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Abstract
We study sampling from a target distribution ν∗ = e−f using the unadjusted Langevin Monte Carlo
(LMC) algorithm. For any potential function f whose tails behave like ‖x‖α for α ∈ [1, 2], and
has β-Hölder continuous gradient, we prove that Õ

(
d

1
β+ 1+β

β ( 2
α−1{α 6=1})ε−

1
β

)
steps are sufficient to

reach the ε-neighborhood of a d-dimensional target distribution ν∗ in KL-divergence. This bound,
in terms of ε dependency, is not directly influenced by the tail growth rate α of the potential function
as long as its growth is at least linear, and it only relies on the order of smoothness β. One notable
consequence of this result is that for potentials with Lipschitz gradient, i.e. β = 1, the above rate
recovers the best known rate Õ(dε−1) which was established for strongly convex potentials in terms
of ε dependency, but we show that the same rate is achievable for a wider class of potentials that
are degenerately convex at infinity. The growth rate α affects the rate estimate in high dimensions
where d is large; furthermore, it recovers the best-known dimension dependency when the tail
growth of the potential is quadratic, i.e. α = 2, in the current setup.
Keywords: Unadjusted Langevin Algorithm, Rate of Convergence, Markov Chain Monte Carlo

1. Introduction

Sampling from a target distribution using Markov chain Monte Carlo (MCMC) is a fundamental
problem in statistics, and it often amounts to discretizing a diffusion process with invariant measure
as the target. When the target corresponds to the Gibbs measure ν∗ = e−f where f : Rd → R is
the potential function satisfying

∫
e−f(x)dx = 1, a popular candidate diffusion is the overdamped

Langevin diffusion, which is the solution of the following stochastic differential equation (SDE),

dZt = −∇f(Zt)dt+
√

2dBt, (1.1)

where Bt is a d-dimensional Brownian motion. Langevin diffusion (1.1) admits the target Gibbs
measure ν∗ as its invariant distribution (Risken, 1996). In general, simulating a continuous-time
diffusion such as (1.1) is impractical; thus, a numerical integration scheme is needed to approximate
it. In this work, we focus on the unadjusted Langevin Monte Carlo algorithm (LMC) which is the
Euler discretization of the overdamped Langevin diffusion (1.1), defined by the update rule

xk+1 = xk − η∇f(xk) +
√

2ηWk, (1.2)

where Wk ∈ Rd is an isotropic Gaussian vector independent from Wm and xm for any m < k, and
η is a sufficiently small step size.
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Convergence rates of LMC have been established under structural assumptions on the poten-
tial function, and they quantify the number of iterations sufficient to reach the ε-neighborhood of a
d-dimensional target distribution ν∗ = e−f under a particular distance measure – our focus is on
KL-divergence. Earlier attempts established convergence rate estimates under the global curvature
assumptions on the potential function. For example, for strongly convex and smooth potentials, the
convergence rate bound of Õ(dε−1) has been shown (Dalalyan, 2017b) (here Õ hides log factors as
well as other constants), whereby a smooth function is a function with Lipschitz continuous gradi-
ent. We note that higher-order smoothness on the potential function may improve the convergence
rate estimate (Mou et al., 2019b); however, we consider only the first-order smoothness in the cur-
rent paper. For convex and smooth potentials with growth rate α, a convergence rate estimate of
Õ(d1+4/αε−3) is known to hold for LMC (Cheng and Bartlett, 2018), with the caveat that a sur-
rogate strongly convex potential is used instead of the original potential. More recently, however,
it has been observed that tail growth structure is the determinant factor in sampling (Cheng et al.,
2018a; Eberle, 2016; Erdogdu et al., 2018; Eberle et al., 2019; Majka et al., 2020), rather than the
global curvature structure such as (strong) convexity, where in this context, a strongly convex poten-
tial is understood to exhibit quadratic growth. Growth-based structural conditions has the additional
benefit of allowing for perturbations, which in turn allows for sampling from non-convex potentials.
A condition on the target distribution ν∗ that fits in this framework is the log-Sobolev inequality
(LSI) (Bakry and Émery, 1985), given as

∀ρ, KL
(
ρ|ν∗

)
≤ λI

(
ρ|ν∗

)
, (1.3)

where KL
(
ρ|ν∗

)
denotes the KL-divergence (relative entropy) and I

(
ρ|ν∗

)
denotes the relative

Fisher information between ρ and ν∗ (defined in (1.7)), and λ > 0 is the log-Sobolev constant.
The LSI condition (1.3) can be verified for potentials with certain growth structure. Indeed, it is
known to hold for strongly convex potentials (Bakry and Émery, 1985), and it allows for finite per-
turbations due to Holley and Stroock (1987) perturbation lemma; thus, potentials that have quadratic
growth satisfy LSI. Denoting the distribution of Langevin diffusion (1.1) at time t with ρt, by us-
ing Fokker-Planck equation it can be shown that d

dtKL
(
ρt|ν∗

)
= −I

(
ρt|ν∗

)
which, combined with

the LSI condition (1.3) entails a differential inequality of the form d
dt log KL

(
ρt|ν∗

)
≤ − 1

λ , which
in turn yields an exponential decay in KL-divergence, i.e., KL

(
ρt|ν∗

)
≤ e−t/λKL

(
ρ0|ν∗

)
. LSI

coupled with the smoothness condition on the potential function is sufficient to obtain the fast con-
vergence rate estimate Õ(dε−1) for LMC (Vempala and Wibisono, 2019), which is the best known
estimate in this framework. The significance of this result is in that, it relaxes the strong convexity
assumption which is a global curvature condition on f to the LSI condition (1.3), which can be
regarded as a tail growth condition on f , allowing for finite perturbations.

The fundamental idea in the current paper is that the fast convergence of LMC does not require
an exponential convergence of the Langevin diffusion, which is essentially obtained under strong
tail growth conditions on the potential. A representative convergence analysis of LMC under some
distance measure D (our main focus is KL-divergence) establishes a single step bound,

∀k ∈ N, D(ρk+1|ν∗) ≤ r(η) D(ρk|ν∗) + Cηθ, (1.4)

where r : [0,∞)→ (0, 1] is a monotone decreasing function, inherited from the fast decaying dif-
fusion counterpart. The discretization error Cηθ can be made small with smaller step size η, and the
exponent θ is intrinsic to the numerical scheme as well as the smoothness of f . Elementary algebra
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reveals that, one can iterate the inequality (1.4) and achieve convergence as long as r(η) < 1 and
limη→0

ηθ

1−r(η) = 0. Recent literature focused on exponential decays rexp(t) = e−ct which are usu-
ally established under conditions like LSI (1.3), that correspond to potentials exhibiting quadratic
growth (see, for example Dalalyan (2017b); Vempala and Wibisono (2019)). Nevertheless, the in-
equality (1.4) by no means benefits from the exponential decay, as r(t) is only evaluated at short
time horizons t = η. For example, consider the algebraic rate ralg(t) = 1/(1 + ct) which is much
slower than the exponential rate, but it provides the same level of decay in small time horizons, i.e.
evaluated at the step size η, one has

ralg(η) ≈ rexp(η) ≈ 1− cη when η is small. (1.5)

The conditions required for exponential decay depend on the metric, for example LSI coupled with
KL, and Poincaré inequality with Chi-square divergence imply an exponential decay. However, for
a given metric, algebraic rates can be obtained under weaker conditions on the potential function f .

Modified versions of the LSI condition (1.3) or weak Poincaré inequalities are commonly em-
ployed in the analysis of diffusion processes (Gentil et al., 2005; Bakry et al., 2013), and can be used
to explain their convergence behavior. For example in Toscani and Villani (2000), a modified log-
Sobolev inequality is used to establish a convergence rate of O(t−κ) for all κ > 0 for the Langevin
diffusion (1.1) (O(t−∞) in their notation). Our results build on a similar construction. For a class
of potentials that are convex degenerate at infinity, with tails growing like ‖x‖α for α ∈ [1, 2], we
establish the following modified log-Sobolev inequality (mLSI)

∀ρ, KL
(
ρ|ν∗

)
≤ λI

(
ρ|ν∗

)1−δMs(ρ+ ν∗)
δ with δ ∈ [0, 1/2], (1.6)

where Ms(h) =
∫

(1 + ‖x‖2)s/2h(x)dx is the s-th moment of any function h. This inequality en-
tails a decay with the desired properties (1.5) under mild conditions on the potential. Our focus is
on the algorithmic implications of (1.6), and our contributions can be summarized as follows.

• For a potential f whose tails behave like ‖x‖α for some α ∈ [1, 2], and has β-Hölder continuous

gradient for some β ∈ (0, 1], we prove that Õ
(
d

1
β

+ 1+β
β

( 2
α
−1{α6=1})ε

− 1
β

)
steps are sufficient for

LMC to reach ε accuracy in KL-divergence. In moderate dimensions when d� ε−1, the tail
growth rate α does not impact the rate estimate, whereas in high dimensions where d = Ω(ε−1),
tail growth enters the rate estimate through dimension dependency.

• As a key step in deriving the above convergence rate, we establish a mLSI (1.6) with an explicit
constant λ, and a target dependent moment function Ms(ρ+ ν∗) for any order s ≥ 2. Both of
these are crucial in deriving a rate estimate with a right dependence on the dimension d as well
as the accuracy ε. The final result is obtained by employing the mLSI condition (1.6) for the
optimal moment order s = O(log(d/ε)).

• In order to use the condition mLSI (1.6), we establish linearly diverging moment estimates for
the LMC iterates under weak dissipativity. Somewhat surprisingly, this is sufficient to establish
a convergence rate bound for LMC in KL-divergence. To our knowledge, this is the first conver-
gence result for the LMC for weakly smooth potentials that exhibit subquadratic growth, without
relying on regularization and/or smoothing techniques.

• Finally, using Csiszár-Kullback-Pinsker inequalities, the above estimates can be translated to

total variation and Lα-Wasserstein metrics with respective rates Õ
(
d

1
β

+ 1+β
β

( 2
α
−1{α6=1})ε

− 2
β

)
and

Õ
(
d

3
β

+ 1+β
β

( 2
α
−1{α 6=1})ε

− 2α
β

)
.
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Rest of the paper is organized as follows. We compare our results to those of existing works next,
and briefly review notation in the remainder of this section. In Section 2, we establish the main
technical results on the convergence of LMC for potentials with certain growth and smoothness
properties. Section 3 discusses further implications of the tools developed in Section 2. We give
concrete examples in Section 4, by applying these tools to non-convex sampling problems that are
also weakly smooth. Finally, we conclude in Section 5 with brief remarks on future work. For a
detailed survey of additional related work, we refer to Section G. Proofs of the main theorems and
corollaries are deferred to appendix and are provided in Sections A, B, C, D, E and F.
Related work and comparisons. In Table 1, we compare the assumptions and results of this
paper to those of existing works that only make the first order smoothness assumption. Among
these, Dalalyan (2017b); Durmus and Moulines (2017); Cheng and Bartlett (2018); Chatterji et al.
(2020); Vempala and Wibisono (2019); Durmus et al. (2019a) are in the quadratic growth regime,
and achieve the best rates known to authors. Our results recover the rates of Vempala and Wibisono
(2019) for smooth potentials (β = 1) satisfying the LSI condition (α = 2). Cheng and Bartlett
(2018); Dalalyan (2017b) establish guarantees for convex and smooth potentials; however, these
results rely on surrogate potentials that are strongly convex which causes significant drops in rate
estimates, and cannot tolerate perturbations on the potential. In contrast to these results, our analysis
provides a continuous interpolation in both the growth rate α ∈ (1, 2], and the order of smoothness
β ∈ (0, 1]. In case of linear growth when α = 1, there is no convexity in the tails which is why
the rate loses an additional factor in dimension dependency (see section E). The results of Chatterji
et al. (2020) on the vanilla LMC require the potential to have a composite structure, namely, f(x) =
U(x) + ψ(x) where ψ(x) is a strongly convex and smooth function, and U(x) is a convex function
with β-Hölder continuous gradient. It is worth emphasizing that the actual rate obtained in Cheng
and Bartlett (2018) is Õ

(
dε−3 × W4

2 (ρ0, ν∗)
)
, and depends polynomially on the L2-Wasserstein

distance between the initial distribution and the target, whereas other works depend logarithmically
on this difference in terms of KL-divergence. For a potential growing with rate α, one may show
W2

2 (ρ0, ν∗) . d2/α justifying the reported rate in Table 1. For details of the initializations when
α = 2, we refer to Cheng et al. (2018b). For additional related work, we refer reader to Section G.
Notation. For a real number x ∈ R, we denote its absolute value with |x|. We denote the p-
norm of a vector x ∈ Rd with ‖x‖p and whenever p = 2, we omit the subscript and simply write
‖x‖ , ‖x‖2 to ease the notation. We use Id to denote the identity matrix in d-dimensions. For
a function f : Rd → R, we define its infinity norm as ‖f‖∞ = supx∈Rd |f(x)|. Ms(f) is used to
denote the modified s-th moment of the function f (which is not necessarily a distribution), defined
as Ms(f) =

∫
f(x)(1 + ‖x‖2)s/2dx.

For probability densities p,q on Rd, we use KL
(
p|q
)

and I
(
p|q
)

to denote their KL-divergence
(or relative entropy) and relative Fisher information, respectively, which are defined as

KL
(
p|q
)

=

∫
p(x) log

p(x)

q(x)
dx, and I

(
p|q
)

=

∫
p(x)

∥∥∥∇ log
p(x)

q(x)

∥∥∥2
dx. (1.7)

We denote the entropy of p with H (p) = −
∫
p(x) log p(x)dx. Denoting the Borel σ-field of Rd

with B(Rd), Lα-Wasserstein for α > 0 and total variation metrics are defined as

Wα(p, q) = inf
ν

(∫
‖x− y‖αdν(p, q)

)1/α

, and TV (p, q) = sup
A∈B(Rd)

∣∣∣∣∫
A

(p(x)− q(x))dx

∣∣∣∣ ,
4
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(a) KL-divergence
WORK CONVERGENCE RATE SMOOTHNESS CURVATURE PERTURBATION

Cheng and Bartlett (2018)
Durmus et al. (2019a)

Õ
(
dε−1

) Lipschitz
gradient

Strongly
Convex

None

Vempala and Wibisono (2019) Õ
(
dε−1

) Lipschitz
gradient

Strongly
Convex

Bounded
difference

Cheng and Bartlett (2018) Õ
(
d1+ 4

α ε−3
) Lipschitz

gradient
Convex

Growth rate α
None

This work Õ
(
d

1
β

+ 1+β
β ( 2

α
−1{α 6=1})ε

− 1
β

) β-Hölder
gradient

Tail growth
∼ ‖x‖α

Bounded
difference

(b) Total Variation
WORK CONVERGENCE RATE SMOOTHNESS CURVATURE PERTURBATION

Dalalyan (2017b)
Durmus and Moulines (2017)

Õ
(
dε−2

) Lipschitz
gradient

Strongly
convex

None

Dalalyan (2017b) Õ
(
d3ε−4

) Lipschitz
gradient

Convex None

Chatterji et al. (2020) Õ
(
d

2+ 1
β ε
− 2

β
) Lipschitz+β-Hölder

gradient
Strongly
Convex

None

This work Õ
(
d

1
β

+ 1+β
β

( 2
α
−1{α 6=1})

ε
− 2

β

) β-Hölder
gradient

Tail growth
∼ ‖x‖α

Bounded
difference

Table 1: Convergence rate estimates in (a) KL-divergence and (b) TV distance for the LMC algo-
rithm in various papers and their accompanying assumptions. Comparison is made with
results relying only on first order smoothness. The perturbation column indicates whether
the results are robust against adding a bounded perturbation to the potential (see Lemma 7).

where in the first formula, infimum runs over the set of probability measures on Rd × Rd that has
marginals with corresponding densities p and q.

