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Abstract
We study the problem of learning an unknown mixture of k permutations over n elements,

given access to noisy samples drawn from the unknown mixture. We consider a range of different
noise models, including natural variants of the “heat kernel” noise framework and the Mallows
model. We give an algorithm which, for each of these noise models, learns the unknown mixture to
high accuracy under mild assumptions and runs in nO(log k) time. Our approach is based on a new
procedure that recovers an unknown mixture of permutations from noisy higher-order marginals.
Keywords: mixture models, rankings, noise-tolerant learning

1. Introduction

One of the simplest distribution learning problems is that of learning an unknown distribution f with
support size k over some domainD. It is well known that given independent samples drawn from f ,
with sample and time complexity O(k/ε2) the standard empirical estimator produces a hypothesis
f̂ such that the total variation distance ‖f − f̂‖1 is at most ε.

Despite the simplicity of the above scenario, it gives rise to a rich landscape of challenging prob-
lems once noise enters the picture. In more detail, suppose that the learning algorithm only receives
noisy samples, i.e. each draw from f is independently corrupted by some type of noise before it is
given to the learning algorithm. Is it still possible to efficiently recover the underlying sparse distri-
bution f? As we now describe, this question captures several important and well-studied problems
in learning theory. We shall refer to this general class of problems as “population recovery” prob-
lems, since they may be viewed as the problem of recovering the underlying “population” (along
with the frequencies) of the k objects in D that comprise the support of the distribution f .

One well studied variant of this problem is the problem of population recovery problem over the
discrete cube. Here the domain D is {0, 1}n, and the standard noise model is the Bonami-Beckner
noise operator (see e.g. O’Donnell (2014)),which independently flips each coordinate with some
fixed probability. Motivated by the simplicity and elegance of this problem and its connection to
DNF learning, this problem has of late been extensively studied in the theoretical computer science
community, see e.g. Dvir et al. (2012); Wigderson and Yehudayoff (2012); Moitra and Saks (2013);
Lovett and Zhang (2015); De et al. (2016).

Beyond population recovery over the discrete cube, by varying the choice of the domain D and
the type of noise in question, the above general “population recovery” formulation captures many
other well-studied problems in machine learning and statistics:
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1. When D = Rn and the noise is given by (convolution with) a standard Gaussian, then the
corresponding population recovery problem is the problem of learning a Gaussian mixture
model with identity covariances, which is a problem of central interest in algorithmic statis-
tics Dasgupta (1999); Regev and Vijayaraghavan (2017); Hopkins and Li (2018); Kothari
et al. (2018).

2. When D = R2 and the noise is given by the Bessel function, then the resulting problem is
equivalent to the mathematical formulation of the so-called “diffraction limit” (see Chen and
Moitra (2020)).

3. When D = Sn (the symmetric group on n elements) and the noise is given by the so-called
Mallows model, then the resulting problem is the same as the problem of learning a mixture
of Mallows models1 Mallows (1957). This problem has attracted significant attention in theo-
retical machine learning Awasthi et al. (2014); Liu and Moitra (2018); Braverman and Mossel
(2008); Lu and Boutilier (2011) (see also Jiao and Vert (2018); Kondor and Barbosa (2010);
Murphy and Martin (2003), which consider closely related settings).

This paper studies the population recovery problem on Sn; our main contribution is a single
unified efficient algorithm that succeeds for several different noise models. These noise models
include the standard “heat kernel” noise model Diaconis (1988a); Kondor and Lafferty (2002);
Kondor and Barbosa (2010); Jiao and Vert (2018) and the Ewens model Ewens (1972); Fligner and
Verducci (1986); Diaconis and Hanlon (1992) (which is a natural variant of the Mallows model),
among others.

The population recovery problem over Sn: We now formally describe the population recovery
problems over Sn that we consider. We model the noise by a family of distributions Kθ, where each
distribution Kθ is supported on Sn. Here θ is a model parameter capturing the “noise rate” (we will
have much more to say about this for each of the specific noise models we consider below). Given
a fixed noise distribution Kθ, an instance of the population recovery problem is defined by

(a) k unknown weights w1, . . . , wk ≥ 0 such that w1 + . . .+ wk = 1; and

(b) k unknown permutations σ1, . . . , σk ∈ Sn.

Let f : Sn → R≥0 denote the function (distribution) which is wi at σi and 0 otherwise. The
learner gets noisy samples from f where each sample is independently generated by first choosing a
random permutation σ ∼ f ; then independently drawing a random π ∼ Kθ; and finally, providing
the learner with the permutation πσ ∈ Sn. We write “Kθ ∗ f” to denote the distribution over
noisy samples described above, and the goal of the learner is to approximately recover f given
independent noisy samples of the above sort. The reader may verify that the distribution defined by
πσ is precisely given by the group convolution Kθ ∗ f (and hence the notation).

1.1. Motivation

The population recovery framework is a basic one in the theory of distribution learning, and as we
have argued earlier, the framework is able to capture a wide range of problems in unsupervised
learning. Since the domain D = Sn is one of the most fundamental and basic non-commutative

1. (with identical noise parameter)
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domains, it is natural to study the population recovery problem over this domain. In particular, for
the domain D = {0, 1}n, much of the progress to date has been achieved using analytic methods,
in particular methods of discrete Fourier analysis Dvir et al. (2012); Wigderson and Yehudayoff
(2012); Moitra and Saks (2013); Lovett and Zhang (2015); De et al. (2016). Moving to the non-
commutative domain Sn presents many new challenges, but as our results show, it is possible to
adapt various methods of discrete Fourier analysis to the domain Sn using the representation theory
of Sn. This is a topic which has been studied in great depth in algebra and combinatorics (see
e.g. James (2006); Méliot (2017)); we give a gentle introduction to this area in Appendix G.

The non-commutativity of Sn gives rise to some intriguing features of the population recovery
problem over this domain (which are not present over the discrete cube {0, 1}n). In particular, for
the Ewens noise model our upper and lower bounds (Theorem 4 and Theorem 5) together show that
the sample complexity of population recovery at noise rate θ is inversely related to the fractional part
of eθ; hence for Ewens noise the complexity of the population recovery problem is not a monotonic
function of the noise rate θ. This is in sharp contrast to the behavior of the population recovery
problem over the hypercube.

Another motivation for studying the population recovery problem on Sn comes from its con-
nections to the problem of learning mixture models of rankings. To elaborate on this connection,
suppose that there are k subgroups in a population and for each 1 ≤ i ≤ k,

1. the ith subgroup has an unknown “central preference order” specifying a ranking over a fixed
set of n items (equivalently, there is an unknown permutation σi ∈ Sn for the i-th subgroup);

2. the fraction of the ith subgroup in the population is an unknown parameter wi ≥ 0.

Suppose the preference order of a random individual in the ith subgroup is given by a noisy version
of σi. Modeling the noise by the distribution Kθ, the random variable Kθ ∗ f (where f is the
distribution putting weightwi on the permutation σi) is the same as the preference order of a random
individual from the entire population. Thus, the population recovery problem is now the problem
of recovering the central preferences of the subgroups along with their weights in the population.
This problem is known as the task of learning mixtures of ranking models, and is a well-studied
problem in algorithmic machine learning Braverman and Mossel (2008); Awasthi et al. (2014);
Liu and Moitra (2018); Chierichetti et al. (2015). Many different noise models (i.e., choices of Kθ)
have been studied in the literature Mallows (1957); Fligner and Verducci (1986); Mukherjee (2016);
Kondor and Lafferty (2002); Awasthi et al. (2014); Jiao and Vert (2018), including some of the noise
models studied in the current paper. (We note that the noise model that has been most studied in this
context in the machine learning community is is the Mallows noise model Braverman and Mossel
(2008); Awasthi et al. (2014); Liu and Moitra (2018). As we discuss later, our current techniques
are applicable only when the noise model Kθ is a class function; since the Mallows model is not a
class function, our technique does not yield an algorithmic result for mixtures of Mallows models.)

1.2. The noise models that we consider

We consider a range of different noise models, corresponding to different choices for the parametric
family {Kθ}, and we give a single unified algorithm which, for each of the three noise models, can
efficiently recover the population in the presence of that kind of noise. In this subsection we detail
the three specific noise models that we will work with (though as we discuss later, our general mode
of analysis could be applied to other noise models as well).
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(A.) Symmetric noise. In the symmetric noise model, the parametric family of distributions over
Sn is denoted {Sp}p∈∆n . Given a vector p = (p0, . . . , pn) ∈ ∆n (so each pi ≥ 0 and

∑n
i=0 pi = 1),

a draw of π ∼ Sp is obtained as follows:

1. Choose 0 ≤ j ≤ n, where value j is chosen with probability pj .

2. Choose a uniformly random subset A ⊆ [n] of size exactly j. Draw π uniformly from
SA; in other words, π is a uniformly random permutation over the set A and is the identity
permutation on elements in [n] \A. (We denote this uniform distribution over SA by UA.)

Note that in this model, if the noise vector p has pn = 1, then every draw from Sp ∗ f is a uniform
random permutation and there is no useful information available to the learner.

In order to define the next two noise models that we consider, let us recall the notion of a right-
invariant metric on Sn. Such a metric d(·, ·) is one that satisfies d(σ, π) = d(στ, πτ) for all σ, π, τ ∈
Sn. We note that a metric is right-invariant if and only if it is invariant under relabeling of the items
1, . . . , n, and that most metrics considered in the literature satisfy this condition (see Kumar and
Vassilvitskii (2010); Diaconis (1988b) for discussions of this point). In this paper, for technical
convenience we restrict our attention to the metric d(·, ·) being the Cayley distance over Sn (though
see Section 1.6 for a discussion of how our methods and results could potentially be generalized to
other right-invariant metrics):

Definition 1 Let G be the undirected graph with vertex set Sn and an edge between permutations
σ and π if there is a transposition τ such that σ = τ · π. The Cayley distance over Sn is the metric
induced by this graph; in other words, d(π, σ) = t where t is the smallest value such that there are
transpositions τ1, . . . , τt satisfying σ = τ1 · · · τtπ.

Now we are ready to define the next two parameterized families of noise distributions that we
consider. We note that each of the noise distributions K considered below has the natural property
that Prπ∼K[π = π] decreases with d(π, e) where e is the identity distribution.

(B.) Heat kernel random walk under Cayley distance. Let L be the Laplacian of the graph
G from Definition 1. Given a “temperature” parameter t ∈ R+, the heat kernel is the n! × n!
matrix Ht = e−tL. It is well known that Ht is the transition matrix of the random walk induced by
choosing a Poisson-distributed time parameter T ∼ Poi(t) and then taking T steps of a uniform
random walk in the graphG. With this motivation, we define the heat kernel noise model as follows:
the parametric family of distributions is {Ht}t∈R+ , where the probability weight that Ht assigns
to permutation π is the probability that the above-described random walk, starting at the identity
permutation e ∈ Sn, reaches π. (Observe that higher temperature parameters t correspond to higher
rates of noise. More precisely, it is well known that the mixing time of a uniform random walk on
G is Θ(n log n) steps, so if t grows larger than n log n then the distribution Ht converges rapidly
to the uniform distribution on Sn; see Diaconis and Shahshahani (1981) for detailed results along
these lines.) We note that these probability distributions (or more precisely, the associated heat
kernel Ht) have been previously studied in the context of learning rankings, see e.g. Kondor and
Lafferty (2002); Kondor and Barbosa (2010); Jiao and Vert (2018). In some of this work, a different
underlying distance measure was used over Sn rather than the Cayley distance; see our discussion
of related work in Section 1.4.
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(C.) A Mallows-type model under Cayley distance: the Ewens model. While the heat ker-
nel noise model arises naturally from an analyst’s perspective, a somewhat different model, called
the Mallows model, has been more popular in the statistics and machine learning literature. The
Mallows model is defined using the “Kendall τ -distance” K(·, ·) between permutations (defined
in Section 1.4) rather than the Cayley distance d(·, ·); the Mallows model with parameter θ > 0 as-
signs probability weight e−θK(π,e)/ZK(θ) to the permutation π, where Zk(θ) =

∑
π∈Sn e

−θK(π,e)

is a normalizing constant. As proposed by Fligner and Verducci Fligner and Verducci (1986), it
is natural to consider generalizations of the Mallows model in which other distance measures take
the place of the Kendall τ -distance. The model which we consider is one in which the Cayley dis-
tance is used as the distance measure; so given θ > 0, the noise distribution Eθ which we consider
assigns weight e−θd(π,e)/Z(θ) to each permutation π ∈ Sn, where Z(θ) =

∑
π∈Sn e

−θd(π,e) is a
normalizing constant. In fact, this noise model was already proposed in 1972 by W. Ewens in the
context of population genetics Ewens (1972) and has been intensively studied in that field (accord-
ing to Google Scholar, Ewens (1972) has been cited more than 2000 times). We observe that for the
Ewens model Eθ, in contrast with the heat kernel noise model now smaller values of θ correspond
to higher levels of noise, and that when θ = 0 the distribution Eθ is simply the uniform distribution
over Sn and there is no useful information available to the learner.

