unit vector

In this section, we prove the following lemma.

Lemma 40 Let v ∈ Sn−1 be a fixed vector and u ∈ Sn−1 be a uniformly drawn element of Sn−1.
For 0 < ε < 1 and 1/2 ≥ β ≥ α > 1√

n
such that β = (1 + ε)α, we have

1 ≤ Pr[|〈v,u〉| ≥ α]

Pr[|〈v,u〉| ≥ β]
≤ 1 +O(nα2ε)

provided that n · α2 · ε ≤ 1
8e2

.
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Proof It is well-known (see Baum (1990)) and easy to verify that

Pr[〈v,u〉 ≥ α] =
An−2

An−1

∫ 1

z=α
(1− z2)

n−3
2 dz. (36)

Here An−1 is the surface area of the sphere Sn−1. By symmetry, this implies that

Pr[|〈v,u〉| ≥ α]

Pr[|〈v,u〉| ≥ β]
=

∫ 1
z=α(1− z2)

n−3
2 dz∫ 1

z=β(1− z2)
n−3
2 dz.

(37)

Define F (α) as
F (α) = (1− α2)

n−3
2 .

Define ∆ = 1
nα . Observe that ∆ ≤ α (for our choice of α) and ∆α = 1

n . Using this, we have

(1− (α+ ∆)2) ≥ (1− α2)(1− 4α∆).

This implies

F (α+ ∆) = (1− (α+ ∆)2)
n−3
2 ≥ (1− α2)

n−3
2 · (1− 4α∆)

n−3
2 ≥ F (α) · 1

e2
. (38)

Then, using (38),∫ 1

z=α
(1− z2)

n−3
2 dz ≥

∫ z=α+∆

z=α
(1− z2)

n−3
2 dz ≥ ∆

e2
F (α). (39)

On the other hand, ∫ z=β

z=α
(1− z2)

n−3
2 dz ≤ (β − α)F (α) = ε · α · F (α) (40)

Note that the assumption nα2ε ≤ 1/(8e2) translates to εα ≤ ∆
8e2

. Combining (40), (39) and this
observation, we get

1 ≤ Pr[|〈v,u〉| ≥ α]

Pr[|〈v,u〉| ≥ β]
≤ 1 +

εα

∆/e2 − εα
≤ 1 +O(nα2ε).
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