2. Main Results

We develop our explicit bounds on the convergence rate of the LMC algorithm in three key steps.
First, in Theorem 1, we prove a modified log-Sobolev inequality (mLSI) for a class of asymptotically
convex degenerate potentials described in Assumption 1, which can accommodate for sub-quadratic
tail growth. The condition mLSI relies on the moments of the Markov chain defined by the iterates
of LMC; thus, in Proposition 2, we prove that any order moments of the LMC iterates grow at most
linearly in the number of iterations, an estimate that is diverging in the limit. Finally in Theorem 3,
we invoke these two results for an arbitrary moment order and establish a general convergence result,
which in turn yields the main result of this paper after tuning the moment order in Corollary 4. We
focus on the following class of potentials functions.

Assumption 1 (Degenerate convexity at∞) The potential function f(x) is degenerately convex
at infinity in the sense that there exist a function f̃ : Rd → R such that for a constant ξ ≥ 0∥∥f − f̃∥∥∞ ≤ ξ, where f̃ satisfies ∇2f̃(x) � µ(

1+ 1
4
‖x‖2

)θ/2 Id, (2.1)

for some µ > 0 and θ ≥ 0.
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The parameter θ is intimately related to the tails of f . Consider, for example, the following potential
function f(x) = ‖x‖α for α ∈ [1, 2]. The case α = 2 corresponds to quadratic growth with θ = 0,
and it is easy to see that for a superlinear tail α ∈ (1, 2], one has θ = 2−α. However, when the tail
is exactly linear with α = 1, the assumption can be shown to hold for any θ > 2. In section E, we
show that for functions with linear growth, this assumption does not hold for any θ ≤ 2.

It is known that the LSI condition (1.3) is not satisfied when α < 2, for example for the potential
f(x) = |x|α + c (see e.g. Bobkov and Götze (1999)); therefore, for the above class of potentials,
we state the following log-Sobolev-type inequality.

Theorem 1 (mLSI) If the potential f = − log ν∗ satisfies Assumption 1, then the following in-
equality holds for all s ≥ 2,

∀ρ, KL
(
ρ|ν∗

)
≤ λI

(
ρ|ν∗

)1−δMs(ρ+ ν∗)
δ, (2.2)

where δ and λ are constants that depend on s, and are defined as

δ ,
θ

s− 2 + 2θ
∈ [0, 1/2], and λ , 4e2ξµ−

s−2
s−2+2θ .

The constants λ and δ are explicit, and the above inequality reduces exactly to the LSI condi-
tion (1.3) up to the absolute constant 4 when θ = 0 and ξ = 0, in which case the potential function
f is strongly convex. Modified LSI-type inequalities such as (2.2) as well as weak Poincaré inequal-
ities appear in the analysis of diffusion operators (Bakry et al., 2013). The mLSI condition (2.2) is
similar in nature to the modified LSI of Toscani and Villani (2000); yet, the latter was established
for the purpose of proving the rate O(t−∞) for the diffusion process (1.1), and will yield a bound
on the convergence rate that is worse than what will be established below in Corollary 4. It also
cannot recover the existing rates (e.g. Vempala and Wibisono (2019)) in the limit case α→ 2. Our
proof builds on the construction made in Toscani and Villani (2000) and uses the results of Bakry
and Émery (1985); Holley and Stroock (1987), which we defer to Section A.

The gradient of the potential function is employed as the drift of Langevin diffusion (1.1), and
it also governs its discretization, the LMC algorithm (1.2). The growth behavior of this term is
regulated in the following assumption which is a relaxation of the standard 2-dissipativity condition,
〈∇f(x), x〉 ≥ a‖x‖2 − b for some a, b > 0 (Mattingly et al., 2002; Meyn and Tweedie, 2012), also
commonly used in non-convex optimization (Raginsky et al., 2017; Yu et al., 2020).

Assumption 2 (α-dissipativity & ζ-growth of gradient) For α ∈ [1, 2] and a, b > 0, we have

〈∇f(x), x〉 ≥ a‖x‖α − b for all x ∈ Rd. (2.3)

Moreover, for a positive constant ζ ≤ α/2, the gradient satisfies the following growth condition,

‖∇f(x)‖ ≤M(1 + ‖x‖ζ) for all x ∈ Rd. (2.4)

Note that when the tail growth is superlinear α ∈ (1, 2], the parameter θ in Assumption 1 satisfies
θ = 2− α where α is as in Assumption 2. The key difference between the cases α = 2 and α < 2
is that the former implies that the LMC iterates have uniformly bounded moments of all orders (Er-
dogdu et al., 2018), whereas in the latter case, we are not aware of any methods to establish such
uniform bounds on all moments. This poses significant challenges in the proof. That is, we estab-
lish that the moments of LMC can diverge at most linearly, and even though it is not immediately
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clear that LMC even converges in this setup, we are able to show that this estimate is sufficient to
establish a non-asymptotic bound on the convergence rate of the algorithm. It is also worth noting
that under an additional condition on the gradient perturbation, i.e. ‖∇f −∇f̃‖∞ ≤ ξ, it can be
shown that (2.1) implies (2.3) in Assumption 2 (see Lemma 24); however, the above setting is more
general and covers a wider range of potentials, justifying the current presentation.

In a representative analysis of LMC, one considers a sequence of interpolation diffusion pro-
cesses {x̃k,t}k∈N,t≥0 where each iteration xk+1 of the LMC (1.2) can be written as x̃k,η, where

dx̃k,t = −∇f(xk)dt+
√

2dBt with x̃k,0 = xk, (2.5)

for an appropriate Brownian motion Bt. Denoting the distribution of x̃k,t with ρ̃k,t, it can be shown
that the time derivative of the KL-divergence between ρ̃k,t and the target, dKL

(
ρ̃k,t|ν∗

)
/dt, reduces

to the negative relative Fisher information −I
(
ρ̃k,t|ν∗

)
up to an additive error term that depends on

the difference between the LMC iterate xk and the its interpolating diffusion x̃k,t (see for example
Vempala and Wibisono (2019, Proof of Lemma 3)), which yields the inequality

∀k ∈ N, ∀t ≥ 0, d
dtKL

(
ρ̃k,t|ν∗

)
≤ −3

4 I
(
ρ̃k,t|ν∗

)
+ E

[
‖∇f(x̃k,t)−∇f(xk)‖2

]
.

Combining this with mLSI (2.2) for ρ = ρ̃k,t, one obtains the following differential inequality for
the interpolating diffusion process (2.5),

d
dtKL

(
ρ̃k,t|ν∗

)
≤−3

4

(
1
λKL

(
ρ̃k,t|ν∗

)) 1
1−δ Ms(ρ̃k,t + ν∗)

− δ
1−δ + E

[
‖∇f(x̃k,t)−∇f(xk)‖2

]
. (2.6)

The convergence rate of LMC can be derived by analyzing the differential inequality (2.6), which
requires appropriate estimates on the moments Ms(ρ̃k,η + ν∗) = Ms(ρk+1 + ν∗).

Proposition 2 If the potential f = − log ν∗ satisfies Assumption 2, then denoting the distribution
of the k-th iterate of LMC with ρk, for a step size satisfying η ≤ 1

2

(
1 ∧ a

2M2

)
, we have

Ms(ρk + ν∗) ≤ Ms(ρ0 + ν∗) + Cskη, for even integer s ≥ 2, (2.7)

where Cs ,
(

3a+2b+3
1∧a

) s−2
α

+1
ssd

s−2
α

+1. (2.8)

Although the bound (2.7) grows linearly with the number of iterations and diverges in the limit k →
∞, this estimate is sufficient to establish a global convergence guarantee for the LMC algorithm.
The leading coefficient in the bound Cs (2.8) is of order O(d

s−2
α

+1) which is the same order as in
the continuous-time case (cf. Lemma 10).

In what follows, we make an assumption on the order of smoothness of the potential function f
in order to obtain an estimate for the additive error term in the differential inequality (2.6). In this
context, order of smoothness refers to the Hölder exponent of the gradient of the potential.

Assumption 3 (Order of smoothness) The potential function f is differentiable with β-Hölder
continuous gradient with constant L, i.e.

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖β for all x, y ∈ Rd, (2.9)

where the order of smoothness β satisfies ζ ≤ β ≤ 1 for the constant ζ in (2.4).
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Potentials with order of smoothness β = 1 are termed as smooth and those with β < 1 are often
referred to as weakly smooth in the literature (Chatterji et al., 2020; Nesterov, 2015), a term that is
borrowed from optimization theory. Our results cover potentials satisfying (2.9) for any β ∈ (0, 1].

β-Hölder continuity already imposes a growth condition on the gradient (2.4) with ζ = β. How-
ever, we state these separately as the order of smoothness β and the growth rate ζ need not be the
same; a smaller growth rate on the gradient improves certain estimates in the main result, which in
turn allows us to cover a wider class of potentials. For example, the function f(x) =

√
1 + ‖x‖2 is

smooth with Lipschitz gradient, but its gradient is also bounded implying ζ = 0. One cannot simply
use ζ = 1 since the condition ζ ≤ α/2 in Assumption 2 implies that α ≥ 2 which is clearly not
true for this potential. Hence, keeping these parameters separate allows us to cover a wider range of
potentials. The relationship among these parameters can be summarized as

2ζ ≤ α ≤ ζ + 1 ≤ β + 1.

If one requires quadratic growth on the potential, i.e. α = 2, this immediately implies that the
smoothness order is at least 1, i.e β ≥ 1, in which case only smooth potentials become feasible.

Before we present the main technical result of this paper, we note that when α > 1, all assump-
tions are satisfied for potentials of the form

f(x) = ‖x‖α + 10 cos(‖x‖) + c.

This potential is non-convex and it does not have a Lipschitz gradient, and serves as a canonical
example that demonstrates the wide applicability of the following result. For additional (non-trival)
examples, we refer to Section 4 (specifically 4.2).

Theorem 3 Suppose the potential f = − log ν∗ satisfies Assumptions 1, 2, 3, and denote the dis-
tribution of the k-th iterate of LMC with ρk. Then, for a sufficiently small ε satisfying ε ≤ ψ
where ψ is defined in (C.10), and for some ∆0 > 0 upper bounding the error at initialization, i.e.
KL
(
ρ0|ν∗

)
≤ ∆0, if the step size satisfies

η = (σcγ)
− 1

1+β d
−α+θ

αβ
− γ
β+1 (1 + (1− α/2) log(d))

− 1
β log

(
∆0

ε

)− γ
1+β
(

2

ε

)− 1
β
− γ

1+β

, (2.10)

then the LMC iterates reach ε-accuracy of the target, i.e. KL
(
ρN |ν∗

)
≤ ε, after N steps for

N = cγd
α+θ+βθ
αβ

+γ
(1 + (1− α/2) log(d))

1
β log

(
2∆0

ε

)1+γ (2

ε

) 1
β

+γ

,

where γ is given by

γ , γ(s) = (1+β)θ
β(s−2) for any even integer s ≥ 4, (2.11)

and σ and cγ are constants given as

σ =4L2
(

1 + 2aβ
[
1 + 2α

a

(
log (16π/a) +M (2 + 2b/a)2 + b+ |f(0)|

)])
,

cγ =σ
1
β (16λ)

1+ 1
β

+2γ
(

Ms(ρ0+ν∗)

16d
s−2
α +1

∨ ss

16

(
3a+2b+3

1∧a
) s−2

α
+1
)γ
.
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The above theorem, proved in Section C, implies that for smooth potentials that satisfy LSI, i.e.
α = 2 and β = 1, we have γ = θ = 0; thus, LMC achieves the rate of Õ

(
dε−1

)
, recovering the

rate established by Vempala and Wibisono (2019). In the general case, Theorem 3 implies the con-

vergence rate bound Õ
(
γ−1d

α+θ+βθ
αβ

+γ
ε
− 1
β
−γ
)

where γ > 0 is given in (2.11) and can be arbitrarily
small. However, one cannot simply let γ → 0 by taking the limit s→∞; for any other potential
function with subquadratic tail growth α < 2, the parameter γ requires tuning.

The upper bound ψ on accuracy, as stated in (C.10), is O(1), depending only on the fixed
problem parameters and the initial KL-divergence ∆0. When initialized with a Gaussian, ∆0 can
also be characterized with the fixed problem parameters (see Lemma 26). More importantly, the
upper bound on ε, as stated in (C.10), does not depend on the moment order s, which enables us to
choose s = O

(
log
(
dε−1

))
and accordingly γ = O

(
1/ log

(
dε−1

) )
, which in turn yields the best

known bound on the convergence rate that can be achieved by our method. This is formalized in the
next corollary which is the main result of this paper.

Corollary 4 Suppose the potential f = − log ν∗ satisfies Assumptions 1, 2, 3, and denote by ρk,
the distribution of the k-th iterate of LMC initialized with x0 ∼ N (x, Id) for any x ∈ Rd and ∆0

upper bounding the error at initialization (see Lemma 26). Then, for a sufficiently small ε satisfying
ε ≤ ψ where ψ is defined in (C.10), if the step size satisfies (2.10) for s = 2 + 2dlog(6d

ε )e, the
iterates of LMC reaches ε-accuracy of the target, i.e. KL

(
ρN |ν∗

)
≤ ε, after N steps satisfying

N ≤ cd
α+θ+βθ
αβ (1 + (1− α/2) log(d))

1
β log

(
2∆0
ε

)1+
(1+β)θ

2β
(
2 + 2

⌈
log
(

6d
ε

)⌉) 2(1+β)θ
β

(
2
ε

) 1
β ,

where c is a constant independent of d and ε, and given as

c = e
(1+α)(1+β)θ

αβ σ
1
β

(
64e2ξ

1∧µ

)1+ 1+θ+βθ
β (

3a+2b+3
1∧a

) 2(1+β)θ
αβ .

The above corollary, proved in Section F, implies that the LMC algorithm achieves ε accuracy

of the target in KL-divergence in Õ
(
d
α+(1+β)θ

αβ ε
− 1
β

)
steps. Whenever the tail growth of the potential

is superlinear and behaves like ‖x‖α for α ∈ (1, 2], Assumption 1 holds for θ = 2− α; thus, Corol-
lary 4 can be invoked for this choice of θ, yielding the convergence rate estimate Õ

(
d

2
α

(1+ 1
β

)−1
ε
− 1
β

)
.

On the other hand, when the potential function has linear tail growth (i.e. f(x) ∼ ‖x‖), then by
setting f̃ =

(
1 + ‖x‖1+τ

)1/(1+τ) where τ ∈ (0, 1), one can verify that Assumption 1 holds for

θ = 2 + τ . By tuning this parameter with τ = 1/ log (6d), we obtain an estimate of Õ
(
d

2+ 3
β ε
− 1
β

)
.

Putting this all together, one can simply use θ = 2− α1{α 6=1}, which yields the advertised estimate

Õ
(
d

1
β

+(1+ 1
β

)( 2
α
−1{α 6=1})ε

− 1
β

)
. We emphasize that, in moderate dimensions where d� ε−1, the es-

timate only depends on the order of smoothness β, whereas in high dimensions where d = Ω(ε−1),
the tail growth rate α enters the bound through dimension dependency.

The obtained rate is continuous in the domain α ∈ (1, 2] and β ∈ (0, 1]; however, there is a
discontinuous jump at α = 1 due to lack of convexity, this is explored further in Section E, where
we prove that linear potentials cannot be convex degenerate with θ ≤ 2. One can verify that θ = 1
implies a tail growth of ‖x‖ log(1+‖x‖) which is superlinear, but in terms of Assumption 2, we still
have α = 1. In this case, the tail growth cannot be explained with a polynomial in ‖x‖; therefore,
θ = 1 6= 2− α1{α 6=1} because of the additional logarithmic factor. One should also note that α = 1
is the exception in the sense that introducing additional log factors when α > 1 does not change θ,
and ultimately the bound on the convergence rate stays the same.