1.3. Our results

We present a general algorithm which, for each of the noise models defined above, provably re-
covers the unknown permutations σ1, . . . , σk and associated mixing weights w1, . . . , wk up to high
accuracy (under a mild technical assumption, that no mixing weight wi is too small). A notable
feature of our results is that the sample and running time dependence is only quasipolynomial in the
number of elements n and the number of permutations k; as we detail in Section 1.4 below, this is
in contrast with recent results for similar problems in which the dependence on k is exponential.

Below we give detailed statements of the various specific results that follow from our algorith-
mic approach. The following notation and terminology will be used in these statements: for f a
distribution over Sn (or any function from Sn to R) we write supp(f) to denote the set of per-
mutations σ ∈ Sn that have f(σ) 6= 0. For a given noise model K, we write “K ∗ f” to denote
the distribution over noisy samples that is provided to the learning algorithm as described earlier.
Given two functions f, g : Sn → R, we write “‖f − g‖1” to denote

∑
π∈Sn |f(π) − g(π)|, the `1

distance between f and g. If f and g are both distributions then we write dTV(f, g) to denote the
total variation distance between f and g, which is 1

2‖f − g‖1. Finally, if f is a distribution over Sn
in which f(σ) > ε for every σ such that f(σ) > 0, we say that f is ε-heavy.

Learning from noisy permutations: Positive and negative results. Our first algorithmic result
is for the symmetric noise model (A) defined earlier. Theorem 2, stated below, gives an efficient
algorithm as long as the vector p is “not too extreme” (i.e. not too biased towards putting almost all
of its weight on values very close to n):

Theorem 2 (Algorithm for symmetric noise) There is an algorithm with the following guaran-
tee: Let f be an unknown ε-heavy distribution over Sn with |supp(f)| ≤ k. Let p = (p0, . . . , pn) ∈
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∆n be such that2
n−log k∑
j=0

pj ≥
1

nO(log k)
.

Given p, the value of ε > 0, a confidence parameter δ > 0, and access to random samples from
Sp ∗ f , the algorithm runs in time poly(nlog k, 1/ε, log(1/δ)) and with probability 1 − δ outputs a
distribution g : Sn → R such that dTV(f, g) ≤ ε.

Our second algorithmic result, which is similar in spirit to Theorem 2, is for the heat kernel
noise model:

Theorem 3 (Algorithm for heat kernel noise) There is an algorithm with the following guaran-
tee: Let f be an unknown ε-heavy distribution over Sn with |supp(f)| ≤ k. Let t ∈ R+ be any
value that is O(n log n). Given t, the value of ε > 0, a confidence parameter δ > 0, and access
to random samples from Ht ∗ f , the algorithm runs in time poly(nlog k, 1/ε, log(1/δ)) and with
probability 1− δ outputs a distribution g : Sn → R such that dTV(f, g) ≤ ε.

Recalling that the uniform random walk on the Cayley graph of Sn mixes in Θ(n log n) steps,
we see that the algorithm of Theorem 3 is able to handle quite high levels of noise and still run quite
efficiently (in quasi-polynomial time).

Our third positive result, for the Ewens model, displays an intriguing qualitative difference from
Theorems 2 and 3. To state our result, let us define the function dist : R+ × N→ R+ as follows:

dist(θ, `) := min
j∈{1,...,`}

∣∣eθ − j∣∣,
so dist(θ, `) measures the minimum distance between eθ and any integer in {1, . . . , `}. Theorem 4
gives an algorithm which can be quite efficient for the Ewens noise model if the noise parameter θ
is such that dist(θ, log k) is not too small:

Theorem 4 (Algorithm for the Ewens model) There is an algorithm with the following guaran-
tee: Let f be an unknown ε-heavy distribution over Sn with |supp(f)| ≤ k. Given θ > 0, the value
of ε > 0, a confidence parameter δ > 0, and access to random samples from Eθ ∗ f , the algorithm
runs in time poly(nlog k, 1/ε, log(1/δ),dist(θ, log k)−

√
log k) and with probability 1 − δ outputs a

distribution g : Sn → R such that dTV(f, g) ≤ ε.

As alluded to earlier, as θ approaches 0 the difficulty of learning in the Eθ noise model increases
(and indeed learning becomes impossible at θ = 0); since for small θ we have dist(θ, `) ≈ θ, this
is accounted for by the dist(θ, log k)−

√
log k factor in our running time bound above. However, for

larger values of θ the dist(θ, log k)−
√

log k dependence may strike the reader as an unnatural artifact
of our analysis: is it really hard to learn when θ is very close to ln 2 ≈ 0.63147, easy when θ is
very close to ln 2.5 ≈ 0.91629, and hard again when θ is very close to ln 3 ≈ 1.09861? Perhaps
surprisingly, the answer is yes: it turns out that the dist(·, ·) parameter captures a fundamental
barrier to learning in the Ewens model. We establish this by proving the following lower bound for
the Ewens model, which shows that a dependence on dist very similar to the one in Theorem 4 is in
fact inherent in the problem:

2. Here and throughout the paper we write “log” to denote log base two and “ln” to denote natural logarithm.
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Theorem 5 Given j ∈ N, there are infinitely many values of k and m = m(k) such that the
following holds for all η, θ > 0 such that |eθ − j| ≤ η ≤ 1/2: Let A be any algorithm which, when
given access to random samples from Eθ ∗ f where f is a distribution over Sm with |supp(f)| ≤ k,
with probability at least 0.51 outputs a distribution h over Sm that has dTV(f, h) ≤ 0.99. Then A

must use η−Ω
(√

log k
log log k

)
samples.

1.4. Relation to prior work

Population recovery on the discrete cube: As mentioned earlier, at a thematic level this paper
is akin to to the rich body of work on the population recovery problem on the discrete cube Dvir
et al. (2012); Wigderson and Yehudayoff (2012); Moitra and Saks (2013); Lovett and Zhang (2015);
De et al. (2016). Over the discrete cube, the goal of population recovery is to recover an unknown
distribution f : {0, 1}n → R (with support size k), given samples from Tµf , where Tµ(·) is the
Bonami-Beckner operator with correlation µ (a random sample from Tµf is generated by sampling
x ∼ f and flipping every bit independently with probability (1 − µ)/2). De et al. (2016) gave an
algorithm to recover f with sample and time complexity kpoly(1/µ), so the complexity of recovering
f with their algorithm is poly(k) for any µ > 0. In this paper, we obtain an analogue of this result
over Sn, but with a quasipolynomial dependence on the sparsity parameter k. A notable difference
between our setting and {0, 1}n is that for Sn there is no canonical choice of noise operator; rather,
a number of different noise models appear in the literature (depending on the application). Our
techniques are well suited to analyzing noise operators defined by class functions.

Mixture models of rankings: As noted earlier, another motivation for studying the population
recovery problem over Sn comes from learning mixture models of rankings. Here the noise dis-
tribution models how the ordinal preferences of a homogenous population are distributed around a
central preference order. Several noise models have been considered in this context including the
Ewens model (and generalizations of it) Fligner and Verducci (1986); Murphy and Martin (2003);
Mukherjee (2016); Diaconis and Hanlon (1992); Diaconis (1988a); Ewens (1972) and the heat ker-
nel model Kondor and Lafferty (2002); Kondor and Barbosa (2010); Jiao and Vert (2018); the most
popular choice is the Mallows model Mallows (1957). We recall that the Mallows model (with noise
parameter θ, denoted byMθ) is identical to the Ewens model Eθ described earlier, except that the
Cayley distance used in the description of Eθ is replaced by the Kendall-τ distance. While this may
seem like a minor difference, as we explain later the population recovery problem for the Ewens
model Eθ exhibits qualitatively different behavior from the Mallows modelMθ.

The problem of learning mixture of k-Mallows models has been quite popular in learning the-
ory Braverman and Mossel (2008); Awasthi et al. (2014); Liu and Moitra (2018). Mao and Wu
(2020); Liu and Moitra (2018) give algorithms for the population recovery problem with noiseMθ

with running time poly(n, 1/θ) · exp(k)3. Thus, in contrast to the models considered in our paper,
the currently best known algorithms for the population recovery problem with the Mallows noise
distribution have an exponential dependence on the sparsity parameter k.

It is a challenging open problem to extend the analysis in this paper to the population recovery
problem with the Mallows noise distribution (see Section 1.6 for details). Here we note that there
is a sense in which our results show that the Mallows and Ewens models are fundamentally incom-
parable. This is because, while the results of Liu and Moitra (2018) show that mixtures of Mallows

3. The algorithms of Mao and Wu (2020); Liu and Moitra (2018) work in the more general settings where different
components can have different noise parameters.
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models are identifiable whenever each θi 6= 1, Theorem 5 shows that mixtures of Ewens models are
information-theoretically not identifiable at various larger values of θ such as ln 3, ln 4, . . . , even
when all of the noise parameters are the same value θ (which is given to the algorithm).

Inference from marginal information: In Theorem 7, we give an efficient algorithm to recover
a mixture of k permutations given (roughly speaking) all the O(log k)-way marginals. Further,
and crucially for us, getting the marginals to error ε/nlog k suffices to recover f up an `1 error ε.
Motivated by compressive sensing, the broad question of recovering sparse distributions over Sn
from marginals has also been studied in statistics Jagabathula and Shah (2011); Farias et al. (2012);
Chatterjee (2015). A key conceptual innovation in this work is to exploit noisy information about
higher order marginals to recover the underlying sparse distribution over Sn. In contrast, most
previous work either (i) only uses information about pairwise marginals, or (ii) assumes access to
exact higher order marginal information for f . It is an interesting direction to explore how our
techniques can be used in that line of work.

1.5. Our techniques

A key notion for our algorithmic approach is that of the marginal of a distribution f over Sn:

Definition 6 Fix f : Sn → [0, 1] to be some distribution over Sn. Let t ∈ {1, . . . , n}, let ī =
(i1, . . . , it) be a vector of t distinct elements of {1, . . . , n} and likewise j̄ = (j1, . . . , jt). We say
the (̄i, j̄)-marginal of f is the probability

Pr
σ∼f

[σ(i1) = j1 and · · · and σ(it) = jt]

that for all ` = 1, . . . , t, the i`-th element of a random σ drawn from f is j`. When ī and j̄ are of
length t we refer to such a probability as a t-way marginal of f .

The first key ingredient of our approach for learning from noisy permutations is a reduction from
the problem of learning f (the unknown distribution supported on k permutations σ1, . . . , σk) given
access to samples fromK∗f , to the problem of estimating t-way marginals (for a not-too-large value
of t, roughly log k). More precisely, in Section 2 we give an algorithm which, given the ability to
efficiently estimate t-way marginals of f , efficiently computes a high-accuracy approximation for
an unknown ε-heavy distribution f with support size at most k (see Theorem 7). This algorithm
builds on ideas in the population recovery literature, suitably extended to the domain Sn rather than
{0, 1}n.

