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Abstract

"We introduce kernel thinning, a new procedure for compressing a distribution P more effectively
than i.i.d. sampling or standard thinning. Given a suitable reproducing kernel k and O(n?) time,
kernel thinning compresses an n-point approximation to P into a /n-point approximation with
comparable worst-case integration error across the associated reproducing kernel Hilbert space.
With high probability, the maximum discrepancy in integration error is (’)d(n_%\/log n) for com-
pactly supported P and Od(n_% /(log n)@*+1loglogn) for sub-exponential P on RY. In contrast,
an equal-sized i.i.d. sample from P suffers Q(n‘i) integration error. Our sub-exponential guar-
antees resemble the classical quasi-Monte Carlo error rates for uniform P on [0, 1]¢ but apply to
general distributions on R? and a wide range of common kernels. We use our results to derive
explicit non-asymptotic maximum mean discrepancy bounds for Gaussian, Matérn, and B-spline
kernels and present two vignettes illustrating the practical benefits of kernel thinning over i.i.d.
sampling and standard Markov chain Monte Carlo thinning.

The Python package for kernel thinning can be found at https://github.com/rzrsk/
kernel_thinning. In the figure below, we provide a simple illustration of the benefits of kernel
thinning over i.i.d. sampling from an §-mixture of Gaussian target P. We provide a scatter plot
of i.i.d. points from P, and points output by kernel thinning using a Gaussian kernel k(z,y) =
exp(—% ||z — yHg) and i.i.d. points as the input. The equidensity contours of the target distribution
are underlaid. Even for small sample sizes, the kernel thinning (KT) points exhibit a better spatial
distribution with less clumping and fewer gaps, suggestive of a better approximation to PP.
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1. Extended abstract. Full version appears as [https://arxiv.org/abs/2105.05842, v3]
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