9
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In the next corollary, we translate the result in KL-divergence to other measures of distance
between probability distributions such as total variation (TV) and Lα-Wasserstein metrics. The
proof is straightforward, and postponed to Section F. In order to reach the same level of accuracy in
different probability metrics, one needs to adapt the step size accordingly. This requires a different
upper bound on the accuracy ε in each metric.

Corollary 5 (Other Measures of Distance) Instantiate the assumptions and notation of Theo-
rem 3. If LMC (1.2) is initialized with x0 ∼ N (x, Id) for any x ∈ Rd, then, the following table
summarizes the number of steps that are sufficient for obtaining an ε-accurate sample in various
distance measures.

METRIC NUMBER OF STEPS BOUND ON ε

TV Õ
(
d
α+θ+βθ
αβ ε

− 2
β

)
ε ≤

√
ψ/2 (see (C.10))

Wα Õ
(
d

3α+θ+βθ
αβ ε

− 2α
β

)
(F.1)

W2 (α = 2, β = 1 and θ = 0) Õ
(
dε−2

)
(F.2)

Table 2: Convergence rate estimates in various metrics.

As before, one can simply use θ = 2− α1{α 6=1}. In the case of strongly convex and smooth
potentials, i.e. α = 2 and β = 1, the corollary recovers the rate Õ

(
dε−2

)
in TV distance, which

was established in Durmus and Moulines (2017). For functions that have quadratic growth, the
convergence rate in Wα can be made better, because the result relies on the CKP inequality (see
Lemma 23) which does not recover Talagrand’s inequality when α = 2 (Bolley and Villani, 2005).
Therefore, the case α = 2 is handled separately, where Talagrand’s inequality is available. We
emphasize that θ = 0 corresponds to potentials with tail growth rate α = 2. Since in this case
γ = 0, there is no need to tune s to a specific moment. The quadratic growth setting only covers
smooth potentials, because Assumption 3 implies that the gradient of the potential has a tail growth
rate upper bounded by β, which in turn upper bounds the tail growth of f with β + 1. Thus, the
only feasible value for β is 1 in this case.

3. Further Implications

Convex potentials. If a potential function has tail growth rate α, then there exist a, b > 0 such that

f(x) ≥ a‖x‖α − b, for all x ∈ Rd. (3.1)

The next proposition (cf. Bakry et al. (2008, Lemma 2.2)) shows that convex potentials exhibit at
least linear tail growth, i.e. (3.1) holds for some α ≥ 1. Furthermore, Assumption 2 is also satisfied
for the same value of α in (3.1). The proof is deferred to Section D.

Proposition 6 For any differentiable convex potential f : Rd → R (e.g.
∫
e−f < ∞), there exist

constants a, b > 0 such that (3.1) is satisfied for α = 1. If further (3.1) is satisfied for some α ≥ 1,
then α-dissipativity condition (2.3) of Assumption 2 holds for the same value of α.

10
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In light of Proposition 6, one can argue that for convex potentials, the limiting factor is the smooth-
ness of the potential function f . For example, consider f1(x) =

√
1 + ‖x‖2 and f2(x) = ‖x‖.

These are both convex functions with linear growth and they satisfy Assumptions 1 and 2 with the
same θ and α. While f1 is smooth, f2 does not satisfy Assumption 3 for any β.
Non-convex potentials. Assumptions 1, 2 and 3 are robust to bounded perturbations. In other
words, if these assumptions are satisfied for a potential, then they also hold for its finite perturbation.
The following lemma formalizes this statement and its proof is deferred to Section F.

Lemma 7 Let f be a potential satisfying Assumptions 1, 2 and 3 for α > 1. Then, for any bounded
function φ with β-Hölder continuous and bounded gradient, f + φ can be normalized to a potential,
also satisfying Assumptions 1, 2 and 3. Further, if we additionally have supx∈Rd‖∇φ(x)‖ < a for
the constant a as in Assumption 2, the above result also holds for α = 1.

The previous lemma shows that Corollary 4 is robust to finite perturbations. Moreover, investi-
gating the proof reveals that the growth rate α and the order of smoothness β do not change (along
with θ), which means that our estimate of the convergence rate of LMC for the perturbed potential
is the same as that of the original potential.

4. Applications

In this section, we apply the results of Sections 2 and 3 to various illustrative potential functions.
We begin with a few basic examples in order to demonstrate the effect of tail growth and the order
of smoothness on the convergence of LMC.

4.1. Pedagogical examples

Example 1 (Weakly smooth potential with subquadratic tails) Consider the potential f(x) =
‖x‖α for α ∈ (1, 2). This potential is not smooth with an unbounded Hessian near the origin, and
its tails are subquadratic which means the tails of the target ν∗ ∝ e−f are heavier than those of
the Gaussian distribution. It is straightforward to verify our assumptions for this potential (see e.g.
Lemma 35 for Assumption 3). Therefore, Corollary 4 implies that we can reach ε accuracy in KL-
divergence after taking Õ

(
d

3−α
α−1 ε−

1
α−1

)
steps. To highlight the impact of the order of smoothness,

consider the smooth potential f(x) = (1 + ‖x‖2)α/2 which has the same tail growth as ‖x‖α, for
which our rate estimate improves to Õ

(
d

4−α
α ε−1

)
.

Our results allow for finite perturbations, for example, consider the function φ(x) = cos (‖x‖)
which is bounded with bounded first derivative. Its gradient is given by ∇φ(x) = − x

‖x‖ sin (‖x‖)
which is Lipschitz continuous; hence, Lemma 34 implies that it is also β-Hölder continuous.
By Lemma 7, the rate obtained from Corollary 4 is applicable to the potential g(x) = ‖x‖α +

10 cos (‖x‖) + ξ, and the convergence rate estimate Õ
(
d

3−α
α−1 ε−

1
α−1

)
still holds.

Example 2 (Smooth potential with linear tails): Since ‖x‖ has discontinuous gradient at the
origin, we consider f(x) =

√
1 + ‖x‖2 as an example of a smooth potential with linear growth. It

is straightforward to verify our assumptions with the parameter values ξ = 0, α = 1, β = 1 and
θ = 3 (by setting f̃ = f ). Plugging these parameters in Corollary 4, we obtain the convergence rate
bound Õ

(
d7ε−1

)
for the LMC algorithm in KL-divergence.

The dimension dependency in the previous convergence rate bound can be improved by chang-
ing f̃ to a function that is different from f . Observe that the difference between

√
1 + ‖x‖2 and

11
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(
1 + ‖x‖1+τ

)1/(1+τ) is bounded for any τ ∈ (0, 1). Thus, if we set f̃(x) =
(
1 + ‖x‖1+τ

)1/(1+τ),
Assumption 1 is satisfied with θ = 2 + τ and µ = O(τ). Setting τ = O(log (6d)−1) and invoking
Corollary 4 implies an estimate of Õ(d5ε−1), for a potential like f(x) =

√
1 + ‖x‖2+0.5 cos(‖x‖).

We note that in this case, the norm of the perturbation needs to be strictly smaller than 1, otherwise
Assumption 2 is no longer satisfied.

4.2. Bayesian regression

In this section, the fixed problem parameters such as M and L depend on the data, and the rates are
obtained assuming these constants are O(1). Depending on the data scaling, these parameters may
depend on the dimension as well as the number of samples n, in which case the rates can still be
obtained by using the explicit formulas presented in Theorem 3 and Corollary 4.
Example 3 (Bridge regression): Our analysis shows that the LMC algorithm can handle potentials
that are weakly smooth, which comes up frequently in Bayesian statistics. For example, denoting the
matrix of covariates with V = {vi}ni=1 ∈ Rn×d, and the response vector with Y = {yi}ni=1 ∈ Rn,
in Bridge linear regression (Fu, 1998; Frank and Friedman, 1993), one assumes a linear model
Y = V x + ε, ε ∼ N (0, In), and a prior proportional to exp(−

∑d
i=1 |xi|

q). Therefore, sampling
from the resulting posterior is equivalent to sampling from the potential function f(x) = ‖Y −
V x‖2 +

∑d
i=1 |xi|

q . Assume that we have V >V � 0 and q ∈ (1, 2). Then, the above potential
has quadratic growth which, in our framework, translates to setting θ = 0 in Assumption 1, and
choosing α = 2 and ζ = 1 in Assumption 2. This potential lacks smoothness; yet in the close
neighborhood of the origin, Assumption 3 holds with β = q − 1. On the other hand, ∇f has linear
growth and when ‖x − y‖ ≥ 1, Assumption 3 holds with β = 1. Initially, it might seem that our
results are not applicable to this potential but by adapting Assumption 3 to this setting as

‖∇f(x)−∇f(y)‖ ≤ L
(
‖x− y‖β1 + ‖x− y‖β2

)
for all x, y ∈ Rd,

where β1 < β2, and some minor changes to Lemma 15, our convergence results also cover this
potential. In this example, we need to set β1 = q − 1, β2 = 1, and ζ ≤ β2 which yields the
convergence estimate Õ

(
d

1
q−1 ε

− 1
q−1

)
in KL-divergence.

Example 4 (Bayesian logistic regression): In Bayesian logistic regression, we are given n samples
according to the logistic regression model

V = {vi}ni=1 ∈ Rn×d, Y = {yi}ni=1 ∈ {0, 1}n and P(yi = 1|vi) = 1/(1 + exp(−〈x, vi〉))

for some parameter x ∈ Rd. It is common to use LMC to generate samples from the posterior
distribution p(x|V, Y ) with the following potential function

f(x) = − log p(x)− 〈Y, V x〉+
∑n

i=1 log(1 + exp(〈x, vi〉)),

where p(x) is a prior on x. In practice, the prior distribution can be arbitrary whereas most theoret-
ical results require the prior to be the Gaussian distribution in order to ensure that the posterior is
smooth and has quadratic growth (Dalalyan, 2017b; Li et al., 2019). The framework in this paper
allows for priors that have heavier tails than a Gaussian and/or have potentials that do not have Lips-
chitz gradients. For example, consider a pseudo-Huber prior p(x) ∝ exp

(
−
√

1 + ‖x‖2
)

(Gorham
et al., 2019; Hartley and Zisserman, 2003), which results in a similar setting as in Example 2, in the
sense that a careful choice of f̃ yields a convergence rate bound of Õ

(
d5ε−1

)
.
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Next, consider the prior p(x) ∝ exp
(∑d

i=1 |xi|
q ) for q ∈ (1, 2) which is similar to the Bridge

linear regression setting. The resulting potential function is not smooth in this case, and the po-
tential lacks quadratic growth. Our analysis can be used to show that the LMC algorithm reaches
ε-accuracy in KL-divergence after Õ

(
d

3−q
q−1 ε

− 1
q−1

)
steps.

5. Conclusion

In this paper, we analyzed the convergence of unadjusted LMC algorithm for a class of potentials
whose tails behave like ‖x‖α for α ∈ [1, 2], and have β-Hölder continuous gradients. This covers
potentials that are weakly smooth, and can be written as finite perturbations of a function which is
convex degenerate at ∞. To establish this, we proved a moment dependent modified log-Sobolev
inequality for any order moment of the LMC. Further establishing a diverging moment estimate on
the LMC iterates under α-dissipativity, we obtained a differential inequality which can be iterated to
obtain our main convergence result after tuning the moment order. To demonstrate the applicability
of our results, we showed that any convex potential have at least linear growth, and further we
verified our main assumptions on a variety of sampling problems. The established bound on the
convergence rate of LMC can be described as a function of the smoothness order and the tail growth
rate in high dimensions. Our results hold only for the last iterate of the LMC algorithm; investigating
the behavior of the subsequent iterates is an interesting direction left for another study.
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Appendix A. Proof of Modified Log-Sobolev Inequality

We start with a lemma that allows us to construct a finite perturbation of the potential function that
has polynomially decaying Hessian which is unbounded at 0. This will allow us to optimize the
final bound.

Lemma 8 Suppose Assumption 1 holds. Then for sufficiently small ε > 0, there exist a function
f̃ε : Rd → R such that ∥∥f − f̃ε∥∥∞ ≤ ξ + ε/2,

where f̃ε(x) satisfies,

∇2f̃ε(x) � m(‖x‖)Id,

where m : R+ → R+ is a monotonically decreasing and onto function satisfying

m(r) ≥ µ− αθε
(1 + r2/4)θ/2

,

where αθ <∞ is a constant depending only on θ.

Proof of Lemma 8. Let f̃ε(x) = f̃(x) + ε‖x‖3/2e−‖x‖2 , and notice that f satisfies

‖f − f̃ε‖∞ ≤ ξ + ε/2.

For its Hessian, we write

∇2f̃ε(x) = ∇2f̃(x) + εe−‖x‖
2{ (3

2‖x‖
−1/2 − 2‖x‖3/2

)
Id

−
(
6‖x‖−1/2 − 4‖x‖3/2 + 3

4‖x‖
−5/2

)
xx>

}
,

and by choosing αθ = 8 supr≥0 r
1.5(1 + r2/4)θ/2e−r

2
, we observe that

∇2f̃ε(x) � µ− αθε
(1 + ‖x‖2/4)θ/2

Id.

Also,∇2f̃ε(x) > ε‖x‖−1/2/2 when x ≤ 0.1. Now by selecting

m(r) = (µ− αθε)(1 + r2/4)−θ/2 ∨ ε
2
r−1/2

1{r≤0.1},

the lemma follows. Note that m : R+ → R is both monotone and onto for ε < 1/(αθ + 2).

Proof of Theorem 1. We follow a similar construction developed in Toscani and Villani (2000),
and define the functions h and h̃ε as

h(x) = f(x) +m(2r)
(
‖x‖ − r

)2
1{‖x‖≥r} + Cr and (A.1)

h̃ε(x) = f̃ε(x) +m(2r)
(
‖x‖ − r

)2
1{‖x‖≥r} + Cr,

where Cr is the normalizing constant for the unnormalized potential h satisfying

eCr =

∫
‖x‖<r

e−f(x)dx+

∫
‖x‖≥r

e−f(x)e−m(2r)(‖x‖−r)2
dx. (A.2)

Using Assumption 1 and Lemma 8, we notice that h and h̃ε satisfy
∣∣h(x)− h̃ε(x)

∣∣ ≤ ξ + ε/2, and
also the growth of the function h̃ε can be characterized in the following three regions.
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• For ‖x‖ < r, we have

∇2h̃ε(x) = ∇2f̃ε(x) �m(‖x‖)Id
�m(2r)Id,

where in the last step we used the monotonicity of m.

• For r ≤ ‖x‖ < 2r, we have

∇2h̃ε(x) =∇2f̃ε(x) +m(2r)

{
2Id −

2r

‖x‖
Id + 2r

xx>

‖x‖3

}
�m(‖x‖)Id +m(2r) {2Id − 2Id + 0}
�m(2r)Id,

where again the last step follows from the monotonicity of m.

• For 2r ≤ ‖x‖, we have

∇2h̃ε(x) =∇2f̃ε(x) +m(2r)

{
2Id −

2r

‖x‖
Id + 2r

xx>

‖x‖3

}
�0 +m(2r) {2Id − Id + 0}
�m(2r)Id.