With the above-described reduction in hand, in order to obtain a positive result for a specific
noise model K the remaining task is to develop an algorithm Amarginal which, given access to noisy
samples from K ∗ f , can reliably estimate the required marginals. In Section 3 we show that if
the noise distribution K (a distribution over Sn) is efficiently samplable, then given samples from
K ∗ f , the time required to estimate the required marginals essentially depends on the minimum,
over a certain set of matrices arising from the Fourier transform (over the symmetric group Sn) of
the noise distribution, of the minimum singular value of the matrix. (See Theorem 8 for a detailed
statement.) At this point, we have reduced the algorithmic problem of obtaining a learning algorithm
for a particular noise model to the analytic task of lower bounding the relevant singular values. We
carry out the required analyses on a noise-model-by-noise-model basis in Sections C, D, and E.
These analyses employ ideas and results from the representation theory of the symmetric group and
its connections to enumerative combinatorics; we review the necessary background in Appendix G.
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To establish our lower bound for the Ewens model, Theorem 5, we exhibit two distributions
f1 and f2 over the symmetric group such that the distributions of noisy permutations Eθ ∗ f1 and
Eθ ∗ f2 have very small statistical distance from each other. Not surprisingly, the inspiration for
this construction also comes from the representation theory of the symmetric group; more precisely,
the two above-mentioned distributions are obtained from the character (over the symmetric group)
corresponding to a particular carefully chosen partition of [n]. A crucial ingredient in the proof is the
fact that characters of the symmetric group are rational-valued functions, and hence any character
can be split into a positive part and a negative part; details are given in Appendix F.

Finally, we note that whereas some of the earlier results in the literature (such as Awasthi et al.
(2014); Braverman and Mossel (2008)) only use 2-way or 3-way marginals of the samples, our
approach uses (log k)-way marginals. This is not an artifact of our approach but rather is inherent
in the problem we consider (learning mixtures of k permutations); this is because it is possible to
construct two distributions f1 and f2 over permutations, with disjoint supports each of size at most
k, such that all t = Θ̃(log k)-way marginals of f1 and f2 are identical. (This is an easy consequence
of the result of Kuperberg et al. (2017) showing the existence of small t-wise permutation families.)
Thus, using (log k)-way marginals is essentially necessary to recover mixtures of k permutations.
Indeed, the early results such as Awasthi et al. (2014); Braverman and Mossel (2008) seek only to
recover a single hidden permutation or a mixture of two permutations.

1.6. Discussion and future work

In this paper we consider three particular noise models — symmetric noise, heat kernel noise, and
Ewens noise — and give an efficient algorithm for these noise models. Looking beyond these
specific noise models, though, our approach provides a general framework for obtaining algorithms
for learning mixtures of noisy permutations. Indeed, for essentially any efficiently samplable noise
distribution K, given access to samples from K ∗ f our approach reduces the algorithmic problem
of learning f to the analytic problem of lower bounding the minimum singular values of matrices
arising from the Fourier transform of K (see Theorem 8). We believe that this technique may be
useful in a broader range of contexts, e.g. to obtain results analogous to ours for the original Mallows
model or for other noise models.

As is made clear in Sections C, D, and E, the representation-theoretic analysis that we require
for our noise models is facilitated by the fact that each of the noise distributions considered in those
sections is a class function (in other words, the value of the distribution on a given input permutation
depends only on the cycle structure of the permutation). There are other models, most prominently
the Mallows model, for which the noise distribution is not a class function. Extending the kinds
of analyses that we perform to other noise distributions which are not class functions is a technical
challenge that we leave for future work.

Finally, another natural question is whether our framework can be adapted to handle mixture
models in which each component has a different noise rate. Roughly speaking, the difficulty which
arises is that in this more general setting it is no longer possible to express the samples from the
mixture model as K ∗ f (i.e., the noise process and the draw from f are no longer independent).
Given this, we cannot use our Claim 17, which shows that samples from the mixture model can be
used to efficiently yield certain representations of f which in turn yields marginals of f . Whether
our results or approaches can extended to the setting in which different mixture components have
different noise rates is an intriguing question for future work.

9
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2. Algorithmic recovery of sparse functions

The main result of this section is the reduction alluded to in Section 1.5. In more detail, we give
an algorithm which, given the ability to efficiently estimate t-way marginals, efficiently computes a
high-accuracy approximation for an unknown ε-heavy distribution f with support size at most k:

Theorem 7 Let f be an unknown ε-heavy distribution over Sn with |supp(f)| ≤ k. Suppose there
is an algorithm Amarginal with the following property: given as input a value δ > 0 and two vectors
ī = (i1, . . . , it) and j̄ = (j1, . . . , jt) each composed of t distinct elements of {1, . . . , n}, algorithm
Amarginal runs in time T (δ, t, k, n) and outputs an additively ±δ-accurate estimate of the (̄i, j̄)-
marginal of f (recall Definition 6). Then there is an algorithm Alearn with the following property:
given the value of ε, algorithmAlearn runs in time poly(n/ε, nlog k) ·T ( ε

2kO(log k) , 2 log k, k2, n) and
returns a function g : Sn → R+ such that ‖f − g‖1 ≤ ε.

Because of space constraints the proof of Theorem 7 is given in Appendix A. Given Theorem 7,
in order to obtain a positive result for a specific noise model K the remaining task is to develop
an algorithm Amarginal which, given access to noisy samples from K ∗ f , can reliably estimate the
required marginals. The algorithm is given in Section 3 (with its proof in Appendix B) and the
detailed analyses establishing its efficiency for each of the noise models (by bounding minimum
singular values of certain matrices arising from each specific noise distribution) are given in Sec-
tions C, D, and E. To the best of our knowledge, the algorithmAlearn of Theorem 7 has not appeared
in earlier work, though, as we mention later, it is quite similar to the algorithm of Wigderson-
Yehudayoff Wigderson and Yehudayoff (2012) for the population recovery problem over {0, 1}n.
At a higher level, our algorithm uses a so-called “extend and prune” approach which can be traced
back to early works in computational learning theory Kushilevitz and Mansour (1993); Goldreich
and Levin (1989).

3. Computing limited way marginals from noisy samples

Recall that the noisy ranking learning problems we consider are of the following sort: There
is a known noise distribution K supported on Sn, and an unknown k-sparse ε-heavy distribution
f : Sn → [0, 1]. Each sample provided to the learning algorithm is generated by the following
probabilistic process: independent draws of π ∼ K and σ ∼ f are obtained, and the sample given
to the learner is (πσ) ∈ Sn. By the reduction established in Theorem 7, in order to give an algorithm
that learns the distribution f in the presence of a particular kind of noise K, it suffices to give an
algorithm that can efficiently estimate t-way marginals given samples πσ ∼ K ∗ f.

The main result of this section, Theorem 8, gives such an algorithm. Before stating the theorem
we need some terminology and notation and we need to recall some necessary background from
representation theory of the symmetric group (see Appendix G for a detailed overview of all of the
required background).

First, let K be a distribution over Sn (which should be thought of as a noise distribution as
described earlier). We say that K is efficiently samplable if there is a poly(n)-time randomized
algorithm which takes no input and, each time it is invoked, returns an independent draw of π ∼ K.

Next, we recall that a partition λ of the natural number n (written “λ ` n”) is a vector of natural
numbers (λ1, . . . , λk) where λ1 ≥ λ2 ≥ . . . ≥ λk > 0 and λ1 + . . . + λk = n (see Appendix G.2
for more detail). For two partitions λ and µ of n, we say that µ dominates λ, written µ � λ, if

10
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∑
j≤i µj ≥

∑
j≤i λj for all i > 0 (see Definition 41). Given any λ ` n, let Up(λ) denote the set of

all partitions µ ` n such that µ� λ.
We recall that a representation of the symmetric group Sn is a group homomorphism from Sn

to Cm×m (see Appendix G). We further recall that for each partition λ ` n there is a corresponding
irreducible representation, denoted ρλ (see Appendix G.2). For a matrix M we write σmin(M) to
denote the smallest singular value of M . Given a partition λ ` n we define the value σmin,Up(λ),K
to be

σmin,Up(λ),K := min
µ∈Up(λ)

σmin(K̂(ρµ)), (1)

the smallest singular value across all Fourier coefficients of the noise distribution of irreducible
representations corresponding to partitions that dominate λ. (We recall that the Fourier coefficients
of functions over the symmetric group, and indeed over any finite group, are matrices; see Ap-
pendix G.2.)

Finally, for 0 ≤ ` ≤ n− 1 we define the partition λhook,` ` n to be

λhook,` := (n− `, 1, . . . , 1).

Now we can state the main result of this section:

Theorem 8 Let K be an efficiently samplable distribution over Sn. Let f be an unknown distribu-
tion over Sn. There is an algorithm Amarginal with the following properties: Amarginal receives as
input a parameter δ > 0, a confidence parameter τ > 0, a pair of `-tuples ī = (i1, . . . , i`) ∈ [n]`,
j̄ = (j1, . . . , j`) ∈ [n]` each composed of ` distinct elements, and has access to random samples
fromK∗f . AlgorithmAmarginal runs in time poly(

(
n
`

)
, δ−1, σ−1

min,Up(λhook,`),K, log(1/τ)) and outputs

a value κi,j which with probability at least 1− τ is a ±δ-accurate estimate of the (i, j)-marginal of
f .

Because of space constraints we give the proof of Theorem 8 in Appendix B.

3.1. Efficient samplability of our noise distributions

In order to apply Theorem 8 to a particular noise distribution K we need to confirm that K is
efficiently samplable; we now do this for each of the three noise models that we consider. It is
immediate from the definition that it is straightforward (given p ) to efficiently generate a random
σ drawn from the symmetric noise distribution Sp, and the same is true for the heat kernel noise
distributionHt.

For the Ewens model Eθ, the characterization Prσ∼Eθ [σ = π] = e−θd(π,e)/Z(θ) given earlier
does not directly yield an efficient sampling algorithm, since it may be hard to compute or approx-
imate the normalizing factor Z(θ) =

∑
π∈Sn e

−θd(π,e). Instead, we recall (see e.g. Section 2.1 of
Diaconis and Saloff-Coste (1998)) that the Metropolis algorithm can be used to efficiently perform
a random walk on Sn whose unique stationary distribution is the Ewens distribution Eθ. (Each step
of the random walk can be carried out efficiently because it is computationally easy to compute the
Cayley distance between two permutations: if π is the permutation that brings σ to τ , then the Cay-
ley distance d(σ, τ) is n−cycles(π) where cycles(π) is the number of cycles in π.) It is known (see
e.g. Theorem 2 of Diaconis and Hanlon (1992)) that this random walk has rapid convergence, and
consequently it is indeed possible to sample efficiently from Eθ (up to an exponentially small statis-
tical distance which can be ignored in our applications since our algorithms use a sub-exponential
number of samples).

11
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4. Representations of heat kernel, symmetric, and Ewens model noise

In this section we record lower bounds on the smallest singular value for the relevant matrices
corresponding to “symmetric noise” Sp on Sn; to “heat kernel noise” Ht at temperature parameter
t; and to “Ewens model noise” Eθ with parameter θ. Proofs of these lower bounds are given in
Appendix C, Appendix D, and Appendix E respectively.

Theorem 9 (Symmetric noise) Let ` ∈ {1, . . . , n} and let p = (p0, . . . , pn) ∈ ∆n (i.e. p is a
non-negative vector whose entries sum to 1) which is such that

n−∑̀
j=0

pj ≥ κ.