In all three cases, we obtain that the function h̃ε has a positive definite Hessian which is lower
bounded by m(2r) which implies, by the Bakry-Emery’s LSI result on strongly convex poten-
tials (Bakry and Émery, 1985) that the distribution e−h̃ε satisfies (1.3). Combining this with the
Holley-Stroock perturbation lemma (Holley and Stroock, 1987), we obtain

∀ρ, KL
(
ρ|e−h

)
≤ e2ξ+ε

2m(2r)
I
(
ρ|e−h

)
. (A.3)

We will convert the above inequality on the perturbed potential h to an inequality on the potential
function f . Using the definition in (A.1), we can obtain an upper bound on the relative entropy for
all r > 0,

KL
(
ρ|e−f

)
=KL

(
ρ|e−h

)
+

∫
ρ(x)(f(x)− h(x))dx (A.4)

=KL
(
ρ|e−h

)
−m(2r)

∫
‖x‖≥r

ρ(x)(‖x‖ − r)2dx− Cr.

For the normalizing constant Cr explicitly given in (A.2), one can obtain a lower bound using
the Jensen’s inequality,

Cr = log

∫
e−f(x)e−m(2r)(‖x‖−r)2

1{‖x‖≥r}dx

≥−m(2r)

∫
‖x‖≥r

e−f(x)(‖x‖ − r)2dx.
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Combining this with (A.4), we obtain

KL
(
ρ|e−f

)
≤KL

(
ρ|e−h

)
+m(2r)

∫
‖x‖≥r

(
e−f(x) − ρ(x)

)
(‖x‖ − r)2dx

≤KL
(
ρ|e−h

)
+m(2r)

∫
‖x‖≥r e

−f(x)‖x‖2dx

≤KL
(
ρ|e−h

)
+m(2r) Ms(ν∗)

(1+r2)s/2−1 (A.5)

where the second step follows since ρ ≥ 0, and ‖x‖2 ≥ (‖x‖ − r)2 in the domain of integration,
and the last step follows from Lemma 9 below.

Lemma 9 For a given distribution ρ and for a constant r > 0, we have∫
‖x‖≥r ρ(x)‖x‖2dx ≤ Ms(ρ)

(1+r2)s/2−1 .

Proof of Lemma 9. For positive constants p, q, s > 0 satisfying 1/p+ 1/q = 1, we apply the
Hölder’s inequality and get∫

‖x‖≥r ρ(x)‖x‖2dx =
∫
ρ(x)‖x‖21{‖x‖≥r}dx

≤
(∫
ρ(x)‖x‖2pdx

)1/p P((1 + ‖x‖2
)s/2 ≥ (1 + r2)s/2

)1/q

≤M2p(ρ)1/pMs(ρ)1/q

(1+r2)s/2q
,

where the last step follows from Markov’s inequality. Final result follows by choosing p = s/2.

Similarly for the Fisher information, we write

I
(
ρ|e−h

)
≤ 2I

(
ρ|e−f

)
+ 2

∫
ρ(x)‖∇h(x)−∇f(x)‖2dx. (A.6)

For the second term on the right hand side, we write∫
ρ(x)‖∇h(x)−∇f(x)‖2dx =4m(2r)2

∫
ρ(x)(‖x‖ − r)2

1{‖x‖≥r}dx

≤4m(2r)2

∫
ρ(x)‖x‖21{‖x‖≥r}dx

≤ 4m(2r)2

(1 + r2)s/2−1
Ms(ρ),

where in the last step we applied Lemma 9. Plugging this back in (A.6), we get

I
(
ρ|e−h

)
≤ 2I

(
ρ|e−f

)
+ 8m(2r)2

(1+r2)s/2−1 Ms(ρ). (A.7)

Combining the inequalities (A.3), (A.5), and (A.7), we obtain

∀ρ, KL
(
ρ|e−f

)
≤KL

(
ρ|e−h

)
+ m(2r)Ms(ν∗)

(1+r2)s/2−1

≤ e2ξ+ε

2m(2r) I
(
ρ|e−h

)
+ m(2r)Ms(ν∗)

(1+r2)s/2−1

≤ e2ξ+ε

m(2r) I
(
ρ|e−f

)
+ m(2r)

(1+r2)s/2−1

(
4e2ξ+εMs(ρ) + Ms(ν∗)

)
≤ e2ξ+ε

m(2r) I
(
ρ|e−f

)
+ 4e2ξ+ε m(2r)

(1+r2)s/2−1 Ms(ρ+ ν∗).
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Finally, using the Lemma 28 and optimizing over m(2r), we get

∀ρ, KL
(
ρ|e−f

)
≤λεI

(
ρ|e−f

) s−2+θ
s−2+2θMs(ρ+ ν∗)

θ
s−2+2θ ,

where

λε = 4e2ξ+ε

(µ−αθε)
s−2

s−2+2θ

,

for all sufficiently small ε > 0. Taking the limit of ε ↓ 0 concludes the proof.

Appendix B. Moment Bounds on the LMC Iterates

Proof of Proposition 2. Similar to the continuous-time case, it suffices to prove

Ms(ρk) ≤ Ms(ρ0) + Cskη.

Part 1. We prove a linear bound on the second moment of x̃k,t conditioned on xk. Consider the
distribution ρ(x̃k,t|xk) which is the distribution of x̃k,t given xk.

E
[
‖x̃k,t‖2|xk

]
= ‖xk‖2 − 2t 〈∇f(xk), xk〉+ t2‖∇f(xk)‖2 + 2dt

1
≤ ‖xk‖2 − 2t(a‖xk‖α − b) + 2t2M2(1 + ‖xk‖2ζ) + 2dt

= ‖xk‖2 + 2t
(
−a (1 + ‖xk‖α) + ηM2‖xk‖2ζ + a+ b+ d+ ηM2

)
2
≤ ‖xk‖2 + 2

(
a+ b+ d+ ηM2

)
t

≤ ‖xk‖2 + C2t,

for any C2 satisfying
C2 ≥ 3a+ 2b+ 2d. (B.1)

Step 1 is obtained using Assumptions 2, and step 2 is because 4ηM2 ≤ a. Adding one to both sides,
we get the following equation

M2(ρ̃k,t|xk) ≤ g2(xk) + C2t,

where gs(x) =
(
1 + x2

)s/2 and Ms(ρ̃k,t|xk) denotes the s-moment of x̃k,t conditioned on xk.
Part 2. We upper bound a term which will become useful in the proof of the induction step. (In
below, Z denotes a standard Gaussian vector that is independent of xk.)

E[−〈∇f(xk), Z〉g2(x̃k,t)|xk]
1
= 2
√

2tE [−〈∇f(xk), Z〉 〈xk, Z〉+ t 〈∇f(xk), Z〉 〈∇f(xk), Z〉|xk]
= 2
√

2t
(
−〈∇f(xk), xk〉+ t‖∇f(xk)‖2

)
≤ 2
√

2η
(
−a‖xk‖α + b+ 2ηM2(1 + ‖xk‖2ζ)

)
≤ 2
√

2η
(
−a (‖xk‖α + 1) + 2ηM2‖xk‖2ζ + a+ b+ 2ηM2

)
2
≤ 2
√

2η
(
a+ b+ 2ηM2

)
≤ N2,
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where
N2 , 2

√
2η (1.5a+ b) . (B.2)

Step 1 follows from odd Gaussian moments being zero, and step 2 uses 4ηM2 < a. Note that Z is
independent of xk, with zero mean.
Part 3. Now we use induction to prove the linear bound for even moments of the conditional
distribution. The base case (s = 2) is already proved. Hence, we can assume s ≥ 4 which implies
(s− 4) is an even non-negative integer. For the proof to work, we need to strengthen the induction
hypothesis for which part 2 in the proof will be useful. We will prove by induction that for all even
s, we have the following

1. Ms(ρ̃k,t|xk) ≤ gs(xk) + Cst.

2. E [−〈∇f(xk), Z〉 gs(x̃k,t)|xk] ≤ Ns.

For the first inequality above, we will bound the time derivative of Ms(ρ̃k,t|xk) as follows.

∂

∂t
Ms(ρ̃k,t|xk)

= E [−s 〈∇f(xk), x̃k,t〉 gs−2(x̃k,t) + s(d+ s− 2)gs−2(x̃k,t)− s(s− 2)gs−4(x̃k,t)|xk]

≤ sE
[(
−
〈
∇f(xk), xk − t∇f(xk) +

√
2tZ

〉
+ (d+ s− 2)

)
gs−2(x̃k,t)|xk

]
≤ s

(
−〈∇f(xk), xk〉+ t‖∇f(xk)‖2 + (d+ s− 2)

)
E [gs−2(x̃k,t)|xk]

+ s
√

2tE [〈−∇f(xk), Z〉 gs−2(x̃k,t)|xk]

≤ s
[
−a‖xk‖α + b+ 2ηM2(1 + ‖xk‖2ζ) + (d+ s− 2)

]
+

(gs−2(xk) + Cs−2t)

+ s
√

2ηNs−2

1
≤ max

u≥1
s
(
−auα + 2ηM2u2ζ + (2ηM2 + a+ b+ d+ s− 2)

)
(us−2 + Cs−2t)

+ s
√

2ηNs−2

≤ smax
u≥1

(
−a

2
uα+s−2 + 2ηM2u2ζ+s−2

)
+ smax

u≥1

(
−a

2
uα+s−2 + (2ηM2 + a+ b+ d+ s− 2)us−2

)
+ sCs−2ηmax

u≥1

(
−auα + 2ηM2u2ζ + (2ηM2 + a+ b+ d+ s− 2)

)
+ s
√

2ηNs−2

2
≤ s
[
(2ηM2 + a+ b+ d+ s− 2)

(
2(2ηM2 + a+ b+ d+ s− 2)(s− 2)

a(α+ s− 2)

) s−2
α

+ Cs−2η(2ηM2 + a+ b+ d+ s− 2) +
√

2ηNs−2

]
,

in which substitution u =
√

1 + ‖xk‖2 is used in step 1 and Lemma 30 is used in step 2. The above
inequality shows Ms(ρ̃k,t|xk) ≤ Ms(xk) + Cst for any Cs satisfying

Cs
s
≥ (2ηM2 + a+ b+ d+ s− 2)

(
2(2ηM2 + a+ b+ d+ s− 2)

a

) s−2
α

+ Cs−2η(2ηM2 + a+ b+ d+ s− 2) +
√

2ηNs−2.

(B.3)
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For proving the second part of the induction step, we use Stein’s lemma (Stein, 1981) (the version
we use is stated in Lemma 31) in the first equality below.

E[−〈∇f(xk), Z〉gs(x̃k,t)|xk]

= E
[
−s
√

2t
〈
∇f(xk), gs−2(x̃k,t)

(
xk − t∇f(xk) +

√
2tZ

)〉
|xk
]

≤ s
√

2t
(
−〈∇f(xk), xk〉+ t‖∇f(xk)‖2

)
Ms−2(ρ̃k,t|xk) + 2stNs−2

≤ s
√

2η
[
−a‖xk‖α + b+ 2ηM2(1 + ‖xk‖2ζ)

]
+

(gs−2(xk) + Cs−2η) + 2sηNs−2

≤ s
√

2ηmax
u≥1

(
−auα + 2ηM2u2ζ + (b+ a+ 2ηM2)

)
(us−2 + Cs−2η) + 2sηNs−2

≤ s
√

2ηmax
u≥1

(
−a

2
uα+s−2 + 2ηM2u2ζ+s−2

)
+ s
√

2ηmax
u≥1

(
−a

2
uα+s−2 + (b+ a+ 2ηM2)us−2

)
+ s
√

2ηCs−2ηmax
u

(
−auα + 2ηM2u2ζ + (b+ a+ 2ηM2)

)
+ 2sηNs−2

≤ s
[
(b+ a+ 2ηM2)

√
2η

(
2(b+ a+ 2ηM2)(s− 2)

a(α+ s− 2)

) s−2
α

+ Cs−2η
√

2η(b+ a+ 2ηM2) + 2ηNs−2

]
≤ Ns,

where

Ns

s
= (b+ a+ 2ηM2)

√
2η

(
2(b+ a+ 2ηM2)

a

) s−2
α

+ Cs−2η
√

2η(b+ a+ 2ηM2) + 2ηNs−2.

(B.4)

Again, the substitution u =
√

1 + ‖x‖2 is used here. This completes the induction.
The previous induction showed Ms(ρ̃k,t|xk) ≤ gs(xk) + Cst when s is a positive even integer.

We take expectation with respect to xk in order to get

Ms(ρ̃k,t) ≤ Ms(ρk) + Cst,

setting t = η yields
Ms(ρk+1) ≤ Ms(ρk) + Csη,

and finally, induction on k gives

Ms(ρk) ≤ Ms(ρ0) + Cskη.

Part 4. In this part, we establish a non-recursive formula for Cs. Note that the theorem holds for a
larger Cs, this helps us to derive a closed-form formula for Cs. We combine (B.1) and (B.2) to get
N2 ≤ C2

√
2η, then we use (B.3) and (B.4) inductively, to establish Ns ≤ Cs

√
2η. By combining

the previous inequality with 4ηM2 ≤ a, we can strengthen the bound (B.3) to

Cs ≥
(

3a+ 2b+ 2d+ 2s

1 ∧ a

) s−2
α

+1

s+
3a+ 2b+ 2d+ 2s

1 ∧ a
× Cs−2sη.
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Cs, as defined in (2.8), satisfies the previous inequality and (B.1), which in turn implies that it also
satisfies (B.3) and (B.1).

The next proposition is the analog moment bound for the continuous-time process, and is
adapted from Toscani and Villani (2000) for the sake of comparison with the bound for the dis-
crete time process.

Lemma 10 Let f satisfy Assumption 2 and pt be the distribution of Zt, then

Ms(pt) ≤ Ms(p0) +Kst,

where Ks = (b+ d+ a+ s− 2)
(
b+d+a+s−2

a

) s−2
α s.

Proof If s < s′ then Ms(pt) =
∫
pt(x)(1 + ‖x‖2)

s
2 ≤

∫
pt(x)(1 + ‖x‖2)

s′
2 = Ms′(pt). We differ-

entiate Ms(pt) with respect to time.

d

dt
Ms(pt) =

∫
pt(x)

[
∆(1 + ‖x‖2)

s
2 −

〈
∇f(x),∇(1 + ‖x‖2)

s
2

〉]
= (ds+ s(s− 2)) Ms−2(pt)− s(s− 2)Ms−4(pt)

− s
∫
pt(x) 〈∇f(x), x〉 (1 + ‖x‖2)

s−2
2

≤ (b+ d+ s− 2)sMs−2(pt)− s
∫
pt(x)a‖x‖α(1 + ‖x‖2)

s−2
2

≤ (b+ d+ a+ s− 2)sMs−2(pt)−
as

2
Ms+α−2(pt)

≤ (b+ d+ a+ s− 2)sMs+α−2(pt)
s−2

s+α−2 − as

2
Ms+α−2(pt)

1
≤ (b+ d+ a+ s− 2)s

(
2(b+ d+ a+ s− 2)(s− 2)

a(s+ α− 2)

) s−2
α

≤ (b+ d+ a+ s− 2)

(
b+ d+ a+ s− 2

a/2

) s−2
α

s,

where step 1 follows from Lemma 30.

Appendix C. Proof of The Main Theorem

The proof will be done in three parts. In the first part, we bound the α-th moment of a given
distribution with its KL-divergence from the ν∗. In the second part, the bound derived in the first
part will be used to construct a differential inequality on the interpolation diffusion. Next, using a
comparison theorem on the differential inequality, we will derive a single step bound on the LMC
iterates. Finally, in the last part, we will iterate the single step bound to obtain a non-asymptotic
convergence rate.
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C.1. Bounding LMC moments with KL-divergence

The behavior of the discrete-time process is different from that of the continuous-time diffusion in
that, a step size dependent bias term appears in the differential inequality that governs its evolution.
The results in this section will help us handle the bias term. First, using Assumption 2, we prove
that the potential grows at least like ‖x‖α in Lemma 11. Using this growth, we bound the α-th
exponential moment of the target ν∗ in Lemma 12. Finally, using the exponential moment bound, in
Lemma 13, we upper bound the α-th moment of a given distribution with its KL-divergence from
ν∗. Although this step can be handled easily by Talagrand’s inequality in the case of α = 2, it is
more challenging for α ∈ [1, 2).

Lemma 11 If f satisfies Assumption 2, then

f(x) ≥ a

2α
‖x‖α + f(0)−M

(
2a+ 2b

a

)2

− b.

Proof For notational ease, let R =
(

2b
a

) 1
α . First, using the gradient growth condition in Assump-

tion 2, we upper bound ‖∇f(x)‖ when x ≤ R.

‖∇f(x)‖ ≤ max
‖x‖≤R

M(1 + ‖x‖ζ) ≤M

(
1 +

(
2b

a

)ζ/α)
≤ M(2a+ 2b)

a
.

Now using Assumption 2 we lower bound f .

f(x) = f(0) +

∫ R
‖x‖

0
〈∇f(tx), x〉 dt+

∫ 1

R
‖x‖

〈∇f(tx), x〉 dt

≥ f(0)−
∫ R
‖x‖

0
‖∇f(tx)‖‖x‖dt+

∫ 1

R
‖x‖

1

t
〈∇f(tx), tx〉 dt

≥ f(0)−
(
M(2a+ 2b)

a

)
R+

∫ 1

R
‖x‖

1

t
(a‖tx‖α − b) dt

1
≥ f(0)−M

(
2a+ 2b

a

)2

+
a

2
‖x‖α

∫ 1

R
‖x‖

tα−1dt

≥ f(0)−M
(

2a+ 2b

a

)2

+
a

2α
‖x‖α

(
1− Rα

‖x‖α

)
≥ a

2α
‖x‖α + f(0)−M

(
2a+ 2b

a

)2

− b.

where step 1 uses the fact that if t ≥ R
‖x‖ then a‖tx‖α − b ≥ a

2‖tx‖
α.

We use Lemma 11 to prove that the α-th exponential moment of the target ν∗ is bounded.

Lemma 12 If f satisfies Assumption 2, then

0 < log

(∫
e
a

4α
‖x‖α−f(x)

)
≤ d̃µ̃,
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where, {
µ̃ = log

(
16π
a

)
+M

(
2a+2b
a

)2
+ b+ |f(0)| ,

d̃ = d (1 + (1− α/2) log(d)) .
(C.1)

Proof Using Lemma 11 we get∫
e
a

4α
‖x‖α−f(x)dx ≤ e−f(0)+M( 2a+2b

a )
2
+b

∫
e−

a
4α
‖x‖αdx

=
2πd/2

α

(
4α

a

)d/α
e−f(0)+M( 2a+2b

a )
2
+bΓ(d/α)

Γ(d/2)
.

Next, using an inequality for the ratio of Gamma functions (Jovan D. Kečkić, 1971), we obtain

Γ(d/α)
Γ(d/2) ≤

(d/α)
d
α−

1
2

(d/2)
d
2−

1
2
e
d
2
− d
α .

By plugging this back into the previous bound and taking logs, we obtain

log
(∫

e
a

4α
‖x‖α−f(x)dx

)
≤d

2 log (π) + d
α log

(
4α
a

)
+
(
d
α −

d
2

)
log
(
d
2e

)
+
(
d
α + 1

2

)
log
(

2
α

)
+M

(
2a+2b
a

)2
+ b+ |f(0)|

≤ d
α

(
log
(

16π
a

)
+
(
1− α

2

)
log
(
d
2e

))
+M

(
2a+2b
a

)2
+ b+ |f(0)|

≤d̃µ̃.

Finally, using the previous lemma, we will bound the α-th moment of any distribution ρ using
its KL-divergence from the target ν∗.

Lemma 13 If the potential f satisfies Assumption 2, then for ν∗ = e−f and any distribution ρ, we
have

4α

a

[
KL
(
ρ|ν∗

)
+ d̃µ̃

]
≥ Eρ [‖x‖α] .

Proof Let q(x) = e
a

4α‖x‖
α−f(x). Let z be number such that q(x)/z be a probability distribution.

Lemma 12 implies log z ≤ d̃µ̃. Using this bound on z we get

KL
(
ρ|ν∗

)
=

∫
ρ log

ρ

q/z
+

∫
ρ log

q/z

ν∗
= KL

(
ρ|q/z

)
+ Eρ

[
log

q/z

e−f

]
≥ a

4α
Eρ [‖x‖α]− d̃µ̃.

Rearranging this yields the desired inequality.
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C.2. Single step bound

The proof strategy is to consider the continuous-time interpolation of a single LMC iteration

dx̃k,t = −∇f(xk)dt+
√

2dBt with x̃k,0 = xk, (C.2)

where xk is the k-th iterate of the LMC algorithm (1.2). Denoting the distributions of xk and
x̃k,t with ρk and ρ̃k,t, respectively, we notice that ρ̃k,0 = ρk and x̃k,η ∼ ρk+1. In the following, we
construct a differential inequality for the KL-divergence between ρ̃k,t and the target. This inequality
will be used together with the modified log-Sobolev inequality of Theorem 1 and the linear moment
bounds of Proposition 2 to obtain a single step bound.

The time derivative of the KL-divergence between ρ̃k,t and the target ν∗ has an additional bias
term compared to the diffusion process (1.1). The next lemma characterizes this bias and is adapted
from Vempala and Wibisono (2019).

Lemma 14 (Vempala and Wibisono (2019)) Suppose x̃k,t is the interpolation of the discretized
process (C.2). Let ρ̃k,t denote its distribution. Then

d

dt
KL
(
ρ̃k,t|ν∗

)
= −I

(
ρ̃k,t|ν∗

)
+ E

[〈
∇f(x̃k,t)−∇f(xk),∇ log

(
ρ̃k,t(x̃k,t)

ν∗(x̃k,t)

)〉]
≤ −3

4
I
(
ρ̃k,t|ν∗

)
+ E

[
‖∇f(x̃k,t)−∇f(xk)‖2

]
.

(C.3)

Proof The following proof is included for reader’s convenience. For further notational convenience,
we denote with ρ̃k|t and ρ̃t|k, distributions of xk conditioned on x̃k,t, and x̃k,t conditioned on xk,
respectively. The distribution ρ̃t|k(x) evolves by the following Fokker-Planck equation.

∂ρ̃t|k(x)

∂t
= ∇ ·

(
ρ̃t|k(x)∇f(xk)

)
+ ∆ρ̃t|k(x).

Taking expectation with respect to xk yields

∂ρ̃k,t(x)

∂t
= ∇ ·

(
ρ̃k,t(x)

∫
ρ̃k|t(xk)∇f(xk)dxk

)
+ ∆ρ̃k,t(x)

= ∇ · (ρ̃k,t(x)E [∇f(xk)|x̃k,t = x]) + ∆ρ̃k,t(x).
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This equality is combined with the time derivative of KL-divergence to prove the claim.

d

dt
KL
(
ρ̃k,t|ν∗

)
=

∫
∂ρ̃k,t
∂t

(x) log

(
ρ̃k,t(x)

ν∗(x)

)
dx

=

∫
(∇ · (ρ̃k,t(x)E [∇f(xk)|x̃k,t = x]) + ∆ρ̃k,t(x)) log

(
ρ̃k,t(x)

ν∗(x)

)
dx

1
=

∫
∇ ·
(
ρ̃k,t(x)

(
E [∇f(xk)−∇f(x)|x̃k,t = x] +∇ log

(
ρ̃k,t(x)

ν∗(x)

)))
log

(
ρ̃k,t(x)

ν∗(x)

)
dx

2
= −

∫
ρ̃k,t(x)

〈
E [∇f(xk)−∇f(x)|x̃k,t = x] +∇ log

(
ρ̃k,t(x)

ν∗(x)

)
,∇ log

(
ρ̃k,t(x)

ν∗(x)

)〉
dx

= −I
(
ρ̃k,t|ν∗

)
+ E

[〈
∇f(x̃k,t)−∇f(xk),∇ log

(
ρ̃k,t(x̃k,t)

ν∗(x̃k,t)

)〉]
3
≤ −I

(
ρ̃k,t|ν∗

)
+ E

[
‖∇f(x̃k,t)− f(xk)‖2

]
+

1

4
E
[
‖∇ log

(
ρ̃k,t(x̃k,t)

ν∗(x̃k,t)

)
‖2
]

= −3

4
I
(
ρ̃k,t|ν∗

)
+ E

[
‖∇f(x̃k,t)− f(xk)‖2

]
,

in which equality 1 follows from ∆ρ̃k,t = ∇ · (∇ρ̃k,t), equality 2 follows from the divergence the-
orem and inequality 3 follows from 〈u, v〉 ≤ ‖u‖2 + 1

4‖v‖
2.

Next, using Lemma 14, we bound the time derivative of the KL-divergence d
dtKL

(
ρ̃k,t|ν∗

)
, and

obtain a useful differential inequality.

Lemma 15 If the potential f satisfies Assumptions 1, 2 and 3, then

d

dt
KL
(
ρ̃k,t|ν∗

)
≤ −3

4
λ−

1
1−δ (Ms(ρ0 + ν∗) + Cs(k + 1)η)−

δ
1−δ KL

(
ρ̃k,t|ν∗

) 1
1−δ

+
16αL2M2β

a
KL
(
ρk|ν∗

)
η2β + 4L2

(
1 +M2β

(
1 +

2αµ̃

a

))
d̃ηβ,

(C.4)

when t ≤ η ≤ 1
2

(
1 ∧ a

2M2

)
. The constants d̃ and µ̃ are defined in (C.1).
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Proof We bound E
[
‖∇f(x̃k,t)−∇f(xk)‖2

]
using Assumption 3

E
[
‖∇f(x̃k,t)−∇f(xk)‖2

]
≤ L2E

[
‖−t∇f(xk) +

√
2tZ‖2β

]
1
≤ 2L2t2βE

[
‖∇f(xk)‖2β

]
+ 4L2tβE

[
‖Z‖2β

]
2
≤ 2L2t2βE

[(
2M2(1 + ‖xk‖2ζ)

)β]
+ 4L2tβE

[
‖Z‖2

]β
≤ 4t2βL2M2βE

[
1 + ‖xk‖2βζ

]
+ 4L2dβtβ

3
≤ 4t2βL2M2βE [2 + ‖xk‖α] + 4L2dβtβ

4
≤ 16αL2M2β

a
KL
(
ρk|ν∗

)
η2β + 4ηβL2

(
dβ + 2

(
ηM2

)β (
1 +

2αµ̃d̃

a

))

≤ 16αL2M2β

a
KL
(
ρk|ν∗

)
η2β + 4d̃L2

(
1 + 2aβ

(
1 +

2αµ̃

a

))
ηβ,

where step 1 follows from Lemma 29, step 2 from Assumption 2, step 3 from the fact that 2ζβ ≤ α,
and step 4 from Lemma 13 and η < 1. Plugging the above inequality back in (C.3) and using
Theorem 1 and Proposition 2 results in (C.4).

Finally, using a differential comparison argument, a single step bound is obtained on the KL-
divergence of steps of LMC (1.2) from the target.

Lemma 16 Suppose f satisfies Assumptions 1, 2 and 3, then

KL
(
ρk+1|ν∗

)
≤KL

(
ρk|ν∗

)1− 3η

8λ
1

1−δ

(
KL
(
ρk|ν∗

)
Ms(ρ0 + ν∗) + Cs(k + 1)

) δ
1−δ

+
16αL2M2βη2β+1

a


+ σd̃ηβ+1,

(C.5)

where σ = 4L2
(

1 + 2aβ
(

1 + 2αµ̃
a

))
. The step size needs to be sufficiently small, satisfying

η ≤ 1

2

(
1 ∧ a

2M2

)
∧

4λ
1

1−δ

3

(
Ms(ρ0 + ν∗) + Cs(k + 1)η

KL
(
ρk|ν∗

) ) δ
1−δ
.

Proof Let

κ1 =
3

4
λ−

1
1−δ (Ms(ρ0 + ν∗) + Cs(k + 1)η)−

δ
1−δ ,

κ2 =
16αL2M2β

a
KL
(
ρk|ν∗

)
η2β + σd̃ηβ,

ψ(t, x) = −κ1x
1

1−δ + κ2,
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where κ1 and κ2 are constants independent of t. We can rewrite (C.4) as

d

dt
KL
(
ρ̃k,t|ν∗

)
≤ ψ

(
t,KL

(
ρ̃k,t|ν∗

))
.

For positive and sufficiently small ε̃ (less than KL
(
ρk|ν∗

)− δ
1−δ ), consider the function

hε̃(t) =

(
KL
(
ρk|ν∗

)− δ
1−δ + κ1

δ

1− δ
t− ε̃

)− 1−δ
δ

+ κ2t.

We will use the following basic comparison lemma for differential inequalities; see, for example
McNabb (1986) for a simple proof.

Lemma 17 Suppose u(t) and v(t) are continuous on interval [a, b] and differentiable on (a, b],
f : R× R→ R is a continuous mapping and

u(a) < v(a) and
du

dt
− f(t, u) <

dv

dt
− f(t, v), on (a, b ].

Then u < v on [a, b].

For positive t, we have

d

dt
hε̃(t)− ψ(t, hε̃(t)) > 0 ≥ d

dt
KL
(
ρ̃k,t|ν∗

)
− ψ

(
t,KL

(
ρ̃k,t|ν∗

))
.

Since hε̃(0) > KL
(
ρ̃k,0|ν∗

)
, the previous comparison lemma implies

hε̃(η) > KL
(
ρ̃k,η|ν∗

)
= KL

(
ρk+1|ν∗

)
.

Taking the limit of ε̃ ↓ 0 gives

KL
(
ρk+1|ν∗

)
≤
(

KL
(
ρk|ν∗

)− δ
1−δ + κ1

δ

1− δ
η

)− 1−δ
δ

+ κ2η.

Plugging the values for κ1 and κ2 back in the previous inequality reads

KL
(
ρk+1|ν∗

)
≤

(
KL
(
ρk|ν∗

)− δ
1−δ +

3λ−
1

1−δ δ

4(1− δ)
(Ms(ρ0 + ν∗) + Cs(k + 1)η)−

δ
1−δ η

)− 1−δ
δ

+
16αL2M2β

a
KL
(
ρk|ν∗

)
η2β+1 + σd̃ηβ+1.

We rewrite the previous inequality to get

KL
(
ρk+1|ν∗

)
≤ 16αL2M2β

a
KL
(
ρk|ν∗

)
η2β+1 + σd̃ηβ+1

+
KL
(
ρk|ν∗

)
(

1 + 3λ
− 1

1−δ δ
4(1−δ)

(
KL
(
ρk|ν∗

)
Ms(ρ0+ν∗)+Cs(k+1)η

) δ
1−δ

η

) 1−δ
δ

.
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Using the fact that (1 + x)
1−δ
δ ≥ 1 + 1−δ

δ x, in the denominator, yields

KL
(
ρk+1|ν∗

)
≤ KL

(
ρk|ν∗

)
1+ 3

4λ
1

1−δ

 KL
(
ρk|ν∗

)
Ms(ρ0+ν∗)+Cs(k+1)η

 δ
1−δ

η

+ 16αL2M2β

a KL
(
ρk|ν∗

)
η2β+1

+ σd̃ηβ+1.

Since 1
1+x < 1− x

2 , when x ≤ 1, and 3

4λ
1

1−δ

(
KL
(
ρk|ν∗

)
Ms(ρ0+ν∗)+Cs(k+1)η

) δ
1−δ

η < 1, we have

KL
(
ρk+1|ν∗

)
≤ KL

(
ρk|ν∗

)1− 3

8λ
1

1−δ

(
KL
(
ρk|ν∗

)
Ms(ρ0 + ν∗) + Cs(k + 1)η

) δ
1−δ

η


+

16αL2M2β

a
KL
(
ρk|ν∗

)
η2β+1 + σd̃ηβ+1.