Then (recalling Equation (1)) we have that

σmin,Up(λhook,`),Sp ≥
κ

n`
. (2)

Theorem 10 (Heat kernel noise) Let t ≥ 1 and let ` ∈ {1, . . . , cn} for some suitably small uni-
versal constant c > 0. Then (recalling Equation (1)) we have that

σmin,Up(λhook,`),Ht ≥
1

2
· e−O(`t)/n. (3)

Theorem 11 (Ewens model noise) Let θ > 0, let ` ∈ {1, . . . , n}, and let η := dist(θ, `) =
minj∈{1,...,`}

∣∣eθ − j∣∣. Then (recalling Equation (1)) we have that

σmin,Up(µhook,`),Eθ ≥ (2n)−`η2
√
`. (4)

5. Our positive results for noisy rankings: Putting the pieces together

In this brief section we put all the pieces together to obtain our main positive results, Theorems 2, 3
and 4, for the symmetric, heat kernel, and Ewens noise models respectively.

Symmetric noise. Under the assumptions of Theorem 2 (that
∑n−log k

j=0 pj ≥ 1
nO(log k) ), taking

` = log k in Theorem 9, we have that σmin,Up(λhook,log k),Sp ≥
1

nO(log k) . Since (as discussed in Sec-
tion 3.1) Sp is efficiently samplable given p, by Theorem 8 in time poly(nlog k, 1/δ, log(1/τ)) with
probability 1 − τ it is possible to obtain ±δ-accurate estimates of all of the (log k)-way marginals
of f . Setting δ = ε

2kO(log k) and applying Theorem 7, we get Theorem 2.

Heat kernel noise. First observe that we may assume that the temperature parameter t is at
least 1 (since otherwise it is easy to artificially add noise to achieve t = 1). Under the as-
sumptions of Theorem 3 (that t = O(n log n)), taking ` = log k in Theorem 10, we have that
σmin,Up(λhook,log k),Ht ≥

1
nO(log k) . Theorem 3 follows as in the previous paragraph (this time using

the efficient samplability ofHt given t).

Ewens noise. Under the assumptions of Theorem 4, taking ` = log k in Theorem 11 we get
that σmin,Up(λhook,log k),Eθ ≥

1
nO(log k) · dist(θ, log k)2

√
log k. Theorem 4 follows as in the previous

paragraph (this time using the efficient samplability of Eθ given θ).
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Appendix A. Proof of Theorem 7

We recall the statement of Theorem 7:

Theorem 12 (Restatement of Theorem 7) Let f be an unknown ε-heavy distribution over Sn
with |supp(f)| ≤ k. Suppose there is an algorithm Amarginal with the following property: given
as input a value δ > 0 and two vectors ī = (i1, . . . , it) and j̄ = (j1, . . . , jt) each composed
of t distinct elements of {1, . . . , n}, algorithm Amarginal runs in time T (δ, t, k, n) and outputs an
additively ±δ-accurate estimate of the (̄i, j̄)-marginal of f (recall Definition 6). Then there is
an algorithm Alearn with the following property: given the value of ε, algorithm Alearn runs in
time poly(n/ε, nlog k) · T ( ε

2kO(log k) , 2 log k, k2, n) and returns a function g : Sn → R+ such that
‖f − g‖1 ≤ ε.

A.1. A useful structural result

The following structural result on functions from Sn toR with small support will be useful for us:

Theorem 13 (Small-support functions are correlated with juntas) Fix 1 ≤ ` ≤ n and let g :
[n]` → R be such that ‖g‖1 = 1 and |supp(g)| ≤ k. There is a subset U ⊆ [n] and a list of values
α1, . . . , α|U | ∈ [n] such that |U | ≤ log k and∣∣∣∣∣∣

∑
x∈[n]`

g(x) · 1[xi = αi for all i ∈ U ]

∣∣∣∣∣∣ ≥ k−O(log k). (5)

Theorem 13 is reminiscent of analogous structural results for functions over {0, 1}` which are
implicit in the work of Wigderson and Yehudayoff (2012) (specifically, Theorem 1.5 of that work),
and indeed Theorem 13 can be proved by following the techniques of Wigderson and Yehudayoff
(2012). Michael Saks Saks (2018) has communicated to us an alternative, and arguably simpler,
argument for the relevant structural result over {0, 1}`; here we follow that alternative argument
(extending it in the essentially obvious way to the domain [n]` rather than {0, 1}`).
Proof Let the support of g be S ⊆ [n]`. Note that since |S| ≤ k, there must exist some set
of k′ := min{k, `} coordinates such that any two elements of S differ in at least one of those
coordinates. Without loss of generality, we assume that this set is the first k′ coordinates {1, . . . , k′}.

We prove Theorem 13 by analyzing an iterative process that iterates over the coordinates 1, . . . , k′.
At the beginning of the process, we initialize a set Coordlive of “live coordinates” to be [k′], ini-
tialize a set Constr of constraints to be initially empty, and initialize a set Slive ⊆ [n]` of “live
support elements” to be the entire support S of g. We will see that the iterative process maintains
the following invariants:

(I1) The coordinates in Coordlive are sufficient to distinguish between the elements in Slive, i.e. any
two distinct strings in Slive have distinct projections onto the coordinates in Coordlive;

(I2) The only elements of S that satisfy all the constraints in Constr are the elements of Slive.

Before presenting the iterative process we need to define some pertinent quantities. For each
coordinate j ∈ Coordlive and each index α ∈ [n], we define

Wt(j, α) :=
∑

x∈Slive:xj=α

|g(x)|,
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the weight under g of the live support elements x that have xj = α, and we define

Num(j, α) := |{x ∈ Slive : xj = α}|,

the number of live support elements x that have xj = α (note that Num(j, α) has nothing to do with
the specific values of the weights assigned by g). It will also be useful to have notation for fractional
versions of each of these quantities, so we define

FracWt(j, α) :=
Wt(j, α)∑
x∈Slive

|g(x)|
. and Frac(j, α) :=

Num(j, α)

|Slive|

Note that for any j ∈ Coordlive we have that
∑

αNum(j, α) = |Slive|, or equivalently
∑

α Frac(j, α) =
1.

For each coordinate j ∈ Coordlive, we write MAJ(j) to denote the element β ∈ [n] which
is such that Num(j, β) ≥ Num(j, α) for all α ∈ [n] (we break ties arbitrarily). Finally, we let
FracWtMaj(j) = FracWt(j,MAJ(j)).

Now we are ready to present the iterative process:

1. If every j ∈ Coordlive has FracWtMaj(j) > 1 − 1
10k′

4, then halt the process. Otherwise, let
j be any element of Coordlive for which FracWtMaj(j) ≤ 1− 1

10k′ .

2. For this coordinate j, choose α ∈ [n] which maximizes the ratio FracWt(j,α)
Frac(j,α) (or equivalently,

maximizes FracWt(j,α)
Num(j,α) ) subject to Frac(j, α) 6= 0 and α 6= MAJ(j).

3. Add the constraint xj = α to Constr, remove j from Coordlive, and remove all x such that
xj 6= α from Slive. Go to Step 1.

When the iterative process ends, suppose that the set Constr is {xj1 = α1, . . . , xj` = α`}.
Then we claim that Equation (5) holds for U = {j1, . . . , j`}.

To argue this, we first observe that both invariants (I1) and (I2) are clearly maintained by each
round of the iterative process. We next observe that each time a pair (j, α) is processed in Step 3, it
holds that Frac(j, α) ≤ 1

2 , and hence each round shrinks Slive by a factor of at least 2. Thus, after
log k steps, the set Slive must be of size at most 1 and hence the process must halt. (Note that the
claimed bound |U | ≤ log k follows from the fact that the process runs for at most log k stages.)

Next, note that when the process halts, by a union bound over the at most k′ coordinates in
Coordlive it holds that ∑

x∈Slive:xj=MAJ(j) for all j∈Coordlive

|g(x)| ≥ 9

10
·
∑
x∈Slive

|g(x)|.

On the other hand, by the first invariant (I1), the cardinality of the set {x ∈ Slive : xj = MAJ(j) for
all j ∈ Coordlive} is precisely 1. This immediately implies that almost all of the weight of g, across
elements of Slive, is on a single element; more precisely, that∣∣∣∣∣∣

∑
x∈Slive

g(x)

∣∣∣∣∣∣ ≥ 4

5
·
∑
x∈Slive

|g(x)|,

4. Note that this means almost all of the weight under g of the live support elements is on elements that all agree with
the majority value on coordinate j. Note further that if Coordlive is empty then this condition trivially holds.
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from which it follows that∣∣∣∣∣∣
∑
x∈[n]`

g(x) · 1[xi = αi for all i ∈ U ]

∣∣∣∣∣∣ ≥ 4

5
·
∑
x∈Slive

|g(x)|. (6)

So to establish Equation (5), it remains only to establish a lower bound on
∑

x∈Slive
|g(x)| when

the process terminates. To do this, let us suppose that the process runs for T steps where in the tth

step the coordinate chosen is jt. Now, at any stage t, we have∑
β∈[n]:β 6=MAJ(jt)

FracWt(jt, β)∑
β∈[n]:β 6=MAJ(jt)

Frac(jt, β)
≥ 1

10k′
.

(because the denominator is at most 1 and since the process does not terminate, the numerator is at
least 1

10k ). As a result, we get that if the constraint chosen at time t is xjt = αt, then

FracWt(jt, αt)

Frac(jt, αt)
≥ 1

10k′
. (7)

By Equation (7), when the process halts we have

∑
x∈Slive

|g(x)| =
T∏
t=1

FracWt(jt, αt) ≥
1

(10k′)T

T∏
t=1

Frac(jt, αt).

But since at least one element remains, we have that
∏T
t=1 Frac(jt, αt) ≥

1
k , and since T ≤ log k,

we conclude (recalling that k′ ≤ k) that∑
x∈Slive

|g(x)| ≥ k−O(log k).

Combining with (6), this yields the claim.

A.2. Proof of Theorem 12

The idea of the proof is in the spirit of the algorithmic component of several recent works on pop-
ulation recovery Moitra and Saks (2013); Wigderson and Yehudayoff (2012); Lovett and Zhang
(2015); De et al. (2016). Given any function f : Sn → R and any integer i ∈ {1, . . . , n}, we define
the function fi : [n]i → R as follows:

fi(x1, . . . , xi) :=
∑
σ∈Sn

f(σ) · 1[σ(1) = x1 ∧ . . . ∧ σ(i) = xi]. (8)

At a high level, the algorithm Alearn of Theorem 12 works in stages, by successively recon-
structing f0, . . . , fn. In each stage it uses the procedure described in the following claim, which
says that high-accuracy approximations of the (log k)-marginals together with the support of f` (or
a not-too-large superset of it) suffices to reconstruct f`:
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Claim 14 Let f` be an unknown distribution over [n]` supported on a given set S of size k. There
is an algorithm Aone−stage which has the following guarantee: The algorithm is given as input the
set S, δ > 0, and parameters βJ,y (for every set J ⊆ [`] of size at most log k and every y ∈ [n]J )
which satisfy ∣∣∣∣∣βJ,y −∑

x∈S
f(x) · 1[xi = yi for all i ∈ J ]

∣∣∣∣∣ ≤ δ.
Aone−stage runs in time poly(n, `log k) and outputs a function f̃ : [n]` → [0, 1] such that ‖f− f̃‖1 ≤
δ · kO(log k).

Proof We consider a linear program which has a variable sx for each x ∈ S (representing the
probability that f puts on x) and is defined by the following constraints:

1. sx ≥ 0 and
∑

x∈S sx = 1.

2. For each J ⊆ [`] of size at most log k and each y ∈ [n]J , include the constraint∣∣∣∣∣βJ,y −∑
x∈S

sx · 1[xi = yi for all i ∈ J ]

∣∣∣∣∣ ≤ δ. (9)

Algorithm Aone−stage sets up and solves the above linear program (this can clearly be done in time
poly(n, `log k)). We observe that the linear program is feasible since by definition sx = f`(x) is a
feasible solution. To prove the claim it suffices to show that every feasible solution is `1-close to f`;
so let f∗(x) denote any other feasible solution to the linear program, and let η denote ‖f∗ − f`‖1.
Define h(x) = f∗(x)− f`(x), so ‖h‖1 = η. By Theorem 13, we have that there is a subset J ⊆ [`]
of size at most log k and a y ∈ [n]` such that∣∣∣∣∣∑

x

h(x) · 1[xi = yi for all i ∈ J ]

∣∣∣∣∣ ≥ η · k−O(log k). (10)

On the other hand, since both f`(x) and f∗(x) are feasible solutions to the linear program, by the
triangle inequality it must be the case that∣∣∣∣∣∑

x

h(x) · 1[xi = yi for all i ∈ J ]

∣∣∣∣∣ ≤ 2δ. (11)

Equations 10 and A.2 together give the desired upper bound on η, and the claim is proved.

Essentially the only remaining ingredient required to prove Theorem 12 is a procedure to find (a
not-too-large superset of) the support of f . This is given by the following claim, which inductively
uses the algorithmAone−stage to successively construct suitable (approximations of) the support sets
for f1, . . . , fn.

Claim 15 Under the assumptions of Theorem 12, there is an algorithm Asupport with the follow-
ing property: given as input a value δ > 0, algorithm Asupport runs in time poly(n/ε, nlog k) ·
T ( ε

2kO(log k) , 2 log k, k2, n) and for each ` = 1, . . . , n outputs a set S′(`) of size at most k which
contains the support of f`.
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Proof The algorithm Asupport works inductively, where at the start of stage ` (in which it will
construct the set S′(`)) it is assumed to have a set S′(`−1) with |S′(`−1)| ≤ k which contains the
support of f`−1. (Note that at the start of the first stage ` = 1 this holds trivially since f0 trivially
has empty support).

Let us describe the execution of the `-th stage of Asupport. For 1 ≤ ` ≤ n, we define the set
Smarg,` as follows:

Smarg,` =
{
t :
∑
σ∈Sn

f(σ) · 1[σ(`) = t] > 0
}
.

Observe that in time poly(n/ε) · T ( ε4 , 1, k, n), we can compute f(σ) · 1[σ(`) = t] up to error ±ε/4
(denote this estimate by β`,t) for all 1 ≤ t ≤ n. Since f is ε-heavy, we have that

t ∈ Smarg,` implies β`,t ≥
3ε

4
and t 6∈ Smarg,` implies β`,t ≤

ε

4
.

Consequently, we can compute the set Smarg,` in time poly(n/ε)·T ( ε4 , 1, k, n). The final observation
is that the set S∗(`) (of cardinality at most k2) obtained by appending each final `-th character from
Smarg,` to each element of S′(`−1) must contain the support S(`) of f`. Set δ = ε

2kO(log k) ; by the
assumption of Theorem 12, in time T ( ε

2kO(log k) , 2 log k, k2, n) it is possible to obtain additively±δ-
accurate estimates of each of the (2 log k)-way marginals of f`. In the `-th stage, algorithmAsupport

runs Aone−stage using S∗(`) and these estimates of the marginals; by Theorem 14, this takes time

poly(n/ε, nlog k) and yields a function f̃` : [n]` → [0, 1] such that ‖f`−f̃`‖1 ≤ δ
2kO(log k) ·kO(log k) =

ε/4. Since by assumption f is ε-heavy, it follows that any element x in the support of f̃` such that
f̃`(x) ≤ ε/4 must not be in the support of f`; so the algorithm removes all such elements x from
S∗(`) to obtain the set S′(`). This resulting S′(`) is precisely the support of f`, and is clearly of size at
most k.

Finally, the overall algorithm Alearn works by running Asupport to get the set S′ = S′(n) of
size at most k which is the support of fn = f , and then uses S′ and the algorithm Amarginal from
the assumptions of Theorem 12) to run algorithm Aone−stage and obtain the required ε-accurate
approximator g of f . This concludes the proof of Theorem 12.

Appendix B. Proof of Theorem 8

We recall the statement of Theorem 8:

Theorem 16 (Restatement of Theorem 8) Let K be an efficiently samplable distribution over
Sn. Let f be an unknown distribution over Sn. There is an algorithm Amarginal with the follow-
ing properties: Amarginal receives as input a parameter δ > 0, a confidence parameter τ > 0,
a pair of `-tuples ī = (i1, . . . , i`) ∈ [n]`, j̄ = (j1, . . . , j`) ∈ [n]` each composed of ` dis-
tinct elements, and has access to random samples from K ∗ f . Algorithm Amarginal runs in time
poly(

(
n
`

)
, δ−1, σ−1

min,Up(λhook,`),K, log(1/τ)) and outputs a value κi,j which with probability at least

1− τ is a ±δ-accurate estimate of the (i, j)-marginal of f .

We will use the following claim to prove Theorem 16:
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Claim 17 Let ρ : Sn → Cm×m be any unitary representation of Sn, let K be any efficiently
samplable distribution over Sn, and let σmin denote the smallest singular value of K̂(ρ). Let f be
an unknown distribution over Sn. There is an algorithm which, given random samples from K ∗ f
and an error parameter 0 < δ < 1, runs in time poly(m,n, σ−1

min, δ
−1) and with high probability

outputs a matrix Mf,ρ such that ‖Mf,ρ − f̂(ρ)‖ ≤ δ.

Proof Let η1, η2 > 0 denote two error parameters that will be fixed later. Since f is a distribu-
tion, the Fourier coefficient f̂(ρ) is equal to Eσ∼f [ρ(σ)]. Consequently, since K is assumed to
be efficiently samplable and the algorithm is given samples from K ∗ f , by sampling from K and
fromK∗f it is straightforward to obtain matricesM1,M2 in time poly(m,n, log(1/τ)) which with
probability 1− τ satisfy

‖M1 − K̂(ρ)‖2 ≤ η1 and ‖M2 − K̂ ∗ f(ρ)‖2 ≤ η2.

Now we recall the following matrix perturbation inequality (see Theorem 2.2 of Stewart (1977)):

Lemma 18 Let A ∈ Rn×n be a non-singular matrix and further let ∆A ∈ Rn×n be such that
‖∆A‖2 · ‖A−1‖2 < 1. Then A+ ∆A is non-singular. Further, if γ = 1− ‖A−1‖2‖∆A‖2, then

‖A−1 − (A+ ∆A)−1‖2 ≤
‖A−1‖22‖∆A‖2

γ
.

Let us now set the error parameters η1 and η2 as follows (recall that δ < 1):

η1 = min
{δ · σ2

min

4
,
δ · σmin

4

}
and η2 = min{δ · σmin

4
, 1}. (12)

Applying Lemma 18 with K̂(ρ) in place of A and M1 − K̂(ρ) in place of ∆A, using (12) (more
precisely, the upper bound η1 ≤ δ · σ2

min/4 in the numerator and the upper bound η1 ≤ δ · σmin/4
in the denominator) we get that

‖M−1
1 − K̂(ρ)−1‖2 ≤

‖K̂(ρ)−1‖22 · ‖M1 − K̂(ρ)‖2
1− ‖K̂(ρ)−1‖2 · ‖M1 − K̂(ρ)‖2

≤ δ

3
. (13)

Now using K̂ ∗ f(ρ) = K̂(ρ) · f̂(ρ), we get

‖M−1
1 ·M2 − f̂(ρ)‖2 = ‖M−1

1 ·M2 − K̂(ρ)−1 · K̂ ∗ f(ρ) · ‖2
≤ ‖M−1

1 ·M2 −M−1
1 · K̂ ∗ f(ρ)‖2 + ‖M−1

1 · K̂ ∗ f(ρ)− K̂(ρ)−1 · K̂ ∗ f(ρ)‖2
≤ ‖M−1

1 ‖2 · ‖M2 − K̂ ∗ f(ρ)‖2 + ‖M−1
1 − K̂(ρ)−1‖2 · ‖K̂ ∗ f(ρ)‖2

≤ ‖M−1
1 ‖2 · η2 + ‖K̂ ∗ f(ρ)‖2 ·

δ

3
. (using (13))

≤ η2

(
‖K̂(ρ)−1‖2 + ‖M−1 − K̂(ρ)−1‖2

)
+ ‖K̂ ∗ f(ρ)‖2 ·

δ

3
. (using (13))

≤ σ−1
min · η2 +

δ

3
· η2 + ‖K̂ ∗ f(ρ)‖2 ·

δ

3
. (14)

Next we use the following fact, which is an easy consequence of the triangle inequality and the
assumption that ρ is unitary:
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Fact 19 Let ρ : Sn → Cm×m be a unitary representation and let g : Sn → R+. Then we have
that ‖ĝ(ρ)‖2 ≤ ‖g‖1.

Combining this fact with (14) and (12), since ‖K ∗ f‖1 = 1, we get that

‖M−1
1 ·M2 − f̂(ρ)‖2 ≤ σ−1

min · η2 +
δ

3
· η2 +

δ

3
≤ δ

4
+
δ

3
+
δ

3
< δ.

This concludes the proof of Claim 17.

With Theorem 17 in hand we are ready to prove Theorem 16:

Proof of Theorem 16. Let τλhook,` be the permutation representation corresponding to the partition
λhook,`; for conciseness we subsequently write ρ for τλhook,` . Definition 40 immediately gives that the
dimension of ρ is

(
n
`

)
. Observe that ρ is a unitary representation. Let σmin denote the smallest sin-

gular value of K̂(ρ); applying Theorem 17, we get an algorithm running in time poly(
(
n
`

)
, σ−1

min, δ)

which outputs a matrix Mf,ρ such that ‖Mf,ρ − f̂(ρ)‖ ≤ δ. Next, we observe that the Young
tableaux corresponding to the partition λhook,` (which, recalling Definition 40, index the rows and
columns of ρ(·)) correspond precisely to ordered t-tuples of distinct entries of [n]. If Yλhook,`,i = i

and Yλhook,`,j = j, then it follows that

f̂(ρ)(i, j) =
∑
σ∈Sn

f(σ) · 1[f(i1) = j1 and · · · and f(i`) = j`)],

which is the (i, j)-marginal of f as desired; so the output of the algorithm is Mf,ρ(i, j).
To finish the correctness argument it remains only to argue that σ−1

min is at most poly(σ−1
min,Up(λhook,`)

).

To see that this is indeed, the case, we observe that by Theorem 42, the permutation representation
τλhook,` block diagonalizes into a direct sum of irreducible representations ρµ where each µ belongs
to Up(λhook,`). This finishes the proof of Theorem 16.

Appendix C. Representations of symmetric noise

In this section we establish lower bounds on the smallest singular value for the relevant matrices
corresponding to “symmetric noise” Sp on Sn. In more detail, the main result of this section is the
following lower bound:

Theorem 20 (Symmetric noise - Restatement of Theorem 9) Let ` ∈ {1, . . . , n} and let p =
(p0, . . . , pn) ∈ ∆n (i.e. p is a non-negative vector whose entries sum to 1) which is such that

n−∑̀
j=0

pj ≥ κ.

Then (recalling Equation (1)) we have that

σmin,Up(λhook,`),Sp ≥
κ

n`
. (15)
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C.1. Setup

To analyze the smallest singular value of Ŝp(ρµ) (as required by the definition of σmin,Up(λhook,`),Sp),
we start by observing that symmetric noise is a class function (meaning that it is invariant under
conjugation, see Definition 36):

Claim 21 For any vector p = (p0, . . . , pn) ∈ ∆n, the distribution Sp (viewed as a function from
Sn to [0, 1]) is a class function ( i.e. Sp(π) = Sp(τπτ−1) for every π, τ ∈ Sn).