Rearranging the above inequality yields the desired result.

C.3. Proof of the main theorem

In this section, we prove the convergence of the LMC algorithm by iterating the single step bound,
obtained in the previous section. More specifically, we establish that the algorithm reaches the
desired accuracy ε after N steps, for which our argument relies on two steps. In the first step, we
prove that if an iterate of LMC reaches the desired accuracy before N steps, then it will remain
below that accuracy level until the step N . In the second step, we show that if LMC does not reach
ε accuracy before N steps, it is guaranteed to reach that accuracy at the step N . Since the single
step bound obtained in Lemma 16 is quite convoluted, we first simplify it to a manageable recursive
formula, and iterate the resulting expression. Special care is taken to determine the upper bound on
the accuracy for the aforementioned claims to hold. The bound on ε is independent of the moment
order s, which is crucial for tuning this parameter to obtain the final bound on the convergence rate
leading to the main corollary.
Proof of Theorem 3. We simplify the recurrence relation for the single step bound in (C.5). For

notational convenience, let A = λ−1/(1−δ)

16

(
σd̃

Ms(ρ0+ν∗)∨Cs

)δ/(1−δ)
. We remind that d̃ is defined as

d̃ = d (1 + (1− α/2) log(d)). We will show that under the conditions and notations of Lemma 16,
if k < N and KL

(
ρk|ν∗

)
≥ ε/2, then

KL
(
ρk+1|ν∗

)
≤

(
1− Aηδβ/(1−δ)+1

log
(

2∆0
ε

)δ/(1−δ)
)

KL
(
ρk|ν∗

)
+ σd̃ηβ+1. (C.6)
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The above expression depends on the choice of step size η and number of stepsN ; thus, given (C.5),
we verify the inequality (C.6) for

η−1 = (σd̃)
1
β (16λ)

1
β(1−2δ)

(
Ms(ρ0 + ν∗) ∨ Cs

16

) δ
β(1−2δ)

log

(
2∆0

ε

) δ
β(1−2δ)

(
2

ε

) 1−δ
β(1−2δ)

,

N = (σd̃)
1
β (16λ)

1+β
β(1−2δ)

(
Ms(ρ0 + ν∗) ∨ Cs

16

) (1+β)δ
β(1−2δ)

log

(
2∆0

ε

)1+
(β+1)δ
β(1−2δ)

(
2

ε

) 1−δ(1−β)
β(1−2δ)

.

(C.7)

For the above choices of η andN , using (C.5) together with the fact that k < N and KL
(
ρk|ν∗

)
≥ ε

2 ,
in order for (C.6) to hold, it suffices to prove the following inequality

3λ−1/(1−δ)

8

(
ε/2

Ms(ρ0 + ν∗) + Cs(N + 1)η

)δ/(1−δ)
η − 16αL2M2β

a
η2β+1 ≥ Aηδβ/(1−δ)+1

log
(

2∆0
ε

)δ/(1−δ) .
We will prove this inequality by showing that the following two inequalities hold,

3λ−1/(1−δ)

8

(
ε/2

Ms(ρ0+ν∗)+Cs(N+1)η

)δ/(1−δ)
≥ 2Aηδβ/(1−δ)

log
(

2∆0
ε

)δ/(1−δ) ,
Aηδβ/(1−δ)+1

log
(

2∆0
ε

)δ/(1−δ) ≥ 16αL2M2β

a η2β+1.
(C.8)

For the second inequality, we simply plug in the values for η and A. Then, by using ε < 2∆0/e and
Ms(ρ0 + ν∗) ≥ 1, this inequality holds if the following is satisfied,(

2

ε

) 2−3δ
1−2δ

≥ 16αL2M2β

a

(
1

16λ
1

1−δ

) 1−δ
1−2δ

(σd̃)−2.

This yields an upper bound on the accuracy. In order to simplify this bound and make it independent
of s, we define λ̃ = 4e2ξ

1∨µ ≤ λ. Also using 4L2 < σ and d ≤ d̃, the bound can be simplified to

ε ≤ 2
(
λ̃0.5 ∧ λ̃2

)(
1 ∧ 2aσd2

M2β

)0.5

,

under which the second inequality in (C.8) holds.
For the first inequality in (C.8), we consider two cases. In the first case Nη ≥ 1, since we have

Ms(ρ0 + ν∗) + Cs(N + 1)η ≤ 3(Ms(ρ0 + ν∗) ∨ Cs)Nη,

the following condition implies the desired inequality

3λ−1/(1−δ)

8

(
ε/2

3(Ms(ρ0 + ν∗) ∨ Cs)Nη

)δ/(1−δ)
≥ 2Aηδβ/(1−δ)

log
(

2∆0
ε

)δ/(1−δ) .
This inequality can be verified by plugging in the values of A, η and N . In the other case Nη < 1,
we simply drop Nη since we have

Ms(ρ0 + ν∗) + Cs(N + 1)η ≤ 3(Ms(ρ0 + ν∗) ∨ Cs),
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hence, the following condition suffices

3λ−1/(1−δ)

8

(
ε/2

3(Ms(ρ0 + ν∗) ∨ Cs)

)δ/(1−δ)
≥ 2Aηδβ/(1−δ)

log
(

2∆0
ε

)δ/(1−δ) .
For this to hold, it is sufficient if ε < 2 and

log

(
2∆0

ε

)
≥ 1

16
λ−

1
1−δ .

which can be further strengthened to

ε ≤ 2∆0e
−1

16(λ̃∧λ̃2) .

Hence, the simplified single step bound (C.6) holds when KL-divergence is not too small, i.e. when
it is greater than ε/2. For handling the case where KL-divergence is small, we need to show that
once LMC reaches ε-accuracy, it remains below that threshold until the last step. In other words

KL
(
ρk|ν∗

)
≤ ε =⇒ KL

(
ρk+1|ν∗

)
≤ ε, for k < N. (C.9)

We split this into two cases. First, consider the case ε/2 ≤ KL
(
ρk|ν∗

)
≤ ε. In this case, using (C.6)

and KL
(
ρk|ν∗

)
≤ ε, it suffices to show

σd̃ηβ+1 ≤ ε Aηδβ/(1−δ)+1

log
(

2∆0
ε

)δ/(1−δ) ,
which can be verified by plugging in the values for A, η and d̃. When KL

(
ρk|ν∗

)
≤ ε/2, using

Lemma 16, we need to show

16αL2M2β

a
η2β+1 ε

2
+ σd̃ηβ+1 ≤ ε

2
.

We bound each of the terms on the left hand side with ε/4. By simplifying the expressions and
further using ε < 2∆0/e and Ms ≥ 1, we obtain the following two conditions on the accuracy ε to
be combined together later,

ε ≤ 8(λ̃ ∧ λ̃2)
(

1 ∧ a

αL2M2β

) 1
3

(1 ∧ σd) ≤ 2
5− 5β(1−2δ)

(1+2β)(1−δ)
( a

αL2M2β

) β(1−2δ)
(1+2β)(1−δ)

λ̃
1

1−δ (σd̃)
1−2δ
1−δ ,

ε ≤ 32(λ̃ ∧ λ̃2)(1 ∧ σd) ≤ 2
5+

3β(1−2δ)
1−δ+δβ λ

1+β
1−δ+δβ (σd̃)

1−2δ
1−δ+δβ .

Next, our analysis continues with considering the following two cases.

1. LMC reaches ε accuracy at a step k < N .

2. LMC does not reach ε accuracy at a step k < N .
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For the first case above, if at any step k < N , we have KL
(
ρk|ν∗

)
≤ ε, then by using (C.9) we

conclude KL
(
ρN |ν∗

)
≤ ε. For the second case, we have KL

(
ρk|ν∗

)
> ε for all k < N ; therefore,

(C.6) combined with Lemma 32 and the fact that KL
(
ρ0|ν∗

)
≤ ∆0 imply

KL
(
ρN |ν∗

)
≤ exp

(
−Aηδβ/(1−δ)+1

log
(

2∆0
ε

)δ/(1−δ)N
)

∆0 +
σd̃ log

(
2∆0
ε

)δ/(1−δ)
ηβ(1−2δ)/(1−δ)

A
.

Notice that to reach ε accuracy at step N , it is sufficient that each of the above terms on the right
hand side is upper bounded by ε/2. Simplifying these bounds, we obtain

log

(
2∆0

ε

)
≤ Aηδβ/(1−δ)+1

log
(

2∆0
ε

)δ/(1−δ)N,
η ≤ A

1−δ
β(1−2δ) (σd̃)

− 1−δ
β(1−2δ)

( ε
2

) 1−δ
β(1−2δ)

log

(
2∆0

ε

)− δ
β(1−2δ)

.

The second inequality holds with the selection of η. Plugging the value for η in the first inequality
yields

(σd̃)
1−δ+δβ
β(1−2δ)A

− (1+β)(1−δ)
β(1−2δ) log

(
2∆0

ε

)β(1−δ)+δ
β(1−2δ)

(
2

ε

) 1−δ+δβ
β(1−2δ)

≤ N,

which is true because of the value of N .
Finally, we translate the bound on the step size in Lemma 16, to a condition on the accuracy ε.

That is, we have

η ≤ 1

2

(
1 ∧ a

2M2

)
∧ 4λ

1
1−δ

3

(
Ms(ρ0 + ν∗) + Cs(k + 1)η

KL
(
ρk|ν∗

) ) δ
1−δ

.

By plugging the value of η, in η ≤ 1
2

(
1 ∧ a

2M2

)
, we get

( ε
2

)
log

(
2∆0

ε

)− δ
1−δ
≤ 32

(
1

2

(
1 ∧ a

2M2

))β( 1−2δ
1−δ )

λ
1

1−δ (Ms(ρ0 + ν∗) ∨ Cs)
δ

1−δ (σd̃)
1−2δ
1−δ ,

but since ε < 2∆0
e and Ms ≥ 1 and β(1−2δ

1−δ ) ≤ 1 , it suffices to have

ε ≤ 16(λ̃ ∧ λ̃2)(1 ∧ σd)
(

1 ∧ a

2M2

)
≤ 16

(
1 ∧ a

2M2

)
λ

1
1−δ (σd̃)

1−2δ
1−δ .

For the other constraint on η, if we show η ≤ 4λ
1

1−δ
3

(
Ms(ρ0+ν∗)

∆0

) δ
1−δ , Lemma 16 shows that the

first step is decreasing and KL
(
ρ1|ν∗

)
≤ ∆0. Continuing inductively from there, we get either

KL
(
ρk|ν∗

)
is decreasing or it is less than ε, in both of the cases, we have KL

(
ρk|ν∗

)
≤ ∆0. This in

turn shows that the constraint on η is getting looser, so all we need to consider is

η ≤ 4λ
1

1−δ

3

(
Ms(ρ0 + ν∗)

∆0

) δ
1−δ

,
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which holds whenever

ε log

(
2∆0

ε

)− δ
1−δ
≤ 32λ

1−δ+β(1−2δ)

(1−δ)2 (Ms(ρ0 + ν∗) ∨ Cs)
δ

1−δ

(
Ms(ρ0 + ν∗)

∆0

) δ(1−2δ)β

(1−δ)2

(σd̃)
1−2δ
1−δ .

Once again, since ε < 2∆0
e and Ms ≥ 1, all we need is

ε ≤ 32(1 ∧ σd)(λ̃ ∧ λ̃3)(1 ∧∆−1
0 )

β
4 ≤ 32λ

1−δ+β(1−2δ)

(1−δ)2 ∆
−δ(1−2δ)β

(1−δ)2
0 (σd̃)

1−2δ
1−δ .

Collecting all the upper bounds on the accuracy we get

ψ = min

{
2,

2∆0

e
, 2∆0e

−1

16(λ̃∧λ̃2) , 32(1 ∧ σd)(λ̃ ∧ λ̃3)(1 ∧∆−1
0 )

β
4 ,

16(λ̃ ∧ λ̃2)(1 ∧ σd)
(

1 ∧ a

2M2

)
, 2
(
λ̃0.5 ∧ λ̃2

)(
1 ∧ 2aσd2

M2β

)0.5

,

8(λ̃2 ∧ λ̃)
(

1 ∧ a

αL2M2β

) 1
3

(1 ∧ σd), 32(λ̃ ∧ λ̃2)(1 ∧ σd)

}
,

(C.10)

where λ̃ is defined as λ̃ = 4e2ξ

1∨µ . Note that the upper bound on ε is of order O(1), and it depends
on the fixed parameters except for ∆0 which depends on the initial distribution. In case of starting
with a Gaussian random vector, Lemma 26 provides a bound on ∆0. More importantly, the upper
bound on the accuracy does not depend on the moment order s, which enables us to optimize over
this parameter which is done in Corollary 4. Finally, we plug in the values for δ, d̃ and Cs back into
(C.7) to get

η = σ
− 1
β (16λ)

− s−2+2θ
β(s−2)

(
Ms(ρ0 + ν∗)

16d(s−2+α)/α
∨
(

3a+ 2b+ 3

1 ∧ a

) s−2+α
α ss

16

)− θ
β(s−2)

d
− 1
β
− (s−2+α)θ

αβ(s−2) (1 + (1− α/2) log(d))
− 1
β log

(
2∆0

ε

)− θ
β(s−2) ( ε

2

) s−2+θ
β(s−2)

,

N = σ
1
β (16λ)

(1+β)(s−2+2θ)
β(s−2)

(
Ms(ρ0 + ν∗)

16d(s−2+α)/α
∨
(

3a+ 2b+ 3

1 ∧ a

) s−2+α
α ss

16

) (1+β)θ
β(s−2)

d
1
β

+
(s−2+α)(1+β)θ

αβ(s−2) (1 + (1− α/2) log(d))
1
β log

(
2∆0

ε

)1+
(β+1)θ
β(s−2)

(
2

ε

) 1
β

+
(1+β)θ
β(s−2)

.

Appendix D. Linear Growth of Convex Potentials

First, we prove a lemma about one dimensional convex potentials, which will be used to prove the
unboundedness in the general case. A similar result can be found in (Bobkov and Madiman, 2011,
Equation (9)).
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Lemma 18 Let f : R→ R be a convex function such that
∫
R e
−f(x)dx <∞, then f is lower

bounded, i.e. inf
x∈R

f(x) > −∞.

Proof Shifting f does not affect convexity or finiteness of the integral, so we can assume, without
loss of generality, f(0) = 0. Let B(r) = minx∈[−r,r] f(x), which is well defined because f is
continuous – convexity implies continuity in this context. If B is lower bounded, then so is f .
Suppose B is not lower bounded. Continuity of f implies that B is also continuous, and f(0) = 0
implies that B(0) = 0. Further, B is a non-increasing function in its domain.

For M ≥ 0, we can define y(M) = min{r|B(r) = −M}, because the range of B contains
all non-positive numbers. Fix some M > 1. Then, the continuity of B and f imply that either
f(y(M)) = −M or f(−y(M)) = −M . Without loss of generality, we assume f(y(M)) = −M
(the other case is similar), and write

∀x ∈ [0, y(M)] : f(x) ≤
(

1− x
y(M)

)
× f(0) + x

y(M) × f(y(M)) = − Mx
y(M) .

Using this fact, we integrate e−f to get∫
R e
−f(x)dx ≥

∫ y(M)
0 e−f(x)dx ≥

∫ y(M)
0 e

Mx
y(M)dx = y(M)× eM−1

M .

Monotonicity of B implies y(M) > y(1) > 0 since we also have B(0) = 0. Hence, the previous
inequality yields ∫

R e
−f(x)dx ≥ y(1)× eM−1

M for every M > 1.

This inequality contradicts
∫
R e
−f(x)dx <∞.

We use the previous one dimensional result to show that, in the general case, not only the
potential is lower bounded but also it has at least linear growth along every direction. The method
is to first prove the potential is unbounded along every direction and then use that to prove linear
growth.

Lemma 19 Suppose f : Rd → R is a convex potential (i.e.
∫
e−f <∞) and u ∈ Rd is unit vector.

Then, f is coercive satisfying
sup
t≥0

f(tu) = +∞.

Proof Without loss of generality, let f : Rd → R be a convex potential satisfying
∫
e−f(x)dx = 1.

Assume, for the sake of contradiction, that there is a direction u1 ∈ Rd such that

sup
t≥0

f(tu1) < M <∞,

and let {u1, u2, ..., ud} be an orthonormal basis for Rd. Using convexity, we have

f(tu1) ≥ f(x) + t〈∇f(x), u1〉 − 〈∇f(x), x〉.

Taking supremum in both sides with respect to t yields 〈∇f(x), u1〉 ≤ 0 for every x ∈ Rd. Let
x1 = 〈x, u1〉 and write x = x1u1 + x−1 where 〈u1, x−1〉 = 0. By convexity, we have

−f(x) ≥ −f(0)− 〈∇f(x), x〉.
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We can write

1 =
∫
Rd e

−f(x)dx ≥
∫
Rd−1

∫
R e
−f(0)−〈∇f(x),x〉dx1dx−1

=
∫
Rd−1

∫
R e
−f(0)−x1〈∇f(x),u1〉−〈∇f(x),x−1〉dx1dx−1

≥
∫
Rd−1

∫
x1≥0 e

−f(0)−x1〈∇f(x),u1〉−〈∇f(x),x−1〉dx1dx−1

≥
∫
Rd−1

∫
x1≥0 e

−f(0)−〈∇f(x1u1+x−1),x−1〉dx1dx−1.

If we have supx1≥0 〈∇f(x1u1 + x−1), x−1〉 <∞, then the inner integral diverges, therefore

sup
x1≥0
〈∇f(x1u1 + x−1), x−1〉 =∞,

for almost every x−1 ∈ span{u2, ..., ud}. Using finiteness of the integral once again, we write

1 =

∫
Rd
e−f(x)dx =

∫
Rd−1

∫
R
e−f(x1u1+x−1)dx1dx−1.

The inner integral should converge for almost every x−1 ∈ span{u2, ..., ud}. Since a convex func-
tion restricted to a line is still convex, Lemma 18 implies e−f(x1u1+x−1) is lower bounded for almost
every x−1. Fix some x−1 ∈ span{u2, ..., ud} such that g(x1) = e−f(x1u1+x−1) is lower bounded
and supx1≥0 〈∇f(x1u1 + x−1), x−1〉 =∞, which happens for almost every x−1. By convexity,
we have

f(x1u+ 2x−1) ≥f(x1u+ x−1) + 〈∇f(x1u1 + x−1), x−1〉.

Since that supx1≥0 f(x1u1 + 2x−1) =∞ and supx1≥0 f(2x1u1) < M , once again by convexity

1
2f(4x−1) + 1

2f(2x1u) ≥ f(x1u+ 2x−1).

Taking supremum with respect to x1 results in a contradiction. So the assumption was incorrect and
no direction like u1 exists.

In the light of the previous lemma, convexity implies a growth that is at least linear. This is
established in the following proof.
Proof [Proof of Proposition 6] Let the function B from unit sphere to real numbers be defined as

B(u) = inf{t > 0|f(tu) ≥ 1 + f(0)},

which is well defined because of Lemma 19. Convexity (and therefore continuity) of f implies B is
continuous. Since unit sphere is compact, B attains its maximum on it. Let us call this maximum
t0 > 0. We have f(t0u) ≥ 1 + f(0) for all unit vectors u ∈ Rd. For any t > t0 and any unit vector
u, because of convexity, we write(

1− t0
t

)
f(0) + t0

t f(tu) ≥ f(t0u) ≥ 1 + f(0).

Therefore, for t > t0, we have

f(tu) ≥ t
t0

+ f(0),
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for all unit directions u.
When t ∈ [0, t0], the function t→ f(tu) is lower bounded by some constant, i.e.

inf
t∈[0,t0]

f(tu) := g(u) > −∞

by Lemma 18. Since f is continuous in both t and u, g(u) is also continuous. Further, since its
domain is compact, by the extreme value theorem, g attains its infimum in its domain; thus, it is
also lower bounded, say by −M < 0. Therefore, whenever t ∈ [0, t0], f(tu) ≥ −M for all unit
directions u. Combining this with the previous result, we obtain that for t ∈ [0,∞),

f(tu) ≥ t
t0
− |f(0)| ∨ (M + 1).

For the second part, by convexity, we write

f(y) ≥ f(x) + 〈∇f(x), y − x〉

for all x, y ∈ Rd. By choosing y = 0, we obtain

〈∇f(x), x〉 ≥f(x)− f(0)

≥a‖x‖α − b− f(0)

where in the last step, we used f(x) ≥ a‖x‖α − b. This completes the proof.

Appendix E. Gap of Degenerate Convexity Degree for Linear Growth

In this section, we show that any function with finite difference from a linear function can not be
convex degenerate of degree θ ≤ 2. Note that we previously showed functions with linear growth
are convex degenerate for any θ > 2. In the next lemma, we consider the single dimensional case.
Restricting higher dimensional potentials to a single dimensional subspace, yields the proof for
d > 1.

Lemma 20 Suppose g : R→ R is a function such that

|a|x| − g(x)| < C, g′′(x) ≥ µ

(1 + x2)θ/2
, (E.1)

for a, c, µ ∈ R. Then θ > 2.

Proof Without loss of generality assume g(0) = 0. (Shifting changes C at most by g(0).) We
restrict our attention to positive real numbers, from (E.1) we have for x > 0

|a− g(x)/x| < C/x =⇒ limx→+∞ g
′(x)

1
= limx→+∞

g(x)
x = a,

where step 1 follows from L’Hôpital’s rule. Since g′′(x) > 0 we have g′(x) ≤ a. Let D(x) =
ax− g(x), from E.1 we have |D(x)| ≤ C. We argue D(x) ≥ 0 when x ≥ 0. First using g(0) = 0,
we calculateD(0) = 0. For the derivative we haveD′(x) = a−g′(x) ≥ 0. This impliesD(x) ≥ 0,
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therefore 0 ≤ D(x) ≤ C for non-negative x. The derivative of D shows that it is increasing,
therefore limx→∞D(x) exists and by the previous upper-bound we get the following

C ≥ limx→∞D(x) =
∫∞

0 D′(x) =
∫∞

0 (a− g′(x))dx,

where we used D(0) = 0. We substitute the following two equalities in the previous one

a = limx→∞ g
′(x) = g′(0) +

∫∞
0 g′′(t)dt,

g′(x) = g′(0) +
∫ x

0 g
′′(t)dt.

The mentioned substitution reads

C ≥
∫∞

0 (
∫∞
x g′′(t)dt)dx

1
=
∫∞

0 (
∫ t

0 g
′′(t)dx)dt =

∫∞
0 tg′′(t)dt ≥

∫∞
0

tµ
(1+t2)θ/2

dt
2
= µ

2

∫∞
1

du
uθ/2

,

where in step 1 we changed the order of integration and in step 2 we used the substitution u = 1+t2.
The finiteness of the last expression implies θ > 2.

Appendix F. Proofs of Corollaries and Lemmas

Proof of Lemma 7. Let the bounds on φ and ∇φ be κ1 and κ2, respectively. Since φ is bounded,∫
e−f−φ is finite, therefore it can be normalized to be a probability distribution. We ignore the

normalizing constant since it does not change the gradient and the Hessian.
Assumption 1 holds for f , meaning that there exists a f̃ such that ‖f − f̃‖∞ < ξ, and f̃ satisfies

the conditions in Assumption 1. Since |φ| ≤ κ1, we have

‖f + φ− f̃‖∞ < ξ + κ1,

which proves that Assumption 1 also holds for f + φ. For Assumption 2, we write

〈∇f(x) +∇φ(x), x〉 ≥ a‖x‖α − b− 〈φ(x), x〉 ≥ a‖x‖α − b− κ2‖x‖ ≥ a′‖x‖α − b′,

for some a′, b′ > 0, where in the last step we used α > 1. When α = 1 this step is correct when
κ2 < a. Growth part remains true since the perturbation has bounded gradient

‖∇f +∇φ‖ ≤ ‖∇f‖+ ‖∇φ‖ ≤ (κ2 +M)
(

1 + ‖x‖ζ
)
,

which implies that g satisfies Assumption 2. Finally, for Assumption 3, since both ∇φ and ∇f are
β-Hölder continuous, so is their summation for the same order of smoothness β.

Proof of Corollary 4. Initializing with a Gaussian random vector provides us with

Ms(ρ0) = E
[(

1 + ‖x‖2
)s/2] ≤ 2s/2E [1 + ‖x‖s] ≤ 2s/2(1 + ds/2(s− 1)!!) ≤ (2ds)s/2.

We state a lemma to bound the moments of the target distribution.
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Lemma 21 Let f satisfy Assumption 2 then we have the following bound on the moment

Ms(ν∗) ≤
(
a+b+3
a

)s/α
ss/αds/α for all s ≥ 2.

Proof of Lemma 21. We utilize a method, similar to the method used in proof of Lemma 10,
in order to bound the moments of target. From the proof of Lemma 10, we have the following
inequality for s ≥ 2.

d
dtMs(pt) ≤ (b+ d+ a+ s− 2)sMs−2(pt)− as

2 Ms+α−2(pt).

If we let p0 = ν∗, then pt = ν∗ which means that the left hand side of the above inequality is zero.
The derivative is well defined because Lemma 11 shows that Ms(ν∗) is finite. By rearranging the
previous inequality, we get

Ms+α−2(pt) ≤ 2(b+d+a+s−2)
a Ms−2(pt).

Using the above inequality inductively from s = 2, we get

Mkα(pt) ≤
(

2
a

)k
(a+ b+ d+ (k − 1)α)k.

For every s there is an integer k such that kα ≤ s < (k + 1)α. We have the following bound

Ms(pt) ≤ M(k+1)α(pt)
s

(k+1)α ≤
(

2
a

)s/α
(a+ b+ d+ kα)s/α ≤

(
a+b+3
a

)s/α
ss/αds/α.

Combining the Gaussian moment bound with the previous lemma yields

Ms(ρ0 + ν∗) ≤ 2
(

3a+b+3
a

)s/α
ss/αds/α.

Using s = 2 + 2dlog(6d
ε )e implies dγ and (2/ε)γ are bounded with exp

( (1+β)θ
2β

)
. By plugging this

upper bound back in Theorem 3 and using the inequalities,

γ <
(1 + β)θ

2β
, ε < 2 ∨ 2∆0/e, λ ≤ 4e2ξ

1 ∧ µ
,

the advertised rate is obtained.

Proof of Corollary 5. We prove the rate in each row separately. We start with total variation and
state Pinsker’s inequality, which bounds total variation with KL-divergence.

Lemma 22 (Pinsker’s inequality) For distributions p and q

TV (p, q) ≤
√

1

2
KL
(
p|q
)
.

If for given ε we use Corollary 4 with accuracy 2ε2, Pinsker’s inequality implies

TV (ρN , ν∗) ≤ ε.

Note that the upper bound on ε is changed and 2ε2 needs to be smaller than upper bound in (C.10).
In other words 2ε2 ≤ ψ, where ψ is defined in (C.10).

Now we prove the convergence rate bound for Wα. We start by stating a result, which is
adapted from Corollary 3 in Bolley and Villani (2005), that bounds Lα-Wasserstein distance with
KL-divergence.
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Lemma 23 (Bolley and Villani (2005)) For probability measure p on Rd, if
∫
eθ‖x‖

α
p(x)dx <∞,

then

Wα(p, q) ≤ B

KL
(
p|q
) 1
α +

(
KL
(
p|q
)

2

) 1
2α

 ,
where

B , 2 inf
κ

(
1

κ

(
1.5 + log

∫
eκ‖x‖

α
p(x)dx

)) 1
α

.

Lemma 12 proves an upper bound onB, namelyB < 2(4(d̃µ̃+ 1.5)/a)1/α. By plugging this upper
bound back in the previous lemma we get

Wα(ρN , ν∗) ≤ 2

(
4α

a
(1.5 + µ̃ (1 + (1− α/2) log(d)) d)

) 1
α

(KL
(
ρN |ν∗

) 1
α + KL

(
ρN |ν∗

) 1
2α ).

If ε ≤ 4
(

4αa−1(1.5 + d̃µ̃)
)1/α

, using Corollary 4 with accuracy (ε/4)2α(4αa−1(1.5 + µ̃d̃))−2,
implies the convergence rate bound. In order to obtain the upper bound on the accuracy, first let ψ
denote the bound in (C.10). Since we used (ε/4)2α(4αa−1(1.5 + µ̃d̃))−2 as the accuracy in terms
of KL-divergence we need

(ε/4)2α(4αa−1(1.5 + µ̃d̃))−2 ≤ ψ,

by rearranging we get
ε ≤ 4(4αa−1(1.5 + µ̃d̃))−

1
αψ

1
2α .

Collecting these upper bound together we get

ε ≤ 4(4αa−1(1.5 + µ̃d̃))−
1
αψ

1
2α ∧ 4

(
4αa−1(1.5 + d̃µ̃)

) 1
α
, (F.1)

where ψ is defined in (C.10) and d̃ and µ̃ are defined in (C.1).
Finally, we give the proof forW2 convergence rate bound in the quadratic growth and smooth

setting. When θ = 0, Theorem 1 implies LSI with constant 4e2ξ

µ . LSI implies Talagrand’s inequality
with the same constant (Otto and Villani, 2000).

W2(ρN , ν∗) ≤ 4eξ
√

KL
(
ρN |ν∗

)
/µ.

Theorem 3 with accuracy ε2µ
16e2ξ

implies the convergence rate bound. Note that we do not need to
choose any s since γ = 0 and Theorem 3 is independent of s. The upper bound on ε changes and
ε2µ

16e2ξ
needs to be smaller than ψ. In other words

ε ≤ 4eξ
√
µ
ψ, (F.2)

where ψ is defined in (C.10).
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Appendix G. Additional Related Work

The LMC algorithm has been extensively studied in the context of sampling from a log-concave tar-
get distribution. Earlier results focused on characterizing its bias which is also referred to as the inte-
gration error (Milstein, 1994; Milstein and Tretyakov, 2013), and the convergence guarantees were
mostly asymptotic (Gelfand and Mitter, 1991; Meyn and Tweedie, 2012). Non-asymptotic analy-
sis of LMC has drawn a lot of interest recently (Dalalyan and Tsybakov, 2012; Dalalyan, 2017a,b;
Durmus et al., 2019a; Cheng and Bartlett, 2018; Cheng et al., 2018a; Vempala and Wibisono, 2019;
Dalalyan and Karagulyan, 2019; Brosse et al., 2019) where the focus was on potentials exhibit-
ing strong tail growth properties. These papers were mostly influenced by the pioneering works
by Dalalyan (2017b), and Durmus and Moulines (2017); Durmus et al. (2019b) where it was shown
that for strongly convex and smooth potentials, LMC reaches ε accuracy in terms of total variation
(TV) distance after Õ(dε−2) steps. Similarly, Õ

(
dε−2

)
steps are sufficient to reach ε accuracy un-

der the L2-Wasserstein distance Durmus et al. (2019b), which can be further improved to Õ
(
dε−1

)
under an additional second-order smoothness assumption on the potential function.