Proof For 0 ≤ j ≤ n, let ej denote the vector inRn+1 which has a 1 in the j-th position and a 0 in
every other position. By linearity, to prove Claim 21 it suffices to prove that Sej is invariant under
conjugation for every j; to establish this, it suffices to show that Sej is invariant under conjugation
by any transposition τ . By symmetry, it suffices to consider the transposition τ = (1, 2).

We observe that Sej is a uniform average of UA over all
(
n
j

)
subsets A of [n] of size exactly

j. Now we consider two cases: the first is that |A ∩ {1, 2}| is 0 or 2. In this case it is easy to see
that UA does not change under conjugation by the transposition (1, 2). The remaining case is that
|A ∩ {1, 2}| = 1; in this case it is easy to see that conjugation by (1, 2) converts UA into UA∆{1,2}.
Since the collection of size-j sets A with A ∩ {1, 2} = {1} are in 1-1 correspondence with the
collection of size-j sets A with A ∩ {1, 2} = {2}, it follows that Sej is invariant under conjugation
by τ = (1, 2), and the proof is complete.

Before stating the next lemma we remind the reader that for partitions µ ` m,λ ` n where
m ≤ n, we write Paths(µ, λ) to denote the number of paths from µ to λ in Young’s lattice (see Ap-
pendix G.2 and Theorem 45). We write Trivj to denote the trivial partition (j) of j.

Lemma 22 Let λ ` n and let ρλ be the corresponding irreducible representation of Sn. Given
p = (p0, . . . , pn) ∈ ∆n, we have that

Ŝp(ρλ) = c(p, λ) · Id where c(p, λ) :=

∑n
j=0 pj · Paths(Trivj , λ)

dim(ρλ)
. (16)

Proof By Claim 21, we have that Sp is a class function, so we may apply Lemma 39 to conclude
that

Ŝp(ρλ) = c(p, λ) · Id,

where

c(p, λ) =
1

dim(ρλ)
·
( ∑
σ∈Sn

Sp(σ) · χλ(σ)

)
and χλ denotes the character of the irreducible representation ρλ. Thus it remains to show that∑

σ∈Sn Sp(σ) · χλ(σ) is equal to the numerator of Equation (16). By definition of Sp, we have that∑
σ∈Sn

Sp(σ) · χλ(σ) =
∑

0≤j≤n
pj E
A:|A|=j

E
σ∈UA

χλ(σ). (17)

We proceed to analyze Eσ∈UA χλ(σ). Let ρAλ denote the representation ρλ restricted to the sub-
group SA. By Theorem 45, the representation ρAλ splits as follows:

ρAλ = ⊕
µ`|A|

Paths(µ, λ)ρµ.
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Thus, we have that

E
σ∈UA

χλ(σ) =
∑
µ`|A|

Paths(µ, λ) E
σ∈UA

χµ(σ) = Paths(Triv|A|, λ).

The second equality follows from that fact that if µ is a non-trivial partition of |A| then Eσ∈UA χµ(σ) =
0, while if µ = Triv|A| then Eσ∈UA χµ(σ) = 1. Plugging this into (17) we get that

∑
σ∈Sn Sp(σ) ·

χλ(σ) =
∑n

j=0 pj · Paths(Trivj , λ), and the lemma is proved.

C.2. Proof of Theorem 20

We recall from Equation (1) that

σmin,Up(λhook,`),Sp := min
µ∈Up(λhook,`)

σmin(Ŝp(ρµ)).

Fix any µ ∈ Up(λhook,`), so µ is a partition of n of the form (n − `′, `2, . . . , `r) where `′ ≤ `. By
Lemma 22 we have that the smallest singular value of Ŝp(ρµ) is

c(p, µ) :=

∑n
j=0 pj · Paths(Trivj , µ)

dim(ρµ)
. (18)

To upper bound dim(ρµ), we observe that

dim(ρµ) ≤ dim(τµ) =

(
n

n− `′, `2, . . . , `r

)
≤ n!

(n− `′)!
≤ n`′ ≤ n`,

where the first inequality is by Theorem 42. For the numerator, we observe that if j ≤ n − ` then
there is at least one path in the Young lattice from Trivj to µ, so under the assumptions of Theo-
rem 20 the numerator of Equation (18) is at least κ. This proves the theorem.

Appendix D. Representations of heat kernel noise

In this section, analogous to Appendix C, we lower bound Equation (1) when the noise distribution
K isHt, corresponding to “heat kernel noise” at temperature parameter t:

Theorem 23 (Heat kernel noise - Restatement of Theorem 10) Let t ≥ 1 and let ` ∈ {1, . . . , cn}
for some suitably small universal constant c > 0. Then we have that

σmin,Up(λhook,`),Ht ≥
1

2
· e−O(`t)/n. (19)

D.1. Setup

Let trans : Sn → [0, 1] be the following probability distribution over Sn:

trans(π) =


1/n if π is the identity,
2/n2 if π is a transposition,
0 otherwise.
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Since trans(π) depends only on the cycle structure of π, the function trans(·) is a class function.
Fix any µ ∈ Up(λhook,`), so µ is a partition of n of the form (µ1, . . . , µr) where µ1 ≥ n− `. As in
the proof of Lemma 22 we may apply Lemma 39 to conclude that

t̂rans(ρµ) = ctrans,µ · Id

for some constant ctrans,µ. By Corollary 1 of Diaconis and Shahshahani Diaconis and Shahshahani
(1981), we have that

ctrans,µ =
1

n
+
n− 1

n
· χµ(τ)

dim(ρµ)
, (20)

where as before χµ denotes the character of the irreducible representation ρµ and τ is any transpo-
sition. Diaconis and Shahshahani (1981) further shows that for ρµ an irreducible representation of
Sn with µ as above and τ any transposition, it holds that

χµ(τ)

dim(ρµ)
=

1

n(n− 1)
·

r∑
j=1

(µj − j)(µj − j + 1)− j(j − 1). (21)

In our setting we have

(21) ≥ (n− `)(n− `− 1)

n(n− 1)
+

1

n(n− 1)

r∑
j=2

(µj − j)(µj − j + 1)− j(j − 1). (22)

where the inequality holds because µ1 ≥ n − `. Now, we observe that for each summand in Equa-
tion (22), we have

(µj − j)(µj − j + 1)− j(j − 1) = µ2
j − µj(2j − 1)

≥ −µj(2j − 1)

≥ −`
j − 1

· (2j − 1) ≥ −3`.

The second inequality above holds because µ2 + · · · + µj ≤ ` and the µj’s are non-increasing, so
µj ≤ `

j−1 . Since r − 1 ≤ `, this means that

(21) ≥ (n− `)(n− `− 1)

n(n− 1)
− 3`2

n(n− 1)
≥ 1− O(`)

n
,

and recalling Equation (20) we get that

1 ≥ ctrans,µ ≥ 1− O(`)

n
. (23)

D.2. Proof of Theorem 23

As in Appendix C we recall from Equation (1) that

σmin,Up(λhook,`),Ht := min
µ∈Up(λhook,`)

σmin(Ĥt(ρµ)),
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Fix any µ ∈ Up(λhook,`) (so µ is a partition of n of the form (µ1, . . . , µr) where µ1 ≥ n − `). We
recall that the functionHt : Sn → [0, 1] is defined by

Ht =
∞∑
j=0

PrT∼Poi(t)[T = j](trans)j ,

where “(trans)T ” denotes T -fold convolution of trans. Since convolution corresponds to multipli-
cation of Fourier coefficients, this gives that

Ĥt(ρµ) = c(t, µ) · Id, where c(t, µ) :=

∞∑
j=0

PrT∼Poi(t)[T = j](ctrans,µ)j . (24)

Recalling Choi (1994) that the median of the Poisson distribution Poi(t) is at most t+ 1/3, we get
that

c(t, µ) ≥ 1

2
· (ctrans,µ)t+1/3 ≥ 1

2
· e−O(`t)/n,

(where the second inequality uses ` ≤ cn and t ≥ 1), and the theorem is proved.

Appendix E. Representations of Ewens model noise

In this section we lower bound Equation (1) when the noise distribution K is Eθ, corresponding to
the Ewens noise model with parameter θ:

Theorem 24 (Ewens model noise - Restatement of Theorem 11) Let θ > 0, let ` ∈ {1, . . . , n},
and let η := dist(θ, `) = minj∈{1,...,`}

∣∣eθ − j∣∣. Then (recalling Equation (1)) we have that

σmin,Up(µhook,`),Eθ ≥ (2n)−`η2
√
`. (25)

Similar to the previous two sections, Theorem 24 follows immediately from the following lower
bound on singular values of certain irreducible representations:

Lemma 25 Let µ be a partition of n of the form (µ1, . . . , µr) where µ1 ≥ n − `. Let θ > 0 and
let η := dist(θ, `) = minj∈{1,...,`}

∣∣eθ − j∣∣. Then we have that

Êθ(ρµ) = cµ,θ · Id where |cµ,θ| ≥ (2n)−`η2
√
`.

To prove Lemma 25, we will need the notions of content and hook length for boxes in a Young
diagram:

Definition 26 Let µ be a partition µ ` n. The hook length of a box u in the Young diagram for µ,
denoted by h(u), is the sum

(# of boxes to the right of u in its row) + (# of boxes below u in its column) + 1 (for u itself).

The content c(u) of a box u is c(u) := j − i, where j is its column number (from the left, starting
with column 1) and i is its row number (from the top, starting with row 1).
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Figure 1: On the left is a Young diagram in which each box has been labeled with its hook length;
on the right is a Young diagram in which each box has been labeled with its content.

The left portion of Figure 1 depicts a Young diagram annotated with the hook lengths of each of
its boxes. The right portion of Figure 1 depicts the same Young diagram annotated with the contents
of each of its boxes.

We will need the following technical result to prove Lemma 25:

Lemma 27 Let µ ` n and let χµ be the corresponding character in Sn. For any q ∈ R,

1

n!

∑
σ∈Sn

χµ(σ) · qcycles(σ) =
∏
u∈µ

q + c(u)

h(u)
,

where the subscript “u ∈ µ” means that u ranges over all the boxes in the Young diagram corre-
sponding to µ.

Proof The above identity is given as Exercise 7.50 in Stanley’s book Stanley (1999). For the sake
of completeness, we provide the proof here.

For any t̄ = (t1, . . . , tn), we define the polynomial

at̄(x1, . . . , xn) := det


xt11 xt12 xt13 . . . xt1n
xt21 xt22 xt23 . . . xt2n
. . . . . . . . . . . . . . . . . . . . . . .

xtn1 xtn2 xtn3 . . . xtnn

 .
Given any partition µ ` n, we now define the Schur polynomial sµ(x1, . . . , xn) as follows: Define
t̄µ = (µ1 + n− 1, . . . , µn + 0) and t̄0 = (n− 1, . . . , 0). Then,

sµ(x1, . . . , xn) :=
at̄µ(x1, . . . , xn)

at̄0(x1, . . . , xn)
.

The denominator is just the Vandermonde determinant of the variables (x1, . . . , xn). As the poly-
nomial at̄µ(x1, . . . , xn) is alternating, it follows that sµ(x1, . . . , xn) is a polynomial (as opposed to
a rational function) and further, it is symmetric.

The following is a fundamental fact connecting Schur polynomials and cycles: For any 0 ≤ k ≤
n,

sµ(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

) =
∑
σ∈Sn

1

n!
· χµ(σ) · kcycles(σ) (26)
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(see equation 7.78 in Stanley (1999)). On the other hand, there are known explicit formulas for
evaluations of the Schur polynomial at specific inputs. In particular, Corollary 7.21.4 of Stanley
(1999) states that

sµ(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

) =
∏
u∈µ

k + c(u)

h(u)
. (27)

Combining (26) and (27), we get that for any 0 ≤ k ≤ n, we have

1

n!

∑
σ∈Sn

χµ(σ) · kcycles(σ) =
∏
u∈µ

k + c(u)

h(u)
.

However, note that both the left and the right hand sides can be seen as polynomials of degree at
most n in the variable k. Since they agree at n + 1 values k = 0, . . . , n, they must be identical as
formal functions. This concludes the proof.

Proof of Lemma 25. Recall that the distribution Eθ over Sn is defined by Eθ(π) = e−θd(π,e)/Z(θ),
where Z(θ) =

∑
π∈Sn e

−θd(π,e) is a normalizing constant. Since the Cayley distance d(σ, τ) is
equal to n− cycles(σ−1τ), where cycles(π) is the number of cycles in π, we have that

Eθ(π) =
eθ·cycles(π)

C
, where C =

∑
π∈Sn

eθ·cycles(π).

Since the cycles(·) function is a class function so is Eθ, so we can apply Lemma 39 and we get
that Êθ(ρµ) = cµ,θ · Id, where

cµ,θ =

∑
σ∈Sn Eθ(σ) · χµ(σ)

dim(ρµ)
=

∑
σ∈Sn e

θ·cycles(σ) · χµ(σ)

dim(ρµ) · (
∑

σ∈Sn e
θ·cycles(σ))

=

∑
σ∈Sn q

cycles(σ) · χµ(σ)

dim(ρµ) · (
∑

σ∈Sn q
cycles(σ))

,

where q := eθ. We re-express the numerator by applying Lemma 27 to get

∑
σ∈Sn

qcycles(σ) · χµ(σ) = n! ·
∏
u∈µ

q + c(u)

h(u)
. (28)

To analyze the denominator of cµ,θ, applying Lemma 27 to the trivial partition Trivn = (n) of n
(the character of which is identically 1), we get that

∑
σ∈Sn

qcycles(σ) = n! ·
∏

u∈Trivn

q + c(u)

h(u)
= q(q + 1) · · · (q + n− 1). (29)

For the rest of the denominator, we recall the following well-known fact about the dimension of
irreducible representations of the symmetric group:

Fact 28 (Hook length formula, see e.g. Theorem 3.41 of Méliot (2017)) For µ ` n, dim(ρµ) =
n!∏

u∈µ h(u) .
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Combining (28), (29) and Fact 28, we get

cµ,θ =

∏
u∈µ(q + c(u))

q(q + 1) · · · (q + n− 1)
. (30)

LetA denote the set consisting of the cells of the Young diagram of µ which are not in the first row.
Since n− µ1 = `′ for some `′ ≤ `, the above expression simplifies to

cµ,θ =

∏
u∈A(q + c(u))

(q + n− `′) · · · (q + n− 1)
. (31)

To bound this ratio, first observe that both the numerator and denominator are `′-way products.
There are two possibilities now:

1. Case 1: q ≥ ` + 1. In this case we observe that each cell u ∈ A satisfies c(u) ≥ −`′ ≥
−`. Thus cµ,θ can be expressed as a product of `′ many fractions, each of which is at least
q−`

q+n−1 ≥
1
`+n . This implies that

cµ,θ ≥
(

1

n+ `

)`′
≥ (2n)−`.

2. Case 2: q ≤ `. In this case, the denominator of Equation (31) is at most (2n)`. To lower
bound the numerator, observe that for every cell u of A, the value of c(u) is an integer in
{−`, . . . , `}. Let j0 and j1 denote the two values in {−`, . . . , `} for which |q − j| achieves
its smallest value η and its next smallest value (note that these values are equal if η = 1/2).
Next, we observe that at most

√
` many cells of A have content equal to any given fixed

integer value. Since j0 and j1 are the only possible values of j ∈ {−`, . . . , `} for which
|q + j| < 1, it follows that

∏
u∈A
|(q + c(u))| ≥

 ∏
u∈A:c(u)=j0

|(q + c(u))|

 ·
 ∏
u∈A:c(u)=j1

|(q + c(u))|

 ≥ η2
√
`.

This finishes the proof of Lemma 25.

Appendix F. Lower bound for Ewens models

Recall that because of the poly(dist(θ, log k)−
√

log k) dependence in Theorem 4, the algorithm of
that theorem is inefficient if eθ is very close to an integer. In this section we prove Theorem 5, which
establishes that any algorithm for learning in the presence of Ewens noise must be inefficient if eθ

is very close to an integer.

F.1. A key technical result

The following lemma is at the heart of our lower bound. It shows that if eθ is close to an integer,
then any partition µ of n ≥ m which extends a particular partition λsq of m must be such that the
Fourier coefficient Êθ(ρµ) of Ewens noise has small singular values.
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Lemma 29 Let λsq denote the partition (t, . . . , t) of m = t(t + j) whose Young tableau is a
rectangle with t + j rows and t columns. Let θ > 0 be such that

∣∣eθ − j∣∣ ≤ η where η ≤ 1/2. Let
n ≥ m, µ ` n and λsq ⇑ µ (recall Definition 43). Then

Êθ(ρµ) = cµ,θ · Id, where cµ,θ ≤ ηt.

Here ρµ denotes the irreducible representation of Sn corresponding to the partition µ.

Proof Let µ = (µ1, . . . , µr). By Lemma 25, we have that

Êθ(ρµ) = cµ,θ · Id,

where Equation (31) gives the precise value of cµ,θ as

cµ,θ =

∏
u∈A(q + c(u))∏
u∈B(q + c(u))

, where q = eθ. (32)

Here A denotes the set of cells of the Young diagram of µ which are not in the first row and B
denotes the rightmost n− µ1 many cells in the Young diagram of the trivial partition Trivn = (n).
Note that in this lemma, we are trying to upper bound Equation (32) whereas Lemma 25 was about
lower bounding this quantity.

To upper bound Equation (32), we first observe that there is an obvious bijection Φ : A → B
such that if Φ(u) = v, then c(v) > |c(u)| > 0.

Next, let A−j ⊂ A be A := {(r, s) : s− r = j and (r, s) ∈ A}. Since λsq ⇑ µ, it follows that
|A−j | ≥ t. As a result, we can upper bound cµ,θ as follows:

cµ,θ =

∏
u∈A(q + c(u))∏
u∈B(q + c(u))

=
∏
u∈A

q + c(u)

q + c(Φ(u))
=

 ∏
u∈A−j

q + c(u)

q + c(Φ(u))

 ∏
u∈A\A−j

q + c(u)

q + c(Φ(u))


≤

∏
u∈A−j

q + c(u) (using c(Φ(u)) > |c(u)| > 0 and q > 0)

≤ ηt.

F.2. Proof of Theorem 5

Theorem 5 is an immediate consequence of the following result. It shows that if eθ is close to an
integer j, then it may be statistically impossible to learn a distribution f supported on k rankings
without using many samples from Eθ ∗ f :

Theorem 30 Given j ∈ N, there are infinitely many values of k and m = m(k) ≈ log k
log log k such

that the following holds: there are two distributions f1, f2 over Sm with the following properties:

1. dTV(f1, f2) = 1 (i.e. the distributions f1 and f2 have disjoint support);

2. |supp(f1)|, |supp(f2)| ≤ k;

3. For any θ > 0 such that |eθ − j| ≤ η ≤ 1/2, we have that dTV(Eθ ∗ f1, Eθ ∗ f2) ≤ 2 ·

η
Θ
(√

log k
log log k

)
.
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Proof Let t ≥ j be any integer, let m = t(t + j), and let k = m!. We first construct the two
distributions f1, f2 over Sm and argue that properties (1) and (2) hold.

Let λsq ` m be the partition whose Young tableau is a rectangle with t+ j rows and t columns.
Let us consider the character χsq : Sm → Q corresponding to the partition λsq. By Fact 46 we have
that χsq is rational valued, and by Theorem 38 we have that

∑
σ∈Sn χsq(σ) = 0. Thus, we have that

∑
σ∈Sn

|χsq(σ)| · 1χsq(σ)>0 =
∑
σ∈Sn

|χsq(σ)| · 1χsq(σ)<0 =: Csq (33)

for some Csq (which is nonzero again by Theorem 38). We now define distributions f1 and f2 over
Sm as

f1(σ) =

{
1
Csq
· χsq(σ) if χsq(σ) > 0

0 otherwise,
f2(σ) =

{
−1
Csq
· χsq(σ) if χsq(σ) < 0

0 otherwise.

From their definitions and Equation (33) it is immediate that f1 and f2 are distributions over Sm
which have disjoint support. Since |Sm| = k, this gives items 1 and 2 of the theorem.

To prove the third item, observe (recalling the comment immediately after Definition 37) that
the function g : Sm → C, defined as g(σ) := f1(σ) − f2(σ) = 1

Csq
· χsq(σ), is a class function.

Choose any partition λ ` m and the corresponding irreducible representation ρλ of Sm. By applying
Lemma 39, we have that

ĝ(ρλ) = cλ · Id where cλ =

∑
σ∈Sm g(σ) · χλ(σ)

dim(ρλ)
. (34)

We analyze the multiplier cλ by noting that

cλ =

∑
σ∈Sm g(σ) · χλ(σ)

dim(ρλ)
=

∑
σ∈Sm χsq(σ) · χλ(σ)

dim(ρλ) · Csq

=
m! · 1[λ = λsq]

dim(ρλ) · Csq
using Theorem 38. (35)
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Thus, we have

‖Eθ ∗ f1 − Eθ ∗ f2‖1 =
∑
σ∈Sm

|Eθ ∗ f1(σ)− Eθ ∗ f2(σ)|

=
∑
σ∈Sm

|Eθ ∗ g(σ)| (linearity and g = f1 − f2)

=
1

m!

∑
σ∈Sm

∣∣∣∣∣∣
∑
µ`m

dim(ρµ)Tr[Êθ ∗ g(ρµ)ρµ(σ−1)]

∣∣∣∣∣∣
(Definition 35, inverse Fourier transform of Eθ ∗ g)

=
1

m!

∑
σ∈Sm

∣∣∣∣∣∣
∑
µ`m

dim(ρµ)Tr[Êθ(ρµ)ĝ(ρµ)ρµ(σ−1)]

∣∣∣∣∣∣ (convolution identity)

=
1

dim(ρλsq) · Csq

∑
σ∈Sm

∣∣∣dim(ρλsq)Tr[Êθ(ρλsq)ρλsq(σ−1)]
∣∣∣

(Equations 34 and 35)

=
1

Csq

∑
σ∈Sm

∣∣∣Tr[Êθ(ρλsq)ρλsq(σ−1)]
∣∣∣ (36)

To deal with Êθ(ρλsq), we apply Lemma 29. In particular, by setting n = m and µ = λsq in
Lemma 29, we get that

Êθ(ρλsq) = cλsq,θ · Id,

where |cλsq,θ| ≤ ηt, and we thus get that

‖Eθ ∗ f1 − Eθ ∗ f2‖1 ≤
ηt

Csq
·
∑
σ∈Sm

∣∣Tr[ρλsq(σ−1)
∣∣ =

ηt

Csq
·
∑
σ∈Sm

∣∣χsq(σ−1)
∣∣ . (37)

Finally, recalling that

Csq =

∑
σ∈Sn |χsq(σ)|

2
,

we get that the RHS of Equation (37) is 2ηt. Recalling that t ≥
√
m/2, the theorem is proved.

Appendix G. Basics of representation theory over the symmetric group

Representation theory of the symmetric group Sn is at the technical core of this paper. In this
appendix we briefly review the definitions and results that we require, starting first with general
groups and then specializing to Sn as necessary. See Curtis and Reiner Curtis and Reiner (1966)
(or many other sources) for an extensive reference on representation theory of finite groups and
James James (2006) or Méliot Méliot (2017) for an extensive reference on representation theory of
Sn.
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G.1. General groups

We start by recalling the definition of a representation:

Definition 31 For any groupG, a representation ρ : G→ Cm×m is a group homomorphism, i.e. a
function from G to Cm×m that satisfies ρ(g) · ρ(h) = ρ(g · h) for all g, h ∈ G. The dimension of
such a representation ρ is m.