In this paper, we established guarantees under KL-divergence (relative entropy) which can be
easily translated to TV and Wasserstein metrics using Csiszár-Kullback-Pinsker (CKP) Bolley and
Villani (2005) and/or Talagrand inequalities (Talagrand, 1996; Otto and Villani, 2000). For strongly
convex and smooth potentials, it is known that Õ

(
dε−1

)
steps of LMC yield an ε accurate sample in

KL-divergence (Cheng and Bartlett, 2018; Durmus et al., 2019a). This is still the best known rate in
this setup, and recovers the best known rates in TV (Durmus and Moulines, 2017; Dalalyan, 2017b)
as well as in L2-Wasserstein metrics (Durmus et al., 2019b). However, for convex and smooth
potentials that grow like ‖x‖α, the bound on the rate drops to Õ

(
d1+ 4

α ε−3
)

due to lack of strong
convexity (Cheng and Bartlett, 2018). Among various contributions of Durmus et al. (2019a), LMC
was also analyzed for convex potentials, but their result does not yield a convergence guarantee for
the last LMC iterate.

Existing results that establish the fast convergence of LMC require strong curvature conditions
on the potential function; therefore, their applicability is limited. Recently, it has been observed
that global curvature assumptions can be relaxed to the tails of the potential (Eberle, 2016; Eberle
et al., 2019). For example, Cheng et al. (2018a) extended these results to sampling from smooth
potentials that are strongly convex outside of a compact set, obtaining the same dimension and ε
dependency in the strongly convex case at the expense of an exponential dependence in the radius
of the compact set. Similarly, Vempala and Wibisono (2019) established convergence guarantees
for target distributions that satisfy a log-Sobolev inequality. This corresponds to potentials with
quadratic tails (Bakry and Émery, 1985; Bobkov and Götze, 1999) up to finite perturbations (Holley
and Stroock, 1987); thus, this result is able to deal with non-convex potentials that are not limited
to a compact set, while establishing the same bound of Õ

(
dε−1

)
on the convergence rate in KL-

divergence.
Convergence of the LMC algorithm is very little understood when the potential is weakly

smooth. Contrary to previous work, our focus is on the convergence of vanilla LMC (1.2) without re-
quiring any modifications on the algorithm such as methods based on proximal mapping (Atchadé,
2015; Luu et al., 2020; Durmus et al., 2018; Mou et al., 2019a; Durmus et al., 2019a), Gaussian
smoothing (Chatterji et al., 2020; Doan et al., 2020), or mirror mapping (Hsieh et al., 2018). We
also do not assume a composite structure on the potential, in which case the potential is given by
f(x) = U(x) + ψ(x) where ψ(x) is a strongly convex and smooth function, and U(x) is a con-
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vex function with β-Hölder continuous gradient. This assumption enforces a quadratic tail growth
on the potential, in which case, Chatterji et al. (2020) established the convergence rate bound of
Õ
(
d2+1/βε−2/β

)
in total variation distance. Furthermore, we focus on the last iteration of the LMC

algorithm, in contrast to Durmus et al. (2019a) which provided guarantees for the average of the
distributions of the LMC iterates.

Our analysis draws heavily on the theory of diffusion processes (Bakry et al., 2013; Toscani and
Villani, 2000) – more specifically, logarithmic Sobolev inequalities. These inequalities were first
established for the Gaussian density (Gross, 1975), and later generalized to Gibbs measure with a
strongly convex potential by Bakry and Émery (1985). Combined with the Holley and Stroock’s per-
turbation lemma (Holley and Stroock, 1987), this theory covers potentials that can be represented as
a finite perturbation of a strongly convex function. It is well-known that the overdamped Langevin
diffusion (1.1) follows the gradient flux or the steepest descent of KL-divergence, with respect to the
L2-Wasserstein metric (Jordan et al., 1998). Building on this, sampling with a diffusion can be seen
as an optimization algorithm in the space of probability distributions (Wibisono, 2018; Vempala
and Wibisono, 2019; Ma et al., 2019a); similarly, LSI can be interpreted as a gradient domination
condition in this space, which is commonly referred to as the PL-inequality (Polyak, 1963) in the op-
timization theory. LSI and PL-inequality both yield exponential convergence in their corresponding
space (Polyak, 1963; Karimi et al., 2016; Toscani, 1999; Carlen and Soffer, 1991). Further promot-
ing this analogy, PL-inequality is a special case of Łojasiewicz inequality (Lojasiewicz, 1963), and
their counterparts are considered recently in Blanchet and Bolte (2018) in the space of function-
als. Thus, the modified LSI introduced in Toscani and Villani (2000), can be viewed as a modified
version of the Łojasiewicz inequality in the space of probability distributions, note that, this modi-
fied LSI differs from the one introduced in Gentil et al. (2005) which interpolates between LSI and
Poincaré inequality. Functional inequalities in Bertini and Zegarlinski (1999); Zegarlinski (2001)
are similar in nature to the mLSI (1.6), yet their main focus is infinite dimensional semigroups (ex-
cept (Zegarlinski, 2001, Sec. 2)). Specifically, the log-Nash inequality in (Bertini and Zegarlinski,
1999, Theorem 1.1) shares the same characteristics as (A.7). This result and mLSI-type results in
general, to our knowledge, are stated by absorbing various important constants (in our context) into
a leading constant, thus they cannot provide a sharp rate for LMC. For a survey about the conver-
gence properties of diffusion processes with the Fokker-Planck equation governing their evolution
(including overdamped Langevin dynamics (1.1)) and several inequalities from functional analysis,
we refer the reader to Markowich and Villani (1999); Gentil et al. (2005). Finally, the analogy
between optimization and sampling provided invaluable insights, in many cases improving our un-
derstanding, and ultimately the performance of various algorithms (Zhang et al., 2017; Brosse et al.,
2017, 2018; Chatterji et al., 2018; Bhatia et al., 2019; Hsieh et al., 2018; Ma et al., 2019b).

It is worth mentioning that the rates we discussed in this section can be further improved by
making higher order smoothness assumptions on the potential function (Mou et al., 2019b), or by
considering higher order numerical integrators (Li et al., 2019; Shen and Lee, 2019; Dalalyan et al.,
2019; He et al., 2020), or by certain adjustments (Durmus et al., 2017; Ge et al., 2018; Dwivedi
et al., 2019). The overdamped Langevin diffusion (1.1) considered in this work is first order, and its
higher order versions such as underdamped (Cheng et al., 2018b; Ma et al., 2019a), or third-order
schemes (Ma et al., 2015; Mou et al., 2019c) may also provide additional improvements.
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Appendix H. Useful Lemmas

Lemma 24 For the potential function f , assume that there exists a function f̃ satisfying∥∥∇f −∇f̃∥∥∞ ≤ ξ.
If f̃ satisfies (2.1) in Assumption 1 for θ < 1. Then α-dissipativity in Assumption 2 is satisfied for
α = 2− θ with the following constants

a =
µ

2(α− 1)
and b =

(
2(‖∇f̃(0)‖+ µ+ ξ)α/µ

)1/(α−1)
.

Remark 25 The additional assumption about bounded perturbation of gradient is to prevent cases

when the perturbation is bounded but its gradient is not, for example, (1− 2 sin(x))
1
3 .

Proof Using the fundamental theorem of calculus we have

〈∇f̃(x), x〉 = 〈
∫ 1

0
∇2f̃(tx)xdt+∇f̃(0), x〉

= 〈∇f̃(0), x〉+

∫ 1

0
x>∇2f̃(tx)xdt

≥ −‖∇f̃(0)‖‖x‖+

∫ 1

0
µ (1 + ‖tx‖)α−2 ‖x‖2dt

≥ −‖∇f̃(0)‖‖x‖+
µ‖x‖
α− 1

(
(1 + ‖x‖)α−1 − 1

)
= −

(
‖∇f̃(0)‖+ µ

)
‖x‖+

µ

α− 1
‖x‖α.

Since
∥∥∇f −∇f̃∥∥∞ ≤ ξ, we get

〈∇f(x), x〉 ≥ −
(
‖∇f̃(0)‖+ µ+ ξ

)
‖x‖+

µ

α− 1
‖x‖α

≥ µ

2(α− 1)
‖x‖α −

(
− µ

2(α− 1)
‖x‖α +

(
‖∇f̃(0)‖+ µ+ ξ

)
‖x‖
)

1
≥ µ

2(α− 1)
‖x‖α −

2
(
‖∇f̃(0)‖+ µ+ ξ

)α
µ

× α− 1

α

1/(α−1)

≥ µ

2(α− 1)
‖x‖α −

2
(
‖∇f̃(0)‖+ µ+ ξ

)α
µ

1/(α−1)

,

where step 1 follows from Lemma 30.

Lemma 26 Under Assumption 3, the KL-divergence between distribution ρ = N (x, Id) for x ∈ Rd
and the target distribution ν∗ = e−f is bounded as follows

KL
(
ρ|ν∗

)
≤ f(x) +

L

β + 1
d
β+1

2 +
d

2
log (2πe).
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Remark 27 The RHS depends on f(x), so if it is possible to find a minimizer (or an almost mini-
mizer) of f , it is preferred to generate initial point from a Gaussian distribution centered around the
minimizer. Moreover, the value of f(x) is for the normalized distribution, therefore in this lemma
we used ν∗ = e−f instead of ν∗ ∝ e−f .

Proof First we bound Ey∼ρ [f(y)− f(x)] as follows.

Ey∼ρ [f(y)− f(x)] = Ey∼ρ
[∫ 1

0
〈∇f(ty + (1− t)x), y − x〉 dt

]
= Ey∼ρ

[∫ 1

0
〈∇f(ty + (1− t)x)−∇f(x), y − x〉 dt

]
+ Ey∼p

[∫ 1

0
〈∇f(x), y − x〉 dt

]
=

∫ 1

0
Ey∼ρ [〈∇f(ty + (1− t)x)−∇f(x), y − x〉] dt

+

∫ 1

0
〈∇f(x),Ey∼ρ [y − x]〉 dt

≤
∫ 1

0
Ey∼ρ

[
tβL‖y − x‖β+1

]
dt

≤ L

β + 1
Ey∼ρ

[
‖y − x‖β+1

]
≤ L

β + 1
Ey∼ρ

[
‖y − x‖2

]β+1
2 ≤ L

β + 1
d
β+1

2 .

Using the previous formula, we bound the KL-divergence

KL
(
ρ|ν∗

)
=

∫
ρ(y) log (ρ(y))dy +

∫
ρ(y)f(y)dy = −H (ρ) + Ey∼ρ [f(y)− f(x)] + f(x).

Using the previous bound and the formula for the Gaussian entropy concludes the proof.

Lemma 28 For a, b > 0, the function x→ a/x+ bxθ is minimized at x∗ = (a/(θb))
1

1+θ and the
minimum value and an upper bound is given as

1+θ
θθ/(1+θ)a

θ
1+θ b

1
1+θ ≤ 2a

θ
1+θ b

1
1+θ .

Proof Taking derivative and setting it equal to zero yields the value for x∗.

Lemma 29 If 0 ≤ γ ≤ 2, then following inequality holds

‖u+ v‖γ ≤ 2(‖u‖γ + ‖v‖γ).

Further, when γ ≤ 1 the factor 2 on the right hand side can be omitted.

Proof The inequality follows from the fact that functions h1(x) = (xγ + 1) − (1 + x)γ and
h2(x) = 2(xγ + 1)− (1 + x)γ are non-negative when γ ∈ [0, 1] and γ ∈ [0, 2], respectively.
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Lemma 30 Suppose A,B, α, β > 0 and α > β and f(x) = −Axα +Bxβ . The following upper
bound on f holds when x > 0

sup
x≥0

f(x) ≤ B
(
Bβ

Aα

) β
α−β

.

Proof Setting the derivative equal to zero implies xα−β = βB
αA . Plugging this into f(x) we get

f(x) ≤ Bxβ = B
(
Bβ
Aα

) β
α−β . Since α > β this function has a maximizer not a minimizer.

Lemma 31 (Stein’s lemma Stein (1981)) Suppose x ∼ N (µ, σ2Id) and f : Rd → R is weakly
differentiable. Then, for a ∈ Rd

E [〈x− µ, af(x)〉] = σ2E [Tr(∇ [af(x)])] = σ2E [〈a,∇f(x)〉]

Lemma 32 If xk ≤ (1− a)xk−1 + b for 0 < a < 1 and 0 ≤ b, then

xk ≤ e−akx0 +
b

a
. (H.1)

Proof Recursion on xk ≤ (1− a)xk−1 + b yields

xk ≤ (1− a)kx0 + b(1 + (1− a) + (1− a)2 + · · ·+ (1− a)k−1) ≤ (1− a)kx0 +
b

a
.

Using the fact that 1− a ≤ e−a, (H.1) is achieved.

H.1. Some Properties of Hölder Continuity

Lemma 33 Let f be α-Hölder continuous with constant hαf and β-Hölder continuous with constant

hβf and 0 < β < α ≤ 1, then f is γ-Hölder with constant hαf ∨ h
β
f when β < γ < α.

Proof We consider two cases based on ‖x− y‖. First, when ‖x− y‖ ≤ 1,

‖f(x)− f(y)‖ ≤ hαf ‖x− y‖α ≤ hαf ‖x− y‖γ‖x− y‖α−γ ≤ hαf ‖x− y‖γ .

For the second case, when ‖x− y‖ > 1,

‖f(x)− f(y)‖ ≤ hβf‖x− y‖
β ≤ hβf‖x− y‖

γ‖x− y‖β−γ ≤ hβf‖x− y‖
γ .

Taking the maximum of constants in two cases completes the proof.

Lemma 34 Let f be α-Hölder continuous with constant hαf and g be β-Hölder continuous with

constant hβg and β < α ≤ 1. If the difference of f and g is bounded i.e. ‖f − g‖∞ < B then f is
β-Hölder with constant hαf ∨ (2B + hβg ). In a specific case, every bounded and Lipschitz function
is τ -Hölder for τ ∈ (0, 1).
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Proof We consider two cases based on ‖x− y‖. First, when ‖x− y‖ ≤ 1,

‖f(x)− f(y)‖ ≤ hαf ‖x− y‖α ≤ hαf ‖x− y‖β‖x− y‖α−β ≤ hαf ‖x− y‖β.

For the second case, when ‖x− y‖ > 1,

‖f(x)− f(y)‖ ≤ ‖f(x)− g(x)‖+ ‖g(x)− g(y)‖+ ‖f(y)− g(y)‖
≤ B + hαg ‖x− y‖β +B

≤ (2B + hαg )‖x− y‖β.

Taking the maximum of constants in the two cases completes the proof.

Lemma 35 The function ‖x‖α−2x is α− 1-Hölder for 1 < α < 2.

Proof Without loss of generality, assume ‖y‖ ≤ ‖x‖ which implies ‖x− y‖ ≤ 2‖x‖, which in turn
implies ‖x‖α−2 ≤ 22−α‖x− y‖α−2. Therefore,

‖f(x)− f(y)‖ ≤ ‖‖x‖α−2x− ‖y‖α−2y‖

≤ ‖‖x‖α−2x− ‖x‖α−1 y

‖y‖
+ ‖x‖α−1 y

‖y‖
− ‖y‖α−2y‖

≤ ‖x‖α−1‖ x

‖x‖
− y

‖y‖
‖+ |‖x‖α−1 − ‖y‖α−1|

1
≤ ‖x‖α−1‖ x

‖x‖
− y

‖x‖
+

y

‖x‖
− y

‖y‖
‖+ ‖x− y‖α−1

≤ ‖x‖α−2‖x− y‖+ ‖x‖α−1‖ y

‖y‖
(
‖y‖
‖x‖
− 1)‖+ ‖x− y‖α−1

≤ 2‖x‖α−2‖x− y‖+ ‖x− y‖α−1 ≤ (1 + 23−α)‖x− y‖α ≤ 5‖x− y‖α,

where inequality 1 follows from Lemma 29.
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