In this paper, unless otherwise mentioned, all representations ρ are unitary – in other words, for
every g ∈ G, ρ(g) is a unitary matrix. Over finite groups, any representation can be made unitary
by applying a similarity transformation; by this we mean that if ρ is a representation, then there
is an invertible matrix Z such that the new map ρ̃ defined as ρ̃(g) = Z−1 · ρ(g) · Z is a unitary
representation. (The reader should verify that as long as Z is invertible, the map ρ̃ is always a
representation if ρ is a representation.) Two such representations ρ and ρ̃ are said to be equivalent.

Next we recall the notion of an irreducible representation:

Definition 32 A representation ρ : G → Cm×m is said to be reducible if there exists a proper
subspace V of Cm such that ρ(g) · V ⊆ V for all g ∈ G. If there is no such proper subspace V ,
then ρ is said to be irreducible.

It is well known that any finite group has only finitely many irreducible representations, up to
the above notion of equivalence, and that every representation of a finite group G can be written as
a direct sum of irreducible representations:

Theorem 33 (Maschke’s theorem, see e.g. Theorem 1.3 of Méliot (2017)) For G a finite group,
there is a finite set of distinct irreducible representations {ρ1, . . . , ρr} such that for any represen-
tation ρ : G → Cm×m, there is a invertible transformation Z ∈ Cm×m such that Z−1ρZ is block
diagonal where each block is one of {ρ1, . . . , ρr}. In other words, Z−1ρZ is equal to the direct sum
⊕M`=1µ` where each µ` is an element of {ρ1, . . . , ρr}.

We remind the reader that elements g, h in a group G are said to be conjugates if there is
an element t ∈ G such that tgt−1 = h. Define Cl(g), the conjugacy class of g, to be {h :
h is conjugate to g}; it is easy to see that the different conjugacy classes form a partition of G.

We recall some very standard facts about irreducible representations:

Theorem 34 (see e.g. Theorem 2.3.1 of Green and Wigderson (2010)) Let G be a finite group
and let {ρ1, . . . , ρr} be the set of its irreducible representations, where ρi : G→ Cdi×di . Then

1.
∑r

i=1 d
2
i = |G|.

2. The number of conjugacy classes is equal to r, the number of distinct irreducible representa-
tions.

3. For 1 ≤ s, t ≤ di, let ρi,s,t : G → C be the (s, t) entry of ρi(g). Then, for 1 ≤ i1, i2 ≤ r,
1 ≤ s1, t1 ≤ di1 and 1 ≤ s2, t2 ≤ di2

E
g∈G

[ρi1,s1,t1(g) · ρi2,s2,t2(g)] =

{
1
di1

if i1 = i2, s1 = s2 and t1 = t2

0 otherwise
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4. The representations ρ1, . . . , ρr are unitary.

A restatement of (3) above is that the functions {ρi,s,t(·)} are orthogonal. Combining this with∑r
i=1 d

2
i = |G| (given by (1)), we get that the functions {ρi,s,t}1≤i≤r,1≤s,t≤di form an orthogonal

basis for CG.
With an orthonormal basis for the set of complex-valued functions onG in hand (in other words,

a basis for the group algebra C[G]), we are ready to define the Fourier transform of a function
f : G→ C:

Definition 35 Let G be a finite group with irreducible representations given by {ρ1, . . . , ρr} and
let f : G→ C. The Fourier transform of f is given by matrices f̂(ρ1), . . . , f̂(ρr), where

f̂(ρi) =
∑
g∈G

f(g) · ρi(g).

The inverse transform is given by

f(g) =
1

|G|

r∑
i=1

dim(ρi)Tr[f̂(ρi)ρi(g
−1)].

Parseval’s identity states that for any f as above, we have

r∑
i=1

‖f̂(ρi)‖2F = |G| ·
∑
g∈G
|f(g)|2. (38)

We next recall the definition of characters and class functions for a group G.

Definition 36 Given a finite group G, a function f : G → C is said to be a class function of G if
f(g) only depends on the conjugacy class of g, i.e. f(g) = f(hgh−1) for every h ∈ G.

Definition 37 The character χρ : G → C corresponding to a representation ρ : G → Cm×m is
given by χρ(g) := Tr(ρ(g)).

We observe that χρ(·) is a class function of G, and that if ρ and ρ̃ are unitarily equivalent, then
χρ(·) = χρ̃(·). We recall some standard facts about characters and class functions:

Theorem 38 Let G be a finite group and let {ρ1, . . . , ρr} be its set of irreducible representations.
Let χρ1 , . . . , χρr be the corresponding characters. Then we have:

1. [Schur’s lemma] Eg∈G[χρi(g) · χρj (g)] = δi,j .

2. The functions {χρi(·)}1≤i≤r forms an orthonormal basis for all class functions of G.

The following (standard) claim shows that the Fourier transform of any class function f is a
diagonal matrix (in fact, a scalar multiple of the identity matrix):

Lemma 39 Let f : G → C be a class function and let ρ : G → Cm×m be an irreducible
representation of G. Then f̂(ρ) = c · Id where c =

∑
g∈G f(g)χρ(g)

m and Id is the identity matrix.
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Figure 2: On the left is the Young diagram for the partition λ = (4, 2, 2, 1). The middle and right
present two equivalent Young tableaus for ({1, 7, 2, 8}, {5, 3}, {4, 6}, {9}).

Proof Choose any h ∈ G, and observe that

ρ(h) · f̂(ρ) = ρ(h) ·
(∑
g∈G

f(g)ρ(g)
)

= ρ(h) ·
(∑
g∈G

f(h−1gh)ρ(h−1gh)
)

= ρ(h) ·
(∑
g∈G

f(g)ρ(h−1gh)
)

= ρ(h) · ρ(h−1) ·
(∑
g∈G

f(g)ρ(g)
)
· ρ(h) = f̂(ρ) · ρ(h).

As a consequence of Schur’s lemma, we have that if a matrix A is such that A · ρ(h) = ρ(h) ·A for
all h ∈ G, then A = c · Id. Thus, we get that f̂(ρ) = c · Id. The lemma follows by taking trace on
both sides.

G.2. Representation theory of the symmetric group

Representation theory of the symmetric group has many applications to algebra, combinatorics and
statistical physics and has been intensively studied (as mentioned earlier, see e.g. James (2006);
Méliot (2017) for detailed treatments). Below we only recall a few basics which we will need.

The first notion we require is that of a Young diagram. Consider a partition λ = (λ1, . . . , λk) of
n where λ1 ≥ λ2 ≥ . . . ≥ λk > 0 and λ1 + . . . + λk = n. We indicate that λ is such a partition
by writing “λ ` n.” The Young diagram corresponding to such a partition λ is a two-dimensional
left-justified array of empty cells in which the ith row has λi cells. See the left portion of Figure 2
for an example of a Young diagram. A Young tableau corresponding to a partition λ is obtained
by filling in the n cells of the Young diagram with the elements of [n], using each element exactly
once, where the ordering within rows of the Young diagram is irrelevant.

For each partition λ = (λ1, . . . , λk) of n, there is an associated representation, denoted τλ,
which we now define. Let Nλ =

(
n

λ1,...,λk

)
be the number of Young tableaus corresponding to

partition λ, and let Yλ,1, . . . ,Yλ,Nλ be an enumeration of these tableaus in some order.

Definition 40 The permutation representation τλ corresponding to λ is defined as follows: For
each g ∈ Sn, τλ(g) is the Nλ ×Nλ matrix (where we view rows and columns as indexed by Young
tableaus corresponding to λ) which has τλ(g)(i, j) = 1 iff Yλ,i maps to Yλ,j under the action of g.

It is easy to check that τλ : Sn → CNλ×Nλ as defined above is indeed a representation. In fact,
since the range of τλ is always a permutation matrix, τλ is also a unitary representation.
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It turns that for λ 6= (n), the permutation representation τλ is not an irreducible representation.
However, it also turns out that all of the irreducible representations of Sn can be obtained from the
permutation representations. To explain this, we need to define a partial order over partitions of n:

Definition 41 For two partitions λ and µ of n, we say that λ dominates µ, written λ �µ, if∑
j≤i λj ≥

∑
j≤i µj for all i > 0. The partial order defined by � is said to be the dominance order

over the partitions (equivalently, Young diagrams) of n.

Figure 3: The left part of the picture depicts the dominance order across the partitions of 4; it
happens to be the case that the dominance order is a total order across the partitions of 4.
This is not true in general; as depicted on the right, the two partitions (4, 1, 1) and (3, 3)
of 6 are incomparable under the dominance order.

The next result explains how the irreducible representations of Sn can be obtained from the
representations {τλ}λ`n:

Theorem 42 (James submodule theorem, see e.g. Theorem 3.34 of Méliot (2017)) The irreducible
representations of Sn are in one-to-one correspondence with the partitions λ ` n; we denote the
irreducible representation corresponding to λ by ρλ. In particular, when λ = (n), then ρλ is the
trivial irreducible representation (which maps each g ∈ G to 1). Moreover, each permutation
representation τλ is a direct sum of irreducible representations corresponding to partitions which
dominate λ, i.e.

τλ = ⊕
µ�λ

Kλ,µ
⊕
`=1

ρµ.

Here the Kλ,µ’s are non-negative integers, known as the Kostka numbers, which are such that
Kλ,λ = 1.

G.2.1. RESTRICTIONS OF IRREDUCIBLE REPRESENTATIONS

Fix λ ` n and consider the irreducible representation ρλ of Sn. For any m ≤ n, Sm can be viewed
as the subgroup of Sn where elements {m + 1, . . . , n} are fixed. Hence ρλ can also be viewed as
a representation of Sn; this representation of Sm is written ρmλ and is called the restriction of ρλ to
Sm. Note that ρmλ may not be an irreducible representation of Sm. By Theorem 33, we have that
ρmλ is equivalent to some direct sum

⊕
µ`m

Mλ,µρµ,
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Figure 4: The first five levels of Young’s lattice.

in which there are Mλ,µ many copies of pµ, for some non-negative integers Mλ,µ. These integers
are given by the so-called “branching rule” on Young’s lattice, which we now describe.

Definition 43 Young’s lattice is the partially ordered set of Young diagrams in which the partial
order is given by inclusion in the following sense: given partitions µ and λ, we write “µ ↑ λ” if
λ can be obtained by adding one box to µ (in such a way that λ is a valid partition, of course). If
there are partitions µ1, . . . , µr such that µ1 ↑ µ2 ↑ · · · ↑ µr, we write “µ1 ⇑ µr.”

It is convenient to draw Young’s lattice in such a way that the n-th level contains all and only
the Young diagrams with n boxes. The diagram in Figure 4 depicts the first five levels of Young’s
lattice.

The next result, known as the “branching rule,” states that for λ ` n, ρλ splits into a direct sum
of ρµ over all µ ↑ λ when ρλ is restricted to Sn−1:

Lemma 44 (Branching rule) Let λ be a partition of n and let ρλ be the corresponding irreducible
representation of Sn. Then ρn−1

λ , the restriction of ρλ to Sn−1, is equivalent to

⊕
µ`n−1 :µ↑λ

ρµ.

By applying Lemma 44 inductively we get a complete description of how ρλ splits when it is re-
stricted to any Sm, m < n:

Theorem 45 Let λ ` n and let ρλ be the corresponding irreducible representation of Sn. For
m < n we have that ρmλ , the restriction of ρλ to Sm, is equivalent to

⊕
µ`m

Paths(µ, λ)ρµ,

where Paths(µ, λ) denotes the number of paths in Young’s lattice from µ to λ.
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Irreducible characters of the symmetric group. Finally, we recall the following fundamental fact
(which is a consequence, e.g., of the Murnaghan-Nakayama rule) which we will use:

Fact 46 [see e.g. Theorem 3.10 in Méliot (2017)] Let χ : Sm → C be a character of Sm. Then in
fact χ is Q-valued.
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